一元二次方程 教学目标及方案
《一元二次方程》数学教案8篇
《一元二次方程》数学教案8篇作为一位兢兢业业的人民教师,通常需要准备好一份教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。
那么什么样的教案才是好的呢?这里作者为大家分享了8篇《一元二次方程》数学教案,希望在一元二次方程教案的写作这方面对您有一定的启发与帮助。
元二次方程教案篇一一、教材分析:1、教材所处的地位:此前学生已经学习了应用一元一次方程与二元一次方程组来解决实际问题。
本节仍是进一步讨论如何建立和利用一元二次方程模型来解决实际问题,只是在问题中数量关系的复杂程度上又有了新的发展。
2、教学目标要求:(1)能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型;(2)能根据具体问题的实际意义,检验结果是否合理;(3)经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述;(4)通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用。
3、教学重点和难点:重点:列一元二次方程解与面积有关问题的应用题。
难点:发现问题中的等量关系。
二.教法、学法分析:1、本节课的设计中除了探究3教师参与多一些外,其余时间都坚持以学生为主体,充分发挥学生的主观能动性。
教学过程中,教师只注重点、引、激、评,注重学生探究能力的培养。
还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。
同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。
2、本节内容学习的关键所在,是如何寻求、抓准问题中的数量关系,从而准确列出方程来解答。
因此课堂上从审题,找到等量关系,列方程等一系列活动都由生生交流,兵教兵从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。
三.教学流程分析:本节课是新授课,根据学生的知识结构,整个课堂教学流程大致可分为:活动1复习回顾解决课前参与活动2封面设计问题的探究活动3草坪规划问题的延伸活动4课堂回眸这有名程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。
一元二次方程优秀教案
一元二次方程优秀教案(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、文案策划、工作计划、作文大全、教案大全、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, copywriting planning, work plans, essay summaries, lesson plans, speeches, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!一元二次方程优秀教案标题:一元二次方程优秀教案一、教学目标:1.理解一元二次方程的概念和性质;2.掌握解一元二次方程的方法和步骤;3.能够应用一元二次方程解决实际问题。
《一元二次方程》数学教案(优秀5篇)
《一元二次方程》数学教案(优秀5篇)元二次方程教案篇一教学设计思想解一元二次方程有四种方法,直接开平方法、配方法、公式法、因式分解法,这四种方法各有千秋。
直接开平方法很简单,在这里不做过多的介绍。
为保证学生掌握基本的运算技能,教学中进行了一定量的训练,但要避免学生简单的模仿。
我们在探究一元二次方程解法的过程中,要加强思想方法的渗透,发展学生的思维能力。
在解一元二次方程的几种方法中,均需要用到转化的思想方法。
如配方法需要将方程转化为能直接开平方的形式,公式法能根据一元二次方程转化为两个一元一次方程,所有这些均体现了转化的思想。
在教学时老师引导学生在主动进行观察、思考核探究的基础上,体会数学思想方法在其中的作用,充分发展学生的思维能力。
教学目标知识与技能:1.会用配方法、公式法、因式分解法解简单数字系数的一元二次方程。
2.能够根据一元二次方程的特点,灵活选用解方程的方法,体会解决问题策略的多样性。
过程与方法:1.参与对一元二次方程解法的探索,体验数学发现的过程,对结果比较、验证、归纳、理清几种解法之间的关系,并能根据方程的特点灵活选择适当的方法解一元二次方程。
2.在探究一元二次方程的过程中体会转化、降次的数学思想。
情感态度价值观:在解一元二次方程的实践中,交流、总结经验和规律,体验数学活动乐趣。
教学重难点重点:掌握配方法、公式法、因式分解法解一元二次方程的步骤,并熟练运用上述方法解题。
难点:根据方程的特点灵活选择适当的方法解一元二次方程。
教学方法探索发现,讲练结合元二次方程教案篇二一、教学目标1.使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。
2.通过列方程解应用问题,进一步体会提高分析问题、解决问题的能力。
3.通过列方程解应用问题,进一步体会代数中方程的思想方法解应用问题的优越性。
二、重点·难点·疑点及解决办法1.教学重点:会用列一元二次方程的方法解有关数与数字之间的关系的应用题。
一元二次方程 教学目标及方案
“一元二次方程”课程目标及教学方案
教学目标:
知识技能:
1、理解一元二次方程的概念.
