[中学]数列求和裂项相消法
裂项相消法课件(微课堂)
寻找相邻项
在分式中寻找相邻的项,特别是那些 具有相反符号的项,它们是裂项相消 的关键。
裂项相消法的注意事项
验证因式
在应用裂项相消法之前,要确保 分母中的因式是正确的。错误的
因式会导致后续计算出错。
保持代数恒等性
在应用裂项相消法时,要确保等式 的两边在经过变换后仍然保持恒等, 即等式的两边在变换后具有相同的 值。
3
分数裂项相消法的练习题
如求$frac{1}{2} + frac{1}{6} + frac{1}{12} + frac{1}{20} + ldots$的和,可以通过裂项相消法 快速得出结果。
代数表达式的裂项相消法练习
代数表达式裂项相消法的原理
将代数表达式拆分成多个部分,使得在求和或求积的过程中某些项相互抵消,简化计算过 程。
消法快速得出结果。
06Biblioteka 总结与展望裂项相消法的总结
裂项相消法是一种重要的数学方 法,主要用于解决数列求和问题。
它通过将一个数列拆分成若干个 子数列,然后利用相邻子数列的 相消性质,简化了数列求和的过
程。
裂项相消法在数学中有着广泛的 应用,不仅在数列求和中有用, 还可以用于解决一些组合数学问
题。
裂项相消法的应用前景与展望
02
裂项相消法的原理
分数的裂项
01 分数裂项法
将一个分数拆分成两个或多个分数的和或差,以 便于计算。
02 常见裂项形式
如$frac{1}{n(n+1)}$可以拆分为$frac{1}{n}frac{1}{n+1}$。
03 裂项技巧
根据分数的分子和分母特点,选择合适的拆分方 式,简化计算。
数列求和——裂项相消法
————裂项相消法
2015全国I卷节选:
若an1
2n
1, 令bn
1 an an 1
, 求{bn}的前n项和Tn。
裂项求和法:
将数列的通项分解成两项或多项的差,使
数列中的项出现有规律的抵消项,只剩下首 尾若干项。
一般有两种类型:
类型一:an
k f (n) f (n c)
A[ 1 f (n)
1[ 1
1
]
n(n 1)(n 2) 2 n(n 1) (n 2)(n 1)
(an
(a 1)an b)(an1
b)
(an
an1 an b)(an1
b)
1 (an b)
1 (an1 b)
类型二:
通过有理化、对数的运算法则、公式的变形、阶乘和组合数
2n Sn
, 求证:T1 T2 L
Tn
3 2
练习:步步高P93例3及跟踪训练3
课堂小结:
1、分解与组合思想在数列求和中的应用。 2、裂项相消常用于方式和根式求和。 可以用通项裂解,也可以利用首项裂解, 甚至可以利用待定系数法去完成裂开通项
(1)应注意抵消后并不一定只剩下第一项和最后一 项,也有可能前面剩多项,后面也剩多项,
(2)再就是将通项公式裂项后,有时候需要调整前 面的系数,使裂开的两项之差和系数之积与原通 项公式相等.
变式:若数列an的前n项和为Sn满足:
Sn
4 3
an
1 3
•
2n1
2 3
(1)求an
(2)设Tn
数列之裂项相消求和
=1
3
1(1- )
=39
1-
⇒a1=3,所以 an=3n.
(2)由已知得 bn=log332n+1=2n+1,所以 Tn=3+5+…+(2n+1)=n(n+2),
1
=
=
1
=
1 1
( +2) 2
1 1 1
-
2 1 3
-
1
+2
1
1
1
,所以 ∑ = + + +…+
1
=1
1 1 1
1 1 1
1 1
2 2 4
项和
.
解析 (1)因为 , 9 为函数 () = ( − 2)( − 99) 的两个零点且
(−1)
1+
2
= 2, 9 = 99 .又因为 =
= 3 ,所以数列 {
( − 1) = 2 + 1 .
1
(2)因为
所以
1
(
2
=
=
1
(
2
,所以 9
9×8
1+ 2
< 9 ,所以
× 2 = 99 ,解得
(2n+1)
1
1
-
1
1
解析∵an=
= 2n-1 2n+1 ,
(2n-1)
(2n+1) 2
1
1-
1
1
n
1
1
1 1
1
2n+1 =
∴Sn= [(1- )+( - )+…+(
-
)]=
.
