专题一 数列通项公式的求法含答案

合集下载

求数列通项公式的十种方法(教师版)

求数列通项公式的十种方法(教师版)

专题----通项公式的求法总述:求数列通项的方法:累加法、累乘法、待定系数法、阶差法(逐差法)、迭代法、对数变换法、倒数变换法、一、累加法 适用于:1()n n a a f n +=+转换成1()n n a a f n +-=,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项n a .①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ②若f(n)是关于n 的二次函数,累加后可分组求和;③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和。

例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=例2 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。

解;由1231nn n a a +=+⨯+得1231nn n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-练习1.已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式.答案:12+-n n 练习2.已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式.答案:裂项求和 n a n 12-=二、累乘法1.适用于: 1()n n a f n a += ----------这是广义的等比数列2.若1()n n a f n a +=,则31212(1)(2)()n na a af f f n a a a +=== ,,, 两边分别相乘得,1111()nn k a a f k a +==⋅∏例3 已知数列{}n a 满足321=a ,n n a n na 11+=+,求n a 。

数列通项公式求法及答案

数列通项公式求法及答案

若数列的递推公式为a 13, a * 12(* ¥),则求这个数列的通项公式a *例2.①已知数列a *的前*项和S *满足S * 2a *3,门 1 •求数列a *的通项公式.a *S * 1数列通项公式、求和的常见题型等差数列定义:公差da * i a *3 , a * 2 (n 1) ( 3) = n+5门1等比数列定义:公差q ・ 3, a * 23a“练习(a*、公式法已知数列的前*项和S *与a *的关系,求数列a *的通项a *可用公式12求解.(注意 S 1 a 1 , a * 3 2* 1)、定义法例题1:⑴在数列{ a n }中,若a i 2 , an 1 an 3,贝Ua* _____________________⑵在数列{ a n }中,若a i2 , a * i 3a * , 贝U a n = ______________3(1)数列a n 的前n 项和S n 满足S n 1),(n N )求数列a n 的通项②已知数列a n 的前n 项和S n 满足S n2门2 n1,求数列a n 的通项公式.应用 a n S n S n !得 B n 4n-2③ 已知等比数列a n 的首项印1,公比0 q 1,设数列b n 的通项为 b n a n 1 a n 2,求数列 g 的通项公式。

③解析:由题意,b n 1 a n 2 a n 3,又a *是等比数列,公比为qbn 1b na n 2a n 3q,故数列b n 是等比数列,D a 2 a 3 ag ag q(q 1),an 1 an 2二 b nq (q n 10 qq n (q 1)练习公式• ( a n 3n )、归纳法:1 1 1 1 J JJ135 7(3)9,99,999, 9999, (4) 8,88,888,8888,(1) a n1 2n 1n 11⑵a n ( 1)(3) a n10n 1 (4) a n 8(10n 1)9四、分组求和法:把整个式子拆分成等差数列和等比数列例4、求和3)(a n n ) (2n 3 5 n )(6 3 5 3)1n — 2n解:五、升次,错位相减法:含x 的项是等比数列,系数是等差数列练习求和 1 弓 2 22 57 23242n 1cc 1( Sn32n 3 2n )六、累加法累加法形如a n 1 a n f (n )型, a n 1 ,a n 相邻两项系数相等, f (n )是一个常数,则直接用等差数列通项公式求出(例 1之(1)), f ( n )是一个关于n 的变量,根据递推公 式,写出a i 到a n 的所有的递推关系式,然后将它们分别相加即可得到通项公式。

专题 数列通项公式的求法(解析版)

专题  数列通项公式的求法(解析版)
当 时, ,所以 ,即 ,
当 时, 符合上式,所以 ;
【变式1-1】4.(2022·江西·芦溪中学高三阶段练习(文))已知数列 的前n项和 .(1)求数列 的通项公式;
【答案】 ;
【分析】利用 ,即可得 的通项公式;
【解析】因为 ,当 时, ,
当 时, ,
因为 也满足 ,综上, ;
【变式1-1】5.已知 为数列 的前 项和,且 ,则 .
【答案】
【分析】由 先求得 ,再根据 求得 的表达式,验证首项,即可得答案.
【详解】 ,故当 时, ;
当变式1-1】3.(2022·重庆市广益中学校高二阶段练习)已知数列 的前 项和为 .
求 的通项公式.
【答案】
【分析】根据 作差即可得解;
【解析】数列 的前 项和为 ,
所以 ,
因为 ,所以 ,故答案为:
◆类型3分式型
【例题2-3】(2022·全国·高三专题练习)数列 中, ,则 __________.
【答案】 ##
【分析】结合累加法及裂项相消法可得 ,根据已知条件即可求出通项公式.
【详解】因为 ,所以 ,
则当 时, ,将 个式子相加可得
,因为 ,则 ,
当 时, 符合题意,所以 .
【答案】
【分析】用累加法即可求出 .
【详解】 , 当 时, , , , 以上各式相加得:
而 也适合上式, .故答案为: .
【变式2-2】2.(2022·黑龙江·双鸭山一中高二期末)已知数列 满足 , ,则 ___________.
【答案】
【分析】利用累加法求解即可
【详解】因为 ,所以 ,
, ,……, ,
题型2累加法
【方法总结】累加法:若已知 且 的形式;

数列求通项的七种方法及例题

数列求通项的七种方法及例题

数列求通项的七种方法及例题数列求通项的7种方法及例题:1. 已知首项和公比法:设数列{an}中,a1为首项,q为公比,则an = a1 × q^(n-1)。

例如:已知数列{an}中,a1=2,q=3,求a5。

答案:a5=2×3^4=2×81=1622. 已知前n项和法:设数列{an}中,Sn为前n项和,则an = S0 + S1 + S2 +···+ Sn-1 - (S1 + S2 +···+ Sn-1) = S0。

例如:已知数列{an}中,S2=6,S4=20,求a3。

答案:a3 = S2 - (S2 - S1) = 6 - (6 - 2) = 83. 等差数列的通项公式:设数列{an}为等差数列,d为公差,则an = a1 + (n-1)d。

例如:已知数列{an}为等差数列,a1=2,d=4,求a5。

答案:a5 = 2 + (5-1)4 = 184. 等比数列的通项公式:设数列{an}为等比数列,q为公比,则an = a1 ×q^(n-1)。

例如:已知数列{an}为等比数列,a1=2,q=3,求a5。

答案:a5=2×3^4=2×81=1625. 三项和平均数法:设数列{an}中,Sn = a1 + a2 + a3 +···+ an,则an = Sn/n。

例如:已知数列{an}中,S4=20,求a3。

答案:a3 = S4/4 = 20/4 = 56. 泰勒公式法:对于一般的数列,可以使用泰勒公式进行求通项。

例如:已知数列{an}中,a1=2,且当n→∞ 时,an → 0,求a4。

答案:使用泰勒公式,a4 = a1 + (n-1)(a2 - a1)/1! + (n-1)(n-2)(a3 -2a2 + a1)/2! + (n-1)(n-2)(n-3)(a4 - 3a3 + 3a2 - a1)/3! = 2 + 3(2 - 2)/1! + 3(3 - 2)(3 - 4)/2! + 3(3 - 2)(3 - 4)(3 - 5)/3! = 2 + 3(0)/1! + 3(1)(-1)/2! + 3(1)(-1)(-2)/3! = 2 - 3/2 - 3/4 + 3/6 = 2 - 1/87. 斐波那契数列法:斐波那契数列是一种特殊的数列,它的通项公式可以写作 an = an-1 + an-2。

数列史上最全求通项公式10种方法并配大量习题及答案

数列史上最全求通项公式10种方法并配大量习题及答案

数列史上最全求通项公式10种方法并配大量习题及答案求数列通项公式的方法有很多种。

这个问题通常是高考试卷的第一问,如果无法解决或没有思路,那么即使后面的问题可以解决,也是无济于事的。

下面我们逐个讲解这些重要的方法。

递推公式法是指利用an=Sn−Sn−1的形式,其中Sn表示数列的前n项和。

这种方法有两种类型。

第一种类型是题目中给出的是Sn=f(n)的形式,要将n改成n-1,包括角标,这样加上题中给出的式子就得到两个式子,两式子做差,即可整理出通项公式。

但是需要注意的是,求出的通项公式一定要检验是否需要写成分段的形式,即验证一下a1和S1是否相等,若不相等,则需要写成分段的形式。

第二种类型是a(n-1),an和a(n+1)与S(n-1),Sn和S(n+1)同时存在于一个等式中,我们的思路是将n改写成n-1,又得到另一个式子,这两个式子做差,在做差相减的过程中,要将等式的一端通过移项等措施处理为零,这样整理,容易得出我们想要的关系式。

累加法(迭、叠加法)是在教材上推导等差数列通项公式和前n项和公式的时候使用的一种方法。

其实这个方法不仅仅适用于等差数列,它的使用范围是非常广泛的。

只要适合an=an-1+f(n)的形式,都可以使用累加法。

基本的书写步骤是将an-an-1=f(n)展开,然后累加,得到an-a1=f(2)+f(3)+f(4)+。

+f(n)。

因此重点就是会求后边这部分累加式子的和,而这部分累加的式子,绝大部分都是三种情况之一,要么是一个等差数列的前n-1项的和,要么是一个等比数列的前n-1项的和,要么就是能够在累加过程能够中消掉,比如使用裂项相消法等。

