红外谱图分析详解

合集下载

红外谱图解析ppt课件

红外谱图解析ppt课件
3
(4) 碳骨架类型确定后, 再依据其他官能团, 如 C=O, O-H, C-N 等特征吸收来判定 化合物的官能团
(5) 解析时应注意把描述各官能团的相关峰联 系起来,以准确判定官能团的存在
如 2820,2720 和 1750~1700 cm1的三个峰 说明醛基的存在
4
5
6
7
8
例1 化合物C8H8O的红外谱图
§2.6 红外谱图解析 各官能团的特征吸收是解析谱图的基础 (1)首先依据谱图推出化合物碳架类型
(2)分析 3300 ~ 2800 cm1区域 C-H 伸缩振动吸收
1
以 3000 cm1为界: 高于 3000 cm1为不饱和碳 C-H 伸缩振动吸收
可能为烯, 炔, 芳香化合物 低于 3000 cm1 一般为饱和 C-H 伸缩振动吸收
3)1710 cm1,C=O,
2820,2720 cm1,醛基
1)不饱和度:(8228)2=5
大于4, 一般有苯环,C6H5
4)结合化合物的分子式 此化合物为间甲基苯甲醛
2)3000 cm1以上,不饱和 C-H 伸缩
CH3
可能为烯,炔,芳香化合物
1600,1580 cm1,含有苯环 指纹区780,690 cm1,间位取代苯
CHO
21
§2.7 拉曼光谱仪简介
拉曼光谱来源于电磁辐射(光)场与分子诱导偶极 的相互作用,是由具有对称分布的键的对称振动引 起的。
而红外光谱来源于分子偶极矩变化,是由分子的不 对称振动引起。
两种技术包含的信息通常是互补的。当原子间的某 个键产生一个很强的红外信号时,对应的拉曼信号 则较弱甚至没有, 反之亦然。
CH C CH2OH
10
例3 C7H8O 1) 不饱和度: (7228)2=4 可能含有苯环

红外光谱图解析方法大全

红外光谱图解析方法大全

红外光谱图解析大全一、预备知识(1)根据分子式计算不饱和度公式:不饱和度Ω=n4+1+(n3-n1)/2其中:n4:化合价为4价的原子个数(主要是C原子),n3:化合价为3价的原子个数(主要是N原子),n1:化合价为1价的原子个数(主要是H,X原子)(2)分析3300~2800cm-1区域C-H伸缩振动吸收;以3000 cm-1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物;而低于3000cm-1一般为饱和C-H伸缩振动吸收;(3)若在稍高于3000cm-1有吸收,则应在2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中炔2200~2100 cm-1,烯1680~1640 cm-1 芳环1600,1580,1500,1450 cm-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区,以确定取代基个数和位置(顺、反,邻、间、对);(4)碳骨架类型确定后,再依据官能团特征吸收,判定化合物的官能团;(5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700cm-1的三个峰,说明醛基的存在。

二、熟记健值1.烷烃:C-H伸缩振动(3000-2850cm-1)C-H弯曲振动(1465-1340cm-1)一般饱和烃C-H伸缩均在3000cm-1以下,接近3000cm-1的频率吸收。

