2013年中考数学模拟题(六)

合集下载

2013年中考数学第一次模拟考试题(含答案邯郸市)

2013年中考数学第一次模拟考试题(含答案邯郸市)

2013年中考数学第一次模拟考试题(含答案邯郸市)锛掞紣锛??涓€銆?閫夋嫨棰?1銆佸湪-3锛?1锛?锛??锛?A 銆?3 B銆?1 C銆? D銆? 2涓哄渾鐨勬槸锛?锛?3锛?A銆佸繀鐒朵簨浠?B銆侀殢鏈轰簨浠?C銆佺‘瀹氫簨浠?D4锛?A 銆?B銆?x+2y=6xy C銆?D銆?5BC缁忚繃鍙樻崲寰楀埌鈻矰EF锛?A銆佹妸鈻矨BC缁曠偣C閫嗘椂閽堟柟鍚戞棆杞?0o 锛屽啀鍚戜笅骞崇Щ2鏍?B 銆佹妸鈻矨BC缁曠偣C椤烘椂閽堟柟鍚戞棆杞?0o锛屽啀鍚戜笅骞崇Щ5鏍?C 銆佹妸鈻矨BC鍚戜笅骞崇Щ4鏍硷紝鍐嶇粫鐐笴閫嗘椂閽堟柟鍚戞棆杞?80o D 銆佹妸鈻矨BC鍚戜笅骞崇Щ5鏍硷紝鍐嶇粫鐐笴椤烘椂閽堟柟鍚戞棆杞?80o6銆佷笉绛夊紡缁?鐨勮В闆嗕负锛?锛?A銆?<X<2 B銆亁>1 C銆亁<2 D銆亁<1鎴杧>2 7?脳4鐨勭煩褰㈢綉鏍间腑锛屾瘡鏍煎皬姝f柟褰㈢殑杈归暱閮芥槸1锛岃嫢鈻矨BC屽垯tan鈭燗BC鐨勫€间负A銆?B銆?C銆?D銆? 8AB OD B,鍨傝冻涓篗锛屼笅鍒楃粨璁轰笉鎴愮珛鐨勬槸锛?锛?A锛嶤M=DM B銆佸姬CB= B C銆佲垹ACD=鈭燗DC D銆丱M=MB9銆佽嫢,鍒?鐨勫€兼槸锛?锛?A銆? B銆?6 C銆? D銆? 10銆侀偗閮稿競瀵瑰煄у5绫虫牻1妫碉紝鍒欐爲鑻楃己21妫碉紝濡傛灉姣忛殧6绫虫牻1妫碉紝鍒欐爲x锛?A銆?锛坸+21-1锛?6锛坸-1锛?B銆?锛坸+21锛?6锛坸-1锛?C銆?锛坸+21-1锛?6x D銆?锛坸+21锛?6x 11D涓衡柍ABC鍐呬竴鐐癸紝CD骞冲垎鈭燗CB锛孊E D,鍨傝冻涓篋锛屼氦AC浜庣偣E锛屸垹A=鈭燗BE,C=5,BC=3,鍒橞D鐨勯暱涓猴紙锛?A銆?.5 B銆?.5 C銆? D銆?12ABC暱涓?鐨勫皬姝f柟褰㈢粍鎴愮殑锛屽弽姣斾緥鍑芥暟OABC鐨勪腑蹇僂锛屽弽姣斾緥鍑芥暟杩嘇B BC浜庣偣N?鈶犲弻鏇茬嚎鐨勮В鏋愬紡涓?鈶′C=2NC鈶e弽姣斾緥鍑芥暟嬪嚱鏁?鐨勫?鍏朵腑姝g‘鐨勭粨璁烘槸锛?A銆佲憼鈶?B銆佲憼鈶?C銆佲憽鈶?D銆佲憿鈶?13銆?= 14鏈夋剰涔夛紝鍒檟鐨勫彇鍊艰寖鍥存槸銆?15銆佹瘝绾块暱涓?锛屽簳闈㈠渾鐨勭洿寰勪负2鐨勫渾閿ョ殑渚ч銆?16涓庣洿绾?鐩镐氦浜庣偣P锛?锛?锛夛紝鍒欏叧浜巟鐨勪笉绛夊紡鐨勮В闆嗕负銆?172cm锛?cm锛?cm锛?cm鐨勫洓鏍规湪鏉★紝灏忓己鎷垮嚭浜嗕竴鏍?cm闀跨殑鏈銆?18鎰忛潪闆跺疄鏁皒锛寉瀹氫箟鐨勬柊杩愮畻鈥?鈥? ,鍑忔硶鐨勮繍绠楋紝宸茬煡锛?锛屽垯= 銆?涓夈€佽В19銆佸厛鍖栫畝锛屽湪姹傚€硷細锛屽叾涓?20銆佹煇鏍′负浜嗚В锛?锛夛紙2娊鍙栫殑浜斾釜绛夌骇鎵€鍗犳瘮渚嬪拰浜烘暟鍒嗗竷鎯呭喌锛岀粯鍒跺嚭涔濆勾绾э紙1?锛夌彮鐨勭粺璁¤〃銆?锛?т汉鏁?锛?锛変節锛?锛夌彮銆佷節锛?锛屼腑浣嶆暟鍒嗗埆涓?锛??21銆佹煇瀛︽牎璁″垝鍒╃敤鏆戝亣浜嬩欢锛堝叡60澶繘琛岀矇鍒凤紝鐜版湁鐢蹭箼涓や釜宸ョ▼闃熸潵鎵垮寘锛岃皟鏌ュ彂鐜帮細涔欓槦鍗曠嫭瀹屾垚宸ョ▼鐨勬椂闂存槸鐢查槦鐨?.5鍊嶏紱鐢层€佷箼涓ら槦鍚堜綔瀹屾垚宸ョ▼闇€瑕?0澶╋紱鐢查槦姣忓ぉ鐨勫伐浣滆垂鐢ㄤ负1000鍏冿紝涔欓槦姣忓ぉ鐨勫伐浣滆垂鐢ㄤ负600锛?锛夌敳銆佷箼涓ら槦鍗曠嫭瀹屾垚杩欓」宸ョ▼鍚勯渶澶氬皯澶╋紵锛?锛夆憼鈶′粠璧22BCD E锛孎涓鸿竟BC銆丆D涓婄殑鐐癸紝涓擟E=CF E锛孉F锛屸垹ABC E浜庣偣G锛岃繛G銆?(1)姹傝瘉锛欰G=CG 锛?锛夋眰璇侊細CG F (3)G=CG锛屽垯鈻矨BE涓庘柍BGE?23銆佽幏鎮夆€滆帿瑷€鑾峰緱浜?012?00鍏冮挶鍒颁功搴楄喘涔拌帿瑷€浣滃搧渚?閮ㄥ垎涔︾睄鍜?涔﹀悕鍘熶环锛堝厓锛?銆婅洐銆?37.5 銆婄敓姝荤柌鍔炽€?15 銆婄孩楂樼脖瀹舵棌銆?21 鑻ユ潕20細锛?锛夎喘涔般€婄孩楂樼脖瀹舵棌銆嬬殑鎬讳环涓?鍏冿紙鐢ㄥ惈x锛寉鐨勪唬鏁板紡琛ㄧず锛?锛?伴噺鐨?鍊嶏紝璇峰啓鍑簑鍏充簬x鐨勫嚱鏁板叧绯诲紡锛屽苟姹傚嚭銆婅洐銆(3)鑻ユ潕鑰佸笀鍦ㄤ功鍩庤喘涔颁簡浠ヤ笂?50?24BCD AD C锛屸垹BCD=90o,宸茬煡AB=5锛孊C=6,cosB= 銆傜偣O鐢辩偣B鍚戠偣C浠ユ瘡绉?C t OB涓哄崐寰勭殑鈯橭涓嶢B杈逛氦浜庣偣P銆?锛?锛夋眰AD鐨勯暱锛?锛夊綋t=AD鏃讹紝濡傚浘锛?锛夛紝姹侭P鐨勯暱锛?锛夌偣O杩愬姩鐨勮繃绋嬩腑锛岃繃鐐笵鐨勭洿绾緿Q涓庘姍O鐩稿垏浜庣偣Q锛屼氦BC浜庣偣E3锛夛紝褰揇Q B鏃讹紝姹倀鐨勫€笺€?25BCA锛?锛?锛夈€佺偣B(1.0),鎶涚墿绾?缁忚繃鐐笴銆?锛?锛夋眰鐐笴鐨勫潗鏍囧拰鎶涚墿绾跨殑瑙f瀽寮?锛?锛夎嫢鎶涚墿绾跨殑瀵圭О杞翠簬AB鐨勪氦鐐逛负M锛屾眰鈻矨CM鐨勯潰绉?锛?锛夎嫢灏嗏柍ABC娌緼B缈绘姌锛岀偣C囩▼锛?鑻ュ皢鈻矨BC娌緽C缈绘姌锛岀偣A嚎涓婏紵鐩存帴鍐欏嚭缁撴灉锛?26銆佸皾璇曟帰绌讹細灏忓紶鍦ㄦ暟瀛﹀疄璺垫椿鍔ㄤ腑锛岀敾浜嗕竴涓猂t鈻矨BC锛屼娇鈭燗CB=90o锛孊C=1锛孉C=2BC涓哄崐寰勭敾寮т氦AB浜庣偣D锛岀劧鍚庝互A 涓哄渾蹇冧互AD C浜庣偣E E= 锛E2 =AC C,,璇峰悓瀛︿滑楠岃瘉灏忓紶鐨勫彂鐜版槸?鎷撳睍寤朵几锛?AC鍙婄偣E 锛屾帴鐫€鏋勯€燗E=EF=CF F锛屽緱鍒颁笅鍥撅紝璇曞畬鎴愪互涓嬮棶棰橈細鈶犳眰璇佲柍ACF鈭解柍FCE 鈶℃眰鈭燗鐨勫害鏁帮紱鈶㈡眰cos鈭燗搴旂敤杩佺Щ锛?鍒╃敤涓婇潰鐨勭粨璁猴紝鐩存帴鍐欏嚭锛?鈶犲崐寰勪负2鐨勫渾鍐呮帴姝e崄杈瑰舰鐨勮竟闀夸负鈶¤竟闀夸负2锛掞紣锛??垎鏍囧噯涓€銆侀€夋嫨棰橈細1銆丄銆€銆€2銆丆3銆丅銆€銆€4銆丆5銆丅銆€銆€6銆丄7銆丄銆€銆€8銆丏9銆丅銆€銆€10銆丄11銆丏銆€銆€12銆丅?鍒嗭紝鍏?8鍒嗭級13. 1 銆€銆€14. x鈮?1 15. 3蟺銆€銆€16. x鈮? 17. 銆€銆€18. 4锛?涓夈€佽В绛?2鍒嗭級19.瑙o細= 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?3鍒?= 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?5鍒?褰揳=-1,b= 鏃讹紝鍘熷紡=4+ 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?8鍒?20.锛?锛?锛?锛塁銆丅锛汣銆丆鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?6鍒?锛?锛夊洜涓轰腑浣嶆暟鐩稿悓锛屼絾锛?锛夌殑浼楁暟灏忎簬锛?锛夌殑浼楁暟锛屾墍浠ユ垜璁や负锛?锛夋洿鍠︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?8鍒?紭鍔f寜A銆丅銆丆銆丏銆丒鐢遍珮鍒颁綆銆傝嫢瀛︾敓浠嶢绛夌骇缁煎悎鑰冭檻璁や负锛?锛夊ソ涔熷彲缁欐弧鍒嗐€?21.瑙o細锛?鎴愰渶x澶╋紝鍒欎箼鍗曠嫭瀹屾垚闇€1.5x鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?3鍒?瑙e緱x=50锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?4鍒?=50В锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?5鍒?鍒?.5x=75锛?鎵€浠ョ敳銆佷箼涓ら槦鍗曠嫭瀹屾垚杩欓」宸ョ▼鍚勯渶50銆?5澶┿€?鈥︹€︹€︹€︹€︹€?6鍒?锛?锛夆憼鍥犱负瀛︽牎鍋囨湡涓?0澶╋紝鐢茬殑瀹屾垚鏃堕棿涓?0澶╋紝灏忎簬60澶╋紱涔欑殑瀹屾垚鏃堕棿涓?5澶╋紝澶т簬60澶╋紝鎵€浠ヤ粠鏃堕棿涓婅€冭檻搴旈€夋嫨鐢查槦锛涒€︹€︹€︹€︹€︹€?7鍒?鈶$敳鎵€闇€鐨勮祫閲戯細50脳1000=50000鍏冿紱涔欐墍闇€璧勯噾锛?5脳600=45000鍏冿紱45000锛?0000 鎵€浠ヤ粠璧勯噾瑙掑害鑰冭檻搴旈€夋嫨涔欓槦銆傗€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?8鍒?21. 璇佹槑锛?锛?BCD?鈭碅B=BC 鍙堚埖鈭燗BG=鈭燙BG锛孊G=BG 鈭粹柍AGB鈮屸柍CGB锛圫AS锛?鈭碅G=CG 鈥︹€︹€︹€︹€︹€︹€?2鍒?锛?锛夎繛缁揂C 鈥︹€︹€︹€︹€︹€︹€?3鍒?鈭靛洓杈瑰舰ABCD?鈭粹垹DCA=鈭燘CA 鍙堚埖CF=CE锛孋A=CA 鈭粹柍AFC鈮屸柍AEC锛圫AS锛?鈭粹垹FAC=鈭燛AC 鈭礎G=CG 鈭粹垹EAC=鈭燝CA 鈭粹垹FAC=鈭燝CA 鈭碈G F 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?5鍒?锛?锛夆埖BG=CG 鈭粹垹GBC=鈭燝CB 鈭碘柍AGB鈮屸柍CGB 锛堝凡璇侊級鈭粹垹GAB=鈭燝CB 鈭粹垹GAB=鈭燝BC 鍙堚埖鈭燗EB=鈭燗EB 鈭粹柍ABE鈭解柍BGE 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?8鍒?23.锛?锛?20-21x-21y 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?1鍒?锛?锛墄=2锛?0-x-y锛夛紝y=20-1.5x锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?2鍒?w=37.5x+15y+21锛?0-x-y锛?25.5x+300锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?3鍒?瑙e緱锛?鍥犱负x,鎵€浠ヨ兘涔?︹€︹€︹€︹€︹€︹€︹€?6鍒?锛?锛? 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?8鍒?24.1锛夎繃鐐笰浣淎E C浜庣偣E锛?鈭礎B=5锛宑osB= 鈭碆E=AB osB=3 鈭碋C=BC-BE=3 鈥︹€︹€︹€︹€︹€︹€︹€︹€?2鍒?鈭礎D C锛屸垹BCD=90掳鈭粹垹C=鈭燚=鈭燗EC=90掳鈭村洓杈瑰舰AECD?鈭碅D=3 鈥︹€︹€︹€︹€︹€︹€︹€︹€?3鍒?锛?锛夆埖AD=3 鈭村綋t =AD鏃讹紝OB=3 杩囩偣O浣淥F P浜庣偣F 鈭碆F= BP 鈭礳osB= 鈭碆F=BO osB= 鈭碆P= 鈥︹€︹€︹€︹€︹€︹€︹€︹€?6鍒?锛?Q 鈭礑Q B锛孉D C 鈭村洓杈瑰舰ABED鈭碆E=AD=3锛孌E=AB=5 鈭碈D= =4 鈭礏O=t 鈭碠E=3-t 鈭电洿绾緿Q涓庘姍O鐩稿垏浜庣偣Q 鈭粹垹OQE=鈭燙=90掳鈭碘垹OEQ=鈭燚EC锛?鈭粹柍OQE鈭解柍DCE 鈭?鈭?鈭磘= 鈥︹€︹€︹€︹€︹€︹€︹€︹€?9鍒?25. 瑙o細锛?锛夎繃C鐐逛綔CE鈭碘柍ABC 涓虹瓑鑵扮洿瑙掍笁瑙掑舰鈭碅B=AC 鈭?ABC=900 鍦≧t鈻矨OB涓?鈭燨AB+鈭燗BO=900 鈭碘垹ABO+鈭?CBE=900 鈭粹垹OAB=鈭燙BE 鈭碘垹CEB=鈭燗OB=900 鈭粹柍AOB鈮屸柍BEC 鈥︹€︹€︹€︹€︹€︹€?1鍒?鈭碆E=AO CE=OB 鈭礎(0,2)B(1,0) 鈭碅O=2 BO=1 鈭碆E=2 CE=1 鈭碠E=3 鈭?C(3,1) 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?2鍒?甯﹀叆y=ax2-ax-2鍥惧儚涓?鈭碼= 鈭磞= x2- x-2 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?3鍒?锛?=- =- = 鈥︹€︹€︹€︹€︹€?4鍒?AB浜庣偣F 鈭寸偣M鐨勫潗鏍囦负锛?锛?锛?鈭寸偣M鏄疧B鐨勪腑鐐?鈭礛F?鈭碏鏄疉B鐨勪腑鐐?鈭靛湪Rt鈻矨OB AB= = 鈭碨鈻矨CM= S鈻矨BC = 脳脳脳= 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?7鍒?锛?BC 娌緼B缈绘姌鍚庡緱鍒扳柍ABD锛?杩囩偣D浣淒M锛?锛夛紝鈭礏D=BC锛屸垹MBD=鈭燛BC锛屸垹DMB=鈭燙EB=90掳锛?鈭粹柍DBM 鈮屸柍CBE锛?鈭碆M=BE=2锛孌M=CE=1锛?鈭碊锛?1锛?1偣D鍦?鎶涚墿绾縴= x2- x-2涓婏紱鈥︹€︹€︹€︹€︹€︹€?鍒?灏嗏柍ABC娌緽C缈绘姌锛岀偣A涓嶅湪璇ユ姏鐗╃嚎涓娿€傗€︹€︹€︹€︹€︹€︹€?0鍒?26.锛?锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?1鍒?AE2=6-2 ,AC C=6-2 ,鈭寸?鈥︹€︹€︹€︹€︹€︹€?2鍒?鈶犫埖AE2=AC C锛?鈭?鈭礎E=FC 鈭?鍙堚埖鈭燘=鈭燘鈭粹柍ACF鈭解柍FEC 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?5鍒?鈶♀埖鈻矨CF鈭解柍FEC锛屼笖EF=FC 鈭碅C=AF 鈭礎E=EF 鈭粹垹A=鈭燗FE 鈭粹垹FEC=2鈭燗鈭礒F=FC 鈭粹垹C=2鈭燗鈭粹垹AFC=鈭燙=2鈭燗鈭碘垹AFC+鈭燙+鈭燗=180掳鈭粹垹A=36掳鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?8鍒?鈶㈣繃鐐笷浣淔MB B浜庣偣M 鐢憋紙1E= 锛孍B= 鈭礒F=FB 鈭碝E= 鈭碅M= 鈭碿os鈭燗= = 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?10鍒?锛?锛夆憼鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?11鍒?鈶?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?12鍒?。

2013年中考数学模拟题(含答案)

2013年中考数学模拟题(含答案)