累乘法的使用条件是,凡是适合an=an-1*f(n)形式的求通项公式问题,都可以使用累乘法。

它的基本书写步骤格式是:an=a1*f(2)*f(3)*。

*f(n)。

以上是数列通项公式的三种求法。

2.改写每段话:首先,我们来看等式左右两边的乘积。

左边相乘得到的总是1,右边相乘得到的是f(2)乘以f(3)乘以f(4)一直到f(n)。

专题一数列通项公式求法详解八种方法

专题一数列通项公式求法详解八种方法

关键是找出各项与项数n 的关系.) 例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,…(2) ,17164,1093,542,211(3) ,52,21,32,1(4) ,54,43,32,21-- 答案:(1)110-=nn a (2);122++=n n n a n (3);12+=n a n (4)1)1(1+⋅-=+n na n n .公式法1:特殊数列 例2: 已知数列{a n }是公差为d 的等差数列,数列{b n }是公比为q 的(q ∈R 且q ≠1)的等比数列,若函数f (x ) = (x -1)2,且a 1 = f (d -1),a 3 = f (d +1),b 1 = f (q +1),b 3 = f (q -1),(1)求数列{ a n }和{ b n }的通项公式;答案:a n =a 1+(n -1)d = 2(n -1); b n =b ·q n -1=4·(-2)n -1 例3. 等差数列{}n a 是递减数列,且432a a a ⋅⋅=48,432a a a ++=12,则数列的通项公式是( )(A) 122-=n a n (B)42+=n a n (C) 122+-=n a n (D) 102+-=n a n (D)例4. 已知等比数列{}n a 的首项11=a ,公比10<<q ,设数列{}n b 的通项为21+++=n n n a a b ,求数列{}n b 的通项 公式.简析:由题意,321++++=n n n a a b ,又{}n a 是等比数列,公比为q ∴q a a a a b b n n n n n n =++=+++++21321,故数列{}n b 是等比数列,易得)1()1(1+=⋅+=-q q q q q b nn n .点评:当数列为等差或等比数列时,可直接利用等差或等比数列的通项公式,只需求首项及公差公比.公式法2: 知n s 利用公式 ⎩⎨⎧≥-==-2,1,11n S S n s a n n n .例5:已知下列两数列}{n a 的前n 项和s n 的公式,求}{n a 的通项公式.(1)13-+=n n S n . (2)12-=n s n答案:(1)n a =3232+-n n ,(2)⎩⎨⎧≥-==)2(12)1(0n n n a n 点评:先分n=1和2≥n 两种情况,然后验证能否统一.【型如)(1n f a a n n +=+的地退关系递推关系】简析:已知a a =1,)(1n f a a n n =-+,其中f(n)可以是关于n 的一次、二次函数、指数函数、分式函数,求通项n a . ①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ② 若f(n)是关于n 的指数函数,累加后可转化为等比数列求和;③若f(n)是关于n 的二次函数,累加后可分组求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和各式相加得例5:已知数列6,9,14,21,30,…求此数列的一个通项. .答案:)(52N n n a n ∈+=例6. 若在数列{}n a 中,31=a ,n n n a a 21+=+,求通项n a .答案:n a =12+n例7.已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式. 答案:na n 12-=(1)当f(n)为常数,即:q a a nn =+1(其中q 是不为0的常数),此时数列为等比数列,n a =11-⋅n q a . (2)当f(n)为n 的函数时,用累乘法.例8:在数列{n a }中,1a =1, (n+1)·1+n a =n ·n a ,求n a 的表达式. 例9: 已知数列{}n a 中,311=a ,前n 项和n S 与n a 的关系是 n n a n n S )12(-= ,试求通项公式n a . . 答案:.)12(12(1-+=n n a n 思考题1:已知1,111->-+=+a n na a n n ,求数列{a n }的通项公式.分析:原式化为 ),1(1+=+n a n a 若令1+=n n a b ,则问题进一步转化为n n nb b =+1形式,累积得解.构造1:【形如0(,1≠+=+c d ca a n n ,其中a a =1)型】 (1)若c=1时,数列{n a }为等差数列; (2)若d=0时,数列{n a }为等比数列;(3)若01≠≠且d c 时,数列{n a }为线性递推数列,其通项可通过待定系数法构造等比数列来求.方法如下:设)(1λλ+=++n n a c a ,得λ)1(1-+=+c ca a n n ,与题设,1d ca a n n +=+比较系数得)0(,1≠-=c c dλ,所以:)1(11-+=-+-c d a c c d a n n ,即⎭⎬⎫⎩⎨⎧-+1c d a n 构成以11-+c d a 为首项,以c 为公比的等比数列. 例10:已知数}{n a 的递推关系为121+=+n n a a ,且11=a 求通项n a . 答案:12-=nn a构造2:相邻项的差为特殊数列例11:在数列{}n a 中,11=a ,22=a ,n n n a a a 313212+=++,求n a .提示:变为)(31112n n n n a a a a --=-+++. 构造3:倒数为特殊数列【形如sra pa a n n n +=--11】例12: 已知数列{n a }中11=a 且11+=+n n n a a a (N n ∈),,求数列的通项公式. 答案 nb a n n 11==例13:设数列}{n c 的各项是一个等差数列与一个等比数列对应项的和,若c 1=2,c 2=4,c 3=7,c 4=12,求通项公式c n解析:设1)1(-+-+=n n bqd n a c 建立方程组,解得.点评:用待定系数法解题时,常先假定通项公式或前n 项和公式为某一多项式,一般地,若数列}{n a 为等差数列:则c bn a n +=,cn bn s n +=2(b 、c为常数),若数列}{n a 为等比数列,则1-=n n Aq a ,)1,0(≠≠-=q Aq A Aq s n n .例14:(1)数列{n a }满足01=a ,且)1(2121-=++++-n a a a a n n ,求数列{a n }的通项公式.解析:由题得 )1(2121-=++++-n a a a a n n ① 2≥n 时, )2(2121-=+++-n a a a n ② 由①、②得⎩⎨⎧≥==2,21,0n n a n .(2)数列{n a }满足11=a ,且2121n a a a a n n =⋅⋅- ,求数列{a n }的通项公式(3)已知数列}{n a 中,,2121,211+==+n n a a a 求通项n a . 八、【讨论法-了解】(1)若d a a n n =++1(d 为常数),则数列{n a }为“等和数列”,它是一个周期数列,周期为 其通项分为奇数项和偶数项来讨论. (2)形如)(1n f a a n n =⋅+型①若p a a n n =⋅+1(p 为常数),则数列{n a }为“等 积数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来讨论;②若f(n)为n 的函数(非常数)时,可 通过逐差法得)1(1-=⋅-n f a a n n ,两式相除后,分奇偶项来分求通项. 例15: 数列{n a }满足01=a ,21=++n n a a ,求数列{a n }的通项公式.专题二:数列求和方法详解(六种方法)1、等差数列求和公式:d n n na a a n a a n a a n S n n n n 2)1(2)(2)(2)(123121-+==+=+=+=-- 2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn[例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 答案xx x s n n --=1)1([例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n n S n S n f 的最大值. 答案n =8时,501)(max =n f方法简介:此法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①(1≠x )解析:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积:设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=…②①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:nn n x n xx x S x )12(1121)1(1----⋅+=--.∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+. 试一试1:求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n 前n 项的和. 答案: 1224-+-=n n n S方法简介:这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +,然后再除以2得解.[例4] 求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值 . 答案S =44.5 方法简介:有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.一般分两步:①找通向项公式②由通项公式确定如何分组;[例5] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 答案 2)13(11n n a a a s n n -+--=-.试一试1 求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和 .简析:由于与n k k k a =-=⋅⋅⋅⨯=⋅⋅⋅)110(91999991111111个个、分别求和. 方法简介:这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项及分母有理化)如:(1))()1(n f n f a n -+= ; (2)11++=n n a n =n n -+1;(3)n n n n tan )1tan()1cos(cos 1sin -+=+;4)111)1(1+-=+=n n n n a n(5))121121(211)12)(12()2(2+--+=+-=n n n n n a n . [例6] 求数列⋅⋅⋅++⋅⋅⋅++,21,,421,311n n 的前n 项和.[例7] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 试一试1:已知数列{a n }:)3)(1(8++=n n a n ,求前n 项和. 试一试2:1003211321121111+++++++++++ ..方法简介:针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例8] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值. 答案 0 [例9] 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.(周期数列)[例10] 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值; 答案 10。

人教版高中数学选择性必修第二册4.3.2-专题1 数列通项的求法

人教版高中数学选择性必修第二册4.3.2-专题1 数列通项的求法

【 讲 评 】 已 知 an + 1 = g(n)·an , 通 常 利 用 an = aan-n 1·aann--12·…·aa21·a1,求出通项 an.
探究 2 累乘法就是利用以下变形来求通项 an 的方法,an= a1·aa12·aa32·…·aan-n 1.
例如,在等比数列{an}中,由于aa12=aa32=aa43=…=aan-n 1=q,所 以对 n≥2 且 n∈N*,有 an=a1·aa21·aa32·…·aan-n1=a1·q·q·…·q =a1qn-1,把 n=1 代入上式也成立,故 an=a1qn-1(n∈N*).
(1)设 bn=an+1-2an(n∈N*),求证:{bn}是等比数列; (2)设 cn=2ann(n∈N*),求证:{cn}是等差数列; (3)求数列{an}的通项公式及前 n 项和公式.
【解析】 (1)证明:∵Sn+1=4an+2,① ∴Sn+2=4an+1+2.② ②-①式,得 Sn+2-Sn+1=4an+1-4an(n∈N*),即 an+2=4an+1 -4an. an+2-2an+1=2(an+1-2an). ∵bn=an+1-2an(n∈N*),∴bn+1=2bn. 由此可知,数列{bn}是公比为 2 的等比数列. 由 S2=a1+a2=4a1+2,又 a1=1,得 a2=5. ∴b1=a2-2a1=3,∴bn=3·2n-1.
专题研究一 数列通项的求法
专题讲解
题型一 累加法
例 1 在数列{an}中,已知 a1=1,an+1=an+2n,求 an. 【解析】 ∵a2-a1=2×1,a3-a2=2×2,…,an-an-1=2×(n -1)(n≥2 且 n∈N*), ∴an=a1+(a2-a1)+(a3-a2)+…+(an-an-1) =1+(2×1)+(2×2)+…+[2×(n-1)] =1+2(1+2+…+n-1) =1+2·(n-21)·n=n2-n+1(n≥2 且 n∈N*),把 n=1 代入上 式也成立,故 an=n2-n+1(n∈N*).

数列史上最全求通项公式10种方法并配大量习题及答案

数列史上最全求通项公式10种方法并配大量习题及答案

数列通项公式的求法10种求数列的通项公式方法非常众多,而且这个问题基本上都是高考试卷中第一问,也就是说这一问题做不出来或没有思路,那么即使后面的问题比如求前N 项和的问题,会做也是无济于事的。

我们逐个讲解一下这些重要的方法。

递推公式法:递推公式法是指利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,这样的问题有两种类型,(1)题目中给出的是()n S f n =的形式,也就是n S 的表达式是一个关于n 的函数,要将n 改成n-1,包括角标,这样加上题中给出的式子就得到两个式子,两式子做差,即可整理出通项公式。

这种情况是比较简单的,但是也有值得我们注意的地方,那就是求出的通项公式一定要检验是否需要写成分段的形式,即验证一下1a 和1S 是否相等,若不相等,则需要写成分段的形式,只要题中涉及到角标n 不能从n=1开始取值的,都需要检验。

(2)第二种情况是非常常见的,即11(,)n n n a a a -+与n S (1n S -,1n S +)同时存在于一个等式中,我们的思路是将n 改写成n-1,又得到另一个式子,这两个式子做差,在做差相减的过程中,要将等式的一端通过移项等措施处理为零,这样整理,容易得出我们想要的关系式。

累加法(迭、叠加法):累加法是在教材上推导等差数列通项公式和前n 项和公式的时候使用的一种方法,其实这个方法不仅仅适用于等差数列,它的使用范围是非常广泛的,我们可以总结为,只要适合:1()n n a a f n -=+的形式,都是可以使用累加法的,基本的书写步骤是:21324312,(2)3,(3)4,(4)......,()n n n a a f n a a f n a a f n n a a f n -=-==-==-==-=将上述展开后的式子左边累加后总是得到1(2)(3)(4)......()n a a f f f f n -=++++所以重点就是会求后边这部分累加式子的和,而这部分累加的式子,绝大部分都是三种情况之一,要么是一个等差数列的前n-1项的和,要么是一个等比数列前n-1项的和,要么就是能够在累加过程能够中消掉,比如使用裂项相消法等。

数列通项公式的求法(常见)

数列通项公式的求法(常见)

数列通项公式的求法1.前n 项和法(知n S 求n a )⎩⎨⎧-=-11n n n S S S a )2()1(≥=n n例1、已知数列}{n a 的前n 项和212n n S n -=,求数列|}{|n a 的前n 项和n T 变式:已知数列}{n a 的前n 项和n n S n 122-=,求数列|}{|n a 的前n 项和n T 练习:1、若数列}{n a 的前n 项和nn S 2=,求该数列的通项公式。

答案:⎩⎨⎧=-122n n a )2()1(≥=n n2、若数列}{n a 的前n 项和323-=n n a S ,求该数列的通项公式。

答案:n n a 32⨯=2.形如)(1n f a a n n =-+型(1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+.(2)若f(n)为n 的函数时,用累加法.例 1. (2003天津文) 已知数列{a n }满足)2(3,1111≥+==--n a a a n n n ,证明213-=n n a 证明:由已知得:故,311--=-n n n a a112211)()()(a a a a a a a a n n n n n +-++-+-=---=.213133321-=++++--n n n ∴213-=n n a .例2.已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式.答案:12+-n n例3.已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式.答案:na n 12-=评注:已知a a =1,)(1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项n a .①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ②若f(n)是关于n 的二次函数,累加后可分组求和;③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和。

数列求通项公式常用方法与典型题目(附答案)

数列求通项公式常用方法与典型题目(附答案)