2、掌握一元二次方程的一般形式,正确认识二次项系数、一次项系数及常数项.
教学思考:
1、通过一元二次方程的引入,培养学生建模思想,归纳、分析问题及解决问题的能力.
2、通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.
3、由知识来源于实际,树立转化的思想,由设未知数、列方程向学生渗透方程的
思想,从而进一步提高学生分析问题、解决问题的能力.
解决问题:
在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识.
情感态度:
1、培养学生主动探究知识、自主学习和合作交流的意识.
2、激发学生学数学的兴趣,体会学数学的快乐,培养用数学的意识.
教学方案:
活动1 创设情境引入新课
活动2 启发探究获得新知
活动3 运用新知体验成功
活动4 归纳小结拓展提高
活动5 布置作业分层落实
通过对本节课的学习,学生将掌握一元二次方程的定义、一般形式、及有关概念,并学会利用方程解决实际问题。
在教学过程中,注重重难点的体现。
教学过程中,应随时注意学生们出现的问题,及时进行反馈,使学生熟练掌握所学知识。
一元二次方程优秀教案
一元二次方程优秀教案一元二次方程是初中数学的主要内容,在初中代数中占重要地位。
学生积极动手、动脑、动口为主线来完成。
在教学中渗透类比化归等数学思想,让学生充分观察、体验,同时营造轻松愉快的学习氛围,以此激发学生的学习兴趣并渗透环保内容。
以下是小编整理的关于一元二次方程教案,欢迎查阅!一元二次方程教案1教学目标1、知识与能力目标:要求学生会根据实际问题列出一元二次方程,体会方程的模型思想,培养学生归纳、分析的能力。
2、过程与方法目标:引导学生分析实际问题中的数量关系,回顾一元一次方程的概念,组织学生讨论,让学生自己抽象出一元二次方程的概念。
3.、情感、态度与价值观:通过数学建模的分析、思考过程,激发学生学数学的兴趣,体会做数学的快乐,培养用数学的意识并与校园绿化相结合。
教学重点、难点教学重点:通过实际问题模型建立一元二次方程的概念,认识一元二次方程一般形式.2。
难点:通过实际问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念。
教学过程:(一)创设情景,导入新课问题一:学校有一块面积为900平方米的长方形绿地,并且长比宽多10米,则绿地的长和宽为多少分析:设长方形绿地的宽为x米,则列方程,整理可得。
问题二:有一块矩形绿化带,长100cm,宽50cm,在它的四角各栽种一个同样的正方形花坛,如果去掉四周矩形的底面积为3600cm2,那么四周花坛面积是多大的正方形分析:设长方形绿地的宽为x米,则列方程,整理可得。
问题三:要组织一次环保竞赛,参加的每两个班之间都要比赛一场。
根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个班参赛【设计意图】因为数学来源与生活,所以以学生的实际生活背景为素材创设情景,易于被学生接受、感知。
同时帮助学生从实际问题中提炼出数学问题,初步培养学生的空间概念和抽象能力。
情景分析中学生自然会想到用方程来解决问题,但所列的方程不是以前学过的,从而激发学生的求知欲望,顺利地进入新课,并激发学生环保意识。
一元二次方程教案
一元二次方程教案教案一:一元二次方程的基本概念与解法一、教学目标:1. 知识与技能目标:(1) 学习一元二次方程的基本概念;(2) 掌握一元二次方程的解法:因式分解、配方法、求根公式等;(3) 学会运用一元二次方程解决实际问题。