2.烯烃:烯烃C-H伸缩(3100~3010cm-1),C=C伸缩(1675~1640 cm-1),烯烃C-H面外弯曲振动(1000~675cm-1)。

3.炔烃:炔烃C-H伸缩振动(3300cm-1附近),三键伸缩振动(2250~2100cm-1)。

4.芳烃:芳环上C-H伸缩振动3100~3000cm-1, C=C 骨架振动1600~1450cm-1, C-H面外弯曲振动880~680cm-1。

红外光谱图分析步骤解析:从谱图到化合物的信息解读

红外光谱图分析步骤解析:从谱图到化合物的信息解读

红外光谱图分析步骤解析:从谱图到化合物的信息解读红外光谱图是一种常用的分析工具,可以帮助科学家们确定化合物的结构和功能。

通过分析红外光谱图,我们可以了解化合物中的官能团和化学键的存在与类型。

本文将详细介绍红外光谱图分析的步骤,帮助读者更好地理解和解读红外光谱图。

1.步骤一:获取红外光谱图在进行红外光谱图分析之前,首先需要获取待分析化合物的红外光谱图。

这可以通过红外光谱仪来实现。

红外光谱仪会向待分析样品中发射红外光,然后测量样品对不同波长光的吸收情况。

通过这个过程,我们可以得到一张红外光谱图。

2.步骤二:观察谱图的整体形态在获得红外光谱图后,我们首先要观察谱图的整体形态。

红外光谱图通常以波数为横坐标,吸收强度为纵坐标。

我们可以注意到谱图中的吸收峰和吸收带。

吸收峰通常表示特定官能团的存在,而吸收带则表示化学键的存在。

3.步骤三:确定吸收峰的位置接下来,我们需要确定红外光谱图中各个吸收峰的位置。

不同官能团和化学键在红外光谱图中有特定的吸收位置。

通过比对已知化合物的红外光谱图和待分析化合物的红外光谱图,我们可以初步确定各个吸收峰的位置。

4.步骤四:解读吸收峰的强度除了吸收峰的位置,吸收峰的强度也是红外光谱图分析的重要信息之一。

吸收峰的强度可以反映化合物中特定官能团或化学键的含量。

通过比较吸收峰的强度,我们可以推断化合物中不同官能团或化学键的相对含量。

5.步骤五:分析吸收带的形态除了吸收峰,红外光谱图中的吸收带也提供了重要的信息。

吸收带的形态可以帮助我们判断化学键的类型。

例如,C=O键通常表现为一个尖锐的吸收带,而-OH键则表现为一个宽而平坦的吸收带。

6.步骤六:结合上述信息解析化合物通过观察红外光谱图中吸收峰和吸收带的位置、强度和形态,我们可以逐步解析化合物的结构和功能。

我们可以根据已知的红外光谱图数据库,对比待分析化合物的红外光谱图,找到相似的谱图,从而确定化合物的结构和功能。

7.结论红外光谱图分析是一种重要的化学分析方法,可以帮助科学家们确定化合物的结构和功能。

手把手教你红外光谱谱图解析

手把手教你红外光谱谱图解析

手把手教你红外光谱谱图解析一、红外光谱的原理[1]1. 原理样品受到频率连续变化的红外光照射时,分子吸收其中一些频率的辐射,分子振动或转动引起偶极矩的净变化,是振-转能级从基态跃迁到激发态,相应于这些区域的透射光强减弱,透过率T%对波数或波长的曲线,即为红外光谱。

辐射→分子振动能级跃迁→红外光谱→官能团→分子结构2.红外光谱特点红外吸收只有振-转跃迁,能量低;除单原子分子及单核分子外,几乎所有有机物均有红外吸收;特征性强,可定性分析,红外光谱的波数位置、波峰数目及强度可以确定分子结构;定量分析;固、液、气态样均可,用量少,不破坏样品;分析速度快;与色谱联用定性功能强大。

3.分子中振动能级的基本振动形式红外光谱中存在两类基本振动形式:伸缩振动和弯曲振动。

图一伸缩振动图二弯曲振动二、解析红外光谱图1.振动自由度振动自由度是分子独立的振动数目。

N个原子组成分子,每个原子在空间上具有三个自由度,分子振动自由度F=3N-6(非线性分子);F=3N-5(线性分子)。

为什么计算振动自由度很重要,因为它反映了吸收峰的数量,谱带简并或发生红外非活性振动使吸收峰的数量会少于振动自由度。

U=0→无双键或环状结构U=1→一个双键或一个环状结构U=2→两个双键,两个换,双键+环,一个三键U=4→分子中可能含有苯环U=5→分子中可能含一个苯环+一个双键2.红外光谱峰的类型基频峰:分子吸收一定频率红外线,振动能级从基态跃迁至第一振动激发态产生的吸收峰,基频峰的峰位等于分子或者基团的振动频率,强度大,是红外的主要吸收峰。

泛频峰:分子的振动能级从基态跃迁至第二振动激发态、第三振动激发态等高能态时产生的吸收峰,此类峰强度弱,难辨认,却增加了光谱的特征性。

特征峰和指纹峰:特征峰是可用于鉴别官能团存在的吸收峰,对应于分子中某化学键或基团的振动形式,同一基团的振动频率总是出现在一定区域;而指纹区吸收峰特征性强,对分子结构的变化高度敏感,能够区分不同化合物结构上的微小差异。