数列求通项公式常用方法与典型题目(附答案)(一)题型一累加法1.数列{}n a 中,11a =,()12,nn n a a n n n N --=≥∈,则na=___________.2.已知数列{}n a 满足112a =,121n n a a n n+=++,则n a =__________.3.如果数列{}n a 满足:()1111,22n n n a a a n --=-=≥,则n a =()A .121n +-B .1(1)21n n --⋅+C .21n -D .12n -4.在数列{}n a 中,10a =,11ln 1n n a a n +⎛⎫=++ ⎪⎝⎭,则{}n a 的通项公式为().A .ln n a n =B .()()1ln 1n a n n =-+C .ln n a n n=D .ln 2n a n n =+-5.设数列{}n a 中,112,1+==++n n a a a n ,则通项n a =___________.6.已知数列{}n a 满足10a =,12n n a a n +=+,则2018a =()A .20182019⨯B .20172018⨯C .20162017⨯D .20182018⨯(二)题型二累乘法1.已知数列{}n a 满足11a =,()12311111231n n a a a a a n n -=+++⋅⋅⋅+>-.数列{}n a 的通项公式是______.2.已知11a =,()()1n n n a n a a n N ++=-∈,则数列{}n a 的通项公式是()A .21n -B .11n n n -+⎛⎫ ⎪⎝⎭C .2n D .n3.已知12a =,12nn n a a +=,则数列{}n a 的通项公式n a 等于()A .2122n n -+B .2122n n ++C .2222n n -+D .2222n n --4.在数列{}n a 中,11a =,()32122223n n a a a a a n n*++++=∈N ,则n a =______.(三)题型三公式法1.数列{a n }的前n 项和为S n ,若()11,1,31n n a a S n +=≥=则n a =____________.2.数列{}n a 满足,123231111212222n n a a a a n ++++=+ ,写出数列{}n a 的通项公式__________.3.已知数列{a n }的前n 项和S n =n 2+n ,则a n =_____.4.若数列的前n 项和2133n n S a =+,则的通项公式是n a =________5.数列{}n a 的前n 项和23nn S =+,则其通项公式n a =________.6.数列{}n a 的前n 项和210n S n n =-,则该数列的通项公式为__________.7.若数列{a n }的前n 项和为S n =23a n +13,则数列{a n }的通项公式是a n =______.8.已知n S 为数列{}n a 的前n 项和,若111,23n n a a S +==+,则数列{}n a 的通项公式为___________.9.已知数列{}n a 满足23123222241nnn a a a a ++++=- ,则{}n a 的通项公式___________________.10.数列{a n }满足()21*1232222n n na a a a n N -+++⋯+=∈,则a 1a 2a 3…a 10=()A .551(2B .1011()2-C .911()2-D .601()211.如果数列{}n a 的前n 项和为332n n S a =-,则这个数列的通项公式是()A .()221n a n n =++B .23nn a =⋅C .32nn a =⋅D .31n a n =+(四)题型四构造法1.数列{}n a 中,若11a =,()1231n n a a n +=+≥,则该数列的通项n a =()A .123n +-B .23n -C .23n +D .123n --2.已知数列{}n a 中,112,21n n a a a +==+则n a =___________.3.已知数列{}n a 满足11a =132n n a a +=+,则{}n a 的通项公式为__________________.(五)题型五倒数法1.在数列{n a }中,已知12a =,1122n n n a a a --=+,(2)n ≥,则n a 等于()A .21n +B .2n C .3nD .31n +2.若数列{}n a 满足11n n n a a a +=+,且123a =,则10a =___________.3.设数列{}n a 的前n 项和n S 满足11n n n n S S S S ++=⋅-()n N *∈,且11a=,则n a =_____.4.已知数列{}n a 满足12,a =11n n n n a a a a ++-=,那么31a 等于()A .130-B .261-C .358-D .259-5.已知数列{}n a 满足递推关系111,12n n n a a a a +==+,则2017a =()A .12016B .12018C .12017D .120196.若数列{}n a 满足1121n n n a a a --=+(2n ≥,*n N ∈),且112a =,则n a =()A .12nB .2n C .1122n +-D .222n +7.已知数列{}n a 满足11a =,()*11nn n a a n N a +=∈+,则2020a =()A .12018B .12019C .12020D .12021(六)题型六周期数列1.在数列{}n a 中,112a =,111n n a a -=-(2n ≥,n ∈+N ),则2020a =()A .12B .1C .1-D .22.已知数列{}n a 中,13=4a ,111n n a a -=-(,2n N n +∈≥),那么2020a 等于()A .13-B .34C .2D .43.已知数列{}n a 中,12213,6,n n n a a a a a ++===-,则2016a =()A .6B .6-C .3D .3-参考解析(一)题型一累加法1.()12n n +【解析】()112,1,nn n a a n n n Na -=≥=-∈ ,()()()112211n n n n n a a a a a a a a ---∴=-+-++-+ ()()()()112122n n n n n n +=+-+-++=≥ ,验证1n =时成立.()12n n n a +∴=.故答案为:()12n n +2.31,1,2n n N n*-≥∈【解析】因为121n n a a n n +=++,所以121111n n a a n n n n +-==-++,则当2,n n N *≥∈时,213211121123...111n n a a a a a a n n -⎧-=-⎪⎪⎪-=-⎪⎨⎪⎪⎪-=-⎪-⎩,将1n -个式子相加可得11111111...12231n a a n n n -=-+-++-=--,因为112a =,则1131122n a n n=-+=-,当1n =时,1311212a =-=符合题意,所以31,1,2n a n n N n *=-≥∈.故答案为:31,1,2n n N n*-≥∈.3.C 【解析】由题意可得,112n n n a a ---=,212a a ∴-=,2322a a -=,…112n n n a a ---=,以上1n -个式子相加可得,21122 (2)n n a a --=+++()12122212n n --==--,21n n a ∴=-,故选B .4.A 【解析】由已知得()11ln ln 1ln n n n a a n n n ++⎛⎫-==+- ⎪⎝⎭,所以()1ln ln 1n n a a n n --=--()()12ln 1ln 2n n a a n n ---=---32ln 3ln 2a a -=-21ln 2ln1a a -=-将上述1n -个式子相加,整理的1ln ln1ln n a a n n -=-=又因为10a =,所以ln n a n =.故选A .5.()112++n n 【解析】∵112,1+==++n n a a a n ∴()111n n a a n -=+-+,()1221n n a a n --=+-+,()2331n n a a n --=+-+,⋯,3221a a =++,2111a a =++,1211a ==+将以上各式相加得:()()()123211n a n n n n ⎡⎤=-+-+-+++++⎣⎦ ()()()()11111111222n n n nn n n n ⎡⎤--+-+⎣⎦=++=++=+故应填()112++n n ;6.B 【解析】 数列{}n a 满足10a =,12n n a a n +=+,∴12n n a a n +-=,∴()121n n a a n --=-,()1222n n a a n ---=-,()2323n n a a n ---=-,……212a a -=,累加得:()()()112123 (1212)n n n a a n n n --=++++-=⋅=-⎡⎤⎣⎦,又 10a =,∴()1n a n n =-,∴201820182017a =⋅.故选B .(二)题型二累乘法1.1,1,22n n a n n =⎧⎪=⎨≥⎪⎩【解析】1231111(1)231n n a a a a a n n -=++++>- ,11a =当2n =时,211a a ==当2n >时,112311111231n n n a a a a a a n n+-∴=+++++- ,两式相减得:11n n n a a a n +-=,即11n n n a a n++=,∴11n n a n a n++=,11n n a n a n -=-,1212n n a n a n ---=-,⋯3232a a =,累乘得:22n a n a =,所以2n na =,()2n >1,1,22n n a n n =⎧⎪∴=⎨≥⎪⎩,故答案为:1,1,22n n a nn =⎧⎪=⎨≥⎪⎩2.D 【解析】由()()1n n n a n a a n N ++=-∈得:()()11n n n a na n N +++=∈,即()11n n a n n N a n+++=∈,则11n n a n a n -=-,1212n n a n a n ---=-,2323n n a n a n ---=-,……..,2121a a =,由累乘法可得1na n a =,又因为11a =,所以n a n =.故选:D .3.C 【解析】1122nn n n n n a a a a ++=∴= 当n ≥2时,2212122112122222nn n n n n n n n a a a a a a a a -+-----=⋅⋅⋅⋅=⋅⋅⋅⋅= ,经检验,1a 也符合上述通项公式.本题选择C 选项.4.21n n +【解析】由题意得:当2n ≥时,()31211222231n n a a a a a n --++++=- ,所以12n n n a a a n-=-,即()2211n n na n a --=,也即是11+1n n n n n a a n --=,所以121+1221211n n n n n a n n n a a a n ---===-=-= ,所以21n n a n =+,故答案为:21nn +.(三)题型三公式法1.21,134,2n n n a n -=⎧=⎨⋅≥⎩.【解析】()13,1n n a S n N n ++=∈∴= 时,23,2a n =≥时,13n n a S -=,可得13n n n a a a +-=,即14,n n a a +=∴数列{}n a 从第二项起为等比数列,2n ≥时,=n a 234n -⋅,故答案为21,134,2n n n a n -=⎧=⎨⋅≥⎩.2.16,12,2n n n a n +=⎧=⎨≥⎩【解析】因为123231111212222n n a a a a n ++++=+ ,所以()12312311111121122222n n n n a a a a a n +++++++=++ ,两式相减得11122n n a ++=,即12,2n n a n +=≥,又1132a =,所以16a =,因此16,12,2n n n a n +=⎧=⎨≥⎩3.2n 【解析】由题,当1n =时,21112a =+=,当2n ≥时,()()1112nn n a S S n n n n n -=-=+--=.当1n =时也满足.故2n a n =.故答案为:2n4.()12n --【解析】当n =1时,1112133a S a ==+,解得11a =,当n ≥2时,1n n n a S S -=-121213333n n a a -⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭12233n n a a -=+,整理可得12313n n a a -=-,即12n n a a -=-,故数列{}n a 以1为首项,2-为公比的等比数列,所以()12n n a -=-,故答案为:()12n --.5.15,12,2n n n -=⎧⎨≥⎩【解析】当1n =时,11235a =S =+=;当2n ≥时,11123232n n n n n n a S S ---=-=+--=;故15,12,2n n n a n -=⎧=⎨≥⎩故答案为:15,12,2n n n -=⎧⎨≥⎩6.211n a n =-【解析】221110,11019,n S n n a S =-∴==-⨯=- 当2n ≥时()()221101101211,n n n a S S n n n n n -⎡⎤=-=-----=-⎣⎦当1n =时也适合,故211n a n =-.即答案为211n a n =-.7.1(2)n n a -=-;【解析】当n=1时,a 1=S 1=23a 1+13,解得a 1=1,当n≥2时,a n =S n -S n-1=(2133n a +)-(12133n a -+)=23n a -123n a -整理可得13a n =−23a n−1,即1n n a a -=-2,故数列{a n }是以1为首项,-2为公比的等比数列,故a n =1×(-2)n-1=(-2)n-1故答案为(-2)n-1.8.21,153,2n n n a n -=⎧=⎨⋅≥⎩【解析】n S Q 为数列{}n a 的前n 项和,111,23n n a a S +==+——①2n ≥时,123n n a S -=+——②①-②,得:12n n n a a a +=-,13n na a +∴=13n na a +∴=,21235a a =+= ,∴数列{}n a 的通项公式为21,153,2n n n a n -=⎧=⎨⋅≥⎩.故答案为:21,153,2n n n a n -=⎧=⎨⋅≥⎩.9.a n =3•2n ﹣2【解析】∵数列{a n }满足2a 1+22a 2+23a 3+…+2n a n =4n ﹣1,∴当n ≥2时,2n a n =(4n ﹣1)﹣(4n ﹣1﹣1),化为a n =3•2n ﹣2.当n =1时,2a 1=4﹣1,解得132a =,上式也成立.∴a n =3•2n ﹣2.故答案为a n =3•2n ﹣2.10.A 【解析】n =1时,a 1=12,∵211232222n n n a a a a -+++⋯+=,∴2n ≥时,22123112222n n n a a a a ---+++⋯+=,两式相减可得2n -1a n =12,∴12n n a =,n =1时,也满足∴12310a a a a = 55231012310111111222222++++⎛⎫⨯⨯⨯⨯== ⎪⎝⎭,故选A11.B 【解析】由332n n S a =-,当2n ≥时,1113333332222n n n n n n n a S S a a a a ---⎛⎫⎛⎫=-=---=- ⎪ ⎪⎝⎭⎝⎭,所以13nn a a -=,当1n =时,111332S a a ==-,此时16a =,所以,数列{}n a 是以6为首项,3为公比的等比数列,即16323n n n a -=⋅=⋅.故选:B .(四)题型四构造法1.A 【解析】因为()1231n n a a n +=+≥,所以132(3)n n a a ++=+,即数列{3}n a +是以4为首项,2为公比的等比数列,所以1342n n a -+=⋅,故1142323n n n a -+=⋅-=-,故选:A2.1321n -⋅-【解析】因为121n n a a +=+,所以()112221n n n a a a ++=+=+且1130a +=≠,所以1121n n a a ++=+,所以{}1n a +是以3为首项,2为公比的等比数列,所以1132n n a -+=⋅,所以1321n n a -=⋅-,故答案为:1321n -⋅-.3.1231n -⨯-【解析】因为132n n a a +=+,11a =,所以()113331n n n a a a ++=+=+,即1131n n a a ++=+所以{}1n a +以2为首项,3为公比的等比数列,所以1123n n a -+=⨯所以1231n n a -=⨯-故答案为:1231n -⨯-(五)题型五倒数法1.B 【解析】将等式1122n n n a a a --=+两边取倒数得到11112n n a a -=+,11111=,2n n n a a a -⎧⎫-⎨⎬⎩⎭是公差为12的等差数列,11a =12,根据等差数列的通项公式的求法得到()1111222n nn a =+-⨯=,故n a =2n.故答案为:B .2.219【解析】11n n n a a a +=+ 11111n n n n a a a a ++∴==+,即1111n na a +-=∴数列1n a ⎧⎫⎨⎬⎩⎭是以1132a =为首项,1为公差的等差数列()131211222n n n n a -∴=+-=-=221n a n ∴=-10219a ∴=故答案为:2193.1,11,2(1)n n a n n n =⎧⎪=⎨-≥⎪-⎩【解析】由11n n n n S S S S ++=⋅-,得1111n nS S +-=()n N *∈1n S ⎧⎫∴⎨⎬⎩⎭是以11111S a ==为首相,1为公差的等差数列,11(1)1nn n S ∴=+-⨯=,1n S n ∴=,当2n ≥时,11111(1)n n n a S S n n n n -=-=-=---,1,11,2(1)n n a n n n =⎧⎪=⎨-≥⎪-⎩故答案为:1,11,2(1)n n a n n n =⎧⎪=⎨-≥⎪-⎩4.D 【解析】11n n n n a a a a ++-= ,1111n n a a +∴-=,即1111n n a a +-=-,又12,a =所以数列1n a ⎧⎫⎨⎬⎩⎭是首项为12,公差为1-的等差数列,132n n a ∴=-+,3113593122a ∴=-+=-,故31259a =-,故选:D .5.B 【解析】由11n n n a a a +=+,所以11111n n n n a a a a ++==+则1111n n a a +-=,又112a =,所以112a =所以数列1n a ⎧⎫⎨⎬⎩⎭是以2为首项,1为公比的等差数列所以11n n a =+,则11n a n =+所以201712018a =故选:B6.A 【解析】当2n ≥且n *∈N ,在等式1121n n n a a a --=+两边取倒数得11121112n n n n a a a a ---+==+,1112n n a a -∴-=,且112a =,所以,数列1n a ⎧⎫⎨⎬⎩⎭为等差数列,且首项为2,公差为2,因此,()12212n n n a =+-=.12n a n∴=故选:A .7.C 【解析】11n n n a a a +=+ ,∴两边同时取倒数得11111n n n n a a a a ++==+,即1111n n a a +-=,即数列1n a ⎧⎫⎨⎬⎩⎭是公差1d =的等差数列,首项为111a =.则11(1)1n n n a =+-⨯=,得1n a n =,则202012020a =,故选:C (六)题型六周期数列1.A 【解析】2111121a a =-=-=-,3211112a a =-=+=,431111122a a =-=-=,可得数列{}n a 是以3为周期的周期数列,202036731112a a a ⨯+∴===.故选:A .2.B 【解析】因为13=4a ,111n n a a -=-,所以211113a a =-=-,32114a a =-=,431314a a =-=,…所以数列{}n a 是以3为周期的数列,所以202067331134a a a ⨯+===,故选:B 3.B 【解析】因为21n n n a a a ++=-,①则321n n n a a a +++=-,②①+②有:3n n a a +=-,即63n n a a ++=-,则6n n a a +=,即数列{}n a 的周期为6,又123,6a a ==,得3453,3,6a a a ==-=-,63a =-,则2016a =633663a a ⨯==-,故选:D .。