2. 过程与方法目标:(1) 采用探究式学习方法,培养学生的自主探索和合作学习能力;(2) 运用配备实例、数学实践和游戏等多种方法,增加学生的学习兴趣;(3) 引导学生把数学应用于实际问题,培养学生的实际应用能力。
二、教学重难点:1. 教学重点:(1) 一元二次方程的基本概念和解法;(2) 运用一元二次方程解决实际问题。
2. 教学难点:(1) 运用一元二次方程解决实际问题的能力;(2) 掌握一元二次方程解的判别式和求根公式。
三、教学过程:1. 导入新课:(1) 教师介绍一元二次方程的应用背景,例如:投射运动、阳光房设计等,激发学生的兴趣。
(2) 提问:学过一元一次方程了吧?有没有遇到形如 x^2 的方程?这样的方程有何特点?(3) 引导学生总结一元二次方程与一元一次方程的异同点。
2. 讲述一元二次方程的基本概念:(1) 定义:包含一个未知数的二次式形成的等式称为一元二次方程。
(2) 形式:一元二次方程的一般形式为 ax^2 + bx + c = 0,其中a ≠ 0,a、b、c 是已知实数,x 是未知数。
3. 解一元二次方程的方法:(1) 因式分解法:将一元二次方程化简为两个一元一次方程并求解。
(2) 配方法:通过变量的替换,使方程成为完全平方的形式,再进行求解。
(3) 求根公式法:利用求根公式推导,求出一元二次方程的根。
4. 运用一元二次方程解决实际问题:(1) 引导学生通过实例分析,掌握将实际问题转化成一元二次方程解决的方法。
(2) 设计练习题或教师给出实际问题,学生自主解决。
5. 小结和评价:(1) 教师帮助学生总结一元二次方程的基本概念与解法;(2) 进行课堂评价,检查学生的理解和掌握程度。
《一元二次方程》教学方案
《一元二次方程》教学方案一、教学目标使学生理解一元二次方程的概念、形式及其解的含义。
掌握一元二次方程的解法,包括配方法、公式法和因式分解法。
能够运用一元二次方程解决简单的实际问题。
通过学生互动环节,提高学生的合作学习和交流能力。
二、教学内容一元二次方程的概念、形式及其解的含义。
一元二次方程的解法(配方法、公式法、因式分解法)。
一元二次方程的实际应用。
三、教学方法与手段讲授法:通过教师的讲解,让学生理解一元二次方程的基本概念和解法。
练习法:通过大量的练习,让学生掌握一元二次方程的解法技巧。
互动讨论法:通过小组讨论和全班互动,提高学生的合作学习和交流能力。
四、教学过程导入新课通过一个具体实例(如抛物线问题、利润最大化问题等)引出一元二次方程的概念,激发学生的学习兴趣。
讲授新课详细讲解一元二次方程的概念、形式及其解的含义。
举例说明一元二次方程在日常生活和实际问题中的应用。
学生互动环节分组讨论:将学生分成若干小组,每个小组选择一个与一元二次方程相关的问题,并尝试建立方程。
小组展示:每个小组选派一名代表,向全班展示他们的问题、方程以及建立方程的思路。
全班互动:教师针对每个小组的展示进行点评,并引导学生讨论不同解法的优缺点,以及如何选择合适的解法。
巩固练习提供一系列一元二次方程的练习题,包括选择、填空和解答题,让学生独立完成。
教师巡视指导,及时纠正学生的错误,并对解题方法进行点拨。
课堂小结总结一元二次方程的概念、形式、解法及其在实际问题中的应用。
强调一元二次方程在解决实际问题中的重要性,并鼓励学生多思考、多练习。
五、课后作业完成教材上的相关练习题,巩固所学内容。
找一个与一元二次方程相关的生活实例,尝试建立方程并求解,培养学生的实际应用能力。
六、评价与反馈通过课堂表现和作业完成情况,评价学生对一元二次方程的理解和掌握程度。
鼓励学生之间进行互评,相互学习,共同进步。
根据学生的反馈和作业情况,及时调整教学策略,优化教学效果。
一元二次方程的相关教案【优秀3篇】