2013年中考数学模拟题一、选择题(每小题3分,共15分)1.下列运算正确的是 ( )A. x 2·x 3=x 6B. –2x -2=- 14x 2 C.(-x 2)3=x 5 D.-x 2-2x 2=-3x 2 2.在平面直角坐标系中,点P (-1,-1)关于x 轴的对称点在( ) A.第一象限 B. 第二象限C.第三象限D. 第四象限3.某班5位同学的身高(单位:厘米)分别155,160,160,161,169,这组数据中,下列说法错误的是 ( )A.众数是160B.中位数是160C.平均数是161D.方差是24.如图,PA 切⊙O 于A ,∠P=30°,OP =2,则⊙O 的半径的是 ( )A.21B.1C. 2D.45.已知圆锥的母线长为5cm ,底面半径为3cm ,则此圆锥的侧面积为 ( )A. 12πcm 2B. 15πcm 2C. 20πcm 2D. 30πcm 2二、填空题(每小题4分,共20分)6.已知代数式2x 2-x+1的值等于2,则代数式 4x 2-2x+5的值为___________.7.若反比例函数y=- x8的图象经过点(m ,-2m ),则m 的值为___________.8、十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率是________.9.如图,CD⊥AB,BE⊥AC,请你再添加一个条件:________使ΔABE≌ΔACD。

10.如图,在 RtΔABC中,∠C=90°,AB=4cm,AC=23cm,以B为圆心,以BC为半径作弧交AB于D,则阴影部分的面积是 _____cm2。

三、解答题(每小题6分,共30分)11.有这样一道题:“计算x2-2x+1x2-1÷x-1x2+x-x 的值,其中x=2007”。

甲同学把“x=2007”错抄成“x=2070”,但他的计算结果也是正确的,你说这是怎么回事?12. ,并把解集在数轴上表示出来。

中考数学:二次函数的推理计算与证明综合问题真题+模拟(原卷版北京专用)

中考数学:二次函数的推理计算与证明综合问题真题+模拟(原卷版北京专用)

中考数学二次函数的推理计算与证明综合问题【方法归纳】据北京历年中考题型来推测,二次函数的压轴题目多数会以参数的形式出现的,难度之大,可想而知。

在解决含参数二次函数的题目时,通常先观察解析式,看能否求出对称轴,图像与坐标轴交点能否用参数来表示?根据设出点的坐标可求出相应的线段,然后观察题意,再考虑我们所学过的知识点(勾股,相似等)能否用上.常用的二次函数的基础知识有:1.几种特殊的二次函数的图象特征如下:2.用待定系数法求二次函数的解析式:(1)一般式:(a≠0).已知图象上三点或三对x 、y 的值,通常选择一般式.(2)顶点式:(a≠0).已知图象的顶点或对称轴,通常选择顶点式. (可以看成的图象平移后所对应的函数.)(3)交点式:已知图象与x 轴的交点坐标x 1、x 2,通常选用交点式:(a≠0).(由此得根与系数的关系:,). 3. 二次函数图象和一元二次方程的关系:【典例剖析】【例1】(2021·北京·中考真题)在平面直角坐标系xOy 中,点(1,m )和点(3,n )在抛物线y=2y ax bx c =++()2y a x h k =-+2y ax =()()12y a x x x x =--12b x x a +=-12c x x a⋅=ax2+bx(a>0)上.(1)若m=3,n=15,求该抛物线的对称轴;(2)已知点(−1,y1),(2,y2),(4,y3)在该抛物线上.若mn<0,比较y1,y2,y3的大小,并说明理由.【例2】(2022·北京·中考真题)在平面直角坐标系xOy中,点(1,m),(3,n)在抛物线y=ax2+ bx+c(a>0)上,设抛物线的对称轴为x=t.(1)当c=2,m=n时,求抛物线与y轴交点的坐标及t的值;(2)点(x0,m)(x0≠1)在抛物线上,若m<n<c,求t的取值范围及x0的取值范围.【真题再现】1.(2013·北京·中考真题)在平面直角坐标系xOy中,抛物线y=mx2-2mx-2(m≠0))与轴交于点A,其对称轴与x轴交于点B.(1)求点A,B的坐标;(2)设直线l与直线AB关于该抛物线的对称轴对称,求直线l的解析式;(3)若该抛物线在-2<x<-1这一段位于直线l的上方,并且在2<x<3这一段位于直线AB的下方,求该抛物线的解析式.2.(2014·北京·中考真题)在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,−2),B(3,4).(1)求抛物线的表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A,B之间的部分为图象G(包含A,B两点)CD与图象G有公共点,结合函数图像,求点D纵坐标t的取值范围.3.(2015·北京·中考真题)在平面直角坐标系xOy中,过点(0,2)且平行于x轴的直线,与直线y=x-1交于点A,点A关于直线x=1的对称点为B,抛物线C1:y=x2+bx+c经过点A,B.(1)求点A,B的坐标;(2)求抛物线C1的表达式及顶点坐标;(3)若拋物线C2:y=ax2(a≠0)与线段AB恰有一个公共点,结合函数的图象,求a的取值范围.4.(2016·北京·中考真题)在平面直角坐标系xOy中,抛物线y=mx2-2mx+m-1(m>0)与x轴的交点为A,B.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.5.(2017·北京·中考真题)在平面直角坐标系xOy中,抛物线y=x2-4x+3与x轴交于点A 、B(点A在点B的左侧),与y轴交于点C.(1)求直线BC的表达式;(2)垂直于y轴的直线l与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N(x3,y3),若x1<x2<x3,结合函数的图象,求x1+x2+x3的取值范围.6.(2018·北京·中考真题)在平面直角坐标系xOy中,直线y=4x+4与x轴、y轴分别交于点A,B,抛物线y=ax2+bx−3a经过点A,将点B向右平移5个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.7.(2019·北京·中考真题)在平面直角坐标系xOy中,抛物线y=ax2+bx−1a与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点P(12,−1a),Q(2,2).若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.8.(2020·北京·中考真题)在平面直角坐标系xOy中,M(x1,y1),N(x2,y2)为抛物线y=ax2+ bx+c(a>0)上任意两点,其中x1<x2.(1)若抛物线的对称轴为x=1,当x1,x2为何值时,y1=y2=c;(2)设抛物线的对称轴为x=t.若对于x1+x2>3,都有y1<y2,求t的取值范围.【模拟精练】一、解答题(共30题)1.(2022·北京市广渠门中学模拟预测)已知抛物线y=ax2+2ax+3a2−4(a≠0)(1)该抛物线的对称轴为_____________;(2)若该抛物线的顶点在x轴上,求a的值;(3)设点M(m,y1),N(2,y2)该抛物线上,若y1>y2,求m的取值范围.2.(2022·北京·二模)在平面直角坐标系xOy中,抛物线y=x2−2mx.(1)当抛物线过点(2,0)时,求抛物线的表达式;(2)求这个二次函数的顶点坐标(用含m的式子表示);(3)若抛物线上存在两点A(m−1,y1)和B(m+2,y2),其中m>0.当y1⋅y2>0时,求m的取值范围.3.(2022·北京昌平·二模)在平面直角坐标系xOy中,已知抛物线y=ax2+bx−1(a>0).(1)若抛物线过点(4,−1).①求抛物线的对称轴;②当−1<x<0时,图像在x轴的下方,当5<x<6时,图像在x轴的上方,在平面直角坐标系中画出符合条件的图像,求出这个抛物线的表达式;(2)若(−4,y1),(−2,y2),(1,y3)为抛物线上的三点且y3>y1>y2,设抛物线的对称轴为直线x=t,直接写出t的取值范围.4.(2022·北京房山·二模)在平面直角坐标系xOy中,点A(2,−1)在二次函数y=x2−(2m+ 1)x+m的图象上.(1)直接写出这个二次函数的解析式;(2)当n≤x≤1时,函数值的取值范围是−1≤y≤4−n,求n的值;(3)将此二次函数图象平移,使平移后的图象经过原点O.设平移后的图象对应的函数表达式为y=a(x−ℎ)2+k,当x<2时,y随x的增大而减小,求k的取值范围.5.(2022·北京朝阳·二模)在平面直角坐标系xOy中,已知抛物线y=x2+(a+2)x+2a.(1)求抛物线的对称轴(用含a的式子表示);(2)若点(-1,y1),(a,y2),(1,y3)在抛物线上,且y1<y2<y3,求a的取值范围.6.(2022·北京东城·二模)在平面直角坐标系xOy中,抛物线y=ax2+bx+1(a≠0)的对称轴是直线x=3.(1)直接写出抛物线与y轴的交点坐标;(2)求抛物线的顶点坐标(用含a的式子表示);(3)若抛物线与x轴相交于A,B两点,且AB≤4,求a的取值范围.7.(2022·北京平谷·二模)在平面直角坐标系xOy中,点(−1,y1)、(1,y2)、(3,y3)是抛物线y=x2+bx+1上三个点.(1)直接写出抛物线与y轴的交点坐标;(2)当y1=y3时,求b的值;(3)当y3>y1>1>y2时,求b的取值范围.8.(2022·北京四中模拟预测)在平面直角坐标系xOy中,已知抛物线y=x2−2tx+t2−t.(1)求抛物线的顶点坐标(用含t的代数式表示);(2)点P(x1,y1),Q(x2,y2)在抛物线上,其中t−1≤x1≤t+2,x2=1−t.①若y1的最小值是−2,求y1的最大值;②若对于x1,x2,都有y1<y2,直接写出t的取值范围.9.(2022·北京丰台·二模)在平面直角坐标系xOy中,已知抛物线y=x2−2ax−3.(1)求该抛物线的对称轴(用含a的式子表示)(2)A(x1,y1),B(x2,y2)为该抛物线上的两点,若x1=1−2a,x2=a+1,且y1>y2,求a的取值范围.10.(2022·北京密云·二模)已知二次函数y=ax2+bx+2的图象经过点(1,2).(1)用含a的代数式表示b;(2)若该函数的图象与x轴的一个交点为(−1,0),求二次函数的解析式;(3)当a<0时,该函数图象上的任意两点P(x1,y1)、Q(x2,y2),若满足x1=−2,y1>y2,求x2的取值范围.11.(2022·北京大兴·二模)关于x的二次函数y1=x2+mx的图象过点(−2,0).(1)求二次函数y1=x2+mx的表达式;(2)已知关于x的二次函数y2=−x2+2x,一次函数y3=kx+b(k≠0),在实数范围内,对于x的同一个值,这三个函数所对应的函数值y1≥y3≥y2均成立.①求b的值;②直接写出k的值.12.(2022·北京顺义·xOy中,已知抛物线y=x2+mx+n.(1)当m=−3时,①求抛物线的对称轴;②若点A(1,y1),B(x2,y2)都在抛物线上,且y2<y1,求x2的取值范围;(2)已知点P(−1,1),将点P向右平移3个单位长度,得到点Q.当n=2时,若抛物线与线段PQ恰有一个公共点,结合函数图象,求m的取值范围.13.(2022·北京市十一学校模拟预测)已知二次函数y=ax2−4ax−3的图象与x轴交于A、B两点(点A在点B的左侧),顶点为D.(1)直接写出函数图象的对称轴:_____;(2)若△ABD是等腰直角三角形,求a的值;(3)当−1≤x≤k(2≤k≤6)时,y的最大值m减去y的最小值n的结果不大于3,求a的取值范围.14.(2022·北京房山·二模)已知二次函数y=ax2−4ax.(1)二次函数图象的对称轴是直线x=__________;(2)当0≤x≤5时,y的最大值与最小值的差为9,求该二次函数的表达式;(3)若a<0,对于二次函数图象上的两点P(x1,y1),Q(x2,y2),当t−1≤x1≤t+1,x2≥5时,均满足y1≥y2,请结合函数图象,直接写出t的取值范围.15.(2022·北京海淀·二模)在平面直角坐标系xOy中,点(m – 2, y1),(m, y2),(2- m, y3)在抛物线y = x2-2ax + 1上,其中m≠1且m≠2.(1)直接写出该抛物线的对称轴的表达式(用含a的式子表示);(2)当m = 0时,若y1= y3,比较y1与y2的大小关系,并说明理由;(3)若存在大于1的实数m,使y1>y2>y3,求a的取值范围.16.(2022·北京西城·二模)在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过点(0,−2),(2,−2).(1)直接写出c的值和此抛物线的对称轴;(2)若此抛物线与直线y=−6没有公共点,求a的取值范围;(3)点(t,y1),(t+1,y2)在此抛物线上,且当−2≤t≤4时,都有|y2−y1|<7.直接写出a2的取值范围.17.(2022·北京东城·一模)在平面直角坐标系xOy中,抛物线y=x2−2mx+m2+1与y 轴交于点A.点B(x1,y1)是抛物线上的任意一点,且不与点A重合,直线y=kx+b(k≠0)经过A,B两点.(1)求抛物线的顶点坐标(用含m的式子表示);(2)若点C(m−2,a),D(m+2,b)在抛物线上,则a_______b(用“<”,“=”或“>”填空);(3)若对于x1<−3时,总有k<0,求m的取值范围.18.(2022·北京市十一学校二模)在平面直角坐标系xOy中,点A(t,2)(t≠0)在二次函数y=ax2+bx+2(a≠0)的图象上.(1)当t=4时,求抛物线对称轴的表达式;(2)若点B(5−t,0)也在这个二次函数的图象上.①当这个函数的最小值为0时,求t的值;②若在0≤x≤1时,y随x的增大而增大,求t的取值范围.19.(2022·北京石景山·一模)在平面直角坐标xOy中,点(4,2)在抛物线y=ax2+bx+2(a>0)上.(1)求抛物线的对称轴;(2)抛物线上两点P(x1,y1),Q(x2,y2),且t<x1<t+1,4−t<x2<5−t.①当t=3时,比较y1,y2的大小关系,并说明理由;2②若对于x1,x2,都有y1≠y2,直接写出t的取值范围.20.(2022·北京大兴·一模)在平面直角坐标系xOy中,已知关于x的二次函数y=x2−2ax+ 6.(1)若此二次函数图象的对称轴为x=1.①求此二次函数的解析式;②当x≠1时,函数值y______5(填“>”,“<”,或“≥”或“≤”);(2)若a<−2,当−2≤x≤2时,函数值都大于a,求a的取值范围.21.(2022·北京·东直门中学模拟预测)在平面直角坐标系xOy中,抛物线y=ax2−(a+ 4)x+3经过点(2,m).(1)若m=−3,①求此抛物线的对称轴;②当1<x<5时,直接写出y的取值范围;(2)已知点(x1,y1),(x2,y2)在此抛物线上,其中x1<x2.若m>0,且5x1+5x2≥14,比较y1,y2的大小,并说明理由.22.(2022·北京市燕山教研中心一模)在平面直角坐标系xOy中,抛物线y=ax2+bx+3a(a≠0)与x轴的交点为点A(1,0)和点B.(1)用含a的式子表示b;(2)求抛物线的对称轴和点B的坐标;(3)分别过点P(t,0)和点Q(t+2,0)作x轴的垂线,交抛物线于点M和点N,记抛物线在M,N之间的部分为图象G(包括M,N两点).记图形G上任意一点的纵坐标的最大值是m,最小值为n.①当a=1时,求m−n的最小值;②若存在实数t,使得m−n=1,直接写出a的取值范围.23.(2022·北京平谷·一模)在平面直角坐标系xOy中,抛物线y=x2﹣2bx.(1)当抛物线过点(2,0)时,求抛物线的表达式;(2)求这个二次函数的对称轴(用含b的式子表示);(3)若抛物线上存在两点A(b﹣1,y1)和B(b+2,y2),当y1•y2<0时,求b的取值范围.24.(2022·北京门头沟·一模)在平面直角坐标系xOy中,已知抛物线y=−x2+2mx−m2+ m−2(m是常数).(1)求该抛物线的顶点坐标(用含m代数式表示);(2)如果该抛物线上有且只有两个点到直线y=1的距离为1,直接写出m的取值范围;(3)如果点A(a,y1),B(a+2,y2)都在该抛物线上,当它的顶点在第四象限运动时,总有y1>y2,求a的取值范围.25.(2022·北京房山·一模)已知二次函数y=x2+bx+c(b,c为常数)的图象经过点A(1,0)与点C(0,-3),其顶点为P.(1)求二次函数的解析式及P点坐标;(2)当m≤x≤m+1时,y的取值范围是-4≤y≤2m,求m的值.26.(2022·北京朝阳·一模)在平面直角坐标系xOy中,点(−2,0),(−1,y1),(1,y2),(2,y3)在抛物线y=x2+bx+c上.(1)若y1=y2,求y3的值;(2)若y2<y1<y3,求y3值的取值范围.27.(2022·北京市第一六一中学分校一模)在平面直角坐标系xOy中,直线l1:y=﹣2x+6与y轴交于点A,与x轴交于点B,二次函数的图象过A,B两点,且与x轴的另一交点为点C,BC=2;(1)求点C的坐标;(2)对于该二次函数图象上的任意两点P1(x1,y1),P2(x2,y2),当x1>x2>2时,总有y1>y2.①求二次函数的表达式;②设点A在抛物线上的对称点为点D,记抛物线在C,D之间的部分为图象G(包含C,D 两点).若一次函数y=kx﹣2(k≠0)的图象与图象G有公共点,结合函数图象,求k的取值范围.28.(2022·北京顺义·一模)在平面直角坐标系xOy中,点(2,−2)在抛物线y=ax2+bx−2(a<0)上.(1)求该抛物线的对称轴;(2)已知点(n−2,y1),(n−1,y2),(n+1,y3)在抛物线y=ax2+bx−2(a<0)上.若0<n< 1,比较y1,y2,y3的大小,并说明理由.29.(2022·北京海淀·一模)在平面直角坐标系xOy中,二次函数y=ax2−2ax(a≠0)的图象经过点A(−1,3).(1)求该二次函数的解析式以及图象顶点的坐标;(2)一次函数y=2x+b的图象经过点A,点(m,y1)在一次函数y=2x+b的图象上,点(m+4,y2)在二次函数y=ax2−2ax的图象上.若y1>y2,求m的取值范围.30.(2022·北京市第七中学一模)在平面直角坐标系xOy中,点A(x1,y1),B(x2,y2)在抛物线y=−x2+(2a−2)x−a2+2a上,其中x1<x2.(1)求抛物线的对称轴(用含a的式子表示);(2)①当x=a时,求y的值;②若y1=y2=0,求x1的值(用含a;(3)若对于x1+x2<−5,都有y1<y2,求a的取值范围.。

2024年浙江省宁波市中考数学模拟试题(六)

2024年浙江省宁波市中考数学模拟试题(六)