高中数学-数列求通项公式方法汇总及经典练习(含答案)

高中数学-数列求通项公式方法汇总及经典练习(含答案)

高中数学-数列求通项公式方法汇总及经典练习(含答案)1、定义法:直接求首项和公差或公比。

2、公式法:1 (1) (2)n n nn S n a S S n -=⎧=⎨-≥⎩两种用途(列举),结果要验证能否写成统一的式子.例、数列{}n a 的各项都为正数,且满足()()2*14nna S n N +=∈,求数列的通项公式.解一:由()()2*14nna S n N +=∈得()()()221114411n n n n n aS S a a +++=-=---化简得()()1120n n n n a a a a +++--=,因为10,2n n n a a a +>∴-=,又()2111441S a a ==-得11a =,故{}n a 是以1为首项,2为公差的等差数列,所以21n a n =-.解二:由()()2*14nn a S n N +=∈,可得()11,12n n n a S S n -=-∴=--≥化简可得)211n S -=,即1=,又11S =,所以数列是首项为1,公差为1的等差数列,∴n =,从而2n S n =,所以121n n n a S S n -=-=-,又11a =也适合,故21n a n =-.练习:已知数列{a n }的前n 项和S n 满足120n n n a S S -+=(2n ≥),a 1=21,求n a . 答案:a n =⎪⎪⎩⎪⎪⎨⎧≥--=)2()1(21)1(21n n n n .扩展一:作差法例、在数列}{n a 中,11a =,212323(1)n a a a na n n ++++=-+,求n a .解:由212323(1)n a a a na n n ++++=-+,得2123123(1)(2)1n a a a n a n n -++++-=-+-,两式相减,得66n na n =-+,∴ 1 (=1)66 (2)n n a n n n⎧⎪=-⎨≥⎪⎩.练习(理):已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求n a .解:由123123(1)(2)n n a a a a n a n -=++++-≥,得1123123(1)n n n a a a a n a na +-=++++-+,两式相减,得1n n n a a na +-=,即11(2)n na n n a +=+≥,所以13222122![(1)43]2n n n n n a a a n a a n n a a a a a ---=⋅⋅⋅⋅=-⋅⋅⨯=又由已知,得2122a a a =+,则211a a ==,代入上式,得!13452n n a n =⋅⋅⋅⋅⋅=, 所以,{}n a 的通项公式为 1 (1)! (2)2n n a n n =⎧⎪=⎨≥⎪⎩.扩展二、作商法例、在数列}{n a 中,11a =,对所有的2n ≥,都有2123n a a a a n ••••=,求n a .解:∵2123n a a a a n ••••=,∴21232(1)n a a a a n -••••=-,故当2n ≥时,两式相除,得22(1)n n a n =-, ∴221 (=1) (2)(1)n n a n n n ⎧⎪=⎨≥⎪-⎩.3、 叠加法:对于型如)(1n f a a n n =-+类的通项公式.例、在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .答案:na n 14-=. 例、已知数列{}n a 满足112231n n n n a a ++=++-(*n N ∈),352a =,求通项n a .解:由112231n nn n aa ++=++-,两边同除以12n +,得()111131112222n n n n n n n a a n ++++-=-+≥,列出相加得121212121332323212212121-+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=---n a a n n n n又由已知求得16a =,∴()*231n n n n N a n ∈=•++.练习:已知数列}a {n 满足3a 132a a 1nn 1n =+⋅+=+,,求数列}a {n 的通项公式.答案:1n 32n 31332a n nn -+=++--⋅=.4、叠乘法:一般地,对于型如1+n a =f (n)·n a 的类型例(理)、已知数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式.解:因为112(1)53nn n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故13211221n n n n n a a a a a a a a a a ---=⋅⋅⋅⋅⋅121[2(11)5][2(21)5][2(11)5]3n n n n --=-+-++⨯⨯(1)1(1)(2)21122[(1)32]53325!n n n n n n n n n ---+-+++-=-⋅⋅⨯⨯⨯=⨯⨯⨯,所以数列{}n a 的通项公式为(1)12325!n n n n a n --=⨯⨯⨯.练习:在数列{a n }中,112a =,11(1n n n a a a n --=⋅+≥2),求n a . 答案:)1(1+=n n a n . 5、构造法:型如a n+1=pa n +f(n) (p 为常数且p ≠0, p ≠1)的数列(1)f(n)= q (q 为常数) 一般地,递推关系式a +1=pa n +q (p 、q 为常数,且p ≠0,p ≠1)等价与)1(11pqa p p q a n n --=--+,则{p q a n --1}为等比数列,从而可求n a .例、已知数列{}n a 满足112a =,132n n a a --=(2n ≥),求通项n a . 解:由132n n a a --=,得111(1)2n n a a --=--,又11210a -=≠,所以数列{1}n a -是首项为12,公比为12-的等比数列,∴11111(1)()1()22n nn a a -=---=+-. 练习:已知数列}{n a 的递推关系为121+=+n n a a ,且11=a ,求通项n a . 答案:12-=n na .(2) f(n)为等比数列,如f(n)= q n (q 为常数) ,两边同除以q n ,得111+=++nn n n qa p q a q ,令nn n a b q =,则可转化为b n+1=pb n +q 的形式求解.例、已知数列{a n }中,a 1=65,1111()32n n n a a ++=+,求通项n a . 解:由条件,得2 n+1a n+1=32(2 n a n )+1,令b n =2 n a n ,则b n+1=32b n +1,b n+1-3=32(b n -3) 易得 b n =3)32(341+--n ,即2 n a n =3)32(341+--n , ∴ a n =n n 2332+-. 练习、已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求通项n a .答案:31()222nn a n =-.(3) f(n)为等差数列,如1n n a Aa Bn C +=++型递推式,可构造等比数列.(选学,注重记忆方法)例、已知数列{}n a 满足11=a ,11212n n a a n -=+-(2n ≥),求.解:令n n b a An B =++,则n n a b An B =--,∴11(1)n n a b A n B --=---,代入已知条件, 得11[(1)]212n n b An B b A n B n ---=---+-,即11111(2)(1)2222n n b b A n A B -=++++-,令202A +=,1022A B +-=,解得A=-4,B=6,所以112n n b b -=,且46n n b a n =-+, ∴{}n b 是以3为首项、以12为公比的等比数列,故132n n b -=,故13462n n a n -=+-. 点拨:通过引入一些尚待确定的系数,经过变形与比较,把问题转化成基本数列(等差或等比数列)求解. 练习:在数列{}a n 中,132a =,1263n n a a n --=-,求通项a n . 答案:a n nn -+=69912·().解:由1263n n a a n --=-,得111(63)22n n a a n -=+-,令11[(1)]2n n a An B a A n B -++=+-+,比较系数可得:A=-6,B=9,令n n b a An B =++,则有112n n b b -=,又1192b a A B ==++,∴{}n b 是首项为92,公比为12的等比数列,所以b n n =-92121(),故a n n n-+=69912·(). (4) f(n)为非等差数列,非等比数列法一、构造等差数列法例、在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>,求数列{}n a 的通项公式.解:由条件可得111221n nn nn n a a λλλλ+++⎛⎫⎛⎫-=-+ ⎪⎪⎝⎭⎝⎭,∴数列2n n n a λλ⎧⎫⎪⎪⎛⎫-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是首项为0,公差为1的等差数列,故21nnn a n λλ⎛⎫-=- ⎪⎝⎭,∴(1)2n n n a n λ=-+. 练习:在数列{a n }中,a na n a n n n n n 1132212==+++++,()()(),求通项a n 。