一元二次方程的相关教案【优秀3篇】元二次方程篇一[教材分析]中学阶段我们研究的多项式函数中有二次函数,研究的几何图形中有二次曲线。
因此一元二次方程便成为了方程中研究的重要内容。
一元二次方程有根与系数关系,求根公式向我们揭示了两根与系数间的密切关系,而根与系数还有更进一步的发现,这一发现在数学学科中具有极强的实用价值,本节内容既是代数式、一元一次方程和一元二次方程求根公式等知识的进一步深化,又蕴含有丰富的数学思想方法,也为学生们将来的学习打下了必要的基础。
[学生分析]进入了初二下半学期,随着年龄的增长以及实验几何向论证几何的逐步推进,学生们的逻辑推理能力已有了较大提高。
因此在学过了一元二次方程的解法后,自主探究其根与系数的关系是完全可能的。
再加上我所执教的学生,他们有着较强的认知力与求知欲,基于以上思考,我在设计中扩大了学生的智力参与度,也相对放大了知识探索的空间。
[教学目标]在学生探求一元二次方程根与系数关系的活动中,经历观察、分析、概括的过程以及“实践——认识——再实践——再认识”的过程,得出一元二次方程根与系数的关系。
能利用一元二次方程根与系数的关系检验两数是否为原方程的根;已知一根求另一根及系数。
理解数学思想,体会代数论证的方法,感受辩证唯物主义认识论的基本观点。
[教学重难点]发现并掌握一元二次方程根与系数的关系,包括知识从特殊到一般的发生发展过程[教学过程](一)复习导入请学生求解表格内的方程,完成解法的交流以及求根公式的复习,求根公式向我们揭示了两根与系数间的关系,那么一元二次方程根与系数间是否还有更深一层的联系呢?由此疑问,导入新课。
(二)探求新知数学学科中由数到式的结构编排,让我们想到了从两根运算上的最简组合:和差积商展开进一步研究。
初探新知中,我将学生们分成两组,分别对二次项系数为1 的一元二次方程两根进行和差积商的运算,之后将结果汇总展示,共同观察与系数的联系。
我在这些方程中安排了两个无理根方程。
一元二次方程的教案(必备3篇)
一元二次方程的教案(必备3篇)1.一元二次方程的教案第1篇一、教学目标知识与技能(1)理解一元二次方程的意义。
(2)能熟练地把一元二次方程整理成一般形式并能指出它的二次项系数,一次项系数及常数项。
过程与方法在分析、揭示实际问题的数量关系并把实际问题转化成数学模型(一元二次方程)的过程中,使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。
情感、态度与价值观通过探索建立一元二次方程模型的过程,使学生积极参与数学学习活动,增进对方程的认识,发展分析问题、解决问题的能力。
二、教材分析:教学重点难点重点:经历建立一元二次方程模型的过程,掌握一元二次方程的一般形式。
难点:准确理解一元二次方程的意义。
三、教学方法创设情境——主体探究——合作交流——应用提高四、学案(1)预学检测3x-5=0是什么方程?一元一次方程的定义是怎样的?其一般形式是怎样的?五、教学过程(一)创设情境、导入新(1)自学本P2—P3并完成书本(2)请学生分别回答书本内容再(二)主体探究、合作交流(1)观察下列方程:(35-2x)2=9004x2-9=03y2-5y=7它们有什么共同点?它们分别含有几个未知数?它们的左边分别是未知数的几次几项式?(2)一元二次方程的概念与一般形式?如果一个方程通过移项可以使右边为0,而左边是只含一个未知数的二次多项式,那么这样的方程叫作一元二次方程,它的一般形式是ax2+bx+c=0(a、b、c是已知数a≠0),其中,a、b、c分别称为二次项系数、一次项系数和常数项,如x2-x=56(三)应用迁移、巩固提高例1:根据一元二次方程定义,判断下列方程是否为一元二次方程?为什么?x2-x=13x(x-1)=5(x+2)x2=(x-1)2例2:将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项。