2024年浙江省宁波市中考数学模拟试题(六)一、单选题1.下列算式的结果等于6-的是( )A .()122--B .()122÷-C .()42+-D .()42⨯- 2.下列运算正确的是( )AB -C5±D 347=+ 3.下列计算正确的是( )A .23x x x +=B .632x x x ÷=C .()437x x =D .347x x x ⋅= 4.设a b c ,,均为实数,( )A .若a b >,则ac bc >B .若a b =,则ac bc =C .若ac bc >,则a b >D .若ac bc =,则a b =5.某中老年合唱团成员的平均年龄为52岁,方差为210岁,在人员没有变动的情况下,两年后这批成员的( )A .平均年龄为52岁,方差为210岁B .平均年龄为54岁,方差为210岁C .平均年龄为52岁,方差为212岁D .平均年龄为54岁,方差为212岁 6.如图,设O 为ABC V 的边AB 上一点,O e 经过点B 且恰好与边AC 相切于点C .若30,3B AC ∠=︒=,则阴影部分的面积为( )A 2πB 2πC πD π- 7.在面积等于3的所有矩形卡片中,周长不可能是( )A .12B .10C .8D .68.如图,锐角三角形ABC 中,AB AC =,D ,E 分别在边AB ,AC 上,连接BE ,CD ,下列命题中,假命题是( )A .若CD BE =,则DCB EBC ∠=∠B .若DCB EBC ∠=∠,则CD BE =C .若BD CE =,则DCB EBC ∠=∠D .若DCB EBC ∠=∠,则BD CE =9.四名同学在研究函数22y x bx c =++(b c ,为已知数)时,甲发现该函数的图象经过点()1,0;乙发现当2x =时,该函数有最小值;丙发现3x =是方程222x bx c ++=的一个根;丁发现该函数图象与y 轴交点的坐标为()0,6.已知这四名同学中只有一人发现的结论是错误的( )A .甲B .乙C .丙D .丁10.如图,ABC V 的两条高线AD BE ,交于点F ,过B ,C ,E 三点作O e ,延长AD 交O e 于点G ,连接GO GC ,.设53AF DF ==,,则下列线段中可求长度的是( )A .GB B .GDC .GOD .GC二、填空题11.分解因式:224x y -+=.12.在一个不透明的纸箱中装有4个白球和n 个黄球,它们只有颜色不同.为了估计黄球的个数,杨老师进行了如下试验:每次从中随机摸出1个球,杨老师发现摸到白球的频率稳定在13附近,则纸箱中大约有黄球个. 13.某种罐装凉茶一箱的价格为84元,某商场实行促销活动,买一箱送四罐,每罐的价格比原来便宜0.8元,设每箱中有凉茶x 罐,则可列方程:.14.如图,在Rt ABC V 中,已知90C ∠=︒,3CD BD =,cos ABC ∠sin BAD ∠=.15.第二十四届国际数学家大会会徽的设计基础是1700多年前中国古代数学家赵爽的“弦图”.如图,在由四个全等的直角三角形(Rt DAE V ,Rt ABF V ,Rt BCG V ,Rt CDH △)和中间一个小正方形EFGH 拼成的大正方形ABCD 中,连接BE .设BAF α∠=,BEF β∠=,正方形EFGH 和正方形ABCD 的面积分别为1S 和2S ,若90αβ+=︒,则21S S =:.16.已知关于x 的一元二次方程20x ax b ++=有两个根1x ,2x ,且满足1212x x <<<.记=+t a b ,则t 的取值范围是 .三、解答题17.(1)计算:212tan 6012-⎛⎫︒+ ⎪⎝⎭; (2)已知2410x x --=,求代数式()()()22311x x x --+-的值. 18.圆圆和方方在做一道练习题:已知0a b <<,试比较a b 与11a b ++的大小. 圆圆说:“当12a b ==,时,有12a b =,1213a b +=+;因为1223<,所以11a ab b +<+”. 方方说:“圆圆的做法不正确,因为12a b ==,只是一个特例,不具一般性.可以……”请你将方方的做法补充完整.19.某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理和分析,部分信息如下:a .七年级成绩频数分布直方图;b .七年级成绩在7080x ≤<这一组的是:70,72,74,75,76,76,77,77,77,77,78;c .七、八年级成绩的平均数、中位数如表:根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有 人,表中m 的值为 ;(2)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级50名测试学生中的排名谁更靠前;(3)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.8分的人数. 20.某同学尝试在已知的ABCD Y 中利用尺规作出一个菱形,如图所示.(1)根据作图痕迹,能确定四边形AECF 是菱形吗?请说明理由.(2)若=60B ∠︒,2BA =,4BC =,求四边形AECF 的面积.21.小丽家饮水机中水的温度为20℃,通电开机后,饮水机自动开始加热,此过程中水温()y ℃与开机时间()min x 满足一次函数关系,随后水温开始下降,此过程中水温()y ℃与开机时间()min x 成反比例关系,当水温降至20℃时,根据图中提供的信息,解答问题.(1)当010x ≤≤时,求水温()y ℃关于开机时间()min x(2)求图中t 的值.(3)若小丽在将饮水机通电开机后外出散步,请你预测小丽散步70min 回到家时,饮水机中水的温度.22.在等边三角形ABC 外侧作直线AP ,点B 关于直线AP 的对称点为D ,连接CD ,交AP 于点E ,连接BE .(1)依题意补全如图;(2)若20PAB ∠=︒,求ACE ∠;(3)若060PAB ︒<∠<︒,用等式表示线段DE ,EC ,CA 之间的数量关系并证明.23.已知二次函数214y x bx c =-++的图象经过原点O 和点()8,0A t +,其中0t ≥. (1)当0t =时.①求y 关于x 的函数解析式,求出当x 为何值时,y 有最大值?最大值为多少? ②当x a =和x b =时()a b ≠,函数值相等,求a 的值.(2)当0t >时,在08x ≤≤范围内,y 有最大值18,求相应的t 和x 的值.24.如图,作半径为3的O e 的内接矩形ABCD ,设E 是弦BC 的中点,连接AE 并延长,交O e 于点F ,G 是»AB 的中点,CG 分别交AB AF ,于点H ,P ,若4BC =.(1)求BH ;(2)求:AP PE .(3)求tan APH .。

2013年武汉市中考数学模拟试卷(79分基础题)6

2013年武汉市中考数学模拟试卷(79分基础题)6

2013年数学中考复习试卷——基础题(六)(时间:40分钟 满分:79 编辑人:丁济亮)1. 给出四个数0,2,一21,0.3其中最小的是( ) A .0 B .2 C .一21 D .0.3 2.函数12-=x y 中自变量x 的取值范围是 ( ) A.21≥x B.21-≥x C.21>x D.21->x 3.不等式组⎩⎨⎧>+<-31,31x x 的解集表示在数轴上正确的是 ( )4.二次根式2)2(-的值是 ( )A. 2B.-2C.2或-2D.4 5.一元二次方程01562=--x x 的两根之和是( )A. -15B. 15C.-6D. 66.图1是一空心圆柱,其主视图正确的是( )8.从只装有4个白球的袋中随机摸出一球,若摸到红球的概率是1p ,摸到白球的概率是2p ,则( )A.11=p ,12=p B. 01=p ,412=p C.4121==p p D.01=p ,12=p 11.计算sin45°=______12.黄陂区泡桐街“信义兄弟”孙水林、孙东林接力将336000元的薪水抢在2010年的新年前送到了农民工的手中,他们俩是时代的楷模,美德的丰碑.将336000用科学计数法表示应为13.当五个整数从小到大排列后,中位数为4,如果这组数据的唯一众数是6,那么这五个数可能的最大的和是 .17.(6分)解方程:45424--=--x x x x图1 A B C D C A B18.(6分)如图,直线y kx b =+经过A (-1,3)、B (3,-1)两点,求不等式133x kx b -<+≤的解集.19.(6分)如图, 点B 、C 、D 在一条直线上, AB ⊥BC , ED ⊥CD , ∠1+∠2=90°.求证:△ABC ∽△CDE .20.(7分) 有3张不透明的卡片,除正面写有不同的数字外,其它均相同.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记作一次函数表达式中的k ,第二次从余下..的两张卡片中再随机抽取一张,上面标有的数字记作一次函数表达式中的b .(1)写出k 为负数的概率;(2)求一次函数y kx b =+的图象经过三、四、一象限的概率.(用树状图或列表法求解)2 1 E D CA (第19题)背面1 正面 -2 321.(7分)如图,△ABC 中, A (1,-1)、B (1,-3)、C (4,-3).⑴111C B A ∆是ABC ∆关于y 轴的对称图形, 则点A 的对称点1A 的坐标是 ; ⑵将ABC ∆绕点(0 , 1)逆时针旋转90°得到222C B A ∆,则B 点的对应点2B 的坐标是 ⑶111C B A ∆与222C B A ∆是否关于某条直线成轴对称?若成轴对称,则对称轴的解析式是23、要修建一个圆形喷水池,在池中心竖直安装一根2.25m 的水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1 m 处达到最高,高度为3m .(1)建立适当的平面直角坐标系.,使水管顶端的坐标为(0,2.25),水柱的最高点的坐标为(1,3),求出此坐标系中抛物形水柱对应的函数关系式(不要求写取值范围);(2)如图;在水池底面上有一些同心圆轨道,每条轨道上安装排水地漏,相邻轨道之间的宽度为0.3 m ,最内轨道的半径为r m ,其上每0.3 m 的弧长上安装一个地漏,其它轨道上的地漏个数与最内轨道上的个数相同,水柱落地处为最外轨道,其上不安装地漏,求当r 为多少时池中安装的地漏的个数最多?(第21题)25、如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1,0),C(3,0),D(3,4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB向点B运动.同时动点Q从点C出发,沿线段CD向点D运动.点P,Q的运动速度均为每秒1个单位.运动时间为t秒.过点P作PE⊥AB交AC于点E.(1)直接写出点A的坐标,并求出抛物线的解析式;。

2024年重庆中考数学模拟预测试卷(六)(含答案)

2024年重庆中考数学模拟预测试卷(六)(含答案)

2024年重庆中考数学模拟预测试卷(六)一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列各数中,最小的数是()A.﹣2 B.﹣1 C.D.2.(4分)下列与杭州亚运会有关的图案中,中心对称图形是()A.B.C.D.3.(4分)如果两个相似三角形的周长之比为5:7,那么这两个三角形的面积之比为()A.5:7 B.7:5 C.25:49 D.49:254.(4分)正方形具备而矩形不具备的性质是()A.四条边都相等B.四个角都是直角C.对角线互相平分D.对角线相等5.(4分)正常人的体温一般在37℃左右,但一天中的不同时刻不尽相同,如图反映了一天24小时内小明体温的变化情况,下列说法错误的是()A.清晨5时体温最低B.17时,小明体温是37.5℃C.从5时至24时,小明体温一直是升高的D.从0时至5时,小明体温一直是下降的6.(4分)估计3的运算结果应在()A.14到15之间B.15到16之间C.16到17之间D.17到18之间7.(4分)2023年以来,某厂生产的电子产品处于高速上升期,该厂生产一件产品起初的成本为225元,经过两次技术改进,现生产一件这种产品的成本比起初下降了30.2元,设每次技术改进产品的成本下降率均为x,则下列方程正确的是()A.225(1﹣2x)=225﹣30.2 B.30.2(1+x)2=225C.225(1﹣x)2=30.2 D.225(1﹣x)2=225﹣30.28.(4分)如图,AB为⊙O的直径,C为⊙O上一点,过点C作⊙O的切线交AB的延长线于点D,DB=AD,连接AC,若AB=4,则AC的长度为()A.B.C.4 D.9.(4分)如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF为()A.80°B.70°C.65°D.60°10.(4分)在多项式x﹣y﹣m﹣n(其中x>y>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x﹣y﹣|m﹣n|=x﹣y﹣m+n,|x ﹣y|﹣|m﹣n|=x﹣y﹣m+n,….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有3种不同运算结果.其中正确的个数是()A.0 B.1 C.2 D.3二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:2﹣1﹣()0+|﹣|=.12.(4分)十三届全国政协共收到提案约29000件,数据29000用科学记数法表示为.13.(4分)有四张正面分别标有数字1、2、3、4的卡片,它们除数字外完全相同,将四张卡片背面朝上,洗匀后随机抽取两张,取出的两张卡片上的数字之和为偶数的概率是.14.(4分)根据如图所示的程序计算,若输入x的值为2,则输出的值为.15.(4分)如图,在矩形ABCD中,AB=4,AD=2,以点A为圆心,分别以AB、AD的长为半径作弧,两弧分别交CD、AB于点E,F,则图中阴影部分的面积为.16.(4分)若关于x的一元一次不等式组的解集为x≤﹣2,且关于y的分式方程的解是负整数,则所有满足条件的整数a之和是.17.(4分)在Rt△ABC中,∠ABC=90°,点D在BC边上,点E在AB边上,连接AD、ED,∠ADE=45°,且AE =CD.过点B作BF⊥AD,延长BF交AC于点G,连接DG,若∠DBF=∠CAD,CG+BE=5,则AC的长为.18.(4分)设a为正整数,对于一个四位正整数,若千位与百位的数字之和等于b,十位与个位的数字之和等于b ﹣1,则称这样的数为“b级收缩数”.例如正整数2634中,因为2+6=8,3+4=7=8﹣1,所以2634是“8级收缩数”,其中b=8.最小的“4级收缩数”是;若一个“6级收缩数”的千位数字与十位数字之积为6,且这个数能被19整除,则满足条件的数是.三.解答题(共8小题,满分78分)19.(8分)化简:(1)4x(x﹣2y)﹣(2x+y)(2x﹣y);(2).20.(10分)如图,在平行四边形ABCD中,AE平分∠BAD,交对角线BD于点E(1)用尺规完成以下基本作图:作∠BCD的平分线,交对角线BD于点F;(不写作法和证明,保留作图痕迹)(2)在(1)所作的图形中,求证:BE=DF.(请补全下面的证明过程,除题目给的字母外,不添加其它字母或者符号)解:(1)所作图形如图所示;(2)证明:∵四边形ABCD是平行四边形,∴AB=CD,①.∴∠ABE=∠CDF.∵AE、CF分别平分∠BAD和∠DCB,∴∠BAE=∠BAD,②.∵四边形ABCD是平行四边形,∴③.∴∠BAE=∠DCF.在△ABE与△CDF中∴△ABE≌△CDF(ASA)∴BE=DF21.(10分)猜灯谜是我国独有的富有民族风格的一种文娱活动形式.某校开展了猜灯谜知识竞答活动,从七年级和八年级各随机抽取20名学生的竞答成绩(单位:分),进行整理、描述和分析(比赛成绩用x表示,共分成4组:A.90≤x≤100,B.80≤x<90,C.70≤x<80,D.60≤x<70).下面给出了部分信息:七年级学生B组的竞答成绩为:86,81,83,84,82,83,86,84.八年级被抽取学生的竞答成绩为:83,60,66,62,68,83,71,92,90,76,91,94,83,75,84,83,77,90,91,81.七八年级抽取的竞答成绩统计表年级七年级八年级平均数80 80中位数a83众数82 b请根据以上信息,解答下列问题:(1)填空:a=.b=,m=;(2)根据以上数据,你认为哪个年级学生的竞答成绩更好?请说明理由(写出一条理由即可);(3)该校七、八年级学生共有1200人,请你估计该校七、八年级学生中竞答成绩不低于90分的有多少人?22.(10分)宋代是茶文化发展的第二个高峰,宋代的饮茶主要以点茶为主,煎茶为辅,在点茶的基础上升华为斗茶、分茶和茶百戏.某网店销售两种点茶器具套装,已知甲种点茶器具套装的单价比乙种点茶器具套装的单价少30元,花1480元购进甲种点茶器具套装的数量是花890元购进乙种点茶器具套装数量的2倍.(1)求甲、乙两种点茶器具套装的单价.(2)某学校社团开展茶文化学习活动,从该网店购进甲、乙两种点茶器具套装共花了2252元,甲种点茶器具套装比乙种点茶器具套装多2套,则学校购进甲、乙两种点茶器具套装各多少套?23.(10分)如图,矩形ABCD中,AB=4,BC=3.动点P从点A出发,沿着折线A→B→C方向运动,到达点C时停止运动.设点P运动的路程为x(其中0<x<7),连接CP,记△ACP的面积为y,请解答下列问题:(1)直接写出y关于x的函数关系式,并注明自变量x的取值范围;(2)在给定的平面直角坐标系中,画出该函数的图象,并写出该函数的一条性质;(3)已知函数的图象如图所示,结合你所画的函数图象,请直接估计当y1=y时x的取值:(结果保留一位小数,误差范围不超过0.2).24.(10分)在公园里,同一平面内的五处景点的道路分布如图所示,经测量,点D、E均在点C的正北方向且CE =900米,点B在点C的正西方向,且米,点B在点A的南偏东60°方向且AB=600米,点D在点A 的东北方向.(参考数据:)(1)求道路AD的长度(结果保留根号);(2)若甲从A点出发沿A﹣D﹣E的路径去点E,与此同时乙从点B出发,沿B﹣A﹣E的路径去点E,在两人速度相同的情况下谁先到达点E?(结果精确到十分位)25.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣4(a≠0)与x轴交于点A(﹣2,0)和点B(4,0),与y轴交于点C.(1)求抛物线的函数表达式;(2)线段DE位于第四象限,且在线段BC上移动,EF∥y轴交抛物线于点F,连接DF.若,求△DEF的面积的最大值,及此时点E的坐标;(3)将该抛物线沿射线CB方向平移,使得新抛物线经过(2)中△DEF的面积取得最大值时对应的点E处,且与直线BC相交于另一点K.点P为新抛物线上的一个动点,当∠PEK和∠PKE中,其中一个角与∠ACB相等时,直接写出所有符合条件的点P的坐标,并写出其中一个点的求解过程.26.(10分)如图,在△ABC中,∠BAC=90°,AB=AC,点D为AC一点,连接BD.(1)如图1,若CD=4,∠ABD=15°,求AD的长;(2)如图2,过点A作AE⊥BD于点E,交BC于点M,AG⊥BC于点G,交BD于点N,求证:BM=CM+MN;(3)如图3,将△ABD沿BD翻折至△BDE处,在AC上取点F,连接BF,过点E作EH⊥BF交AC于点G,GE交BF 于点H,连接AH,若GE:BF=:2,AB=2,求AH的最小值.2024年重庆中考数学模拟预测试卷(六)一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列各数中,最小的数是()A.﹣2 B.﹣1 C.D.【答案】D2.(4分)下列与杭州亚运会有关的图案中,中心对称图形是()A.B.C.D.【答案】A3.(4分)如果两个相似三角形的周长之比为5:7,那么这两个三角形的面积之比为()A.5:7 B.7:5 C.25:49 D.49:25【答案】C4.(4分)正方形具备而矩形不具备的性质是()A.四条边都相等B.四个角都是直角C.对角线互相平分D.对角线相等【答案】A5.(4分)正常人的体温一般在37℃左右,但一天中的不同时刻不尽相同,如图反映了一天24小时内小明体温的变化情况,下列说法错误的是()A.清晨5时体温最低B.17时,小明体温是37.5℃C.从5时至24时,小明体温一直是升高的D.从0时至5时,小明体温一直是下降的【答案】C6.(4分)估计3的运算结果应在()A.14到15之间B.15到16之间C.16到17之间D.17到18之间【答案】C7.(4分)2023年以来,某厂生产的电子产品处于高速上升期,该厂生产一件产品起初的成本为225元,经过两次技术改进,现生产一件这种产品的成本比起初下降了30.2元,设每次技术改进产品的成本下降率均为x,则下列方程正确的是()A.225(1﹣2x)=225﹣30.2 B.30.2(1+x)2=225C.225(1﹣x)2=30.2 D.225(1﹣x)2=225﹣30.2【答案】D8.(4分)如图,AB为⊙O的直径,C为⊙O上一点,过点C作⊙O的切线交AB的延长线于点D,DB=AD,连接AC,若AB=4,则AC的长度为()A.B.C.4 D.【答案】D9.(4分)如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF为()A.80°B.70°C.65°D.60°【答案】D10.(4分)在多项式x﹣y﹣m﹣n(其中x>y>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x﹣y﹣|m﹣n|=x﹣y﹣m+n,|x ﹣y|﹣|m﹣n|=x﹣y﹣m+n,….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有3种不同运算结果.其中正确的个数是()A.0 B.1 C.2 D.3【答案】C二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:2﹣1﹣()0+|﹣|=0 .【答案】0.12.(4分)十三届全国政协共收到提案约29000件,数据29000用科学记数法表示为 2.9×104.【答案】2.9×104.13.(4分)有四张正面分别标有数字1、2、3、4的卡片,它们除数字外完全相同,将四张卡片背面朝上,洗匀后随机抽取两张,取出的两张卡片上的数字之和为偶数的概率是.【答案】.14.(4分)根据如图所示的程序计算,若输入x的值为2,则输出的值为 1 .【答案】1.15.(4分)如图,在矩形ABCD中,AB=4,AD=2,以点A为圆心,分别以AB、AD的长为半径作弧,两弧分别交CD、AB于点E,F,则图中阴影部分的面积为2+.【答案】2+.16.(4分)若关于x的一元一次不等式组的解集为x≤﹣2,且关于y的分式方程的解是负整数,则所有满足条件的整数a之和是﹣13 .【答案】﹣13.17.(4分)在Rt△ABC中,∠ABC=90°,点D在BC边上,点E在AB边上,连接AD、ED,∠ADE=45°,且AE =CD.过点B作BF⊥AD,延长BF交AC于点G,连接DG,若∠DBF=∠CAD,CG+BE=5,则AC的长为.【答案】.18.(4分)设a为正整数,对于一个四位正整数,若千位与百位的数字之和等于b,十位与个位的数字之和等于b ﹣1,则称这样的数为“b级收缩数”.例如正整数2634中,因为2+6=8,3+4=7=8﹣1,所以2634是“8级收缩数”,其中b=8.最小的“4级收缩数”是1303 ;若一个“6级收缩数”的千位数字与十位数字之积为6,且这个数能被19整除,则满足条件的数是2432 .【答案】1303,2432.三.解答题(共8小题,满分78分)19.(8分)化简:(1)4x(x﹣2y)﹣(2x+y)(2x﹣y);(2).【答案】(1)﹣8xy+y2;(2)﹣x3.20.(10分)如图,在平行四边形ABCD中,AE平分∠BAD,交对角线BD于点E(1)用尺规完成以下基本作图:作∠BCD的平分线,交对角线BD于点F;(不写作法和证明,保留作图痕迹)(2)在(1)所作的图形中,求证:BE=DF.(请补全下面的证明过程,除题目给的字母外,不添加其它字母或者符号)解:(1)所作图形如图所示;(2)证明:∵四边形ABCD是平行四边形,∴AB=CD,①AB∥CD.∴∠ABE=∠CDF.∵AE、CF分别平分∠BAD和∠DCB,∴∠BAE=∠BAD,②∠DCF=∠BCD.∵四边形ABCD是平行四边形,∴③∠BAD=∠DCB.∴∠BAE=∠DCF.在△ABE与△CDF中∴△ABE≌△CDF(ASA)∴BE=DF【答案】(1)见解答;(2)AB∥CD,∠DCF=∠BCD,∠BAD=∠DCB,AB=CD.21.(10分)猜灯谜是我国独有的富有民族风格的一种文娱活动形式.某校开展了猜灯谜知识竞答活动,从七年级和八年级各随机抽取20名学生的竞答成绩(单位:分),进行整理、描述和分析(比赛成绩用x表示,共分成4组:A.90≤x≤100,B.80≤x<90,C.70≤x<80,D.60≤x<70).下面给出了部分信息:七年级学生B组的竞答成绩为:86,81,83,84,82,83,86,84.八年级被抽取学生的竞答成绩为:83,60,66,62,68,83,71,92,90,76,91,94,83,75,84,83,77,90,91,81.七八年级抽取的竞答成绩统计表年级七年级八年级平均数80 80中位数a83众数82 b请根据以上信息,解答下列问题:(1)填空:a=85 .b=83 ,m=40 ;(2)根据以上数据,你认为哪个年级学生的竞答成绩更好?请说明理由(写出一条理由即可);(3)该校七、八年级学生共有1200人,请你估计该校七、八年级学生中竞答成绩不低于90分的有多少人?【答案】(1)83.5,83,40;(2)七年级成绩较好,理由:因为七年级学生成绩的中位数比八年级的高,所以七年级成绩较好;(3)估计该校七、八年级学生中竞答成绩不低于90分的有300人.22.(10分)宋代是茶文化发展的第二个高峰,宋代的饮茶主要以点茶为主,煎茶为辅,在点茶的基础上升华为斗茶、分茶和茶百戏.某网店销售两种点茶器具套装,已知甲种点茶器具套装的单价比乙种点茶器具套装的单价少30元,花1480元购进甲种点茶器具套装的数量是花890元购进乙种点茶器具套装数量的2倍.(1)求甲、乙两种点茶器具套装的单价.(2)某学校社团开展茶文化学习活动,从该网店购进甲、乙两种点茶器具套装共花了2252元,甲种点茶器具套装比乙种点茶器具套装多2套,则学校购进甲、乙两种点茶器具套装各多少套?【答案】(1)甲种点茶器具套装的单价为148元,则乙种点茶器具套装的单价为178元;(2)甲种点茶器具套装为8套,乙种点茶器具套装6套.23.(10分)如图,矩形ABCD中,AB=4,BC=3.动点P从点A出发,沿着折线A→B→C方向运动,到达点C时停止运动.设点P运动的路程为x(其中0<x<7),连接CP,记△ACP的面积为y,请解答下列问题:(1)直接写出y关于x的函数关系式,并注明自变量x的取值范围;(2)在给定的平面直角坐标系中,画出该函数的图象,并写出该函数的一条性质;(3)已知函数的图象如图所示,结合你所画的函数图象,请直接估计当y1=y时x的取值:x1≈2.8,x2≈6.0 (结果保留一位小数,误差范围不超过0.2).【答案】(1);(2)作图见详解,当0<x<4时,y随x的增大而增大;当4<x<7时,y随x的增大而减小(答案不唯一);(3)x1≈2.8,x2≈6.0.24.(10分)在公园里,同一平面内的五处景点的道路分布如图所示,经测量,点D、E均在点C的正北方向且CE =900米,点B在点C的正西方向,且米,点B在点A的南偏东60°方向且AB=600米,点D在点A 的东北方向.(参考数据:)(1)求道路AD的长度(结果保留根号);(2)若甲从A点出发沿A﹣D﹣E的路径去点E,与此同时乙从点B出发,沿B﹣A﹣E的路径去点E,在两人速度相同的情况下谁先到达点E?(结果精确到十分位)【答案】(1)道路AD的长度约为米;(2)乙先到达点E.25.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣4(a≠0)与x轴交于点A(﹣2,0)和点B(4,0),与y轴交于点C.(1)求抛物线的函数表达式;(2)线段DE位于第四象限,且在线段BC上移动,EF∥y轴交抛物线于点F,连接DF.若,求△DEF的面积的最大值,及此时点E的坐标;(3)将该抛物线沿射线CB方向平移,使得新抛物线经过(2)中△DEF的面积取得最大值时对应的点E处,且与直线BC相交于另一点K.点P为新抛物线上的一个动点,当∠PEK和∠PKE中,其中一个角与∠ACB相等时,直接写出所有符合条件的点P的坐标,并写出其中一个点的求解过程.【答案】(1)y=x2﹣x﹣4;(2)△DEF的面积的最大值为1,点E(2,﹣2),(3)点P的坐标为:(3,﹣)或(0,2)或(﹣4,24)或(﹣1,).26.(10分)如图,在△ABC中,∠BAC=90°,AB=AC,点D为AC一点,连接BD.(1)如图1,若CD=4,∠ABD=15°,求AD的长;(2)如图2,过点A作AE⊥BD于点E,交BC于点M,AG⊥BC于点G,交BD于点N,求证:BM=CM+MN;(3)如图3,将△ABD沿BD翻折至△BDE处,在AC上取点F,连接BF,过点E作EH⊥BF交AC于点G,GE交BF 于点H,连接AH,若GE:BF=:2,AB=2,求AH的最小值.【答案】(1)2﹣2;(3)AH的最小值为﹣.。