红外谱图分析方法总结

红外谱图分析方法总结

红外谱图分析方法总结1. 简介红外(Infrared)分析技术是一种非常重要的分析测试方法,它可以用来研究物质的结构、组成、性质及相互作用等方面的信息。

红外谱图分析方法通过测量物质对红外辐射的吸收和散射,并结合相关的理论和数据库,得出样品的红外光谱图。

本文将总结常用的红外谱图分析方法。

2. 样品制备在进行红外谱图分析之前,首先需要将待测的样品制备成适合红外光谱测量的形式。

常见的样品制备方法包括固体试样法、液体试样法和气相试样法。

•固体试样法:将固体样品粉碎并与适量的无水氯化钾或氯化钠混合,制成样品块。

也可以使用压片法,将粉末样品压制成片。

•液体试样法:将液体样品滴在透明基片上,使其干燥后形成薄膜。

也可以将液体样品放入适合的红外吸收池中进行测量。

•气相试样法:将气体样品填充到气室中,通过红外吸收池进行测量。

3. 红外光谱测量仪器进行红外谱图分析需要使用红外光谱测量仪器。

常见的红外光谱测量仪器有红外光谱仪和红外光谱仪。

红外光谱仪主要由光源、干涉仪、样品室、探测器和数据采集系统等组成。

它通过生成红外光源并使其通过样品,然后测量样品对不同波长的红外光的吸收情况。

常用的红外光谱仪有傅立叶红外光谱仪(FTIR)和分散式红外光谱仪。

红外光谱仪是一种通过获取光谱仪的光栅分散红外光的仪器。

它通过将红外光分散为不同的波长,并通过探测器检测各个波长的红外光强度,得到红外光谱图。

4. 红外谱图解释红外谱图是指样品在红外区域内的吸收峰和吸收强度的图谱。

通过研究红外谱图,可以得到样品的结构和组成等信息。

红外谱图的解释可以从以下几个方面进行:•吸收峰的位置:吸收峰的位置与样品中存在的化学键相关。

不同化学键对应着不同波数的吸收峰。

•吸收峰的强度:吸收峰的强度与样品中某种化学键的含量相关。

吸收峰的强度越高,表示样品中该化学键的含量越多。

•布拉格方程:通过使用布拉格方程可以计算吸收峰的波数。

•参考谱库:借助谱库中的红外光谱标准数据,可以将待测样品的红外光谱与已知物质进行比对和鉴定。

红外谱图如何解析

红外谱图如何解析

红外谱图如何解析(1)首先依据谱图推出化合物碳架类型:根据分子式计算不饱和度,公式:不饱和度=F+1+(T-O)/2 其中:F:化合价为4价的原子个数(主要是C原子),T:化合价为3价的原子个数(主要是N原子),O:化合价为1价的原子个数(主要是H原子),F、T、O分别是英文4,3,1的首字母,这样我记起来就不会忘了。

比如苯:C6H6,不饱和度=6+1+(0-6)/2=4,3个双键加一个环,正好为4个不饱和度;(2)分析3300~2800cm-1区域C-H伸缩振动吸收;以3000 cm-1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯, 炔, 芳香化合物,而低于3000cm-1一般为饱和C-H伸缩振动吸收;(3)若在稍高于3000cm-1有吸收,则应在 2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中:炔 2200~2100 cm-1烯 1680~1640 cm-1芳环 1600,1580,1500,1450 cm-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区 ,以确定取代基个数和位置(顺反,邻、间、对);(4)碳骨架类型确定后,再依据其他官能团,如 C=O, O-H, C-N 等特征吸收来判定化合物的官能团;(5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820 ,2720和1750~1700cm-1的三个峰,说明醛基的存在。

这是一个令人头疼的问题,有事没事就记一两个吧:1.烷烃:C-H伸缩振动(3000-2850cm-1) C-H弯曲振动(1465-1340cm-1)一般饱和烃C-H伸缩均在3000cm-1以下,接近3000cm-1的频率吸收。