解:去括号得3x2-3x=5x+10移项,合并同类项,得一元二次方程的一般形式3x2-8x-10=0其中二次项系数为3,一次项系数为-8,常数项为-10.学生练习:书本P4练习(四)总结反思拓展升华总结1.一元二次方程的定义是怎样的?2.一元二次方程的一般形式为ax2+bx+c=0(a≠0),一元二次方程的项及系数都是根据一般式定义的,这与多项式中的项、次数及其系数的定义是一致的。
《一元二次方程》优秀教案(精选5篇)
《一元二次方程》优秀教案(精选5篇)《一元二次方程》优秀教案1学习目标1、一元二次方程的求根公式的推导2、会用求根公式解一元二次方程.3、通过运用公式法解一元二次方程的训练,提高学生的运算能力,养成良好的运算习惯学习重、难点重点:一元二次方程的求根公式.难点:求根公式的条件:b2 -4ac≥0学习过程:一、自学质疑:1、用配方法解方程:2x2-7x+3=0.2、用配方解一元二次方程的步骤是什么?3、用配方法解一元二次方程,计算比较麻烦,能否研究出一种更好的方法,迅速求得一元二次方程的实数根呢?二、交流展示:刚才我们已经利用配方法求解了一元二次方程,那你能否利用配方法的基本步骤解方程ax2+bx+c=0(a≠0)呢?三、互动探究:一般地,对于一元二次方程ax2+bx+c=0(a≠0),当b2-4ac≥0时,它的根是用求根公式解一元二次方程的方法称为公式法由此我们可以看到:一元二次方程ax2+bx+c=0(a≠0)的根是由方程的系数a、b、c确定的.因此,在解一元二次方程时,先将方程化为一般形式,然后在b2-4ac≥0的前提条件下,把各项系数a、b、c的值代入,就可以求得方程的根.注:(1)把方程化为一般形式后,在确定a、b、c时,需注意符号.(2)在运用求根公式求解时,应先计算b2-4ac的值;当b2-4ac≥0时,可以用公式求出两个不相等的实数解;当b2-4ac<0时,方程没有实数解.就不必再代入公式计算了.四、精讲点拨:例1、课本例题总结:其一般步骤是:(1)把方程化为一般形式,进而确定a、b,c的值.(注意符号)(2)求出b2-4ac的值.(先判别方程是否有根)(3)在b2-4ac≥0的前提下,把a、b、c的直代入求根公式,求出的值,最后写出方程的根.例2、解方程:(1)2x2-7x+3=0 (2) x2-7x-1=0(3) 2x2-9x+8=0 (4) 9x2+6x+1=0五、纠正反馈:做书上第P90练习。
九年级数学上册《一元二次方程求根公式及其应用》教案、教学设计
1.通过对一元二次方程的引入,使学生掌握从实际问题中抽象出一元二次方程的一般方法。
2.通过自主探究、小组合作等方式,引导学生发现一元二次方程求根公式的推导过程,培养学生的逻辑思维能力和团队协作能力。
3.利用求根公式解决实际问题时,引导学生分析问题、建立数学模型,提高学生解决实际问题的能力。
ቤተ መጻሕፍቲ ባይዱ三、教学重难点和教学设想
(一)教学重难点
1.重点:一元二次方程求根公式的推导及其应用。
2.难点:理解求根公式的推导过程,以及如何运用求根公式解决实际问题。
(二)教学设想
1.引入新课:
-通过生活实例,如抛物线运动、面积计算等,引出一元二次方程的实际背景,激发学生的学习兴趣。
-对比一元一次方程,引导学生发现一元二次方程的特点,为新课的学习做好铺垫。
四、教学内容与过程
(一)导入新课,500字
1.教学活动:利用多媒体展示一个实际问题,如“一个学生从地面上抛出一个球,球的最高点离地面2米,问学生抛球的高度和初速度分别是多少?”