2013年广州中考数学模拟试题题型 (6)

2013年广州中考数学模拟试题题型 (6)

2013年广州中考数学模拟试题题型1.1亿可记作108,如果每人每天浪费0.01千克粮食,我国13亿人每天就浪费粮食()A.1.3×108千克B.1.3×107千克C.1.3×106千克D.1.3×105 千克2.我区某街道进行街边人行道路翻新,准备选用同一种正多边形地砖铺设地面.下列正多边形的地砖中,不能进行平面镶嵌的是().A.正三角形B.正方形C.正五边形D.正六边形3.以下四个几何体中,它们各自的左视图与主视图可能不相同的是()4.Rt ABC△中,90C∠= ,8AC=,6BC=,两个相等的圆⊙A,⊙B外切,那么图中两个扇形(即阴影部分)的面积之和为()A.254πB.25π C.2516π D.2532π5.如图,有一张直角三角形纸片,两直角边6AC cm=,9BC cm=,将△ABC折叠,使点B与点A重合,折痕为DE,则CD等于()cm.A、254B、223C、74D、256、在Rt△ABC中,∠C=90°,CA=CB=2.分别以A、B、C为圆心,以21AC为半径画弧,三条弧与边AB所围成的阴影部分的面积是______。

7、所在位置为(-1,-2),所在位置的坐标为(2,-2),那么所在位置的坐标为___。

8.如图,⊙O中OA BC⊥,30CDA∠= ,则sin AOB∠的值为.9.如图是一组有规律的图案,第(1)个图案由4个基础图形组成,第(2)个图案由7个基础图形组成,……,第(n)(n是正整数)个图案中由个基础图形组成.10、化简132121++-的结果为11、图中的小方格都是边长为1的正方形,△ABC的顶点和O点都在正方形的顶点上.(1)以点O为位似中心,在方格图中将△ABC放大为原来的2倍,得到△A′B′C′;(2)△A′B′C′绕点B′顺时针旋转90,画出旋转后得到的△A″B′C″,并求边A′B′在旋转过程中扫过的图形面积.12、先化简,再求值:1111222---++aaaa,其中,a=12+。