求数列通项公式的十种方法,例题答案详解

求数列通项公式的十种方法,例题答案详解

求数列通项公式的十一种办法(办法全,例子全,归纳细)总述:一.运用递推关系式求数列通项的11种办法:累加法.累乘法.待定系数法.阶差法(逐差法).迭代法.对数变换法.倒数变换法.换元法(目标是去递推关系式中消失的根号).数学归纳法.不动点法(递推式是一个数列通项的分式表达式).特点根法二.四种根本数列:等差数列.等比数列.等和数列.等积数列及其广义情势.等差数列.等比数列的求通项公式的办法是:累加和累乘,这二种办法是求数列通项公式的最根本办法.三.求数列通项的办法的根本思绪是:把所求数列经由过程变形,代换转化为等差数列或等比数列.四.求数列通项的根本办法是:累加法和累乘法.五.数列的本质是一个函数,其界说域是天然数集的一个函数. 一.累加法1.实用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最根本的二个办法之一. 2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2)()n n a a f a a f a a f n +-=-=-=双方分离相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 知足11211n n a a n a +=++=,,求数列{}n a 的通项公式. 解:由121n n a a n +=++得121n n a a n +-=+则所以数列{}n a 的通项公式为2n a n =.例2 已知数列{}n a 知足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式. 解法一:由1231n n n a a +=+⨯+得1231n n n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-所以3 1.n n a n =+-解法二:13231n n n a a +=+⨯+双方除以13n +,得111213333n n n n n a a +++=++, 则111213333n n n n n a a +++-=+,故 是以11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯, 则21133.322n n n a n =⨯⨯+⨯-评注:已知a a =1,)(1n f a a n n =-+,个中f(n)可所以关于n 的一次函数.二次函数.指数函数.分式函数,求通项n a .①若f(n)是关于n 的一次函数,累加后可转化为等差数列乞降; ②若f(n)是关于n 的二次函数,累加后可分组乞降;③若f(n)是关于n 的指数函数,累加后可转化为等比数列乞降; ④若f(n)是关于n 的分式函数,累加后可裂项乞降.例3.已知数列}{n a 中,0>n a 且)(21n n n a na S +=,求数列}{n a 的通项公式.解:由已知)(21n n n a n a S +=得)(2111---+-=n n n n n S S n S S S ,化简有n S S n n =--212,由类型(1)有n S S n ++++= 32212,又11a S =得11=a ,所以2)1(2+=n n S n,又0>n a ,2)1(2+=n n s n ,则2)1(2)1(2--+=n n n n a n此题也可以用数学归纳法来求解. 二.累乘法1.实用于: 1()n n a f n a += ----------这是广义的等比数列 累乘法是最根本的二个办法之二. 2.若1()n n a f n a +=,则31212(1)(2)()n na aaf f f n a a a +===,,, 双方分离相乘得,1111()nn k a a f k a +==⋅∏例4 已知数列{}n a 知足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式. 解:因为112(1)53n n n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故1321122112211(1)(2)21(1)12[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53325!n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--=⋅⋅⋅⋅⋅=-+-+⋅⋅+⨯+⨯⨯=-⋅⋅⨯⨯⨯=⨯⨯⨯所以数列{}n a 的通项公式为(1)12325!.n n n n a n --=⨯⨯⨯例5.设{}n a 是首项为1的正项数列,且()011221=+-+++n n n n a a na a n (n =1,2,3,…),则它的通项公式是n a =________.解:已知等式可化为:[]0)1()(11=-++++n n n n na a n a a0>n a (*N n ∈)∴(n+1)01=-+n n na a , 即11+=+n n a a n n∴2≥n 时,n n a a n n 11-=- ∴112211a a a a a a a a n n n n n ⋅⋅⋅⋅=--- =121121⋅⋅--⋅- n n n n =n 1.评注:本题是关于n a 和1+n a 的二次齐次式,可以经由过程因式分化(一般情形时用求根公式)得到n a 与1+n a 的更为显著的关系式,从而求出n a .1,111->-+=+a n na a n n ,求数列{an}的通项公式.答案:=n a )1()!1(1+⋅-a n -1.评注:本题解题的症结是把本来的递推关系式,11-+=+n na a n n 转化为),1(11+=++n n a n a 若令1+=n n a b ,则问题进一步转化为n n nb b =+1情势,进而运用累乘法求出数列的通项公式. 三.待定系数法 实用于1()n n a qa f n +=+根本思绪是转化为等差数列或等比数列,而数列的本质是一个函数,其界说域是天然数集的一个函数.1.形如0(,1≠+=+c d ca a n n ,个中a a =1)型 (1)若c=1时,数列{n a }为等差数列; (2)若d=0时,数列{n a }为等比数列;(3)若01≠≠且d c 时,数列{n a }为线性递推数列,其通项可经由过程待定系数法结构帮助数列来求.待定系数法:设)(1λλ+=++n n a c a ,得λ)1(1-+=+c ca a n n ,与题设,1d ca a n n +=+比较系数得d c =-λ)1(,所以)0(,1≠-=c cd λ所以有:)1(11-+=-+-c d a c c d a n n是以数列⎭⎬⎫⎩⎨⎧-+1c d a n 组成认为11-+c d a 首项,以c 为公比的等比数列,所以11)1(1-⋅-+=-+n n c c d a c d a 即:1)1(11--⋅-+=-c d c c d a a n n . 纪律:将递推关系d ca a n n +=+1化为)1(11-+=-++c da c c d a n n ,结构成公比为c 的等比数列}1{-+c da n 从而求得通项公式)1(1111-++-=-+c d a c c d a n n 逐项相减法(阶差法):有时我们从递推关系d ca a n n +=+1中把n 换成n-1有d ca a n n +=-1,两式相减有)(11-+-=-n n n n a a c a a 从而化为公比为c的等比数列}{1n n a a -+,进而求得通项公式.)(121a a c a a nn n -=-+,再运用类型(1)即可求得通项公式.我们看到此办法比较庞杂.例6已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式. 解法一:121(2),n n a a n -=+≥又{}112,1n a a +=∴+是首项为2,公比为2的等比数列12n n a ∴+=,即21n n a =-解法二:121(2),n n a a n -=+≥两式相减得112()(2)n n n n a a a a n +--=-≥,故数列{}1n n a a +-是首项为2,公比为2的等比数列,再用累加法的……演习.已知数列}{n a 中,,2121,211+==+n n a a a 求通项n a .答案:1)21(1+=-n n a2.形如:nn n q a p a +⋅=+1 (个中q 是常数,且n ≠0,1)①若p=1时,即:nn n q a a +=+1,累加即可.②若1≠p 时,即:n n n q a p a +⋅=+1,求通项办法有以下三种偏向:i. 双方同除以1+n p .目标是把所求数列结构成等差数列即:nnn n n q p p q a p a )(111⋅+=++,令n n n pa b =,则nn n q p p b b )(11⋅=-+,然后类型1,累加求通项.ii.双方同除以1+n q . 目标是把所求数列结构成等差数列.即:q q a q p q a n n n n 111+⋅=++,令nn n q a b =,则可化为q b q p b n n 11+⋅=+.然后转化为类型5来解,iii.待定系数法:目标是把所求数列结构成等差数列设)(11nn n n p a p q a ⋅+=⋅+++λλ.经由过程比较系数,求出λ,转化为等比数列求通项.留意:运用待定系数法时,请求p ≠q,不然待定系数法会掉效. 例7已知数列{}n a 知足1112431n n n a a a -+=+⋅=,,求数列{}n a 的通项公式. 解法一(待定系数法):设11123(3n n n n a a λλλ-++=+⋅),比较系数得124,2λλ=-=,则数列{}143n na--⋅是首项为111435a --⋅=-,公比为2的等比数列,所以114352n n n a ---⋅=-⋅,即114352n n n a --=⋅-⋅解法二(双方同除以1+n q ): 双方同时除以13n +得:112243333n n n n a a ++=⋅+,下面解法略解法三(双方同除以1+n p ): 双方同时除以12+n 得:nn n n n a a )23(342211⋅+=++,下面解法略3.形如b kn pa a n n ++=+1 (个中k,b 是常数,且0≠k ) 办法1:逐项相减法(阶差法) 办法2:待定系数法经由过程凑配可转化为 ))1(()(1y n x a p y xn a n n +-+=++-; 解题根本步调: 1.肯定()f n =kn+b2.设等比数列)(y xn a b n n ++=,公比为p3.列出关系式))1(()(1y n x a p y xn a n n +-+=++-,即1-=n n pb b4.比较系数求x,y5.解得数列)(y xn a n ++的通项公式6.解得数列{}n a 的通项公式例8 在数列}{n a 中,,23,111n a a a n n +==+求通项n a .(逐项相减法) 解: ,,231n a a n n +=+①∴2≥n 时,)1(231-+=-n a a n n ,两式相减得 2)(311+-=--+n n n n a a a a .令n n n a a b -=+1,则231+=-n n b b运用类型5的办法知2351+⋅=-n n b 即 13511-⋅=--+n nn a a ②再由累加法可得213251--⋅=-n a n n . 亦可联立 ①②解出213251--⋅=-n a n n .例9. 在数列{}na 中,362,2311-=-=-n a a a n n ,求通项n a .(待定系数法)解:原递推式可化为y n x a y xn a n n ++-+=++-)1()(21 比较系数可得:x=-6,y=9,上式即为12-=n n b b 所所以{}n b 一个等比数列,首项299611=+-=n a b ,公比为21.1)21(29-=∴n n b 即:n n n a )21(996⋅=+- 故96)21(9-+⋅=n a n n .4.形如c n b n a pa a n n +⋅+⋅+=+21 (个中a,b,c 是常数,且0≠a ) 根本思绪是转化为等比数列,而数列的本质是一个函数,其界说域是天然数集的一个函数.例10 已知数列{}n a 知足21123451n n a a n n a +=+++=,,求数列{}n a 的通项公式.解:设221(1)(1)2()n n a x n y n z a xn yn z ++++++=+++ 比较系数得3,10,18x y z ===,所以2213(1)10(1)182(31018)n n a n n a n n ++++++=+++ 由213110118131320a +⨯+⨯+=+=≠,得2310180n a n n +++≠则2123(1)10(1)18231018n n a n n a n n ++++++=+++,故数列2{31018}n a n n +++为认为21311011813132a +⨯+⨯+=+=首项,以2为公比的等比数列,是以2131018322n n a n n -+++=⨯,则42231018n n a n n +=---. 21 n n n a pa qa ++=+时将n a 作为()f n 求解剖析:原递推式可化为211()() n n n n a a p a a λλλ++++=++的情势,比较系数可求得λ,数列{}1n n a a λ++为等比数列.例11 已知数列{}n a 知足211256,1,2n n n a a a a a ++=-=-=,求数列{}n a 的通项公式.解:设211(5)()n n n n a a a a λλλ++++=++比较系数得3λ=-或2λ=-,无妨取2λ=-,(取-3 成果情势可能不合,但本质雷同)则21123(2)n n n n a a a a +++-=-,则{}12n n a a +-是首项为4,公比为3的等比数列11243n n n a a -+∴-=⋅,所以114352n n n a --=⋅-⋅{}n a 中,若2,821==a a ,且知足03412=+-++n n n a a a ,求n a .答案: nn a 311-=.四.迭代法 rn n pa a =+1(个中p,r 为常数)型例12 已知数列{}n a 知足3(1)2115nn n n a a a ++==,,求数列{}n a 的通项公式. 解:因为3(1)21nn n n a a ++=,所以又15a =,所以数列{}n a 的通项公式为(1)123!25n n n n n a --⋅⋅=.注:本题还可分解运用累乘法和对数变换法求数列的通项公式.五.对数变换法 实用于rn n pa a =+1(个中p,r 为常数)型 p>0,0>n a 例14. 设正项数列{}n a 知足11=a ,212-=n n a a (n ≥2).求数列{}n a 的通项公式.解:双方取对数得:122log 21log -+=n n a a ,)1(log 21log 122+=+-n n a a ,设1log 2+=n a nb ,则12-=n n b b {}n b 是以2为公比的等比数列,11log 121=+=b 11221--=⨯=n n n b ,1221log -=+n a n ,12log 12-=-n a n ,∴1212--=n n a演习 数列{}n a 中,11=a ,12-=n n a a (n ≥2),求数列{}n a 的通项公式.答案:nn a --=2222例15 已知数列{}n a 知足5123n n n a a +=⨯⨯,17a =,求数列{}n a 的通项公式.解:因为511237n n n a a a +=⨯⨯=,,所以100n n a a +>>,.双方取经常运用对数得1lg 5lg lg3lg2n n a a n +=++ 设1lg (1)5(lg )n n a x n y a xn y ++++=++(同类型四) 比较系数得,lg 3lg 3lg 2,4164x y ==+ 由1lg 3lg 3lg 2lg 3lg 3lg 2lg 1lg 71041644164a +⨯++=+⨯++≠,得lg 3lg 3lg 2lg 04164n a n +++≠,所以数列lg 3lg 3lg 2{lg }4164n a n +++是认为lg 3lg 3lg 2lg 74164+++首项,以5为公比的等比数列,则1lg 3lg 3lg 2lg 3lg 3lg 2lg (lg 7)541644164n n a n -+++=+++,是以11111111116164444111115161644445415151164lg 3lg 3lg 2lg 3lg 3lg 2lg (lg 7)54164464[lg(7332)]5lg(332)lg(7332)lg(332)lg(732)n n n n n n n n n n a n --------=+++---=⋅⋅⋅-⋅⋅=⋅⋅⋅-⋅⋅=⋅⋅则11541515164732n n n n n a -----=⨯⨯.六.倒数变换法 实用于分式关系的递推公式,分子只有一项 例16 已知数列{}n a 知足112,12nn n a a a a +==+,求数列{}n a 的通项公式. 解:求倒数得11111111111,,22n n n n n n a a a a a a +++⎧⎫=+∴-=∴-⎨⎬⎩⎭为等差数列,首项111a =,公役为12,112(1),21n n n a a n ∴=+∴=+ 七.换元法 实用于含根式的递推关系 例17 已知数列{}n a知足111(14116n n a a a +=+=,,求数列{}n a 的通项公式.解:令n b =则21(1)24n n a b =-代入11(1416n n a a +=++得 即2214(3)n n b b +=+因为0n b =,则123n n b b +=+,即11322n n b b +=+,可化为113(3)2n n b b +-=-,所所以{3}n b -认为13332b -===首项,认为21公比的等比数列,是以121132()()22n n n b ---==,则21()32n n b -=+,21()32n -=+,得2111()()3423n n n a =++. 八.数学归纳法 经由过程首项和递推关系式求出数列的前n 项,猜出数列的通项公式,再用数学归纳法加以证实.例18 已知数列{}n a 知足11228(1)8(21)(23)9n n n a a a n n ++=+=++,,求数列{}n a 的通项公式.解:由1228(1)(21)(23)n n n a a n n ++=+++及189a =,得由此可猜测22(21)1(21)n n a n +-=+,下面用数学归纳法证实这个结论. (1)当1n =时,212(211)18(211)9a ⨯+-==⨯+,所以等式成立.(2)假设当n k =时等式成立,即22(21)1(21)k k a k +-=+,则当1n k =+时, 由此可知,当1n k =+时等式也成立.依据(1),(2)可知,等式对任何*n N ∈都成立. 九.阶差法(逐项相减法) 1.递推公式中既有n S ,又有n a 剖析:把已知关系经由过程11,1,2n n n S n a S S n -=⎧=⎨-≥⎩转化为数列{}n a 或n S 的递推关系,然后采取响应的办法求解.例19 已知数列{}n a 的各项均为正数,且前n 项和n S 知足1(1)(2)6n n n S a a =++,且249,,a a a 成等比数列,求数列{}n a 的通项公式.解:∵对随意率性n N +∈有1(1)(2)6n n n S a a =++⑴ ∴当n=1时,11111(1)(2)6S a a a ==++,解得11a =或12a = 当n ≥2时,1111(1)(2)6n n n S a a ---=++⑵ ⑴-⑵整顿得:11()(3)0n n n n a a a a --+--= ∵{}n a 各项均为正数,∴13n n a a --=当11a =时,32n a n =-,此时2429a a a =成立当12a =时,31n a n =-,此时2429a a a =不成立,故12a =舍去所以32n a n =-演习.已知数列}{n a 中,0>n a 且2)1(21+=n n a S ,求数列}{n a 的通项公式.答案:n n na S S =--1212)1()1(+=--n n a a 12-=n a n2.对无限递推数列例20 已知数列{}n a 知足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求{}n a 的通项公式.解:因为123123(1)(2)n n a a a a n a n -=++++-≥① 所以1123123(1)n n n a a a a n a na +-=++++-+② 用②式-①式得1.n n n a a na +-=则1(1)(2)n n a n a n +=+≥ 故11(2)n na n n a +=+≥ 所以13222122![(1)43].2n n n n n a a a n a a n n a a a a a ---=⋅⋅⋅⋅=-⋅⋅⨯=③由123123(1)(2)n n a a a a n a n -=++++-≥,21222n a a a ==+取得,则21a a =,又知11a =,则21a =,代入③得!13452n n a n =⋅⋅⋅⋅⋅=. 所以,{}n a 的通项公式为!.2n n a =十.不动点法 目标是将递推数列转化为等比(差)数列的办法不动点的界说:函数()f x 的界说域为D ,若消失0()f x x D ∈,使00()f x x =成立,则称0x 为()f x 的不动点或称00(,())x f x 为函数()f x 的不动点.剖析:由()f x x =求出不动点0x ,在递推公式双方同时减去0x ,在变形求解.类型一:形如1 n n a qa d +=+例21 已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式. 解:递推关系是对应得递归函数为()21f x x =+,由()f x x =得,不动点为-1 ∴112(1)n n a a ++=+,…… 类型二:形如1n n n a a ba c a d+⋅+=⋅+剖析:递归函数为()a x bf x c x d⋅+=⋅+(1)如有两个相异的不动点p,q 时,将递归关系式双方分离减去不动点p,q,再将两式相除得11n nn n a p a pk a q a q++--=⋅--,个中a pck a qc-=-,∴111111()()()()n n n a q pq k a p pq a a p k a q -----=---(2)如有两个雷同的不动点p,则将递归关系式双方减去不动点p,然后用1除,得111n n k a p a p+=+--,个中2c k a d =+. 例22. 设数列{}n a 知足7245,211++==+n n n a a a a ,求数列{}n a 的通项公式.剖析:此类问题经常运用参数法化等比数列求解. 解:对等式两头同时加参数t,得:725247)52(727)52(72451+++++=+++=+++=++n n n n n n n a t t a t a t a t t a a t a , 令5247++=t t t , 解之得t=1,-2 代入72)52(1+++=++n n n a t a t t a 得 721311+-=-+n n n a a a ,722921++=++n n n a a a ,相除得21312111+-⋅=+-++n n n n a a a a ,即{21+-n n a a }是首项为412111=+-a a ,公比为31的等比数列,21+-n n a a =n -⋅1341, 解得13423411-⋅+⋅=--n n n a . 办法2:,721311+-=-+n n n a a a ,双方取倒数得1332)1(39)1(2)1(372111-+=-+-=-+=-+n n n n n n a a a a a a , 令b 11-=n n a ,则b =n n b 332+,, 转化为累加法来求. 例23 已知数列{}n a 知足112124441n n n a a a a +-==+,,求数列{}n a 的通项公式.解:令212441x x x -=+,得2420240x x -+=,则1223x x ==,是函数2124()41x f x x -=+的两个不动点.因为112124224121242(41)13262132124321243(41)92793341n n n n n n n nn n n n n n a a a a a a a a a a a a a a ++---+--+--====----+---+.所以数列23n n a a ⎧⎫-⎨⎬-⎩⎭是认为112422343a a --==--首项,认为913公比的等比数列,故12132()39n n n a a --=-,则113132()19n n a -=+-.十一.特点方程法 形如21(,n n n a pa qa p q ++=+是常数)的数列形如112221,,(,n n n a m a m a pa qa p q ++===+是常数)的二阶递推数列都可用特点根法求得通项n a ,其特点方程为2x px q =+…①若①有二异根,αβ,则可令1212(,n n n a c c c c αβ=+是待定常数) 若①有二重根αβ=,则可令1212()(,n n a c nc c c α=+是待定常数) 再运用1122,,a m a m ==可求得12,c c ,进而求得n a例24 已知数列{}n a 知足*12212,3,32()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a解:其特点方程为232x x =-,解得121,2x x ==,令1212n n n a c c =⋅+⋅,由1122122243a c c a c c =+=⎧⎨=+=⎩,得12112c c =⎧⎪⎨=⎪⎩, 112n n a -∴=+例25.数列{}n a 知足1512a =-,且212542924n n n a a a +-=+求数列{}na 的通项. 解:2211252925244429292244n n n n n n n a a a a a a a λλλλ++-++-+==+=++……① 令229254λλ-=,解得12251,4λλ==,将它们代回①得,()21112924n n n a a a +++=+……②,212525429424nn n a a a +⎛⎫+ ⎪⎝⎭+=+……③,③÷②,得21125254411n n n n a a a a ++⎛⎫++ ⎪= ⎪++ ⎪⎝⎭,则11252544lg2lg 11n n n n a a a a ++++=++,∴数列254lg 1n n a a ⎧⎫+⎪⎪⎨⎬+⎪⎪⎩⎭成等比数列,首项为1,公比q =2所以1254lg 21n n n a a -+=+,则12254101n n n a a -+=+,112225104101n n n a ---∴=-十二.根本数列1.形如)(1n f a a n n =-+型 等差数列的广义情势,见累加法.)(1n f a a nn =+型 等比数列的广义情势,见累乘法. )(1n f a a n n =++型(1)若d a a n n =++1(d 为常数),则数列{n a }为“等和数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来评论辩论;(2)若f(n)为n 的函数(异常数)时,可经由过程结构转化为)(1n f a a n n =-+型,经由过程累加来求出通项;或用逐差法(两式相减)得)1()(11--=--+n f n f a a n n ,,分奇偶项来分求通项.。