2.烯烃:烯烃C-H伸缩(3100~3010cm-1) C=C伸缩(1675~1640 cm-1)烯烃C-H面外弯曲振动(1000~675cm1)。

红外光谱谱图分析

红外光谱谱图分析

4.芳香族 (1) n (=CH) 3100-3000 (2)苯环骨架振动1600-1450 (3)=C-H非平面变角(或面外弯曲)
900-690, (表1) (4)=C-H非平面变角的倍频和合频
2000-1660(图12, 图12 a)
表1 苯环上=C-H非平面变角振动频率
邻位H的数目 5 4 3
3.基频、倍频、合频、费米共振
倍频:又称泛频:基频的二倍或更高倍数频 率的光谱(图5)。
合频:二个或更多的基频的组合频率光谱。
费米共振:分子的非谐性引起基频和倍频 (或合频) 间(两者波数接近)的共振,导 致在两者附近出现两条较强的谱线(图6)
基频、倍频、合频 (图5)
费米共振(图6)
二.有关基团的特征频率(cm-1 以
图13 2-甲基-1-戊醇的红外光谱
图13a IRTutor, IRTutor1.1, Xexanol, 1-己醇, 3rd P.2 of 4
图14 4-乙基苯酚
6.醚类
(1)C-O-C nas(C-O-C)
1300- 1000
(2)=C-O-C nas (C-O-C)
1275-1200
共振
1.红外及拉曼光谱基本原理
(图1, 图2,图2a,图3)
红外光谱属于振动光谱,振动光谱又属于 分子光谱 分子光谱:1电子光谱:紫外可见 分子荧光
2振动光谱:红外光谱 拉曼光谱 3转动光谱:远红外,转动拉曼光谱 *振动光谱中包括近、中、远红外光谱
图1
分子能级跃迁示意图
能级
v2
v1
转动能级跃迁
v0
4. -N=C=S n as 1990-2130; -C=C=C- n as 1950-1930;

红外光谱谱图解析共272页

红外光谱谱图解析共272页
• 气体分子的纯转动光谱大多数出现在微波 区和远红外区
• 刚性双原子分子的纯转动光谱是一系列等 间距的谱线
J=4
20Bhc
8Bhc
J=3
12Bhc
6Bhc
J=2
4Bhc
J=1
J=0
能量
2Bhc
刚性双原子分子转动能级示意图
6Bhc
2Bhc 0
刚性双原子分子的纯转动光谱
分子的振-转光谱
• 把原子的振动看作谐振子,若振动能级由 n=0向n=1跃迁,即当振动量子数由n=0 变到n=1时,分子所吸收光的波数等于谐 振子的振动频率,这种振动叫作基频振动, 基频振动的频率叫作基频
• 双原子分子的力常数k只与电子云密度和核 电荷有关,而与质量无关。同种元素,k值 相同。如O-H和O-D,k值相同,折合质量µ
不相同,基频振动频率不相同
分子的转动光谱
• 分子的转动光谱主要是指气体的转动光谱。 由于气体中分子之间的距离很大,分子可 以自由转动,吸收光辐射后,能观察到气 体分子转动光谱的精细结构。液体中分子 之间的距离很短,分子之间的碰撞使分子 的转动能级受到微绕,因此观察不到液体 分子转动光谱的精细结构。固体样品也观 察不到转动光谱
• 在中红外区,基团的振动模式分为 两大类:伸缩振动和弯曲振动
伸缩振动 • 伸缩振动(双原子分子) • 对称伸缩振动 • 反对称(不对称)伸缩振动 弯曲振动 • 变角振动
剪式振动(三原子分子) 对称变角振动 反对称(不对称)变角振动 • 面内弯曲振动 • 面外弯曲振动 • 面内摇摆振动 • 面外摇摆振动 • 卷曲(扭曲)振动
背景单光束光谱(水汽和CO2光谱,分辨率4cm-1)
水汽的吸收光谱(4cm-1),即水汽的振转光谱