2013年北京市数学中考一、二模拟题分类汇编:操作探究

2013年北京市数学中考一、二模拟题分类汇编:操作探究

操作探究1.(2013.昌平一模22)(1)人教版八年级数学下册92页第14题是这样叙述的:如图1,□ABCD中,过对角线BD上一点P作EF∥BC,HG∥AB,图中哪两个平行四边形的面积相等?为什么?根据习题背景,写出面积相等的一对平行四边形的名称为和;(2)如图2,点P为□ABCD内一点,过点P分别作AD、AB的平行线分别交□ABCD的四边于点E、F、G、H. 已知S□BHPE = 3,S□PFDG = 5,则;(3)如图3,若①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH(不重复、无缝隙).已知①②③④四个平行四边形面积的和为14,四边形ABCD的面积为11,则菱形EFGH的周长为.2.(2013.燕山一模22)阅读下列材料:问题:如图⑴,已知正方形ABCD中,E、F分别是BC、CD边上的点,且∠EAF =45°.判断线段BE、EF、FD之间的数量关系,并说明理由.小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条件集中在一起,于是他将△DAF绕点A顺时针旋转90°,得到△BAH,然后通过证明三角形全等可得出结论.请你参考小明同学的思路,解决下列问题:⑴图⑴中线段BE、EF、FD之间的数量关系是;⑵如图⑵,已知正方形ABCD边长为5,E、F分别是BC、CD边上的点,且∠EAF=45°,AG⊥EF于点G,则AG的长为,△EFC的周长为;⑶如图⑶,已知△AEF中,∠EAF=45°,AG⊥EF于点G,且EG=2,GF=3,则△AEF的面积为.3.(2013.朝阳一模22)阅读下面材料:小雨遇到这样一个问题:如图1,直线l1∥l2∥l3,l1与l2之间的距离是1,l2与l3之间的距离是2,试画出一个等腰直角三角形ABC,使三个顶点分别在直线l1、l2、l3上,并求出所画等腰直角三角形ABC的面积.小雨是这样思考的:要想解决这个问题,首先应想办法利用平行线之间的距离,根据所求图形的性质尝试用旋转的方法构造全等三角形解决问题.具体作法如图2所示:在直线l1任取一点A,作AD⊥l2于点D,作∠DAH=90°,在AH上截取AE=AD,过点E作EB⊥AE交l3于点B,连接AB,作∠BAC=90°,交直线l2于点C,连接BC,即可得到等腰直角三角形ABC.请你回答:图2中等腰直角三角形ABC的面积等于.参考小雨同学的方法,解决下列问题:如图3,直线l1∥l2∥l3,l1与l2之间的距离是2,l2与l3之间的距离是1,试画出一个等边三角形ABC,使三个顶点分别在直线l1、l2、l3上,并直接写出所画等边三角形ABC的面积(保留画图痕迹).4.(2013.海淀一模22)问题:如图1,、、、是同一平面内的一组等距平行线(相邻平行线间的距离为1).画出一个正方形,使它的顶点、、、分别在直线、、、上,并计算它的边长.图1 图2小明的思考过程:他利用图1中的等距平行线构造了的正方形网格,得到了辅助正方形,如图2所示, 再分别找到它的四条边的三等分点、、、,就可以画出一个满足题目要求的正方形.请回答:图2中正方形的边长为 .请参考小明的方法,解决下列问题:(1)请在图3的菱形网格(最小的菱形有一个内角为,边长为1)中,画出一个等边△,使它的顶点、、落在格点上,且分别在直线a、b、c上;(3)如图4,、、是同一平面内的三条平行线,、之间的距离是,、之间的距离是,等边△的三个顶点分别在、、上,直接写出△的边长.图3 图45.(2013.东城一模22)如图,在菱形纸片ABCD中,AB=4cm,∠ABC=120°,按下列步骤进行裁剪和拼图:第一步:如图1,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);第二步:如图2,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;第三步:如图3,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180°,使线段HC与HE重合,再与三角形纸片EGH拼成一个与三角形纸片EBC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)(1)请你在图3中画出拼接成的四边形;(2)直接写出拼成的四边形纸片周长的最小值为________cm,最大值为________cm.6.(2013.怀柔一模22)理解与应用:我们把对称中心重合、四边分别平行的两个正方形之间的部分叫“方形环”,易知方形环四周的宽度相等.....一条直线l与方形环的边线有四个交点、、、.小明在探究线段与的数量关系时,从点、向对边作垂线段、,利用三角形全等、相似及锐角三角函数等相关知识解决了问题.请你参考小明的思路解答下列问题:(1)直线l与方形环的对边相交时(22题图1),直线l分别交、、、于、、、,小明发现与相等,请你帮他说明理由;(2)直线l与方形环的邻边相交时(22题图2),l分别交、、、于、、、,l与的夹角为,请直接写出的值(用含的三角函数表示).7.(2013.门头沟一模22)操作与探究:在平面直角坐标系xOy中,点P从原点O出发,且点P只能每次向上平移2个单位长度或向右平移1个单位长度.(1)实验操作:在平面直角坐标系xOy中,点P从原点O出发,平移1次后可能到达的点的坐标是,;点P从原点O出发,平移2次后可能到达的点的坐标是,,;点P从原点O出发,平移3次后可能到达的点的坐标是;(2)观察发现:任一次平移,点P可能到达的点在我们学过的一种函数的图象上,如:平移1次后在函数的图象上;平移2次后在函数的图象上,….若点P平移5次后可能到达的点恰好在直线上,则点P的坐标是;(3)探究运用:点P从原点O出发经过次平移后,到达直线上的点Q,且平移的路径长不小于30,不超过32,求点Q的坐标.8.(2013.平谷一模22)对于平面直角坐标系中的任意两点,我们把叫做两点间的直角距离,记作.(1)已知点,那么两点间的直角距离=_____________;(2)已知O为坐标原点,动点满足,请写出x与y之间满足的关系式,并在所给的直角坐标系中画出所有满足条件的图形;(3)设是一定点,是直线上的动点,我们把的最小值叫做点到直线的直角距离.试求点到直线的直角距离..9.(2013.石景山一模22)问题解决:已知:如图,为上一动点,分别过点、作于点,于点,联结、.(1)请问:点满足什么条件时,的值最小?(2)若,,,设.用含的代数式表示的长(直接写出结果).拓展应用:参考上述问题解决的方法,请构造图形,并求出代数式的最小值.来源:学,科,网]10.(2013.顺义一模22)如图1,在四边形中,,分别是的中点,连结并延长,分别与的延长线交于点,则(不需证明).小明的思路是:在图1中,连结,取的中点,连结,根据三角形中位线定理和平行线性质,可证得.问题:如图2,在中,,点在上,,分别是的中点,连结并延长,与的延长线交于点,若,连结,判断的形状并证明.11.(2013.通州一模22)如图所示,在4×4的菱形斜网格图中(每一个小菱形的边长为1,有一个角是60°),菱形的边长为2,是的中点,沿将菱形剪成①、②两部分,用这两部分可以分别拼成直角三角形、等腰梯形、矩形,要求所拼成图形的顶点均落在格点上.(1)在下面的菱形斜网格中画出示意图;(2)若所拼成的直角三角形、等腰梯形、矩形的面积分别记为、、,周长分别记为、、,判断所拼成的三种图形的面积、周长的大小关系(用“=”、“>”、“<”、“≤”或“≥”连接):面积关系是;周长关系是.12.(2013.西城一模22)先阅读材料,再解答问题:小明同学在学习与圆有关的角时了解到:在同圆或等圆中,同弧(或等弧)所对的圆周角相等.如图,点A、B、C、D均为⊙O上的点,则有∠C=∠D.小明还发现,若点E在⊙O外,且与点D在直线AB同侧,则有∠D>∠E.请你参考小明得出的结论,解答下列问题:(1) 如图1,在平面直角坐标系xOy中,点A的坐标为(0,7),点B的坐标为(0,3),点C的坐标为(3,0) .①在图1中作出△ABC的外接圆(保留必要的作图痕迹,不写作法);②若在轴的正半轴上有一点D,且∠ACB =∠ADB,则点D的坐标为;(2) 如图2,在平面直角坐标系xOy中,点A的坐标为(0,m),点B的坐标为(0,n),其中m>n>0.点P为轴正半轴上的一个动点,当∠APB达到最大时,直接写出此时点P的坐标.13.(2013.延庆一模22)阅读下面材料:将正方形ABCD(如图1)作如下划分:第1次划分:分别联结正方形ABCD对边的中点(如图2),得线段HF和EG,它们交于点M,此时图2中共有5个正方形;第2次划分:将图2左上角正方形AEMH按上述方法再作划分,得图3,则图3中共有_______个正方形;若每次都把左上角的正方形依次划分下去,则第100次划分后,图中共有_______个正方形;继续划分下去,能否将正方形ABCD划分成有2013个正方形的图形?需说明理由.14.(2013.昌平二模22)(1)【原题呈现】如图,要在燃气管道l上修建一个泵站分别向A、B两镇供气. 泵站修在管道的什么地方,可使所用的输气管线最短?解决问题:请你在所给图中画出泵站P的位置,并保留作图痕迹;(2)【问题拓展】已知a>0,b>0,且a+b=2,写出的最小值;(3)【问题延伸】已知a>0,b>0,写出以、、为边长的三角形的面积.15.(2013.朝阳二模22)阅读下列材料:小华遇到这样一个问题,如图1, △ABC中,∠ACB=30º,BC=6,AC=5,在△ABC内部有一点P,连接PA、PB、PC,求PA+PB+PC的最小值.小华是这样思考的:要解决这个问题,首先应想办法将这三条端点重合于一点的线段分离,然后再将它们连接成一条折线,并让折线的两个端点为定点,这样依据“两点之间,线段最短”,就可以求出这三条线段和的最小值了.他先后尝试了翻折、旋转、平移的方法,发现通过旋转可以解决这个问题.他的做法是,如图2,将△APC绕点C顺时针旋转60º,得到△EDC,连接PD、BE,则BE的长即为所求.(1)请你写出图2中,PA+PB+PC的最小值为;(2)参考小华的思考问题的方法,解决下列问题:①如图3,菱形ABCD中,∠ABC=60º,在菱形ABCD内部有一点P,请在图3中画出并指明长度等于PA+PB+PC最小值的线段(保留画图痕迹,画出一条即可);②若①中菱形ABCD的边长为4,请直接写出当PA+PB+PC值最小时PB的长.16.(2013.大兴二模22)在三角形纸片ABC中,已知∠ABC=90°,AB=6,BC=8.过点A作直线平行于BC,折叠三角形纸片ABC,使直角顶点B 落在直线上的T处,折痕为MN.当点T 在直线上移动时,折痕的端点M、N也随之移动.若限定端点M、N分别在AB、BC边上移动(点M可以与点A重合,点N可以与点C重合),求线段AT长度的最大值与最小值的和(计算结果不取近似值).17.(2013.东城二模22)阅读并回答问题:数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下:作法:①在OA,OB上分别截取OD,OE,使OD=OE.②分别以D,E为圆心,以大于为半径作弧,两弧在内交于点C.③作射线OC,则OC就是的平分线小聪只带了直角三角板,他发现利用三角板也可以作角平分线,方法如下:作法: ①利用三角板上的刻度,在OA ,OB 上分别截取OM ,ON ,使OM =ON .②分别过以M ,N 为OM ,ON 的垂线,交于点P.③作射线OP ,则OP 就是的平分线.小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线.根据以上情境,解决下列问题:(1) 小聪的作法正确吗?请说明理由;(2) 请你帮小颖设计用刻度尺作平分线的方法.(要求:不与小聪方法相同,请画出图形,并写出画图的方法,不必证明).18.(2013.房山二模22)如图1,在矩形MNPQ 中,点E ,F ,G ,H 分别在边NP ,PQ ,QM ,MN 上,当时,我们称四边形EFGH 为矩形MNPQ 的反射四边形.已知:矩形ABCD 的四个顶点均为边长为1的正方形网格的格点,请解决下列问题: (1)在图2中,点E ,F 分别在BC ,CD 边上,请作出矩形ABCD 的反射四边形EFGH ,并求出反射四边形EFGH 的周长.(2)在图3中作出矩形ABCD 的所有反射四边形,并判断它们的周长之间的关系.19.(2013.密云二模22)实践与操作:如图1是以正方形两顶点为圆心,边长为半径,画两段相等的圆弧而成的轴对称图形,图2是以图1为基本图案经过图形变换拼成的一个中心对称图形.(1)请你仿照图1,用两段相等圆弧(小于或等于半圆),在图3中重新设计一个不同的轴对称图形.(2)以你在图3中所画的图形为基本图案,经过图形变换在图4中拼成一个中心对称图形.20.(2013.石景山二模22)如图,在矩形ABCD中,AB=3,BC=4,点M、N、分别在BC、AB上,将矩形ABCD沿MN折叠,设点B的对应点是点E.(1)若点E在AD边上,BM=,求AE的长;(2)若点E在对角线AC上,请直接写出AE的取值范围:.解:21.(2013.丰台二模22)操作探究:一动点沿着数轴向右平移5个单位,再向左平移2个单位,相当于向右平移3个单位.用实数加法表示为 5+()=3.若平面直角坐标系xOy中的点作如下平移:沿x轴方向平移的数量为a(向右为正,向左为负,平移个单位),沿y轴方向平移的数量为b(向上为正,向下为负,平移个单位),则把有序数对{a,b}叫做这一平移的“平移量”.规定“平移量”{a,b}与“平移量”{c,d}的加法运算法则为.(1)计算:{3,1}+{1,2};(2)若一动点从点A(1,1)出发,先按照“平移量”{2,1}平移到点B,再按照“平移量”{-1,2}平移到点C;最后按照“平移量”{-2,-1}平移到点D,在图中画出四边形ABCD,并直接写出点D的坐标;(3)将(2)中的四边形ABCD以点A为中心,顺时针旋转90°,点B旋转到点E,连结AE、BE若动点P从点A出发,沿△AEB的三边AE、EB、BA 平移一周.请用“平移量”加法算式表示动点P的平移过程.22.(2013.海淀二模22)如图1,四边形ABCD中,、为它的对角线,E为AB边上一动点(点E不与点A、B重合),EF∥AC交BC于点F,FG∥BD交DC于点G,GH∥AC交AD于点H,连接HE.记四边形EFGH的周长为,如果在点的运动过程中,的值不变,则我们称四边形ABCD为“四边形”,此时的值称为它的“值”.经过探究,可得矩形是“四边形”.如图2,矩形ABCD中,若AB=4,BC=3,则它的“值”为.图1 图2 图3(1)等腰梯形(填“是”或“不是”)“四边形”;(2)如图3,是⊙O的直径,A是⊙O上一点,,点为上的一动点,将△沿的中垂线翻折,得到△.当点运动到某一位置时,以、、、、、中的任意四个点为顶点的“四边形”最多,最多有个.23.(2013.怀柔二模22)探究与应用已知点P的坐标为(m,0),在x轴上存在点Q(不与P点重合),以PQ为边作正方形PQMN,使点M落在反比例函数y = 的图象上.小明对上述问题进行了探究,发现不论m取何值,符合上述条件的正方形只有..两个,且一个正方形的顶点M在第四象限,另一个正方形的顶点M1在第二象限.(1)如图,若反比例函数解析式为y= ,P点坐标为(1, 0),图中已画出一符合条件的一个正方形PQMN,请你在图中画出符合条件的另一个正方形PQ1M1N1;(2)请你通过改变P点坐标,对直线M1 M的解析式y﹦kx+b进行探究可得 k﹦,若点P的坐标为(m,0)时,则b﹦;(3)依据(2)的规律,如果点P的坐标为(6,0),请你直接写出点M1和点M的坐标.解:(1)如图(2)k﹦,b﹦;(3)M1的坐标为(,),M的坐标为(,).24.(2013.西城二模22)在平面直角坐标系xOy中,点经过变换得到点,该变换记作,其中为常数.例如,当,且时,.(1) 当,且时,= ;(2) 若,则= ,= ;(3) 设点是直线上的任意一点,点经过变换得到点.若点与点重合,求和的值.第七章操作探究参考答案1.(2013.昌平一模22)解:(1)□AEPH 和□PGCF或□ABGH 和□EBCF 或□AEFD 和□HGCD . … 1分(2)1. ……………………………… 2分(3)24.……………………………… 4分2.(2013.燕山一模22)⑴线段BE、EF、FD之间的数量关系是EF=BE+FD; (1)分⑵AG的长为 5 ,△EFC的周长为 10 ;………………………3分⑶△AEF的面积为 15 .………………………5分3.(2013.朝阳一模22)解: 5;……………………………………………2分如图;………………………………………3分. ………………………………………5分4.(2013.海淀一模22)(1).………………………2分(2)①如图:(答案不唯一) …4分②.………………………5分5.(2013.东城一模22)解:(1)拼接成的四边形所图虚线所示;………………2分(2);. …………………………5分(注:通过操作,我们可以看到最后所得的四边形纸片是一个平行四边形,其上下两条边的长度等于原来菱形的边AB=4,左右两边的长等于线段MN的长,当MN垂直于BC时,其长度最短,等于原来菱形的高的一半,于是这个平行四边形的周长的最小值为2(+4)=;当点E与点A重合,点M与点G重合,点N与点C重合时,线段MN最长,等于,此时,这个四边形的周长最大,其值为.)6.(2013.怀柔一模22)理解与应用:…………………1分=∠N’NF……………………2分………………3分)……………………………5分7.(2013.门头沟一模22)解:(1)(0,6),(1,4),(2,2),(3,0).………………………2分(2)平移5次后P在y=-2x+10上,又在y=3x上,联立方程组即可。

2013年中考数学模拟试卷及答案

2013年中考数学模拟试卷及答案

2013年第一次升学模拟考试数学试卷亲爱的同学:欢迎参加考试!请你认真审题,积极思考,细心答题,发挥最佳水平。

答题时,请注意以下几点:1.全卷共4页,有三大题,24小题。

全卷满分150分。

考试时间120分钟。

2.答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上均无效。

3.参考公式:抛物线y=ax²+bx+c(c≠0)的顶点坐标是(24,24b ac ba a--)祝你成功!一、选择题(共10小题,每小题4分,满分40分)1.如图,数轴上表示数﹣2的相反数的点是()A.点P B.点Q C.点M D.点N2.某校羽毛球训练队共有8名队员,他们的年龄(单位:岁)分別为:12,13,13,14,12,13,15,13,则他们年龄的众数为()A.12 B.13 C.14 D.153.中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为()A. B. C.D.4.在下列四组点中,可以在同一个正比例函数图象上的一组点是()A.(2,﹣3),(﹣4,6) B.(﹣2,3),(4,6)C.(﹣2,﹣3),(4,﹣6) D.(2,3),(﹣4,6)5. a4b﹣6a3b+9a2b分解因式得正确结果为()A.a2b(a2﹣6a+9) B.a2b(a﹣3)(a+3)C.b(a2﹣3)2 D.a2b(a﹣3)26.下列调查:①调查一批灯泡的使用寿命;②调查全班同学的身高;③调查市场上某种食品的色素含量是否符合国家标准;④企业招聘,对应聘人员进行面试.其中符合用抽样调查的是()A.①②B.①③C.②④D.②③7. 2012年7月27日国际奥委会的会旗将在伦敦上空升起,会旗上的图案由五个圆环组成.如图,在这个图案中反映出的两圆的位置关系有()A.内切、相交 B.外离、内切 C.外切、外离 D.外离、相交8.下列命题中,假命题是()A.平行四边形是中心对称图形B.三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C.对于简单的随机样本,可以用样本的方差去估计总体的方差D.若x2=y2,则x=y9.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路.她去学校共用了16分钟.假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时.若设小颖上坡用了x分钟,下坡用了y分钟,根据题意可列方程组为()A.B. C. D.10.已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c<0;④8a+c>0.其中正确的有()A.3个 B.2个C.1个 D.0个二.填空题(共6小题,每题5分,共30分)11.已知x+y=﹣5,xy=6,则x2+y2= _________ .12.小程对本班50名同学进行了“我最喜爱的运动项目”的调查,统计出了最喜爱跳绳、羽毛球、篮球、乒乓球、踢毽子等运动项目的人数.根据调查结果绘制了人数分布直方图.若将其转化为扇形统计图,那么最喜爱打篮球的人数所在扇形区域的圆心角的度数为_________ °.13.如图,直线y=﹣x+3与x轴、y轴分别交于A、B两点,把△AOB绕点A旋转90°后得到△AO′B′,则点B′的坐标是_________ .第12题图第13题图第16题图14.已知(a﹣)<0,若b=2﹣a,则b的取值范围是_________ .15.如果关于x的不等式组的整数解仅有1,2,那么适合这个不等式组的整数a,b组成的有序数对(a,b)共有_________ 个.16.如图,点M是反比例函数y=在第一象限内图象上的点,作MB⊥x轴于B.过点M的第一条直线交y轴于点A1,交反比例函数图象于点C1,且A1C1=A1M,△A1C1B的面积记为S1;过点M的第二条直线交y轴于点A2,交反比例函数图象于点C2,且A2C2=A2M,△A2C2B的面积记为S2;过点M的第三条直线交y轴于点A3,交反比例函数图象于点C3,且A3C3=A3M,△A3C3B的面积记为S3;以此类推…;则S1+S2+S3+…+S8= _________ .三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)(1)计算:.(2)解方程:(x﹣3)2﹣9=0.18.(8分)如图,已知线段AB,(1)线段AB为腰作一个黄金三角形(尺规作图,要求保留作图痕迹,不必写出作法);(友情提示:三角形两边之比为黄金比的等腰三角形叫做黄金三角形)(2)若AB=2,求出你所作的黄金三角形的周长.19.(8分)在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.(1)从A、D、E、F四个点中任意取一点,以所取的这一点及点B、C为顶点画三角形,则所画三角形是等腰三角形的概率是________ ;(2)从A、D、E、F四个点中先后任意取两个不同的点,以所取的这两点及点B、C为顶点画四边形,求所画四边形是平行四边形的概率(用树状图或列表法求解).20.(8分)如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿岸向前走30m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.21.(10分)已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC.①求证:CD=AN;②若∠AMD=2∠MCD,求证:四边形ADCN是矩形.22.(10分)如图,AB是⊙O的直径,AM,BN分别切⊙O于点A,B,CD交AM,BN于点D,C,DO平分∠ADC.(1)求证:CD是⊙O的切线;(2)若AD=4,BC=9,求⊙O的半径R.23.(12分)库尔勒某乡A,B两村盛产香梨,A村有香梨200吨,B村有香梨300吨,现将这些香梨运到C,D两个冷藏仓库.已知C仓库可储存240吨,D仓库可储存260吨,从A 村运往C,D两处的费用分别为每吨40元和45元;从B村运往C,D两处的费用分别为每吨25元和32元.设从A村运往C仓库的香梨为x吨,A,B两村运香梨往两仓库的运输费用分别为y A元,y B元.(1)请填写下表,并求出y A,y B与x之间的函数关系式;C D 总计A x吨200吨B 300吨总计240吨260吨500吨(2)当x为何值时,A村的运费较少?(3)请问怎样调运,才能使两村的运费之和最小?求出最小值.24.(14分)如图,在平面直角坐标系xOy中,矩形AOCD的顶点A的坐标是(0,4),现有两动点P,Q,点P从点O出发沿线段OC(不包括端点O,C)以每秒2个单位长度的速度匀速向点C运动,点Q从点C出发沿线段CD(不包括端点C,D)以每秒1个单位长度的速度匀速向点D运动.点P,Q同时出发,同时停止,设运动时间为t(秒),当t=2(秒)时,PQ=2.(1)求点D的坐标,并直接写出t的取值范围.(2)连接AQ并延长交x轴于点E,把AE沿AD翻折交CD延长线于点F,连接EF,则△AEF 的面积S是否随t的变化而变化?若变化,求出S与t的函数关系式;若不变化,求出S 的值.(3)在(2)的条件下,t为何值时,四边形APQF是梯形?浙江省温州市2013年第一次学业模拟考试数学参考答案一、选择题(共10小题,每题4分,共40分)题号 1 2 3 4 5 6 7 8 9 10答案 A B A A D B D D B B 二.填空题(共6小题,每题5分,共30分)题号11 12 13 14 15 16答案13 144 (﹣1,﹣2)或(5,2)2﹣<b<2 6第16题:解:过点M作MD⊥y轴于点D,过点A1作A1E⊥BM于点E,过点C1作C1F⊥BM 于点F,∵点M是反比例函数y=在第一象限内图象上的点,∴OB×BM=1,∴=OB×MB=,∵A1C1=A1M,即C1为A1M中点,∴C1到BM的距离C1F为A1到BM的距离A1E的一半,∴S1===,∴=BM•A 2到BM距离=×BM×BO=,∵A2C2=A2M,∴C2到BM的距离为A2到BM的距离的,∴S2===,同理可得:S3=,S4=…∴++…++,=++…++,=,三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17. (1)解:=1﹣8+3+2 (3分)=﹣2.(5分)(2)解:移项得:(x﹣3)2=9,开平方得:x﹣3=±3,(1分)则x﹣3=3或x﹣3=﹣3,(3分)解得:x1=6,x2=0.(5分)18. 解:(1)可分为两种情况:底与腰之比均为黄金比的等腰三角形如图1,(2分)腰与底之比为黄金比为黄金比如图2,(4分)(2)∵如图1,AB=2,当底与腰之比为黄金比时:∴=,∴AD=﹣1,∴AB+AD+BD=,(6分)如图2,当腰与底之比为黄金比时,=,∴AC=+1,∴△ABC周长为.(8分)19. 解:(1)根据从A、D、E、F四个点中任意取一点,一共有4种可能,只有选取D点时,所画三角形是等腰三角形,故P(所画三角形是等腰三角形)=;(2分)(2)用“树状图”或利用表格列出所有可能的结果:∵以点A、E、B、C为顶点及以D、F、B、C为顶点所画的四边形是平行四边形,(6分)∴所画的四边形是平行四边形的概率P==.(8分)20. 解:过点C作CE⊥AD于点E,由题意得,AB=30m,∠CAD=30°,∠CBD=60°,故可得∠ACB=∠CAB=30°,(2分)即可得AB=BC=30m,(4分)设BE=x,在Rt△BCE中,可得CE=x,又∵BC2=BE2+CE2,即900=x2+3x2,(6分)解得:x=15,即可得CE=15m.(8分)答:小丽自家门前的小河的宽度为15m.21.证明:①∵CN∥AB,∴∠DAC=∠NCA,(1分)在△AMD和△CMN中,∵,∴△AMD≌△CMN(ASA),(2分)∴AD=CN,(3分)又∵AD∥CN,∴四边形ADCN是平行四边形,(4分)∴CD=AN;(5分)②∵∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC,∴∠MCD=∠MDC,(6分)∴MD=MC,(7分)由①知四边形ADCN是平行四边形,∴MD=MN=MA=MC,(8分)∴AC=DN,(9分)∴四边形ADCN是矩形.(10分)22.(1)证明:过O点作OE⊥CD于点E,∵AM切⊙O于点A,∴OA⊥AD,(1分)又∵DO平分∠ADC,∴OE=OA,(2分)∵OA为⊙O的半径,∴OE是⊙O的半径,且OE⊥DC,(3分)∴CD是⊙O的切线.(4分)(2)解:过点D作DF⊥BC于点F,∵AM,BN分别切⊙O于点A,B,∴AB⊥AD,AB⊥BC,(5分)∴四边形ABFD是矩形,∴AD=BF,AB=DF,(6分)又∵AD=4,BC=9,∴FC=9﹣4=5,(7分)∵AM,BN,DC分别切⊙O于点A,B,E,∴DA=DE,CB=CE,(8分)∴DC=AD+BC=4+9=13,(9分)在Rt△DFC中,DC2=DF2+FC2,∴DF==12,∴AB=12,(10分)∴⊙O的半径R是6.23.(1)填写如下:每空1分C D 总计A (200﹣x)吨B (240﹣x)吨(60+x)吨由题意得:y A=40x+45(200﹣x)=﹣5x+9000;y B=25(240﹣x)+32(60+x)=7x+7920;(2)对于y A=﹣5x+9000(0≤x≤200),∵k=﹣5<0,∴此一次函数为减函数,则当x=200吨时,y A最小,其最小值为﹣5×200+9000=8000(元)(3分)(3)设两村的运费之和为W,则W=y A+y B=﹣5x+9000+7x+7920=2x+16920(0≤x≤200),(8分)∵k=2>0,∴此一次函数为增函数,(10分)则当x=0时,W有最小值,W最小值为16920元.(11分)此时调运方案为:从A村运往C仓库0吨,运往D仓库为200吨,B村应往C仓库运240吨,运往D仓库60吨.(12分)24.(1)由题意可知,当t=2(秒)时,OP=4,CQ=2,在Rt△PCQ中,由勾股定理得:PC===4,∴OC=OP+PC=4+4=8,(2分)又∵矩形AOCD,A(0,4),∴D(8,4).点P到达终点所需时间为=4秒,点Q到达终点所需时间为=4秒,由题意可知,t的取值范围为:0<t<4.(4分)(2)结论:△AEF的面积S不变化.∵AOCD是矩形,∴AD∥OE,∴△AQD∽△EQC,(5分)∴,即,解得CE=.由翻折变换的性质可知:DF=DQ=4﹣t,则CF=CD+DF=8﹣t.(6分)S=S梯形AOCF+S△FCE﹣S△AOE=(OA+CF)•OC+CF•CE﹣OA•OE=[4+(8﹣t)]×8+(8﹣t)•﹣×4×(8+)(8分)化简得:S=32为定值.所以△AEF的面积S不变化,S=32.(9分)(3)若四边形APQF是梯形,因为AP与CF不平行,所以只有PQ∥AF.由PQ∥AF可得:△CPQ∽△DAF,(10分)∴,即,化简得t2﹣12t+16=0,(11分)解得:t1=6+2,t2=6﹣2,(13分)由(1)可知,0<t<4,∴t1=6+2不符合题意,舍去.∴当t=(6﹣2)秒时,四边形APQF是梯形.(14分)。