(完整版)数列求通项专题(总复习专题-方法全面-有答案)全

(完整版)数列求通项专题(总复习专题-方法全面-有答案)全

求数列通项专题题型一:定义法(也叫公式法)直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目例:等差数列}a {n 是递增数列,前n 项和为n S ,且931a ,a ,a 成等比数列,255a S =.求数列}a {n 的通项。

解:设数列}a {n 公差为)0d (d > ∵931a ,a ,a 成等比数列,∴9123a a a =,即)d 8a (a )d 2a (1121+=+,得d a d 12= ∵0d ≠,∴d a 1=………①∵255S a = ∴211)d 4a (d 245a 5+=⋅⨯+…………②由①②得:53a 1=,53d = ∴n 5353)1n (53a n =⨯-+=题型二:已知的关系求通项公式(或)n n S a 与()n n S f a =这种类型一般利用与消去⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-)2()1(11n S S n S a n n n )()(11---=-=n n n n n a f a f S S a n S )2(≥n 或与消去进行求解。

)(1--=n n n S S f S )2(≥n n a 例:(1)已知数列的前项和,求数列的通项公式}{n a n 22+=n S n }{n a 解:当时,;1=n 311==S a 当时,; 2≥n 122)1(2221-=---+=-=-n n n S S a n n n ⎩⎨⎧≥-==∴)2(12)1(3n n n a n (2)已知数列的前项和满足,求数列的通项公式}{n a n n S 1)1(log 2+=+n S n }{n a 解:由,得,1)1(log 2+=+n S n 121-=+n n S ⎩⎨⎧≥==∴)2(2)1(3n n a nn 练习:1、已知数列{}的前n 项和为, 求.n a 32nn S =-n a 2、数列的前n 项和为,,,求的通项公式{}n a n S 11=a )(1121≥+=+n S a n n {}n a题型三:形如用累加法(也叫逐差求和法):)(1n f a a n n +=+(1)若f(n)为常数,即:,此时数列为等差数列,则=.d a a n n =-+1n a d n a )1(1-+(2)若f(n)为n 的函数时,用累加法. 方法如下: 由 得:)(1n f a a n n =-+时,,2≥n )1(1-=--n f a a n n ,)2(21-=---n f a a n n )2(23f a a =-以上各式相加得)1(12f a a =- 即:.)1()2()2()1(1f f n f n f a a n +++-+-=- ∑-=+=111)(n k n k f a a 为了书写方便,也可用横式来写:时,,2≥n )1(1-=--n f a a n n ∴112211)()()(a a a a a a a a n n n n n +-++-+-=--- =.1)1()2()2()1(a f f n f n f ++++-+- 例1:已知数列{a n }中,a 1=1,对任意自然数n 都有11(1)n n a a n n -=++,求n a .解:由已知得11(1)n n a a n n --=+,121(1)n n a a n n ---=-,……,32134a a -=⨯,21123a a -=⨯,以上式子累加,利用111(1)1n n n n =-++得 n a -1a =1111...23(2)(1)(1)(1)n n n n n n ++++⨯---+=1121n -+, 3121n a n ∴=-+例2:已知数列满足,求数列的通项公式。