2.提出问题:引导学生思考如何解决这个问题,从而引出一元二次方程的求解。
3.引入新课:通过对比一元一次方程,强调一元二次方程的特点,即未知数的最高次数为2,且方程的根可能有0个、1个或2个。
1.必做题:
-请同学们完成课本第chapter页的练习题,包括直接求解一元二次方程和运用求根公式解决实际问题。
-从练习中挑选两道具有代表性的题目,要求同学们写出完整的解题过程,包括解题思路、步骤和最终答案。
2.选做题:
-针对课堂上的抛物线运动实例,请同学们设计一个类似的实际问题,并运用一元二次方程求根公式进行求解。
1.学生对一元二次方程的概念理解可能不够深入,需要通过实例引入,帮助学生建立直观的认识。
《一元二次方程》优秀教案(精选5篇)
《一元二次方程》优秀教案(精选5篇)《一元二次方程》优秀教案1教学目标:1、经历抽象一元二次方程概念的过程,进一步体会是刻画现实世界的有效数学模型2、理解什么是一元二次方程及一元二次方程的一般形式。
3、能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。
教学重点1、一元二次方程及其它有关的概念。
2、利用实际问题建立一元二次方程的数学模型。
教学难点1、建立一元二次方程实际问题的数学模型.2、把一元二次方程化为一般形式教学方法:指导自学,自主探究课时:第一课时教学过程:(学生通过导学提纲,了解本节课自己应该掌握的内容)一、自主探索:(学生通过自学,经历思考、讨论、分析的过程,最终形成一元二次方程及其有关概念)1、请认真完成课本P39—40议一议以上的内容;化简上述三个方程.。
2、你发现上述三个方程有什么共同特点?你能把这些特点用一个方程概括出来吗?3、请同学看课本40页,理解记忆一元二次方程的概念及有关概念你觉得理解这个概念要掌握哪几个要点?你还掌握了什么?二、学以致用:(通过练习,加深学生对一元二次方程及其有关概念的理解与把握)1、下列哪些是一元二次方程?哪些不是?①②③④x2+2x-3=1+x2 ⑤ax2+bx+c=02、判断下列方程是不是关于x的一元二次方程,如果是,写出它的二次项系数、一次项系数和常数项。
(1)3-6x2=0(2)3x(x+2)=4(x-1)+7(3)(2x+3)2=(x+1)(4x-1)3、若关于x的方程(k-3)x2+2x-1=0是一元二次方程,则k的值是多少?4、关于x的方程(k2-1)x2+2(k+1)x+2k+2=0,在什么条件下它是一元二次方程?在什么条件下它是一元一次方程?5、以-2、3、0三个数作为一个一元二次方程的系数和常数项,请你写出满足条件的不同的一元二次方程?三、反思:(学生,进一步加深本节课所学内容)这节课你学到了什么?四、自查自省:(通过当堂小测,及时发现问题,及时应对)1、下列方程中是一元二次方程的有()A、1个B、2个 C、3个D、4个(1)(2)(3)(4)(5)(6)2、将方程-5x2+1=6x化为一般形式为____________________.其二次项是_________,系数为_______,一次项系数为______,常数项为______。
一元二次方程教案第一课时
一元二次方程教案第一课时一、教学目标知识与技能:学生能够理解一元二次方程的概念,掌握一元二次方程的一般形式,并能正确地识别和转换一元二次方程。
过程与方法:通过观察、分析和归纳,学生能够掌握一元二次方程的解法,并能够运用一元二次方程解决实际问题。
情感态度与价值观:培养学生对数学的兴趣和爱好,激发学生的学习热情,培养学生的逻辑思维能力和创新精神。
二、教学重点和难点教学重点:一元二次方程的概念、一般形式及其解法。
教学难点:如何正确识别和转换一元二次方程,以及如何运用一元二次方程解决实际问题。
三、教学过程导入新课:通过实例引导学生了解一元二次方程的概念,并通过对比一元一次方程,突出一元二次方程的特点和差异。
知识讲解:详细讲解一元二次方程的一般形式、解法及其在实际问题中的应用,并配以相应的例题进行说明。
练习与巩固:提供相应的练习题目,让学生在课堂上进行练习,并引导学生通过自主思考和小组讨论解决问题。
总结与回顾:对本节课的知识点进行总结和回顾,加深学生对一元二次方程的理解和应用。