2013年江苏省南京市中考数学第一次模拟试卷及答案

2013年江苏省南京市中考数学第一次模拟试卷及答案

2013年江苏省南京市中考数学第一次模拟试卷一、选择题(本大题共6小题,每小题2分,共计12分) ﹣. 甲=乙,S 甲2=S 乙2. 甲=乙,S 甲2>S 乙2. 甲=乙,S 甲2<S 乙2. 甲<乙,S 甲2<S 乙2. 为( ) . cm B 7.(2分)已知⊙O 1的半径为3,⊙O 2的半径为5,O 1O 2=7,则⊙O 1、⊙O 2的位置关系是 _________ . 8.(2分)校篮球队进行1分钟定点投篮测试,10名队员投中的球数由小到大排序的结果为7、8、9、9、9、10、10、10、10、12,则这组数据的中位数是 _________ . 9.(2分)不透明的袋子里装有将10个乒乓球,其中5个白色的,2个黄色的,3个红色的,这些乒乓球除颜色外全相同,从中任意摸出一个,则摸出白色乒乓球的概率是 _________ . 10.(2分)如图,一位同学将一块含30°的三角板叠放在直尺上.若∠1=40°,则∠2= _________ °.11.(2分)如图,平行四边形ABCD 中,AD=5cm ,AB ⊥BD ,点O 是两条对角线的交点,OD=2,则AB=_ cm . 12.(2分)全国两会期间,温家宝总理强调,“十二五”期间,将新建保障性住房36 000 000套.这些住房将有力地缓解住房的压力,特别是解决中低收入和新参加工作的大学生住房的需求.把36 000 000用科学记数法表示应是 _________ . 13.(2分)点(﹣4,3)在反比例函数图象上,则这个函数的关系式为 _________ .y=ax 2+bx+c 中,函数y 与自变量x 的部分对应值如下表:15.(2分)如图,平行四边形ABCD中,∠ABC=60°,AB=4,AD=8,点E、F分别是边BC、AD边的中点,点M 是AE与BF的交点,点N是CF与DE的交点,则四边形ENFM的周长是_________.16.(2分)如图,正方形ABCD中,点E在边AB上,点G在边AD上,且∠ECG=45°,点F在边AD的延长线上,且DF=BE.则下列结论:①∠ECB是锐角;②AE<AG;③△CGE≌△CGF;④EG=BE+GD中一定成立的结论有_________(写出全部正确结论).三、解答题(本大题共12小题,共计88分)17.(6分)先化简,再求值:(﹣)÷,其中x=+1.18.(6分)解不等式组,并写出它的所有整数解.19.(6分)如图,已知,四边形ABCD为梯形,分别过点A、D作底边BC的垂线,垂足分别为点E、F.四边形ADFE是何种特殊的四边形?请写出你的理由.20.(6分)在直角坐标平面内,二次函数y=ax2+bx﹣3(a≠0)图象的顶点为A(1,﹣4).(1)求该二次函数关系式;(2)将该二次函数图象向上平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x 轴的另一个交点的坐标.21.(6分)某中学组织全体学生参加了“喜迎青奥,走出校门,服务社会”的活动.该中学以九年级(2)班为样本,统计了该班学生宣传青奥,打扫街道,去敬老院服务和在十字路口值勤的人数,并做了如下直方图和扇形统计图(A~宣传青奥;B~打扫街道;C~去敬老院服务;D~在十字路口值勤).(1)求去敬老院服务对应的扇形圆心角的度数;(2)若该中学共有800学生,请估计这次活动中在十字路口值勤的学生共有多少人?22.(6分)“五一劳动节大酬宾!”,某家具城设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满500元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费500元.(1)该顾客至多可得到 _________元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.23.(8分)已知以下基本事实:①对顶角相等;②一条直线截两条平行直线所得的同位角相等;③两条直线被第三条直线所截,若同位角相等,则这两条直线平行;④全等三角形的对应边、对应角分别相等.(1)在利用以上基本事实作为依据来证明命题“两直线平行,内错角相等”时,必须要用的基本事实有_________(填入序号即可);(2)根据在(1)中的选择,结合所给图形,请你证明命题“两直线平行,内错角相等”.已知:如图,_________.求证:_________.证明:_________.24.(8分)如图,小岛在港口P的北偏西60°方向,距港口56海里的A处,货船从港口P出发,沿北偏东45°方向匀速驶离港口P,4小时后货船在小岛的正东方向.求货船的航行速度.(精确到0.1海里/时,参考数据:≈1.41,≈1.73)25.(8分)某经销店为厂家代销一种新型环保水泥,当每吨售价为260元时,月销售量为45吨,每售出1吨这种水泥共需支付厂家费用和其他费用共100元.该经销店为扩大销售量、提高经营利润,计划采取降价的方式进行促销,经市场调查发现,当每吨售价每下降10元时,月销售量就会增加7.5吨.(1)填空:当每吨售价是240元时,此时的月销售量是_________吨;(2)该经销店计划月利润为9000元而且尽可能地扩大销售量,则售价应定为每吨多少元?26.(10分)如图直角坐标系中,已知A(﹣4,0),B(0,3),点M在线段AB上.(1)如图1,如果点M是线段AB的中点,且⊙M的半径为2,试判断直线OB与⊙M的位置关系,并说明理由;(2)如图2,⊙M与x轴、y轴都相切,切点分别是点E、F,试求出点M的坐标.27.(8分)(1)学习《测量建筑物的高度》后,小明带着卷尺、标杆,利用太阳光去测量旗杆的高度.参考示意图1,他的测量方案如下:第一步,测量数据.测出CD=1.6米,CF=1.2米,AE=9米.第二步,计算.请你依据小明的测量方案计算出旗杆的高度.(2)如图2,校园内旗杆周围有护栏,下面有底座.现在有卷尺、标杆、平面镜、测角仪等工具,请你选择出必须的工具,设计一个测量方案,以求出旗杆顶端到地面的距离.要求:在备用图中画出示意图,说明需要测量的数据.(注意不能到达底部点N对完成测量任务的影响,不需计算)你选择出的必须工具是_________;需要测量的数据是_________.28.(10分)(1)如图1,已知点P在正三角形ABC的边BC上,以AP为边作正三角形APQ,连接CQ.①求证:△ABP≌△ACQ;②若AB=6,点D是AQ的中点,直接写出当点P由点B运动到点C时,点D运动路线的长.(2)已知,△EFG中,EF=EG=13,FG=10.如图2,把△EFG绕点E旋转到△EF'G'的位置,点M是边EF'与边FG 的交点,点N在边EG'上且EN=EM,连接GN.求点E到直线GN的距离.2013年江苏省南京市中考数学模拟试卷(一)参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共计12分)﹣325次射击命中的环数如下:.甲=乙,S甲2=S乙2.甲=乙,S甲2>S乙2.,乙甲乙5.(2分)如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为3cm,则圆心O到弦CD的距离为().BcmOE==二、填空题(本大题共10小题,每小题2分,共计20分)7.(2分)已知⊙O1的半径为3,⊙O2的半径为5,O1O2=7,则⊙O1、⊙O2的位置关系是 相交.8.(2分)校篮球队进行1分钟定点投篮测试,10名队员投中的球数由小到大排序的结果为7、8、9、9、9、10、10、10、10、12,则这组数据的中位数是9.5..9.(2分)不透明的袋子里装有将10个乒乓球,其中5个白色的,2个黄色的,3个红色的,这些乒乓球除颜色外全相同,从中任意摸出一个,则摸出白色乒乓球的概率是.个,摸到白色乒乓球的概率是=故答案为:=10.(2分)如图,一位同学将一块含30°的三角板叠放在直尺上.若∠1=40°,则∠2=70°.11.(2分)如图,平行四边形ABCD中,AD=5cm,AB⊥BD,点O是两条对角线的交点,OD=2,则AB=3cm.OD=OB=BD=4=312.(2分)全国两会期间,温家宝总理强调,“十二五”期间,将新建保障性住房36 000 000套.这些住房将有力地缓解住房的压力,特别是解决中低收入和新参加工作的大学生住房的需求.把36 000 000用科学记数法表示应是3.6×107.13.(2分)点(﹣4,3)在反比例函数图象上,则这个函数的关系式为y=﹣.,因为过(﹣y=3=.y=ax2+bx+c中,函数y与自变量x的部分对应值如下表:的取值范围是y>﹣5..15.(2分)如图,平行四边形ABCD中,∠ABC=60°,AB=4,AD=8,点E、F分别是边BC、AD边的中点,点M 是AE与BF的交点,点N是CF与DE的交点,则四边形ENFM的周长是4+4.ME=AE=AE=AB=2==2=4+4.16.(2分)如图,正方形ABCD中,点E在边AB上,点G在边AD上,且∠ECG=45°,点F在边AD的延长线上,且DF=BE.则下列结论:①∠ECB是锐角;②AE<AG;③△CGE≌△CGF;④EG=BE+GD中一定成立的结论有①③④(写出全部正确结论).三、解答题(本大题共12小题,共计88分)17.(6分)先化简,再求值:(﹣)÷,其中x=+1.++1=18.(6分)解不等式组,并写出它的所有整数解.,19.(6分)如图,已知,四边形ABCD为梯形,分别过点A、D作底边BC的垂线,垂足分别为点E、F.四边形ADFE是何种特殊的四边形?请写出你的理由.20.(6分)在直角坐标平面内,二次函数y=ax2+bx﹣3(a≠0)图象的顶点为A(1,﹣4).(1)求该二次函数关系式;(2)将该二次函数图象向上平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x 轴的另一个交点的坐标.)根据二次函数的顶点坐标(﹣)求出系数)由题意,得21.(6分)某中学组织全体学生参加了“喜迎青奥,走出校门,服务社会”的活动.该中学以九年级(2)班为样本,统计了该班学生宣传青奥,打扫街道,去敬老院服务和在十字路口值勤的人数,并做了如下直方图和扇形统计图(A~宣传青奥;B~打扫街道;C~去敬老院服务;D~在十字路口值勤).(1)求去敬老院服务对应的扇形圆心角的度数;(2)若该中学共有800学生,请估计这次活动中在十字路口值勤的学生共有多少人?=4%22.(6分)“五一劳动节大酬宾!”,某家具城设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满500元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费500元.(1)该顾客至多可得到70元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.23.(8分)已知以下基本事实:①对顶角相等;②一条直线截两条平行直线所得的同位角相等;③两条直线被第三条直线所截,若同位角相等,则这两条直线平行;④全等三角形的对应边、对应角分别相等.(1)在利用以上基本事实作为依据来证明命题“两直线平行,内错角相等”时,必须要用的基本事实有①②(填入序号即可);(2)根据在(1)中的选择,结合所给图形,请你证明命题“两直线平行,内错角相等”.已知:如图,a∥b,直线a、b被直线c所截.求证:∠1=∠2.证明:∵a∥b,∴∠1=∠3(两直线平行,同位角相等).∵∠3=∠2(对顶角相等),∴∠1=∠2(等量代换).24.(8分)如图,小岛在港口P的北偏西60°方向,距港口56海里的A处,货船从港口P出发,沿北偏东45°方向匀速驶离港口P,4小时后货船在小岛的正东方向.求货船的航行速度.(精确到0.1海里/时,参考数据:≈1.41,≈1.73)x2x=725.(8分)某经销店为厂家代销一种新型环保水泥,当每吨售价为260元时,月销售量为45吨,每售出1吨这种水泥共需支付厂家费用和其他费用共100元.该经销店为扩大销售量、提高经营利润,计划采取降价的方式进行促销,经市场调查发现,当每吨售价每下降10元时,月销售量就会增加7.5吨.(1)填空:当每吨售价是240元时,此时的月销售量是60.吨;(2)该经销店计划月利润为9000元而且尽可能地扩大销售量,则售价应定为每吨多少元?45+××26.(10分)如图直角坐标系中,已知A(﹣4,0),B(0,3),点M在线段AB上.(1)如图1,如果点M是线段AB的中点,且⊙M的半径为2,试判断直线OB与⊙M的位置关系,并说明理由;(2)如图2,⊙M与x轴、y轴都相切,切点分别是点E、F,试求出点M的坐标.x+3x+3y=y=a+3.的坐标为(﹣,x+3x x,所以,.的坐标为(﹣,27.(8分)(1)学习《测量建筑物的高度》后,小明带着卷尺、标杆,利用太阳光去测量旗杆的高度.参考示意图1,他的测量方案如下:第一步,测量数据.测出CD=1.6米,CF=1.2米,AE=9米.第二步,计算.请你依据小明的测量方案计算出旗杆的高度.(2)如图2,校园内旗杆周围有护栏,下面有底座.现在有卷尺、标杆、平面镜、测角仪等工具,请你选择出必须的工具,设计一个测量方案,以求出旗杆顶端到地面的距离.要求:在备用图中画出示意图,说明需要测量的数据.(注意不能到达底部点N对完成测量任务的影响,不需计算)你选择出的必须工具是卷尺、测角仪.;需要测量的数据是∠α、∠β的度数和PQ的长度..∴.∴.28.(10分)(1)如图1,已知点P在正三角形ABC的边BC上,以AP为边作正三角形APQ,连接CQ.①求证:△ABP≌△ACQ;②若AB=6,点D是AQ的中点,直接写出当点P由点B运动到点C时,点D运动路线的长.(2)已知,△EFG中,EF=EG=13,FG=10.如图2,把△EFG绕点E旋转到△EF'G'的位置,点M是边EF'与边FG 的交点,点N在边EG'上且EN=EM,连接GN.求点E到直线GN的距离.CQEH=参与本试卷答题和审题的老师有:nhx600;lk;dbz1018;cair。