高中数学《求数列的通项习题课一》专题突破含解析

高中数学《求数列的通项习题课一》专题突破含解析

习题课一 求数列的通项题型一 利用累加、累乘法求数列的通项公式【例1】 (1)数列{a n }满足a 1=1,对任意的n ∈N *都有a n +1=a 1+a n +n ,求数列{a n }的通项公式;(2)已知数列{a n }满足a 1=23,a n +1=nn +1a n ,求a n .解 (1)∵a n +1=a n +n +1,∴a n +1-a n =n +1,即a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n (n ≥2).等式两边同时相加得a n -a 1=2+3+4+…+n (n ≥2),即a n =a 1+2+3+4+…+n =1+2+3+4+…+n =n (n +1)2,n ≥2.又a 1=1也适合上式,∴a n =n (n +1)2,n ∈N *.(2)由条件知a n +1a n =nn +1,分别令n =1,2,3,…,n -1,代入上式得(n -1)个等式,累乘,即a 2a 1·a 3a 2·a 4a 3·…·a n a n -1=12×23×34×…·n -1n (n ≥2).∴a na 1=1n ,又∵a 1=23,∴a n =23n ,n ≥2.又a 1=23也适合上式,∴a n =23n ,n ∈N *.规律方法 (1)求形如a n +1=a n +f (n )的通项公式.将原来的递推公式转化为a n +1-a n =f (n ),再用累加法(逐差相加法)求解,即a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=a 1+f (1)+f (2)+f (3)+…+f (n -1).(2)求形如a n +1=f (n )a n 的通项公式.将原递推公式转化为a n +1a n=f (n ),再利用累乘法(逐商相乘法)求解,即由a 2a 1=f (1),a 3a2=f (2),…,a na n -1=f (n -1),累乘可得a na1=f (1)f (2)…f (n -1).【训练1】 数列{a n }中,a 1=2,a n +1-a n =2n ,求{a n }的通项公式.解 因为a 1=2,a n +1-a n =2n ,所以a 2-a 1=2,a 3-a 2=22,a 4-a 3=23,…,a n -a n -1=2n -1,n ≥2,以上各式累加得,a n -a 1=2+22+23+…+2n -1,故a n=2(1-2n-1)1-2+2=2n,当n=1时,a1也符合上式,所以a n=2n.题型二 构造等差(比)数列求通项公式【例2】 (1)在数列{a n}中,a1=13,6a n a n-1+a n-a n-1=0(n≥2,n∈N*).①证明:数列{1a n}是等差数列;②求数列{a n}的通项公式.(2)已知数列{a n}中,a1=2,a n+1=2a n-3,求a n.(1)①证明 由6a n a n-1+a n-a n+1=0,整理得1a n-1a n-1=6(n≥2),故数列{1a n}是以3为首项,6为公差的等差数列.②解 由①可得1a n=3+(n-1)×6=6n-3,所以a n=16n-3,n∈N*.(2)解 由a n+1=2a n-3得a n+1-3=2(a n-3),所以数列{a n-3}是首项为a1-3=-1,公比为2的等比数列,则a n-3=(-1)·2n-1,即a n=-2n-1+3.规律方法 (1)课程标准对递推公式要求不高,故对递推公式的考查也比较简单,一般先构造好等差(比)数列让学生证明,再在此基础上求出通项公式,故同学们不必在此处挖掘过深. (2)形如a n+1=pa n+q(其中p,q为常数,且pq(p-1)≠0)可用待定系数法求得通项公式,步骤如下:第一步 假设递推公式可改写为a n+1+t=p(a n+t);第二步 由待定系数法,解得t=qp-1;第三步 写出数列{a n+q p-1}的通项公式;第四步 写出数列{a n}的通项公式.【训练2】 已知各项均为正数的数列{b n}的首项为1,且前n项和S n满足S n-S n-1=S n+S n-1(n≥2).试求数列{b n}的通项公式.解 ∵S n-S n-1=S n+S n-1(n≥2),∴(S n+S n-1)(S n-S n-1)=S n+S n-1(n≥2).又S n >0,∴S n -S n -1=1.又S 1=1,∴数列{S n }是首项为1,公差为1 的等差数列,∴S n =1+(n -1)×1=n ,故S n =n 2.当n ≥2时,b n =S n -S n -1=n 2-(n -1)2=2n -1.当n =1时,b 1=1符合上式.∴b n =2n -1.题型三 利用前n 项和S n 与a n 的关系求通项公式【例3】 (1)已知数列{a n }的前n 项和为S n ,若S n =2a n -4,n ∈N *,则a n 等于( )A.2n +1 B.2n C.2n -1D.2n -2(2)已知数列{a n }中,前n 项和为S n ,且S n =n +23·a n ,则a n a n -1的最大值为( )A.-3B.-1C.3D.1解析 (1)因为S n =2a n -4,所以n ≥2时,S n -1=2a n -1-4,两式相减可得S n -S n -1=2a n -2a n -1,即a n =2a n -2a n -1,整理得a n =2a n -1,所以a n a n -1=2.因为S 1=a 1=2a 1-4,即a 1=4,所以数列{a n }是首项为4,公比为2的等比数列,则a n =4×2n -1=2n +1,故选A.(2)由S n =n +23a n 得,当n ≥2时,S n -1=n +13a n -1,两式作差可得:a n =S n -S n -1=n +23a n -n +13a n -1,整理得a n a n -1=n +1n -1=1+2n -1,由此可得,当n =2时,a n a n -1取得最大值,其最大值为3.答案 (1)A (2)C规律方法 已知S n =f (a n )或S n =f (n )的解题步骤:第一步 利用S n 满足条件p ,写出当n ≥2时,S n -1的表达式;第二步 利用a n =S n -S n -1(n ≥2),求出a n 或者转化为a n 的递推公式的形式;第三步 若求出n ≥2时的{a n }的通项公式,则根据a 1=S 1求出a 1,并代入n ≥2时的{a n }的通项公式进行验证,若成立,则合并;若不成立,则写出分段形式.如果求出的是{a n }的递推公式,则问题化归为例2形式的问题.【训练3】 在数列{a n }中,a 1=1,a 1+2a 2+3a 3+…+na n =n +12a n +1(n ∈N *),求数列{a n }的通项公式a n .解 由a 1+2a 2+3a 3+…+na n =n +12a n +1,得当n ≥2时,a 1+2a 2+3a 3+…+(n -1)a n -1=n2a n ,两式作差得na n =n +12a n +1-n 2a n ,得(n +1)a n +1=3na n (n ≥2),即数列{na n }从第二项起是公比为3的等比数列,且a 1=1,a 2=1,于是2a 2=2,故当n ≥2时,na n =2×3n -2.于是a n ={1,n =1,2×3n -2n,n ≥2,n ∈N *.一、素养落地1.通过学习数列通项公式的求法,提升数学运算与逻辑推理素养.2.求数列通项的方法有:(1)公式法,(2)累加、累乘法,(3)构造法等,但总的思想是转化为特殊的数列(一般是等差或等比数列)求解.二、素养训练1.数列1,3,6,10,15,…的递推公式可能是( )A.a n ={1(n =1)a n +1+n -1(n ∈N *,n ≥2)B.a n={1(n =1)a n -1+n (n ∈N *,n ≥2)C.a n={1(n =1)a n -1+n -1(n ∈N *,n ≥2)D.a n={1(n =1)a n -1+n +1(n ∈N *,n ≥2)解析 由题意可得,a 1=1,a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,a 5-a 4=5,……∴a n -a n -1=n (n ≥2),故数列的递推公式为a n ={1(n =1)a n -1+n (n ∈N *,n ≥2)故选B.答案 B2.数列{a n }中,a 1=1,且a n +1=a n +2n ,则a 9=( )A.1 024B.1 023C.510D.511解析 由题意可得a n +1-a n =2n ,则a 9=a 1+(a 2-a 1)+(a 3-a 2)+…+(a 9-a 8)=1+21+22+…+28=29-1=511.故选D.答案 D3.已知数列{a n }的各项均为正数,且a 2n -a n -n 2-n =0,则a n=________.解析 由a 2n -a n -n (n +1)=0,得[a n -(n +1)](a n +n )=0.又a n >0,所以a n=n +1.答案 n +14.已知数列{a n }中,a 1=1,对于任意的n ≥2,n ∈N *,都有a 1a 2a 3…a n =n 2,则a 10=________.解析 由a 1a 2a 3…a n =n 2,得a 1a 2a 3…a n -1=(n -1)2(n ≥2),所以a n =n 2(n -1)2(n ≥2),所以a 10=10081.答案 100815.已知数列{a n }满足a 1=1,a n +1=a n a n +2(n ∈N *),求数列{a n }的通项公式.解 由a n +1=a n a n +2,得1a n +1=2an +1,所以1an +1+1=2(1a n+1).又a 1=1,所以1a 1+1=2,所以数列{1a n+1}是以2为首项,2为公比的等比数列,所以1a n +1=2×2n -1=2n ,所以a n =12n -1.基础达标一、选择题1.已知数列{a n }中,a 1=2,a n +1=a n +2n (n ∈N *),则a 100的值是( )A.9 900 B.9 902 C.9 904D.11 000解析 a 100=(a 100-a 99)+(a 99-a 98)+…+(a 2-a 1)+a 1=2(99+98+…+2+1)+2=2×99×(99+1)2+2=9 902.答案 B2.已知数列{a n }中,a 1=1,a n +1=a n1+2a n,则这个数列的第n 项为( )A.2n -1B.2n +1C.12n -1D.12n +1解析 ∵a n +1=a n 1+2an,a 1=1,∴1a n +1-1a n =2.∴{1a n}为等差数列,公差为2,首项1a1=1.∴1a n =1+(n -1)×2=2n -1,∴a n =12n -1.答案 C3.若数列{a n }中,a 1=3,a n +a n -1=4(n ≥2),则a 2 021的值为( )A.1 B.2 C.3D.4解析 ∵a 1=3,a n +a n -1=4(n ≥2),∴a n +1+a n =4,∴a n +1=a n -1,∴a n =a n +2,即奇数项、偶数项构成的数列均为常数列,又∵a 1=3,∴a 2 021=3.答案 C4.已知数列{a n }的首项为a 1=1,且满足a n +1=12a n +12n ,则此数列的通项公式a n 等于( )A.2nB.n (n +1)C.n2n -1D.n (n +1)2n解析 ∵a n +1=12a n +12n ,∴2n +1a n +1=2n a n +2,即2n +1a n +1-2n a n =2.又21a 1=2,∴数列{2n a n }是以2为首项,2为公差的等差数列,∴2n a n =2+(n -1)×2=2n ,∴a n =n 2n -1.答案 C5.已知数列{a n }的前n 项和为S n ,且a 1=2,S n +1=4a n +2,则a 12=( )A.20 480B.49 152C.60 152D.89 150解析 由题意得S 2=4a 1+2,所以a 1+a 2=4a 1+2,解得a 2=8,故a 2-2a 1=4,又a n +2=S n +2-S n +1=4a n +1-4a n ,于是a n +2-2a n +1=2(a n +1-2a n ),因此数列{a n +1-2a n }是以a 2-2a 1=4为首项,2为公比的等比数列,即a n +1-2a n =4×2n -1=2n +1,于是a n +12n +1-a n2n =1,因此数列{a n2n}是以1为首项,1为公差的等差数列,得a n2n =1+(n -1)=n ,即a n =n ·2n .所以a 12=12×212=49 152,故选B.答案 B 二、填空题6.在等比数列{a n }中,a 1,a 2,a 3分别是下表第一、二、三行中的某一个数,且a 1,a 2,a 3中的任何两个数不在下表的同一列.第一列第二列第三列第一行3210第二行6414第三行9818则数列{a n }的通项公式为________.解析 当a 1=3时,不合题意;当a 1=2时,当且仅当a 2=6,a 3=18时,符合题意;当a 1=10时,不合题意.因此a 1=2,a 2=6,a 3=18,所以公比q =3,故a n =2×3n -1.答案 a n =2×3n -17.在数列{a n }中,a 1=1,a n +1=n +1na n ,则数列{a n }的通项公式a n =________.解析 当n ≥2时,a n =a n a n -1·a n -1a n -2·…·a 3a 2·a 2a 1·a 1=nn -1·n -1n -2·…·32·21=n ,当n =1时,a 1=1也符合此式,∴a n =n .答案 n8.已知数列{a n }满足ln a 13·ln a 26·ln a 39·…·ln a n 3n =3n 2(n ∈N *),则a 10=________.解析 ∵ln a 13·ln a 26·ln a 39·…·ln a n 3n =3n2(n ∈N *),∴ln a 13·ln a 26·ln a 39·…·ln a n -13(n -1)=3(n -1)2(n ≥2),∴ln a n =3n 2n -1(n ≥2),∴a n =e 3n 2n -1(n ≥2),∴a 10=e 1003.答案 e1003三、解答题9.设f (x )=log 2x -log x 4(0<x <1),数列{a n }的通项a n 满足f (2a n )=2n ,求数列{a n }的通项公式.解 ∵f (x )=log 2x -log x 4(0<x <1),f (2an )=2n ,∴log 22an -log 2an 4=2n ,由换底公式得log 22an -log 24log 22an =2n ,即a n -2a n =2n ,∴a 2n -2na n -2=0,解得a n =n ±n 2+2.又0<x <1,∴0<2an <1,∴a n <0,∴a n =n -n 2+2,∴数列{a n }的通项公式是a n =n -n 2+2.10.设数列{a n }的前n 项和为S n ,数列{S n }的前n 项和为T n ,满足T n =2S n -n 2,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式.解 (1)当n =1时,T 1=2S 1-1,因为T 1=S 1=a 1,所以a 1=2a 1-1,所以a 1=1.(2)当n ≥2时,T n -1=2S n -1-(n -1)2,则S n =T n -T n -1=2S n -n 2-[2S n -1-(n -1)2]=2(S n -S n -1)-2n +1=2a n -2n +1,因为当n =1时,a 1=S 1=1也满足上式,所以S n =2a n -2n +1(n ≥1),①当n ≥2时,S n -1=2a n -1-2(n -1)+1,②①-②,得a n =2a n -2a n -1-2,所以a n =2a n -1+2(n ≥2),所以a n +2=2·(a n -1+2),因为a 1+2=3≠0,所以数列{a n +2}是以3为首项,2为公比的等比数列,所以a n +2=3×2n -1,所以a n =3×2n -1-2.能力提升11.已知数列{a n }满足a 1=1,a 2=13,若a n (a n -1+2a n +1)=3a n -1·a n +1(n ≥2,n ∈N *),则数列{a n }的通项公式a n =________.解析 由题意知a n a n -1+2a n a n +1=3a n -1a n +1,∴1a n +1+2a n -1=3a n ,∴1a n +1-1a n =2(1a n -1a n -1),即1a n +1-1a n1a n -1a n -1=2,∴数列{1an +1-1a n}是首项为2,公比为2的等比数列,∴1a n +1-1a n =2×2n -1=2n .利用累加法,得1a 1+(1a 2-1a 1)+(1a 3-1a 2)+…+(1a n -1a n -1)=1+2+22+…+2n -1,即1a n =2n -12-1=2n -1,∴a n =12n -1.答案 12n -112.已知数列{a n }的前n 项和为S n ,且满足a 1=1,nS n +1-(n +1)S n =n (n +1)2,n ∈N *.(1)求数列{a n }的通项公式.(2)是否存在正整数k ,使a k ,S 2k ,a 4k 成等比数列?若存在,求k 的值;若不存在,请说明理由.解 (1)法一 由nS n +1-(n +1)S n =n (n +1)2,得S n +1n +1-S nn =12,∴数列{S nn}是首项为S 11=1,公差为12的等差数列,∴S nn =1+12(n -1)=12(n +1),∴S n =n (n +1)2.当n ≥2时,a n =S n -S n -1=n (n +1)2-(n -1)n2=n .而a 1=1适合上式,∴a n =n .法二 由nS n +1-(n +1)S n =n (n +1)2,得n (S n +1-S n )-S n =n (n +1)2,∴na n +1-S n =n (n +1)2.①当n ≥2时,(n -1)a n -S n -1=n (n -1)2,②①-②,得na n +1-(n -1)a n -a n =n (n +1)2-n (n -1)2,∴na n +1-na n =n ,∴a n +1-a n =1,∴数列{a n }是从第2项起的等差数列,且首项为a 2=2,公差为1,∴a n =2+(n -2)×1=n (n ≥2).而a 1=1适合上式,∴a n =n .(2)由(1),知a n =n ,S n =n (n +1)2.假设存在正整数k ,使a k ,S 2k ,a 4k 成等比数列,则S 22k =a k ·a 4k ,即[2k (2k +1)2]2=k ·4k .∵k 为正整数,∴(2k +1)2=4.得2k +1=2或2k +1=-2,解得k =12或k =-32,与k 为正整数矛盾.∴不存在正整数k ,使a k ,S 2k ,a 4k 成等比数列.创新猜想13.(多选题)已知数列{a n }的前n 项和为S n ,a 1=1,a 2=2,且对于任意n >1,n ∈N *,满足S n +1+S n -1=2(S n +1),则( )A.a 9=17 B.a 10=18C.S 9=81D.S 10=91解析 ∵对于任意n >1,n ∈N *,满足S n +1+S n -1=2(S n +1),∴S n +1-S n =S n -S n -1+2,∴a n +1-a n =2.∴数列{a n }在n ≥2时是等差数列,公差为2.又a 1=1,a 2=2,则a 9=2+7×2=16,a 10=2+8×2=18,S 9=1+8×2+8×72×2=73,S 10=1+9×2+9×82×2=91.故选BD.答案 BD14.(多空题)设S n是数列{a n}的前n项和,且满足a2n+1=2a n S n,且a n>0,则S n=________,a100=________.解析 由S n是数列{a n}的前n项和,且满足a2n+1=2a n S n,则当n=1时,a21+1=2a1S1,即S21=1;当n≥2时,(S n-S n-1)2+1=2(S n-S n-1)S n,整理得S 2n-S2n-1=1.所以数列{S2n}是以1为首项,1为公差的等差数列,则S2n=n.由于a n>0,所以S n=n,故a100=S100-S99=100-99=10-311.答案 n 10-311。

求数列通项公式方法大全(含答案)

求数列通项公式方法大全(含答案)