红外谱图分析

红外谱图分析

3 炔烃
1-辛炔的红外光谱
一元取代炔烃的红外吸收光谱有三个特 征吸收带: (1)炔烃的σ≡CH在3300cm-1附近,峰形 尖锐,容易识别。 (2)炔烃的σC≡C在2140~2100cm-1,一 般强度较弱。炔烃的烷基二取代物中, σC≡C在2260~2190cm-1,由于分子的偶极 矩变化小,一般难以观察到。 (3)炔烃的面外C≡C在700~600cm-1, 吸收带强而较宽。
(3)在酯类中,有时可在3450cm-1附近看到C=O 的倍频吸收峰。
7.5 酸酐
乙酸酐的红外光谱图 C=O伸缩振动1828、1750 cm-1;
C-O-C伸缩振动1125 cm-1
酸酐的C=O及C-O-C伸缩振动吸收是红外 光谱中酯类的2个特征吸收峰: (1)酸酐的C=O伸缩振动由于分子中的2个羰基伸 缩振动偶合,在1860~1800cm-1和1800~1750cm-1 间出现2个吸收峰,分别是羰基的不对称和对称伸缩 振动,相距60cm-1左右。开链酸酐,高频率比低频
(1)羧酸通常以而缔合态存在。缔合态的OH伸缩 振动频率在3200~2500cm-1,峰较强,峰形宽而散。 这个谱带在2700~2500cm-1之间通常出现几个连续 小峰,很特征。在稀溶液或非极性溶剂中羧酸为游 离态, OH伸缩振动频率在3550cm-1附近,为强吸 收峰。 (2)羧酸的C=O伸缩振动频率缔合时在1725~ 1700cm-1,游离态在1760cm-1附近。
酰胺的红外谱图有3个主要的特征峰: (1)酰胺的NH伸缩振动在3000cm-1以上的高频区:
伯酰胺的NH伸缩振动是不对称和对称振动的双峰 (m)。在稀溶液中在3500cm-1和3400cm-1附近;在液 态或固态时,分子间缔合使其移动到3350cm-1和3180cm1附近。

红外谱图解析综述

红外谱图解析综述


as13501290cm-1 s11651120cm-1 (强)
亚砜
10701030cm-1 (强)
(6)P=O:(图15A峰3,4) P=O 13001140cm-1 (接近单键区)
9
红外谱图解析综述
4. X-Y键伸缩振动和X-H键变形振动区(1650650cm-1) X,Y为除了H以外的其它原子,主要包括C-O,Si-O,C-C,C-N,
有机酸OH和CH伸缩振动偶合引起的一系列多重峰(32002500cm-1) (图8C峰1,图16C峰1)
O-H的伸缩振动可作为判断醇,酚,酸的重要依据。 (2)C-H的伸缩振动频率
饱和的 C-H在3000cm-1以下(30002700cm-1) 不饱和的 C-H在3000cm-1以上(33003000cm-1)
1C峰 CH CH3
CH3
3)。叔丁基 1D峰
C
CCC HHH 333
sCH3裂分成1395(m),1365(s)(图
3)。以此可判断化合物的支化情况。
D:-CH2-n的面外摇摆峰,n4时出现720cm-1吸收峰。可判断是 否是长链化合物。(图1A、B峰4,图7C峰6、D峰5,图9C峰4、D峰
5)
12
O R-C-OH
O R -C -H
1740 1730 1700缔合1760游离
O R-C-OM
O R -C-N H 2
1650(酰胺谱带I) 16001500和1400
O= =O
1667
8
红外谱图解析综述
如果C=O基与双键,苯环共轭。C=O基的伸缩振动频率比上述相应位置 要低,强度增加。在解析光谱时必须注意。(图8A峰2,B峰4,C峰2,D峰 1酮羰基,峰2羧酸盐羰基,图9A峰2,B峰3,C峰2,D峰3,图10A峰2,B峰1,C 峰2,D峰1,图11A峰3,B峰3,C峰2酰胺谱带Ⅰ,图16B峰3,C峰2)