2013年安徽省中考数学模拟试卷

2013年安徽省中考数学模拟试卷

2012年安徽省中考数学模拟试卷(五)2013年安徽省中考数学模拟试卷一、选择题(本大题共10小题,每小越4分,满分40分,每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选,选错,或选出的代号超过一个的不论是否写在括号内一律得0分.)1.计算(﹣2)3+2×(﹣2)2的值是()A.0 B.﹣8 C.16 D.﹣162.(2009•威海)如图,AB=AC,BD=BC,若∠A=40°,则∠ABD的度数是()A.20°B.30°C.35°D.40°3.2012年1月13日,中国人民银行公布的《2011年四季度金融统计数据表》显示,201 1年12月末中国外汇储备为31811.48亿美元,用科学记数法表示31811.48亿正确的为(保留三个有效数字)()A.318亿B.3.18×108C.3.18×1010 D.3.18×10124.(2006•眉山)数学课上,老师让同学们观察如图所示的图形,问:它绕着圆心O旋转多少度后和它自身重合?甲同学说:45°;乙同学说:60°;丙同学说:90°;丁同学说:135°.以上四位同学的回答中,错误的是()A.甲B.乙C.丙D.丁20户家庭的月用水量,结果如下表:则关于这20户家庭的月用水量,下列说法错误的是()A.方差是1.5吨B.中位数是6吨 C.平均数是6.2吨D.众数是6吨6.下列几何体中,主视图、左视图、俯视图相同的是()A.B.C.D.7.如图,AB是⊙O的直径,弦CD⊥AB,垂足为点E,AB=10,CD=8,那么AE的长为()A.2 B.3 C.4 D.58.解方程=的结果是()A.x=﹣3 B.x=3 C.x=6 D.无解9.如图,某种型号链条每节长为2.5cm,每两节链条相连接部分重叠的网的直径为0.8cm,则这种链条60节的总长度为()A.150cm B.104.5cm C.102.8cm D.102cm10.(2010•烟台)如图,AB为半圆的直径,点P为AB上一动点,动点P从点A出发,沿AB匀速运动到点B,运动时间为t,分别以AP与PB为直径做半圆,则图中阴影部分的面积S与时间t之间的函数图象大致为()A.B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.已知关于x的一元二次方程x2+(k+3)x+k=O有一个实数根是1,则这个方程的另一个实数根是_________.12.将一个三角形纸板按如图所示的方式放置在量角器上,使得点C在量角器的边缘(半圆周)上.已知点A、B 的读数分别为86°、30°,,则∠ACB的大小为_________.13.对于任意实数a,b,定义一种新运算“*”,使得a*b=ab﹣a2,例如2*5=2×5﹣22=6,那么(﹣1)*3=_________.14.根据图1所示的程序,得到了y与x的函数图象,如图2.若点M是y轴正半轴上任意一点,过点M作PQ∥x 轴交图象于点P,Q,连接OP,OQ.则以下结论:①x<0时,y=.②△OPQ的面积为定值.③x>0时,y随的增大而增大.④MQ=2PM.⑤∠POQ可以等于90°.其中正确结论有_________.(把你认为正确的结论序号全部填上)三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:÷,其中a=+1.16.甲,乙两位同学在解方程组时,甲正确地解得方程组的解为.乙因大意,错误地将方程中系数C写错了,得到的解为;若乙没有再发生其他错误,试确定a,b,c的值.四、(本大题共2小题,每小题8分,满分16分)17.如图,在平面直角坐标系中,点B在x轴上,∠ABO=90°,点A的坐标为(1,2):将∠AOB绕点A逆时针旋转900得到△ACD,点O的对应点C恰好落在双曲线y1=(x>O)上.直线AC交双曲线于点E.(1)求双曲线y1=(x>O)与直线AC的解析式y2=kx+b;(2)结合图象指出,当x取何值时,y1>y2,y1<y2?18.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A (﹣l,2),B(﹣4,5),C(1,8):(1)画出△ABC及其绕点A顺时针旋转90°后得到的△AB1C1.(2)求在上述旋转过程中,点B转动到点B1所经过的路程,及△ABC扫过的面积.五、(本大题共2小题,每小题10分,满分20分)19.如图,CD、EF表示高度不同的两座建筑物,小颖站在A处,正好越过前面建筑物的顶端C看到它后面的建筑物的顶端E,仰角为45°;小颖沿直线FA由点A后移10米到达位置点N,正好看到建筑物EF上的点M,仰角为30°.已知小颖的眼睛距离地面1.5米,CD、EF两座建筑物间的距离为25米,求建筑物CD、EF的高(结果保留根号).20.如图,在△ABC中,∠ACB=90°,点D是BC的中点,且∠B+∠ADC=90°,过点B、D作⊙O,使圆心D在AB上,⊙O交AB于点E.(1)求证:直线AD与⊙0相切;(2)若AC=6,求AE的长.六、(本题满分12分)21.如图,已知菱形ABCD的边长为2,∠DAB=60°,E、F分别是AD、CD上的两个动点,且满足AE+CF=2.连接BD.(1)图中有几对三角三全等?试选取一对全等的三角形给予证明;(2)判断△BEF的形状,并说明理由.(3)当△BEF的面积取得最小值时,试判断此时EF与BD的位置关系.七、(本题满分12分)22.连续两次抛掷一枚质地均匀、六个面分别刻有数字1﹣6的正方体骰子,观察其朝上一面的点数.(1)第一次出现的点数恰好能被第二次出现的点数整除的概率是多少?(2)两次出现的点数分别作为一个两位数的十位数字和个位数字,则这个两位数恰好是3的倍数的概率是多少?(3)两次出现的点数分别作为一个点的横坐标、纵坐标,则这个点在抛物线y=﹣x2+5x上的概率是多少?八、(本题满分14分)23.如图(1),已知抛物线y=ax2+bx+c经过原点O,它的顶点坐标为(5,),在抛物线内作矩形ABCD,使顶点C、.D落在抛物线上,顶点A,B落在x轴上.(1)求抛物线的解析式;(2)若AB=6,求AD的长;(3)设矩形ABCD的周长为L,求L的最大值.(4)如图(2),若直线y=x交抛物线的对称轴于点N,P为直线y=X上一个动点,过点P作X轴的垂线交抛物线于点Q.问在直线y=x上是否存在点P,使得以P、N、Q为顶点的三角形是等腰直角三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.2012年安徽省中考数学模拟试卷(五)参考答案与试题解析一、选择题(本大题共10小题,每小越4分,满分40分,每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选,选错,或选出的代号超过一个的不论是否写在括号内一律得0分.)1.计算(﹣2)3+2×(﹣2)2的值是()A.0 B.﹣8 C.16 D.﹣16考点:有理数的乘方。

2013年中考数学模拟试卷

2013年中考数学模拟试卷

2013年中考数学模拟试卷注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷.2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)【原创试题】1.计算23+-的结果是【】A.1 B.1- C. 5 D.5-【原创试题】2.如图,所给图形中既是中心对称图形又是轴对称图形的是【】A B C D【改编试题】3.国家发改委已于2013年5月24日核准广东湛江钢铁基地项目,项目由宝钢湛江钢铁有限公司投资建设,预计投产后年产10200000吨钢铁,保留2个有效数字为【】A.1.0×106 B.1.02×106 C.1.02×107 D.1.0×107【原创试题】4.暑假即将来临,小明和小亮每人要从甲、乙、丙三个社区中随机抽取一个社区参加综合实践活动,那么小明和小亮选到同一社区参加综合实践活动的概率为【】A、12B、13C、16D、19【原创试题】5.下列运算正确的是【】A.x2+ x3 = x5B.x4·x2 = x6C.x6÷x2 = x3 D.( x2 )3 = x8【原创试题】6.一个几何体的三视图如图所示,则这个几何体是【】A.四棱锥B.四棱柱C.三棱锥D.三棱柱【原创试题】7.如图,⊙O1,⊙O,⊙O2的半径均为2cm,⊙O3,(第7题图)⊙O 4的半径均为1cm ,⊙O 与其他4个圆均相外切,图形既关于O 1O 2所在直线对称,又关于O 3O 4所在直线对称,则四边形O 1O 4O 2O 3的面积为【 】A.12cm 2B.24cm 2C.36cm 2D.48cm 2【试题来源】(2012广州广雅)8.如图,填在各方格中的三个数之间均具有相同的规律,根据此规律,n的值是【】1 3 5 m234 156 35 8 nA .48 B . 56 C .63 D. 74 二、填空题(本大题共有10小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡相应位置上) 【原创试题】9.x 的取值范围是 。

2013年北京、上海、大连、河南、福州市中考数学试题及答案

2013年北京、上海、大连、河南、福州市中考数学试题及答案

2013年北京市高级中等学校招生考试数学试卷满分120分,考试时间120分钟一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的。

1. 在《关于促进城市南部地区加快发展第二阶段行动计划(2013-2015)》中,北京市提出了总计约3 960亿元的投资计划。

将3 960用科学计数法表示应为( )A. 39.6³102B. 3.96³103C. 3.96³104D. 3.96³104 2. 43-的倒数是( ) A. 34 B. 43 C. 43- D. 34-3. 在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为( ) A.51 B. 52 C. 53 D. 544. 如图,直线a ,b 被直线c 所截,a ∥b ,∠1=∠2,若∠3=40°,则∠4等于( )A. 40°B. 50°C. 70°D. 80°5. 如图,为估算某河的宽度,在河对岸边选定一个目标点A ,在近岸取点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,点E 在BC 上,并且点A ,E ,D 在同一条直线上。

若测得BE=20m ,EC=10m ,CD=20m ,则河的宽度AB 等于( )A. 60mB. 40mC. 30mD. 20m 6. 下列图形中,是中心对称图形但不是轴对称图形的是( )7. 某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间(小时)5 6 7 8 人数1015205则这50名学生这一周在校的平均体育锻炼时间是( )A. 6.2小时B. 6.4小时C. 6.5小时D. 7小时8. 如图,点P 是以O 为圆心,AB 为直径的半圆上的动点,AB=2,设弦AP 的长为x ,△APO 的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )二、填空题(本题共16分,每小题4分)9. 分解因式:a ab ab 442+-=_________________10. 请写出一个开口向上,并且与y 轴交于点(0,1)的抛物线的解析式__________10 11. 如图,O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点,若AB=5,AD=12,则四边形ABOM 的周长为__________12. 如图,在平面直角坐标系x O y 中,已知直线l :1--=x t ,双曲线xy 1=。

2024年山西省中考模拟示范数学试卷(六)

2024年山西省中考模拟示范数学试卷(六)

2024年山西省中考模拟示范数学试卷(六)一、单选题1.下面有理数比较大小的式子中,正确的是( ) A .12-<-B .12<-C .1123< D .1123-<-2.在我国传统的房屋建筑中,窗棂是门窗重要的组成部分,它们不仅具有功能性作用,而且具有高度的艺术价值.下列关于窗棂的图案中,不是中心对称图形的是( )A .B .C .D .3.自山西省惠民惠农财政补贴资金“一卡通”管理平台上线以来,已发放惠民惠农财政补贴资金61366.53万元,惠及全省1695847人次.数据61366.53万元用科学记数法表示为( ) A .96.13665310⨯元 B .86.13665310⨯元 C .90.613665310⨯元D .761.3665310⨯元4.下列一元二次方程中,没有实数根的是( ) A .2560x x ++= B .210x x +-= C .2250x x -+=D .269x x =-5.如图,小明在横格作业纸(横线等距)上画了个“×”,与横格线交于A ,B ,C ,D ,O 五点,若线段4cm AB =,则线段CD 的长等于( )A .4cmB .6cmC .8cmD .12cm6.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( ) A .众数B .方差C .平均数D .中位数7.如图,这是某几何体的展开图,则该几何体需要剪开的棱数为( )A .2条B .3条C .4条D .5条8.数学课上,李老师与学生们做“用频率估计概率”的试验:不透明袋子中有2个白球、3个黄球和5个红球,这些球除颜色外无其他差别.从袋子中随机取出一个球,某种颜色的球出现的频率如图所示,则该球的颜色最有可能是( )A .白球B .黄球C .红球D .黑球9.某树苗的初始高度为50cm ,如图,这是该树苗的高度与生长的月数的有关数据示意图,假设以后一段时间内,该树苗高度的变化与月数保持此关系,则该树苗的高度y cm ()与生长月数x 之间的函数关系式为( )A .505(1)y x =+-B .505y x =+C .5010(1)y x =+-D .5010y x =+10.如图,在Y ABCD 中,4AB =,以点A 为圆心,以AB 的长为半径画弧,交AD 于点E ,且E 为AD 的中点,若»BE的长度为π,则图中阴影部分的面积为( )A .4πB .2πC .164π-D .2π二、填空题11.计算:2=.12.如图,AB 是O e 的直径,点C ,D 在O e 上,连接AC ,AD ,CD ,若38ADC ∠=︒,则BAC ∠的度数为.13.如图,8块相同的小长方形地砖拼成一个大长方形,设每块小长方形地砖的长为x cm ,宽为y cm ,可列方程组:.14.如图,在ABC V 中,AB AC =,120BAC ∠=︒,分别以点A ,C 为圆心,大于12AC 的长为半径作弧,两弧分别相交于点E ,F ,连接EF 交边BC 于点D ,连接AD .若8BD =,则ACD V 的周长为.15.如图,E 为正方形ABCD 内一点,ED EA ⊥,连接CE ,F ,G 分别是CE ,CB 的中点,若4AB =,则FG 的最小值是.三、解答题16.(1)计算:()2312233tan 302⎛⎫⨯---++︒ ⎪⎝⎭(2)解不等式组:24223x x -<-⎧⎨-<⎩17.为加快城乡发展,我省持续推进美丽乡村建设.某村计划将一块长为18米、宽为12米的矩形场地建成绿化广场.如图,广场内部修建三条同样宽的小路,其中一条路与广场的长边平行,另外两条路与广场的短边平行,其余区域进行绿化.若绿化面积为140平方米,求小路的宽.18.如图,正比例函数(0)y ax a ≠=与反比例函数(0)ky k x=>的图象交于A ,B 两点,过点A 作AC y ⊥轴,垂足为C ,连接BC ,2ABC S ∆=.(1)求反比例函数ky x=的表达式. (2)若(1,)A a ,以AB ,AC 为边作平行四边形ABDC ,点D 在第三象限内,求点D 的坐标. 19.为了加强手机管理,某校要求“禁止手机进校园”为了解该校学生对手机管理的满意程度,学校团支部对该校的学生进行了随机抽样调查调查分为四个类别:A .非常满意;B 满意;C 不满意;D .无所谓.根据调查数据绘制成如图所示的统计图(不完整).根据以上信息,解答下列问题:(1)本次接受调查的学生共有人,并补全条形统计图. (2)在扇形统计图中,B 所在扇形的圆心角的度数是.(3)若本校有学生2000人,估计“满意”及“非常满意”的学生共有多少人? (4)请对该校学生对手机管理的满意程度作出合理的评价.20.图1是某红色文化主题公园内的雕塑(胜利的号角),将其抽象成如图2所示的示意图.测得AB BC ⊥,DE BC ⊥,52BAM ∠=︒, 1.86m AB =,2 1.24m DE CE ==.连接AE ,交BC 于点F ,若AE MN ⊥,求 AE (即雕塑的高度)的长.(结果精确到0.1m ,参考数据sin380.62︒≈,cos380.79︒≈,tan380.78︒≈)21.阅读与思考下面是小逸同学的数学学习笔记,请仔细阅读并完成相应任务.用“平移法”解答几何问题解答几何问题常常需要添辅助线,其中平移图形是重要的添辅助线的策略.如图1,在正方形ABCD 中,E ,F ,G 分别是BC ,AB ,CD 上的点,FG AE ⊥于点Q .求证:=AE FG .图1小逸在分析解题思路时想到了两种平移法:方法一:平移线段FG 使点F 与点B 重合,构造全等三角形. 如图2,平移线段FG 至BH 交AE 于点K , 由平移的性质得FG BH ∥,图2∵四边形ABCD 是正方形, ∴AB CD ∥,∴四边形BFGH 是平行四边形(依据1), ∴BH FG =, ∵FG AE ⊥, ∴BH AE ⊥, ∴90BKE ∠=︒, ∴90KBE BEK ∠+∠=︒, ∵90BEK BAE ∠+∠=︒, ∴BAE CBH ∠=∠,在ABE V 和BCH V 中,BAE CBHAB BC ABE C ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA ABE BCH V V ≌, ∴AE BH =(依据2),图4任务:(1)填空:材料中的依据1是指___________________,依据2________________. (2)补全材料中方法二的剩余证明过程.(3)如图4,在正方形网格中,A ,B ,C ,D 为格点(网格线的交点),AB 交CD 于点O .则t a n A O C ∠=_____________.22.综合与实践 问题情境如图1,将一把含45︒角的三角尺放在边长为2的正方形ABCD 上,并使它的直角顶点始终与A 点重合,其一条直角边与CB 的延长线交于点E ,另一条直角边与DC 交于点F . 猜想证明(1)在三角尺绕着点A 旋转的过程中. ①请判断AE 与AF 的数量关系,并加以证明.②四边形AECF 的面积是否为定值?如果是,求出这个值;如果不是,试说明理由. 问题解决(2)如图2,将这把三角尺45︒角的顶点始终与点A 重合,角的一边与BC 交于点E ,另一边与DC 交于点F .在旋转的过程中,求点A 到线段EF 的距离.23.综合与探究如图,在平面直角坐标系中,抛物线214y ax x c =++与x 轴交于A ,B 两点(点A 在点B 的右侧),与y 轴交于点C ,连接AC .已知点(3,0)B -,(0,3)C .(1)求该抛物线的表达式及直线AC的表达式.(2)D是直线AC上方抛物线上的一动点,过点D作DP AC于点P,求PD的最大值.(3)在(2)的条件下,将该抛物线向左平移5个单位长度,M为点D的对应点,平移后的抛物线与y轴交于点N,Q为平移后抛物线的对称轴上的任意一点.直接写出所有使得以QN为腰的QMNV是等腰三角形的点Q的坐标.。

人教版中考模拟考试数学试卷及答案(共七套)

人教版中考模拟考试数学试卷及答案(共七套)
∴ME=MC+EC= 。
19.(1) ;
(2)如下表:
小辰
A
A
A
B
B
B
C
C
C
小安
A
B
C
A
B
C
A
B
C
同一型号

√ቤተ መጻሕፍቲ ባይዱ

由表知:他们选择同一型号的概率为 。
20.(1)由两张图知:A有32人,占40%,所以样本容量是80人;
(2)求出B的人数是16人,补全条形图如图;
(3)D等占10%,扇形圆心角是36°;
(4)在被抽到的80人中,C等级24人,占30%,
以此估计全校2000人中评为C的可能有
2000×30%=600,即可能有600人。
21. 解:设增加了 行,则共有( )行,( )列,
根据题意: , ,
∵ ,∴ ,
答:增加了3列。
22. 提示(1)AB是直径,∠ACB=90°,∠B+∠2=90°;
DC=AC,那么∠D=∠1,而∠D=∠B,
(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是________;
(2)请你用列表法或画树状图法,求小辰和小安选择同一型号免洗洗手液的概率。
20.(本题8分)
学史明理,学史增信,学史崇德,学史力行。在建党100周年之际,某校对全校学生进行了一次党史知识测试,成绩评定共分为A,B,C,D四个等级,随机抽取了部分学生的成绩进行调查,将获得的数据整理绘制成如下两幅不完整的统计图:
则D(8,6),CD=5,
而A(5,0),OA=5,∴CD=OA,
∵CD∥OA,且CD=OA,∴四边形OADC是平行四边形;
(3)点C纵坐标为6,则CD与OA之间的距离为 ,

2013年重庆市中考数学诊断模拟试卷

2013年重庆市中考数学诊断模拟试卷

-22(8题图)2013年重庆市中考数学诊断模拟试卷一、选择题:(每小题4分,共48分)23A B C D4、二元一次方程组的解是()A6.下列调查中,适合用普查的是()①要了解某厂生产的一批灯泡的使用寿命;②要了解某个球队的队员的身高;7、计算28-的结果是()A、6B、6C、2D、28.如图,A、C、B是⊙O上三点,若∠AOC=40°,则∠ABC的度数是()A.10° B 20° C 40° D 80°9、某班九名同学在篮球场进行定点投篮测试,每人投篮五次,投中的次数统计如下:4,3,2,4,4,1,5,0,3,则这组数据的中位数、众数分别为()A.3 4 B.4. 3 C.3. 3 D.4. 422又从乙地逆流而上航行返回到甲地(轮船在静水中的航行速度始终保持不变).设轮船从甲地出发后所用时间为t (h),轮船离甲地的距离为s(km),则s与t的函数图象大致是()17题图(15题图)(12题图)13、将抛物线y=﹣(x ﹣1)2﹣2向左平移1个单位,再向上平移1个单位,则平移后抛物线的表达式 14、若单项式3x 2y n与-2x my 3是同类项,则m+n=15.在平面内,⊙O 的半径为5cm ,点P 到圆心O 的距离为3cm ,则点P 与⊙O 的位置关系是 如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0), (2, 0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2013个点的横坐标为17.把一个转盘平均分成三等份,依次标上数字2、6、8.用力转动转盘两次,将第一次转动停止后指针指向的数字记作x ,第二次转动停止后指针指向的数字的一半记作y 以长度为x 、y 、4的三条线段为边长能构成三角形的概率为_____________.18某商人经营甲、乙两种商品,每件甲种商品的利润率为40%,每件乙种商品的利润率为60%,当售出的乙种商品的件数比甲种商品的件数多50%时,这个商人得到的总利润率是50%;当售出的乙种商品的件数比甲种商品的件数少50%时,这个商人得到的总利润率为_____ ____.(利润率=利润÷成本) 三、解答题: 19.计算:2sin45_20.如图,两条国道OA 、OB 在我市交汇于O ,在∠AOB 的内部C 、D 处各有一个工厂。