布置作业:根据学生的学习情况布置适量的作业,以巩固和拓展课堂所学知识。
四、教学方法和手段教学方法:采用讲解、演示、小组讨论等多种教学方法相结合的方式进行教学,以提高学生的参与度和学习效果。
教学手段:运用多媒体课件、板书等多种教学手段辅助教学,提高教学效果和学生的学习兴趣。
五、课堂练习、作业与评价方式课堂练习:提供相应的练习题目,让学生通过自主思考和小组讨论解决问题,巩固所学知识。
作业:根据学生的学习情况布置适量的作业,以巩固和拓展课堂所学知识。
作业可以分为基础题目和提高题目两个层次,以满足不同学生的需求。
评价方式:通过学生的课堂表现、练习和作业等多种方式进行评价,以全面了解学生的学习情况和进步程度。
同时,鼓励学生积极参与评价,提高评价的客观性和准确性。
六、辅助教学资源与工具教学课件:提供相应的多媒体课件,包括文字、图片、视频等多种形式的内容,以辅助教学。
初中一元二次方程教案模板
初中一元二次方程教案模板一、教学目标:1. 知识与能力目标:学生能够理解一元二次方程的概念,掌握一元二次方程的解法,并能够应用一元二次方程解决实际问题。
2. 过程与方法目标:通过探索一元二次方程的解法,培养学生逻辑思维能力和解决问题的能力。
3. 情感、态度与价值观目标:培养学生对数学的兴趣,感受数学在生活中的应用,培养学生的团队合作意识。
二、教学重点、难点:1. 教学重点:一元二次方程的概念,一元二次方程的解法及其应用。
2. 教学难点:一元二次方程的解法,特别是因式分解法和求根公式的运用。
三、教学过程:1. 导入新课:通过生活中的实际问题,引导学生列出方程,从而引出一元二次方程的概念。
2. 自主学习:学生自主探究一元二次方程的解法,总结解题步骤和技巧。
3. 课堂讲解:讲解一元二次方程的概念,解析一元二次方程的解法,并通过例题演示解题过程。
4. 练习巩固:学生独立完成练习题,教师进行个别辅导,巩固所学知识。
5. 拓展应用:学生分组讨论,运用一元二次方程解决实际问题,分享解题心得。
6. 总结反思:教师引导学生总结一元二次方程的特点和解题方法,反思自己在学习过程中的优点和不足。
四、教学方法:1. 情境教学法:通过设置生活情境,激发学生的学习兴趣,引导学生主动参与。
2. 启发式教学法:教师提问引导学生思考,激发学生的探究欲望。
3. 合作学习法:学生分组讨论,培养学生的团队合作意识和沟通能力。
4. 案例教学法:通过讲解典型例题,培养学生解决问题的能力。
五、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答和练习完成情况。
2. 练习作业:检查学生完成练习题的情况,评估学生的掌握程度。
3. 小组讨论:评估学生在团队合作中的表现,包括沟通能力和解决问题的能力。
4. 学生自评:让学生反思自己在学习过程中的优点和不足,鼓励自我提高。
六、教学资源:1. 教材:一元二次方程相关章节的内容。
2. 课件:教师制作的课件,包括图片、文字和动画等。
22.1一元二次方程数学教案
22.1一元二次方程数学教案
教案名称:《一元二次方程》
一、教学目标:
1. 知识与技能:理解并掌握一元二次方程的概念,能够解基本的一元二次方程;学会使用因式分解法、公式法等方法解决相关问题。
2. 过程与方法:通过观察、思考、讨论、合作等方式,提高学生分析问题、解决问题的能力。
3. 情感态度价值观:培养学生的数学思维,激发学生对数学的兴趣,增强学生的学习自信心。
二、教学重难点:
重点:理解和掌握一元二次方程的概念,学会使用因式分解法、公式法解一元二次方程。
难点:理解和运用一元二次方程的解法,解决实际问题。
三、教学过程:
1. 导入新课:通过生活实例或者历史故事引出一元二次方程的概念,激发学生的学习兴趣。
2. 新知探究:首先介绍一元二次方程的概念,然后引导学生学习如何用因式分解法解一元二次方程,再进一步介绍公式法,并举例说明。
在这个过程中,鼓励学生主动参与,提出自己的见解和疑问。
3. 实践应用:设计一些练习题让学生独立完成,以此来检验他们对新知识的理解和掌握程度。
同时,还可以设置一些实际问题,让学生利用所学知识去解决,以提升他们的应用能力。