求数列通项公式的几种方法一、累加法形如()n f a a n n =-+1()1a 已知型的的递推公式均可用累加法求通项公式.1.已知数列{}n a 满足11322,.n n n a a n a a +=++=且求2.已知数列{}n a 中,111,32n n n a a a n +=-=-, 求{}n a 的通项公式.3.已知数列{}n a 满足11211,,2n n a a a n n+==++求{}n a 的通项公式. 答案:1.232n n a n +=;2.)1()13(21---=n n a n n ;3.na n 123-=;二、累乘法 形如()1n na f n a +=()1a 已知型的的递推公式均可用累乘法求通项公式. 1.已知数列{}n a 满足11,2,31n n n n a a a a n +==+求. 2.设{}n a 是首项为1的正项数列,且2211(1)0n n n n n a na a a +++-+=,求{}n a 的通项公式.答案:1.n a n 32=;2.n a n 1=;三、奇偶分析法(1)对于形如()1n n a a f n +⋅=型的递推公式求通项公式;(2)对于形如()1n n a a f n ++=型的递推公式求通项公式1.数列{}n a 满足116,6n n a a a +=+=-,求{}n a 的通项公式.2.数列{}n a 满足111,1n n a a a n +=-+=-,求{}n a 的通项公式.3.已知数列{}n a 满足112,4n n a a a +=⋅=,求{}n a 的通项公式.4.数列{}n a 满足112,3n n n a a a +=⋅=,求{}n a 的通项公式.答案:1.⎩⎨⎧-=是偶数是奇数n n a n ,12,6;2.⎪⎪⎩⎪⎪⎨⎧-=是偶数是奇数n n n n a n ,21,2321;3.2=n a ;4.⎪⎪⎩⎪⎪⎨⎧⋅⋅=-是偶数是奇数n n a n n n ,321,32221;四、利用n a 与n S 的关系如果给出条件是n a 与n S 的关系式,可利用111,2n n n a n a S S n -=⎧=⎨-≥⎩求解.1.已知数列{}n a 的前n 项和为322+-=n n S n ,求{}n a 的通项公式.2.若数列{}n a 的前n 项和为33,2n n S a =-求{}n a 的通项公式. 答案:1.⎩⎨⎧≥-==2,321,3n n n a n ;2.n n a 32⋅=;五、待定系数法(构造法)若给出条件直接求n a 较难,可通过整理变形等从中构造出一个等差或等比数列,从而根据等差或者等比数列的定义求出通项.常见的有:(1)()1,n n a pa q p q +=+为常数(){}1,n n n a t p a t a t +⇒+=++构造为等比数列.(2)()11111,n p n n n n n n n a a a pa tp t p t p p+++++=+−−−−−−→=+两边同时除以为常数 (3)()()11111,,,1n p n n n n n n n a a p a pa tq t p q t q q q +++++=+−−−−−−→=+两边同时除以为常数再参考类型 (4)()1,,n n a pa qn r p q r +=++是常数⇒()()11n n a n p a n λμλμ++++=++ (5)21+n n n a pa qa ++=(){}2111t ,t n n n n n n a ta p a a a a ++++⇒-=--构造等比数列1.已知数列{}n a 中,11=a ,321+=+n n a a ,求n a .2.已数列{}n a 中,11a =且111,____.2n n n a a a +=+=则 3.已知数列{}n a 中,1113,33n n n a a a ++==+, 求{}n a 的通项公式.4.已知数列{}n a 满足11162,1,n n n a a a ++=+=求.n a5.数列{}n a 中已知111,23n n a a a n +==+,求{}n a 的通项公式.6.已知数列{}n a 中,()12125,2,2+33n n n a a a a a n --===≥,求求{}n a 的通项公式.答案:1.321-=+n n a ;2.1)21(2--=n n a ;3.n n n a 3⋅=;4.11262---⋅=n n n a ; 5.33271--⋅=-n a n n ;6.])1(1337[4111---⋅+⋅=n n n a ;六、倒数法(1)11111=,n n n n n n n n pa qa p q a qa p a pa a p a ++⎧⎫+=⇒=+⎨⎬+⎩⎭构造是等差数列 (2)1111=n n n n n n n pa qa t t q a qa t a pa p a p+++=⇒=++ 1.已知数列{}n a 满足1=1a ,1232n n n a a a +=+,求{}n a 的通项公式. 2.已知数列{}n a 满足1=1a ,11234n n n a a a --=+,求{}n a 的通项公式. 答案:1.132-=n a n ;2.32521-⋅=-n n a ;七、()1110,0lg lg lg ,r n n n n n n n a pa p a a p r a a pa q +++=>>−−−−→=+=+两边取对数转化为型 1.已知数列{}n a 中,211100,10,n n a a a +==⋅求n a2.已知数列{}n a 中,3112,2,n n a a a +==⋅求n a答案:1.123110-⋅-=n n a ;2.)13(2-=n n a ;。

专题1数列的通项公式的求法-高二上学期数学人教A版选择性必修第二册

专题1数列的通项公式的求法-高二上学期数学人教A版选择性必修第二册

题型一 定义法
纠缠数列
纠缠数列是指,等差数列某些项成等比,或者等比数列某些项成等差
例 1.已知数列 an 为各项均不相等的等比数列,其前 n 项和为 Sn ,且3a2 ,2a3 ,a4 成等
S3 差数列,则 a4
例 2.已知正项等差数列 an 中,a1 a2 a3 15 ,若 a1 2 ,a2 5 ,a3 13 成等比数列,
例4 设Sn是数列{an}的前n项和,且a1=-1,an+1=Sn Sn+1,则Sn=________.
解析: 由an+1=Sn Sn+1得:Sn+1 — Sn=Sn Sn+1
方法小结
∵又SS11n=≠0-,1∴,∴S1n- S1Snn1+是1=首1项,为即-S1n1,+1公-差S1n为=--11的. 等差数列.角角an度度 一二SSn1,::nS换换n11, nSa≥nn 2, n N*
∴ 1 =-1+(n-1)×(-1)=-n,∴Sn=-1
Sn
n
an Sn Sn1(n 2)
题型三 知和求项—— an 与Sn
练 2 已知数列an 的前 n 项和为 Sn ,且满足:an 0 ,an2 2an 4Sn 3 ,求an .
前 n 项积求通项
类比前
n
项和,前
n
项积满足: an
a2 a1
a3 a2
an1 an2
an an1
2n则1 1an
2(an3an1) n(an11
ann2
)
n 2(an21
a1
)
a1
f
12
(n 1) f
n2
(n 2)
f
n 1
(1)
a1
(n

2)

专题1:非等差等比数列通项公式求法

专题1:非等差等比数列通项公式求法

4.由数列{an}的递推关系式求an的方法: 构造等差或等比数列。
注意:需要记住一些典型递推关系式的特点,常用整体的
思想构造新数列(即等差或等比数列),继而通过新数列求出an。
1 an 3 2n
知识探究
由递推关系式求an
(3)a1=1,an+1 =3an+2
解 :(3) an1 3an 2
构造等比数列
an1 1 3an 3 3(an 1)
数列an 1是以a1 1为首项,3为公比的等比数列
又a1 1 2 an 1 2 3n1
已知an+1=pan+q求an的方法: 构造等比数列,即:
4n 5 a1满 足 此 式
an 4n 5(n N * )
? 你能归纳出已知Sn求an 的方法步骤吗?
2 3n1 2
a1不满足此式
6; n 1
an
2
3n1
2;
n
2
知识归纳 已知Sn求an的步骤:
(1)先利用a1=S1,求出a1; (2)利用an=Sn-Sn-1(n≥2),求出当n≥2时an的表达式; (3)验证a1是否满足an(n≥2):若满足,就可用an(n≥1)表示 通项公式;若不满足,则应分n=1和n≥2两段(即分段函数) 表示通项公式。
例3:已知Sn是数列{an}的前n项和,求{an}的通项公式.
(1)Sn=2n2 - 3n
(2)Sn=3n + 2n + 1
解:(1)当n 1时,a1 S1 2 3 1
(2)当n 1时,a1 S1 6
当n 2时, an Sn Sn1
当n 2时, an Sn Sn1
(2n2 3n) [2(n 1)2 3(n 1)] (3n 2n 1) [3n1 2(n 1) 1]

专题一:数列通项公式的求法详解(八种方法)041019210228

专题一:数列通项公式的求法详解(八种方法)041019210228

其通项分为奇数项和偶数项来讨论. (2)形如 an1 an f (n) 型①若 an1 an p (p 为常数),则数列{ an }为“等
积数列”,它是一个周期数列,周期为 2,其通项分奇数项和偶数项来讨论;②若 f(n)为 n 的函数(非常数)时,可
通过逐差法得 an an1 f (n 1) ,两式相除后,分奇偶项来分求通项.
[例 2]
设 Sn=1+2+3+…+n,n∈N*,求
f (n)
Sn (n 32)Sn1
的最大值.
答案
n=8
时,
f
(n)max

1 50
二、错位相减法 方法简介:此法是在推导等比数列的前 n 项和公式时所用的方法,这种方法主要用于求数列{an· bn}的前 n 项 和,其中{ an }、{ bn }分别是等差数列和等比数列.
只需求首项及公差公比.
公式法 2: 知 sn 利用公式
an

s1 , Sn
n
S
1
n1
,
n

.
2
例 5:已知下列两数列{an}的前 n 项和 sn 的公式,求{an}的通项公式.(1) Sn n3 n 1. (2) sn n2 1
答案:(1) an =3 n 2
3n
.答 案 :
an n2 5 (n N)
例 6. 若在数列 an 中, a1 3 , an1 an 2n ,求通项 an
.答案: an = 2n 1
思想启发:尝试推导特殊数列有关的公式,性质,结论是掌握并灵活应用它们的最好方法.
1
总结方法,领悟思想,感受成功.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题一 数列通项公式的求法
各种数列问题在很多情形下,就是对数列通项公式的求解。

特别是在一些综合性比较强的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈。

本节总结几种求解数列通项公式的方法。

一、用观察法求数列的通项:
例1:根据数列的前几项,写出它的一个通项公式;
(1) 1716
,109,54,21 (2) 1,0,,0 1
(3) 32
31,1615,87,43
二、定义法:
直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目.
例2.等差数列{}n a 是递增数列,前n 项和为n S ,
且931,,a a a 成等比数列,2
55a S =.求数列{}n a 的
通项公式.
解:设数列{}n a 公差为)0(>d d ∵931,,a a a 成等比数列,∴9123
a a a =,
即)8()2(1121d a a d a +=+d a d 12=⇒
∵0≠d , ∴d a =1………………………………① ∵
2
5
5a S =

2
11)4(2
455d a d a +=⋅⨯+
…………②
由①②得:5
31=
a ,5
3
=
d
∴n n a n 5
3
53)1(53=⨯-+=
点评:利用定义法求数列通项时要注意不用错
定义,设法求出首项与公差(公比)后再写出通项。

三、公式法
若已知数列的前n 项和n S 与n a 的关系,求数列
{}
n a 的通项
n
a 可用公式
⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-2
111n S S n S a n n n 求解。

例3:已知数列{}n a 的前n 项和为322
++=n n S n ,
求数列的通项公式。

(名49例2)
变式训练:已知数列{}n a 的前n 项和为
323
-=
n n a S ,求数列的通项公式。

(名师一号P70)
点评:利用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-2
1
1n S S n S a n n n n 求解
时,要注意对n 分类讨论,但若能合写时一定要合并.
四、累加法
形如1()n n a a f n --= (n=2、3、4…...) 且
(1)(2)...(1)f f f n +++-可求,则用累加法
求n a 。

有时若不能直接用,可变形成这种形式,然后用这种方法求解。

例4:在数列{n a }中,1a =1,
11n n a a n --=- (n=2、3、4……) ,求{n a }的通项公式。

解:∵111n a ==时,
213243121
2
3.......1n n n a a a a a a a a n -≥-=⎫

-=⎪⎪
-=⎬⎪⎪
-=-⎪⎭
时,
这n-1个等式累加得:
112...n a a -=+++(n-1)=
(1)2
n n -
故2
1(1)2
2
2
n n n n n a a --+=
+=
且11a =也
满足该式 ∴2
2
2
n n n a -+=
(n N *∈).
例:5.在数列{n a }中,1a =1,12n n n a a +-= (n N *∈),求n a 。

解:n=1时, 1a =1212
323431
122
22 (2)
n n n n a a a a a a a a --≥-=⎫⎪-=⎪

-=⎬⎪⎪⎪-=⎭
时,
以上
n-1个等式累加得
2
1
122 (2)
n n a a --=+++=
1
2(12
)
12
n ---=22n -,故
1222
1n
n
n a a =-+=- 且11a =也满足该式 ∴
21n
n a =- (n N *
∈)。

一、累乘法
形如
1
()n n a f n a -= (n=2、3、4……),且
(1)(2)...(
f f f n +++-可求,则用累乘法求n a 。

有时若不能直接用,可变形成这种形式,然后用这种方法求解。

例6.在数列{n a }中,1a =1,1n n a na +=,求n a 。

解:由已知得
1n n
a n a += ,分别取n=1、2、
3……(n-1),代入该式得n-1个等式累乘,即
324
1231
........n n a a a a a a a a -=1×2×3×…×
(n-1)=(n-1)!所以时,
1
(1)!
n a n a =-故(1)!n a n =-
且10!a ==1也适用该式 ∴(1)!n a n =-
(n N *∈).
例7.已知数列{n a }满足1a =23
,11
n n n a a n +=
+,
求n a 。

解:由已知得11
n n
a n a n +=
+,分别令n=1,2,
3,….(n-1),代入
上式得
n-1个等式累乘,即
324
1231
........n n a a a a a a a a -= 1231......234n n -⨯⨯⨯
三、构造法
例5、(06福建理22)已知数列{n a }满足1a =1,
1n a +=21n a + (n N *
∈),求数列{n a }的通项公式。

解:构造新数列{}n a p +,其中p 为常数,使之成为公比是n a 的系数2的等比数列
即1n a p ++=2()n a p + 整理得:
1n a +=2n a p +使之满足1n a +=21n a + ∴p=1
即{}1n a +是首项为11a +=2,q=2的等比数列∴1n a +=122n -⋅ n a =21n -所以
1
1n a a n
=
,又因
为123
a =也满足该式,所以23n a n
=。

相关文档
最新文档