红外光谱谱图解析解析

红外光谱谱图解析解析

学会谱图集、API光谱图集、DMS光谱图集。
18:35:40
1、红外光谱信息区
常见的有机化合物基团频率出现的范围:4000 670 cm-1 依据基团的振动形式,分为四个区: (1)4000 2500 cm-1 X—H伸缩振动区(X=O,N,C,S) (2)2500 2000 cm-1 三键,累积双键伸缩振动区 (3)2000 1500 cm-1 双键伸缩振动区 (4)1500 670 cm-1 X—Y伸缩, X—H变形振动区
性质以及红外光谱排除不合理的结构。
18:35:40
(六)确证解析结果 按以下几种方法验证
1、设法获得纯样品,绘制其光谱图进行对照,但必须考虑
到样品的处理技术与测量条件是否相同。
2、若不能获得纯样品时,可与标准光谱图进行对照。当谱
图上的特征吸收带位置、形状及强度相一致时,可以完全确 证。当然,两图绝对吻合不可能,但各特征吸收带的相对强 度的顺序是不变的。 常见的标准红外光谱图集有Sadtler红外谱图集、Coblentz
前,要做未知物的初步分析
红外光谱谱图的解析更带有经验性、灵活性。
解析主要是在掌握影响振动频率的因素及各类化合物的红外特征吸收谱 带的基础上,按峰区分析,指认某谱带的可能归属,结合其他峰区的相关
峰,确定其归属。
在此基础上,再仔细归属指纹区的有关谱带,综合分析,提出化合物的 可能结构。
必要时查阅标图谱或与其他谱(1H NMR,13C NMR,MS)配合,
红外光波波长位于可见光波和微波波长之间0.75~1000μm(1μm=104
cm)范围。
0.75~2.5μm为近红外区 2.5~25μm为中红外区 25~1000μm为远红外区 2.5~15.4μm的中红外区应用最广

红外图谱分析方法大全

红外图谱分析方法大全

红外图谱分析是光谱分析技术中的一种,它利用红外光作为光源,检测样品的吸收、反射、散射等特性,从而得到样品的分子结构和化学组成。

下面是红外图谱分析方法的详细步骤:一、准备工作在进行红外图谱分析之前,需要准备好相应的仪器和样品。

红外光谱仪通常由光源、光阑、干涉仪、样品室、检测器等部分组成。

在采集样品红外光谱时,需要使用专门的样品制备技术,如样品压制、样品溶液制备等。

二、样品制备样品制备是红外图谱分析中非常重要的一步,因为只有样品中的分子在红外光的作用下产生吸收、反射、散射等特性,才能得到样品的分子结构和化学组成。

样品制备需要根据样品的性质和所用光谱仪的类型来选择不同的制备方法,如固体样品需要进行研磨和压片,液体样品需要进行溶液制备等。

三、谱图解析在采集到样品的红外光谱后,需要通过谱图解析来得到样品的分子结构和化学组成。

谱图解析需要掌握一定的方法技巧,例如:1. 确定光谱类型:根据光谱中出现的特征峰,确定光谱的类型。

例如,如果是伸缩振动,则可以判断出样品的分子结构中存在这种键。

2. 确定基团:根据特征峰的位置和形状,确定样品中存在的基团。

例如,如果出现了苯环的振动吸收峰,则可以判断出样品中含有苯环结构。

3. 确定分子结构:通过确定基团和键的类型,可以得到样品的分子结构。

例如,如果一个化合物的红外光谱中出现了C-H键的振动吸收峰,则可以判断出这个化合物的分子结构中存在C-H键。

四、定量分析除了定性分析外,红外光谱还可以用于定量分析。

通过测量特征峰的强度和宽度等参数,可以计算出样品中某种物质的含量。

例如,可以利用红外光谱技术测定高聚物中某种单体的含量。

五、应用领域红外光谱在多个领域都有广泛的应用,例如:1. 化学领域:用于研究有机化合物、无机化合物的分子结构和化学反应机理等。

2. 材料科学领域:用于研究高聚物、无机非金属材料、金属材料的结构和化学组成等。

3. 环境科学领域:用于监测大气、水体、土壤等环境中的有害物质和污染物的含量等。

红外图谱分析方法大全

红外图谱分析方法大全

红外光谱图解析一、分析红外谱图(1)首先依据谱图推出化合物碳架类型,根据分子式计算不饱和度。

公式:不饱和度=F+1+(T-O)/2其中:F:化合价为4价的原子个数(主要是C原子);T:化合价为3价的原子个数(主要是N原子);O:化合价为1价的原子个数(主要是H原子)。