4. 总结归纳:带领学生回顾本节课的主要内容,强调重要知识点,解答学生在课堂上提出的疑问。
5. 布置作业:布置适量的习题,让学生在课后巩固和复习所学知识。
四、教学评价:
通过课堂观察、小组讨论、练习反馈等方式,评价学生对一元二次方程的理解和掌握程度,以及他们的问题解决能力。
五、教学反思:
在课程结束后,教师需要反思本次教学的效果,包括教学设计是否合理,教学方法是否有效,学生的学习效果如何等等,以便于下次改进教学。
一元二次方程教案 一元二次方程数学教学教案8篇
一元二次方程教案一元二次方程数学教学教案8篇元二次方程教案篇一一、素质教育目标(一)知识教学点:1.使学生了解一元二次方程及整式方程的意义;2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.(二)能力训练点:1.通过一元二次方程的引入,培养学生分析问题和解决问题的能力;2.通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.(三)德育渗透点:由知识来源于实际,树立转化的思想,由设未知数列方程向学生渗透方程的思想方法,由此培养学生用数学的意识.二、教学重点、难点1.教学重点:一元二次方程的意义及一般形式.2.教学难点:正确识别一般式中的“项”及“系数”.三、教学步骤(一)明确目标1.用电脑演示下面的操作:一块长方形的薄钢片,在薄钢片的四个角上截去四个相同的小正方形,然后把四边折起来,就成为一个无盖的长方体盒子,演示完毕,让学生拿出事先准备好的长方形纸片和剪刀,实际操作一下刚才演示的过程.学生的实际操作,为解决下面的问题奠定基础,同时培养学生手、脑、眼并用的能力.2.现有一块长80cm,宽60cm的薄钢片,在每个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖的长方体盒子,那么应该怎样求出截去的小正方形的边长?教师启发学生设未知数、列方程,经整理得到方程x2-70x+825=0,此方程不会解,说明所学知识不够用,需要学习新的知识,学了本章的知识,就可以解这个方程,从而解决上述问题.板书:“第十二章一元二次方程”.教师恰当的语言,激发学生的求知欲和学习兴趣.(二)整体感知通过章前引例和节前引例,使学生真正认识到知识来源于实际,并且又为实际服务,学习了一元二次方程的知识,可以解决许多实际问题,真正体会学习数学的意义;产生用数学的意识,调动学生积极主动参与数学活动中.同时让学生感到一元二次方程的解法在本章中处于非常重要的地位.(三)重点、难点的学习及目标完成过程1.复习提问(1)什么叫做方程?曾学过哪些方程?(2)什么叫做一元一次方程?九年级数学《一元二次方程》教案篇二教学目标知识与技能目标1、构建本章的部分知识框图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“一元二次方程”课程目标及教学方案
教学目标:
知识技能:
1、理解一元二次方程的概念.
2、掌握一元二次方程的一般形式,正确认识二次项系数、一次项系数及常数项.
教学思考:
1、通过一元二次方程的引入,培养学生建模思想,归纳、分析问题及解决问题的能力.
2、通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.
3、由知识来源于实际,树立转化的思想,由设未知数、列方程向学生渗透方程的
思想,从而进一步提高学生分析问题、解决问题的能力.
解决问题:
在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识.
情感态度:
1、培养学生主动探究知识、自主学习和合作交流的意识.
2、激发学生学数学的兴趣,体会学数学的快乐,培养用数学的意识.
教学方案:
活动1 创设情境引入新课
活动2 启发探究获得新知
活动3 运用新知体验成功
活动4 归纳小结拓展提高
活动5 布置作业分层落实
通过对本节课的学习,学生将掌握一元二次方程的定义、一般形式、及有关概念,并学会利用方程解决实际问题。
在教学过程中,注重重难点的体现。
教学过程中,应随时注意学生们出现的问题,及时进行反馈,使学生熟练掌握所学知识。