2013年甘肃省定西市中考数学模拟

2013年甘肃省定西市中考数学模拟

第1页,共8页 第2页,共8页2013年甘肃省定西市中考数学模拟一、选择题:(每小题3分,共10小题,共30分) 1、-2的绝对值是( )A 、-2B 、2C 、-21D 、212、下列四个图案中,是轴对称图形,但不是中心对称图形的是( )3、下列计算中正确的是( )A 、3+2=5B 、3-2=1C 、3+3=33D 、8-2=24、2008年9月27日,神舟七号航天员翟志刚完成中国历史上第一次太空行走,他相对地球行走了5100000米路程,用科学记数法表示为( )A 、51×105米B 、5.1×105米C 、5.1×106米D 、0.51×107米 5、在函数y=xx-1中,自变量x 的取值范围是( ) A 、x ≤1 B 、x ﹤1且x ≠0 C 、x ≤1且x ≠0 D 、x ≥16.小明为今年将要参加中考的好友小李制作了一个(如图3)正方体礼品盒,六面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是 ( )7、如图所示几何体的主视图是( )A B C D8、某农机厂四月份生产零件50万个,第二季度共生产零件182万个,设该厂五、六月份平均每月的增长率为x ,那么x 满足的方程是( ) A 、50(1+x )2=182 B 、50+50(1+x)+50(1+x)2=182C 、50(1+2x)=182D 、50+50(1+x )+50(1+2x)=182 9、二次函数y=-3x 2-6x+5的图象的最高点坐标是( )A 、(-1,8)B 、(1,8)C 、(-1,2)D 、(1,-4)10.二次函数2y ax bx c =++的图象如图所示,则反比例函数ay x=与一次函数y bx c =+在同一坐标系中的大致图象是 ( )二、填空题11.若x y 、为实数,且10x +,则2013⎪⎪⎭⎫⎝⎛y x 的值是________________.12.对于非零的两个实数a 、b ,规定11a b ba⊗=-.若1(1)1x ⊗+=,则x 的值为 _______. 13.等腰三角形的两条边长分别为3,6,那么它的周长为 __________________.14. 化简:22222369x y x y yx y x xy y x y--÷-++++=_________. 15.(因式分解) 2a 4-8=__________________.16.菱形OABC 在平面直角坐标系中的位置如图13所示,45AOC OC ∠==°,B 的坐标为_____________.17.在直角梯形ABCD 中,AD∥BC,∠ABC=90°,∠C=60°,BC=2AD=2错误!未找到引用源。

2013年四川省眉山市仁寿县汪洋镇中中考数学模拟试卷(word解析)

2013年四川省眉山市仁寿县汪洋镇中中考数学模拟试卷(word解析)

2013年四川省眉山市仁寿县汪洋镇中中考数学模拟试卷参考答案与试题解析一、选择题:本大题共12个小题.每小题4分;共48分.1.(4分)(2008•德阳)﹣的绝对值是().由﹣解:∵﹣<﹣﹣(﹣).2.(4分)(2006•北京)如图,AD∥BC,点E在BD的延长线上,若∠ADE=155°,则∠DBC的度数为()B故两枚硬币正面都向上的概率是.5.(4分)(2006•湛江)不等式组:的解集用数轴表示为()B.解:不等式组可化为:6.(4分)(2006•菏泽)若分式的值为0,则x的值为()7.(4分)(2007•宁波)与如图所示的三视图对应的几何体是( )B.8.(4分)如图,DE 与△ABC 的边AB ,AC 分别相交于D ,E 两点,且DE ∥BC .若DE=2cm ,BC=3cm ,EC=cm ,则AC 等于( )EC=,,EC=cmAE=AC==29.(4分)如图,矩形OABC的边OA在x轴上,O与原点重合,OA=1,OC=2,点D的坐标为(2,0),则直线BD的函数表达式为(),解得10.(4分)如图,已知AD是△ABC的外接圆的直径,AD=13cm,cosB=,则AC的长等于()ADC=,ADC==,AC===12cm11.(4分)(2012•天桥区三模)在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC 是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形的个数是()12.(4分)(2013•大港区一模)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).其中正确的结论有()=1 b,则﹣﹣﹣,则﹣﹣二、填空题:本大题共5个小题.每小题3分;共15分.13.(3分)(2013•昭通)因式分解:2x2﹣18=2(x+3)(x﹣3).14.(3分)(2013•和静县一模)已知反比例函数y=的图象在第二、四象限,则m的取值范围是m <5.y=本题考查了反比例函数的性质,对于反比例函数(15.(3分)(2013•景德镇二模)用扇形统计图反映地球上陆地与海洋所占的比例时,“陆地”部分对应的圆心角是108°.宇宙中一块陨石落在地球上,落在陆地的概率是0.3.部分占地球总面积的比例为=∴宇宙中一块陨石落在地球上,落在陆地的概率是16.(3分)若m<﹣1,则下列函数①y=(x>0);②y=﹣mx+1;③y=mx;④y=(m+1)x中,随x的增大而增大的是①②(填写编号).(17.(3分)(2007•南昌)如图,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是矩形.请你只用无刻度的直尺在图中画出∠AOB的平分线.(请保留画图痕迹).三、解答题:7个小题,57分.18.(7分)(1)化简(2)解方程:.)根据多项式乘单项式法则展开得出×﹣×,求出×﹣×,19.(7分)(1)如图1,在一次龙卷风中,一棵大树在离地面若干米处折断倒下,B为折断处最高点,树顶A落在离树根C的12米处,测得∠BAC=30°,求BC的长.(结果保留根号)(2)如图2,等腰梯形ABCD中,AD∥BC,点E是AD延长线上一点,DE=BC.判断△ACE的形状并证明.,再由∠tan,×=420.(8分)(1)解方程组:(2)二次函数图象过A、C、B三点,点A的坐标为(﹣1,0),点B的坐标为(4,0),点C在y轴正半轴上,且AB=OC.①求C的坐标;②求二次函数的解析式,并求出函数最大值.,∴原方程组的解为:;,则解得,所以二次函数的解析式为.到原方程组的解,用的形式表示;21.(8分)某社区从不同住宅楼中随机选取了200名居民,调查社区居民双休日的学习状况,并将得到的数据制成扇形统计图(如图①)和频数分布直方图(如图②).(1)在这个调查中,200名居民双休日在家学习的有120人;(2)在这个调查中,在图书馆等场所学习的居民学习时间的平均数和众数分别是多少?(3)估计该社区2 000名居民双休日学习时间不少于4小时的人数.小时的频率是:22.(9分)(2008•南充)某乒乓球训练馆准备购买n副某种品牌的乒乓球拍,每副球拍配k(k≥3)个乒乓球.已知A、B两家超市都有这个品牌的乒乓球拍和乒乓球出售,且每副球拍的标价都为20元,每个乒乓球的标价都为1元.现两家超市正在促销,A超市所有商品均打九折(按原价的90%付费)销售,而B超市买1副乒乓球拍送3个乒乓球.若仅考虑购买球拍和乒乓球的费用,请解答下列问题:(1)如果只在某一家超市购买所需球拍和乒乓球,那么去A超市还是B超市买更合算?(2)当k=12时,请设计最省钱的购买方案.23.(9分)将两块形状大小完全相同的直角三角板按如图1所示的方式拼在一起.它们中较小直角边的长为6cm,较小锐角的度数为30°.(1)将△ECD沿直线AC翻折到如图2的位置,连接CF,图中除了△ABC≌△ECD≌△ECD′外,还有没有全等的三角形?若有,请指出一对并给出证明.(2)以点C为坐标原点建立如图3所示的直角坐标系,将△ECD沿x轴向左平移,使E点落在AB上,请求出点E′的坐标.=2224.(9分)(2010•呼和浩特)如图,在直角坐标平面内,函数(x>0,m是常数)的图象经过A(1,4),B(a,b),其中a>1.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连接AD,DC,CB.(1)若△ABD的面积为4,求点B的坐标;(2)求证:DC∥AB;(3)当AD=BC时,求直线AB的函数解析式.)由函数),即﹣,)依题意可证,(y=,),,.a﹣)EC==a且∠,解得,解得。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年中考数学真题(含答案)第一部分选择题一、选择题(共12小题,每小题3分,共36分。

1. 1的相反数等于()21 1A .丄B . 1C . - 2 D2 22•如图1所示的物体是一个几何体,其主视图是()3.今年参加我市初中毕业生学业考试的总人数约为56000人,用科学记数法表示为()A . 5.6 X 103B . 5.6 X 104C . 5.6 X 105D . 0.56 X 1054 .下列运算正确的是()A . x2+x3= x5B . (x + y)2=x2+ y2C . x2• x3= x6D . (x2)3=x65 .某校开展为“希望小学”捐书活动,以下是八名学生捐书的册数:2, 3, 2, 2, 6, 7, 6, 5,则这组数据的中位数为()A . 4B . 4.5C . 3D . 26 . 一件服装标价200元,若以6折销售,仍可获利20%则这件服装的进价是()A . 100 元B . 105 元C . 108 元D . 118 元7.如图2,小正方形的边长均为1,贝U下列图形中的三角形(阴影部分)与厶ABC相似的是()图1图2 CA B D8•如图3是两个可以自由转动的转盘,转盘各被等分成三个扇形,并分别标上1, 2, 3和 6, 7, 8这6个数字。

如果同时转动两个转盘各一次(指针落在等分线上重转),当转盘停10•对抛物线yx 2 2x 3而言,下列结论正确的是()C.与y 轴的交点坐标是(0, 3) D .顶点坐标为(1,- 2) 11 .下列命题是真命题的个数有()①垂直于半径的直线是圆的切线; ②平分弦的直径垂直于弦; ③ 若x 1是方程x — ay = 3的一个解,则a =-1;y 2④ 若反比例函数y -的图像上有两点(丄,y 1), (1, y 2),则y 1<y 2x2A . 1个B . 2个C . 3个D . 4个12 .如图4, △ ABC WA DEF 匀为等边三角形,O 为BC EF 的中点,则AD BE 的值为(A.3:1 B . '一 2:1C . 5:3D .不确定第二部分非选择题二、填空题(本题共4小题,每小题3分,共12分。

)13 .分解因式:a — a = ________________ o_ 14 .如图5,在O O 中,圆心角/ AO & 120° 弦A 吐2.3cm止后, 则指针指向的数字和为偶数的概率是9.已知a , b , c 均为实数,若a>b, C M 0o F 列结论不一定正确的是( A . a C b C Bab b 2A .与x 轴有两个交点.开口向上O图5贝U OA= _______ cm15•如图6,这是由边长为1的等边三角形摆出的一系列图形,按这种方式摆下去,则第n16•如图7,A ABC勺内心在y轴上,点C的坐标为(2, 0),点B的坐标为(0,2),直线AC的解析式为:y丄x 1,则tanA的值是_2三、解答题(本题共7小题,其中第17小题5分,第18小题6分,第19小题7分,第20小题8分,第21小题8分,第22小题9分,第23小题9分,共52分)17.(本题5 分)计算:2 1 .3cos300 5 ( 2011)°18.(本题6分)解分式方程: 2x 3x 1 x 119.(本题7 分)某校为了了解本校八年级学生课外阅读的喜欢,随机抽取了该校八年级部分学生进行问卷调查(每人只选一种书籍)。

图8是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:人数(1) _________________________ 这次活动一共调查了学生;(2) _______________________________________________ 在扇形统计图中,“其他”所在扇形圆心角等于_________________________________________ ;(3) 补全条形统计图;(4) _______________________________________________________________ 该年级有600人,请你估计该年级喜欢“科普常识”的学生人数约是______________________ 人20•如图9,已知在中,点C为劣弧AB上的中点,连接AC并延长至D,使CBCA连接DB并延长交。

O于点E,连接A巳(1)求证:AE是。

0的直径;(2)如图10,连接EC,。

0半径为5, AC的长为4,求阴影部分的面积之和。

(结果保留n与根号)AD 图1021. (本题8分)如图11, 一张矩形纸片ABCD 其中AD=8cm A 吐6cm 先沿对角线BD 对折,点C 落在点C 的位置,BC 交AD 于点G(1) 求证:Ad C G;(2) 如图12,再折叠一次,使点D 与点A 重合,得折痕EN EN 交AD 于点M 求EM 勺长。

22. (本题9分)深圳某科技公司在甲地、乙地分别生产了 17台、15台同一种型号的检测 设备,全部运往大运赛场A B 馆,其中运往A 馆18台、运往B 馆14台;运往A B 两馆的运费如表1:函数关系式;(2) 要使总费用不高于20200元,请你帮忙该公司设计调配方案,并写出有哪几种方案; (3) 当x 为多少时,总运费最小,最小值是多少?目的^发^甲地乙地A 馆 800元/台 700元/台B 馆500元/台600元/台目的地J甲地乙地A 馆 x (台)(台) B 馆(台)(台)DCMG 图12表1(1)设甲地运往A 馆的设备有x 台,请填写表 表22,并求出总费用y (元)与x (台)的23. (本题9分)如图13,抛物线y= ax2+ bx+c (a^O)的顶点为C (1, 4),交x轴于A、B 两点,交y轴于点D,其中点B的坐标为(3, 0)。

(1)求抛物线的解析式;(2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为2, 若直线PQ为抛物线的对称轴,点G为直线PQ1的一动点,则x轴上师范存在一点H,使D G H F四点所围成的四边形周长最小。

若存在,求出这个最小值及点G H的坐标;若不存在,请说明理由。

(3)如图15,在抛物线上是否存在一点T,过点T作x轴的垂线,垂足为点M过点M作MN/BD,交线段AD于点N连接MD使厶DN SA BMD若存在,求出点T的坐标;若不存在,请说明理由O图14、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BCBDAABCDDCA填空题:13、a(a + 1)(a — 1) 14 、415、2 + n解答题: 17、(备注:本题必须验根,没有验根的扣2分)又 v CD= CA • CB= CD=CA1•在厶 ABD 中, CB 1 AD2参考答案1618、 解:方程两边同时乘以:(x + 1)(x - 1),得:2x (x—1) +3(x + 1) =2(x + 1)(x -1)整理化简,得经检验,x =—5是原方程的根 原方程的解为:19、 (1) 200;(2) 36;(3)如图 1;18020、 (1)证明:如图2,连接AB BC•••点C 是劣弧AB 上的中点 ••• C A C B •••CA=CB•••/ AB4 90••• AE是。

0的直径(2)解:如图3,由(1)可知,AE是O O的直径•••/ ACE=90°vO O的半径为5, AC=4•••AE= 10,0 O的面积为25 n在Rt△ACE中, Z ACE=90°,由勾股定理,得:CE . AE2AC2. 102422 211 1 ___________________ ____•S A ACE=— AC CE ? 4 2炉W21•'•S 阴影=1S OO— S\AC L1 25 4 21 4 212 2 221、(1)证明:如图4,由对折和图形的对称性可知,CD=C' D,Z C=Z C = 90°在矩形ABCDK AB= CD Z A=Z C=90°•A吐 C ' D, Z A=Z C'在厶AB&3 C DG中,v A吐C ' D, Z A=Z C' , Z AG LZ C GD•△ABG2A C DG(AAS•AdC G(2)解:如图5,设EM L x, Ady,则有:1C G^y, D® 8—y, DM —AD 4cm ,2在Rt A C' DG中, Z DC G L90°, C D=CD= 6,• C ' G+c'弘D G即:y2+ 62=( 8—y) 2D图3图4DC AB解得:y -4• •C G= 7cm DG= 25cm44又:△ DM 匡△ DC GDM DCME C G 即:46x(;)解得:x7 6,即:EM =7( cm 6•••所求的EM 长为7 cm 。

622、解:(1)表2如右图所示,依题意,得:y表 2解得:x 9V 3<x < 17,且设备台数x 只能取正整数 ••• x 只能取3或4•••该公司的调配方案共有2种,具体如下表:(3)由(1)和(2)可知,总运费y 为:y = 200x + 19300 (x = 3 或 x = 4) 由一次函数的性质,可知:当x = 3时,总运费最小,最小值为:y min =200X 3+19300= 19900 (元)。

x答:当x 为3时,总运费最小,最小值是19900元23、解:(1)设所求抛物线的解析式为:尸a(x - 1)2 + 4,依题意,将点B(3, 0)代入, 得:a(3-1)2+ 4= 0解得:a =- 1•••所求抛物线的解析式为:y =- (x -1)2+4(2)如图6,在y 轴的负半轴上取一点I ,使得点F 与点I 关于x 轴对称,在x 轴上取一点H,连接HF 、HI 、HG GD GE 则HF = HI ............................. ① 设过A 、E 两点的一次函数解析式为:y = kx + b (20), •••点E 在抛物线上且点E 的横坐标为2,将x = 2代入抛物线y =-(x — 1)2•••点E 坐标为(2, 3)又•••抛物线y = —(x -1)2+4图像分别与x 轴、y 轴交于点A.•.当 y = 0 时,—(x -1)2+4 = 0,二 x =- 1 或 x = 3 当 x = 0 时,y =- 1+ 4= 3,•点 A (- 1, 0),点 B (3, 0),点 D (0, 3)又•••抛物线的对称轴为:直线x = 1, •••点D 与点E 关于PC 对称,G9 GE分别将点A (- 1, 0)、点E (2, 3)代入 y = kx + b ,得:k b 0解得:2k b 3过A E 两点的一次函数解析式为:y =x + 1•••当 x = 0 时,y = 1•••点F 坐标为(0, 1)又•••点F 与点I 关于x 轴对称,图6•••点I 坐标为(0,— 1)DB DGHQ图6O I+ 4,得 yC••• El | fDE 2 DI 2 ■. 22 42 2 5 ............. ④又•••要使四边形DFHG 勺周长最小,由于DF 是一个定值, •只要使DG GH^HI 最小即可 由图形的对称性和①、②、③,可知, DG + G 卅 HF= EG^GH^ HI只有当El 为一条直线时,EG^GWHI 最小设过E (2, 3)、I (0,-1 )两点的函数解析式为:y =k i x + b i (匕工0),分别将点E (2, 3)、点I (0,-1)代入y = k i x + b i ,得:过A E 两点的一次函数解析式为:y = 2x -1 •••当 x = 1 时,y = 1;当 y = 0 时,x =丄;2•••点G 坐标为(1, 1),点H 坐标为(1 , 0)2•四边形DFHG 勺周长最小为:DF +DG^GH^HF = DF +EI由③和④,可知: DF + EI = 2 2,5•四边形DFHG 勺周长最小为2 2,5。

相关文档
最新文档