F、T、O分别是英文4,3 1的首字母,这样记起来就不会忘了举个例子:例如苯(C6H6),不饱和度=6+1+(0-6)/2=4,3个双键加一个环,正好为4个不饱和度。

(2)分析3300~2800cm^-1区域C-H伸缩振动吸收,以3000 cm^-1为界,高于3000cm^-1为不饱和碳C-H伸缩振动吸收,有可能为烯、炔、芳香化合物吗,而低于3000cm^-1一般为饱和C-H伸缩振动吸收。

(3)若在稍高于3000cm^-1有吸收,则应在2250~1450cm^-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中:炔—2200~2100 cm^-1烯—1680~1640 cm^-1芳环—1600、1580、1500、1450 cm^-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm^-1的频区,以确定取代基个数和位置(顺反,邻、间、对)。

(4)碳骨架类型确定后,再依据其他官能团,如C=O,O-H,C-N 等特征吸收来判定化合物的官能团。

(5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820、2720和1750~1700cm^-1的三个峰,说明醛基的存在。

解析的过程基本就是这样吧,至于制样以及红外谱图软件的使用,一般的有机实验书上都有比较详细的介绍的。

二、记住常见常用的健值1.烷烃3000-2850 cm-1C-H伸缩振动1465-1340 cm-1C-H弯曲振动一般饱和烃C-H伸缩均在3000 cm-1以下,接近3000 cm-1的频率吸收。

2.烯烃3100~3010 cm-1烯烃C-H伸缩1675~1640 cm-1C=C伸缩烯烃C-H面外弯曲振动(1000~675cm^1)。

红外光谱谱图解析

红外光谱谱图解析

2930 cm-1 反对称伸缩振动
③不饱和碳原子上的=C—H( C—H )
苯环上的C—H
=C—H C—H
20:36:33
3030 cm-1
3010 2260 cm-1 3300 cm-1 3000 cm-1 以上
(2) 叁键(C C)伸缩振动区(2500 2000 cm-1 )
在该区域出现的峰较少; ①RC CH (2100 2140 cm-1 )
2000
1500
1000
500
特征区
指纹区
三、各类化合物的红外光谱特征
20:36:33
1、烷烃(CH3,CH2,CH)(C—C,C—H )
3000cm-1
δ CH3 CH2
as1460
cm-1
δ s1380 cm-1 δ s1465 cm-1
重 叠
CH2 r 720 cm-1(水平摇摆)
CH2 对称伸缩2853cm-1±10 CH3 对称伸缩2872cm-1±10 CH2不对称伸缩2926cm-1±10 CH3不对称伸缩2962cm-1±10
20:36:33
2、确定分子官能团和基团的吸收峰
(1) X—H伸缩振动区(4000 2500 cm-1 ) ① —O—H 3650 3200 cm-1 确定 醇、酚、酸
在非极性溶剂中,浓度较小(稀溶液)时,峰形尖锐,强吸收; 当浓度较大时,发生缔合作用,峰形较宽。
注意区分 —NH伸缩振动: 3500 3100 cm-1
前,要做未知物的初步分析
红外光谱谱图的解析更带有经验性、灵活性。
解析主要是在掌握影响振动频率的因素及各类化合物的红外特征吸收谱 带的基础上,按峰区分析,指认某谱带的可能归属,结合其他峰区的相关
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

红外谱图解析分析步骤
应该对各官能团的特征吸收熟记于心,因为官能团特征吸收是解析谱图的基础。

对一张已经拿到手的红外谱图:
(1)首先依据谱图推出化合物碳架类型:
根据分子式计算不饱和度,公式:不饱和度=1+n4+(n3-n1)/2其中:
n4:化合价为4价的原子个数(主要是C原子),
n3:化合价为3价的原子个数(主要是N原子),
n1:化合价为1价的原子个数(主要是H原子),
举个例子:比如苯:C6H6,不饱和度=1+6+(0-6)/2=4,3个双键加一个环,正好为4个不饱和度。

(2)分析3300~2800cm-1区域C-H伸缩振动吸收
以3000 cm-1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯、炔、芳香化合物,而低于3000cm-1一般为饱和C-H伸缩振动吸收。

(3)若在稍高于3000cm-1有吸收,则应在 2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中:
炔2200~2100 cm-1烯1680~1640 cm-1芳环1600,1580,1500,1450 cm-1 若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区 ,以确定取代基个数和位置(顺反,邻、间、对)。

(4)碳骨架类型确定后,再依据其他官能团,如 C=O, O-H, C-N 等特征吸收来判定化合物的官能团
(5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在。

如2820 ,2720和1750~1700cm-1的三个峰,说明醛基的存在。

解析的过程基本就是这样吧,至于制样以及红外谱图软件的使用,一般的有机实验书上都有比较详细的介绍的,这里就不详细说了。

红外谱图分析确实是一个令人头疼的问题,有事没事就记一两个吧:
1.烷烃:
C-H伸缩振动(3000-2850cm-1)
C-H弯曲振动(1465-1340cm-1)
一般饱和烃C-H伸缩均在3000cm-1以下,接近3000cm-1的频率吸收。

2.烯烃:
烯烃C-H伸缩(3100~3010cm-1)
C=C伸缩(1675~1640 cm-1)
烯烃C-H面外弯曲振动(1000~675cm-1)。

3.炔烃:
伸缩振动(2250~2100cm-1)
炔烃C-H伸缩振动(3300cm-1附近)。

4.芳烃:
3100~3000cm-1芳环上C-H伸缩振动
1600~1450cm-1C=C 骨架振动
880~680cm-1C-H面外弯曲振动
芳香化合物重要特征:一般在1600,1580,1500和1450cm-1可能出现强度不等的4个峰。

880~680cm-1,C-H面外弯曲振动吸收,依苯环上取代基个数和位置不同而发生变化 ,在芳香化合物红外谱图分析中,常常用此频区的吸收判别异构体。

5.醇和酚:主要特征吸收是O-H和C-O的伸缩振动吸收,
O-H 自由羟基O-H的伸缩振动:3650~3600cm-1,为尖锐的吸收峰,
分子间氢键O-H伸缩振动:3500~3200cm-1,为宽的吸收峰;
C-O 伸缩振动: 1300~1000cm-1
O-H 面外弯曲: 769-659cm-1
6. 醚:特征吸收: 1300~1000cm-1的伸缩振动,
脂肪醚: 1150~1060cm-1一个强的吸收峰
芳香醚:两个C-O伸缩振动吸收: 1270~1230cm-1(为Ar-O伸缩) 1050~1000cm-1(为R-O伸缩)
7.醛和酮:
醛的主要特征吸收: 1750~1700cm-1(C=O伸缩) ;2820,2720cm-1(醛基C-H伸缩)
脂肪酮: 1715cm-1,强的C=O伸缩振动吸收,如果羰基与烯键或芳环共轭会使吸收频率降低
8.羧酸:羧酸二聚体:
3300~2500cm-1宽,强的O-H伸缩吸收
1720~1706cm-1C=O 吸收
1320~1210cm-1C-O伸缩
920cm-1成键的O-H键的面外弯曲振动
9.酯:
饱和脂肪族酯(除甲酸酯外)的C=O 吸收谱带: 1750~1735cm-1区域
饱和酯C-C(=O)-O谱带:1210~1163cm-1区域 ,为强吸收
10.胺:
3500~3100 cm-1, N-H 伸缩振动吸收
1350~1000 cm-1, C-N 伸缩振动吸收
N-H变形振动相当于CH2的剪式振动方式, 其吸收带在: 1640~1560cm-1, 面外弯曲振动在900~650cm-1.
11.腈:
腈类的光谱特征:三键伸缩振动区域,有弱到中等的吸收
脂肪族腈 2260-2240cm-1
芳香族腈 2240-2222cm-1
12.酰胺:
3500-3100cm-1N-H伸缩振动
1680-1630cm-1C=O 伸缩振动
1655-1590cm-1N-H弯曲振动
1420-1400cm-1C-N伸缩
13.有机卤化物:
C-X 伸缩脂肪族:
C-F 1400-730 cm-1
C-Cl 850-550 cm-1
C-Br 690-515 cm-1 C-I 600-500 cm-1。

相关文档
最新文档