2
裂项相消法公式大全
裂项相消法公式大全
裂项相消法是一种数学方法,用于解决等差数列、等比数列以及无理数列的求和问题。
该方法的基本思想是将等差数列、等比数列以及无理数列的每一项分别裂项,然后将裂项相消,从而得到等差数列、等比数列以及无理数列的和。
以下是裂项相消法的一些公式:
1. 等差数列求和公式:
Sn = n * (a1 + an) / 2
其中,n 是数列的长度,a1 是数列的首项,an 是数列的最后一项。
2. 等比数列求和公式:
Sn = (n/2) * (a1 * an) / (an + a1)
其中,n 是数列的长度,a1 是数列的首项,an 是数列的最后一项。
3. 无理数列求和公式:
对于无理数列,可以将每一项裂项,然后相消。
例如,对于无理数列π*(n+1)/n,可以将π*(n+1)/n 裂项为π/n 和 (n+1)*π/n,然后将两项相消。
4. 等差数列裂项公式:
a[n+1] - a[n] = (n+1-n)*a1
其中,a[n+1] 是数列的第 n+1 项,a[n] 是数列的第 n 项,n 是数列的长度。
5. 等比数列裂项公式:
a[n+1]/a[n] = (a[n]/a[n-1])*(a[n-1]/a[n])
其中,a[n+1] 是数列的第 n+1 项,a[n] 是数列的第 n 项,n 是数列的长度。
6. 无理数列裂项公式:
π*(n+1)/n - π/n = (n+1-n)*π
其中,π*(n+1)/n 是数列的第 n+1 项,π/n 是数列的第 n 项,n 是数列的长度。
以上是裂项相消法的一些公式,可以根据实际需要选择合适的公式进行求解。
数列求和裂项相消法
数列求和裂项相消法数列求和裂项相消法是一种利用数列中相邻项之差的特殊性质,通过对数列元素进行分解和化简,最终得到数列的和的公式的方法。
具体步骤如下:1. 找出数列中相邻项的差,通过将相邻项进行相减,得到一个新的数列。
2. 对新数列进行合并。
如果新数列中对应的项之间存在相消的情况,可以将它们合并为一个式子。
3. 将合并后的式子进行分解,找出一些特定的公式或规律。
4. 将分解后的公式和规律代入到原数列的求和公式中,得到数列的和的公式。
下面以一个简单的例子来说明这种方法:例子:求数列1+3+5+7+9+...+99的和。
分析:这个数列中相邻项的差为2,所以我们可以将它分解为:1 + (3-2) + (5-2*2) + (7-3*2) + (9-4*2) + ... + (99-49*2)在对每一项进行合并时,可以发现有些项之间存在相消的情况,比如:3-2和2*1可以相消;7-3*2和2*2可以相消;11-4*2和2*3可以相消;... ...因此,我们可以将这些相消的项合并起来,得到下面的式子:1 + 2(1-2) + 2(2-3) + 2(3-4) + ... + 2(49-50)接下来,我们可以将每一项进行拆分,得到如下的式子:1 + 2(-1) + 2(-1) + 2(-1) + ... + 2(-1)或者简写为:1 -2 + 2 - 2 + 2 - ... + 2 - 2这是一个等差数列,公差为-2,首项为1,共有50项。
因此,它的和可以通过等差数列求和公式来计算:S = (a1 + an) * n / 2其中,a1是首项,an是最后一项,n是项数。
将这些值代入到求和公式中,得到:S = (1 - 99) * 50 / 2 = -2450因此,数列1+3+5+7+9+...+99的和为-2450。
总之,数列求和裂项相消法是一种快速求解数列和的方法,尤其适用于一些具有相邻项之差规律的数列。
数列裂项相消法例子
数列裂项相消法数列裂项相消法是一种常用的数学技巧,用于求解一些复杂的数列求和问题。
以下是几个例子,说明该方法的应用。
例1:已知等差数列{an},其中a1=1,d=2,求前n项和Sn。
解:首先,我们可以将等差数列的通项公式表示为an=a1+(n-1)d=1+2(n-1)=2n-1。
然后,我们可以将前n项和表示为Sn=a1+a2+...+an。
接下来,我们使用裂项相消法,将相邻两项相加,得到:Sn=(1+3)+(3+5)+...+[(2n-3)+(2n-1)]=2+4+ (2)=n(n+1)例2:已知等比数列{an},其中a1=1,q=2,求前n项和Sn。
解:首先,我们可以将等比数列的通项公式表示为an=a1*q^(n-1)=2^(n-1)。
然后,我们可以将前n项和表示为Sn=a1+a2+...+an。
接下来,我们使用裂项相消法,将相邻两项相减,得到:Sn=(1-2)+(2-4)+...+[2^(n-2)-2^(n-1)]+2^(n-1)=-1-1-...-1+2^(n-1)=-(n-1)+2^(n-1)=(2^n)-1-(n-1)=(2^n)-n例3:已知数列{an},其中an=n^2,求前n项和Sn。
解:首先,我们可以将数列的通项公式表示为an=n^2。
然后,我们可以将前n项和表示为Sn=a1+a2+...+an。
接下来,我们使用裂项相消法,将相邻两项相减,得到:Sn=(1^2-0^2)+(2^2-1^2)+...+[n^2-(n-1)^2]=1+3+5+...+(2n-1)=n^2通过以上例子可以看出,裂项相消法是一种非常实用的数学技巧,可以用于求解各种复杂的数列求和问题。
需要注意的是,在使用该方法时,需要根据具体的数列类型和题目要求来选择合适的裂项方式。
高考数学数列求和错位相减裂项相消(解析版)全
数列求和-错位相减、裂项相消◆错位相减法错位相减法是求解由等差数列a n 和等比数列b n 对应项之积组成的数列c n (即c n =a n b n )的前n 项和的方法.这种方法运算量较大,要重视解题过程的训练.在讲等比数列的时候, 我们推导过等比数列的求和公式,其过程正是利用错位相减的原理, 等比数列的通项b n 其实可以看成等差数列通项a n a n =1 与等比数列通项b n 的积.公式秒杀:S n =(A ⋅n +B )q n -B (错位相减都可化简为这种形式,对于求解参数A 与B ,可以采用将前1项和与前2项和代入式中,建立二元一次方程求解.此方法可以快速求解出结果或者作为检验对错的依据.)【经典例题1】设数列a n 的前n 项和为S n ,若a 1=1,S n =a n +1-1.(1)求数列a n 的通项公式;(2)设b n =na n +1,求数列b n 的前n 项和T n .【答案】(1)a n =2n -1n ∈N ∗ ; (2)T n =2-n +22n.【解析】(1)因为a 1=1,S n =a n +1-1.所以S 1=a 2-1,解得a 2=2.当n ≥2时,S n -1=a n -1,所以a n =S n -S n -1=a n +1-a n ,所以2a n =a n +1,即a n +1a n=2.因为a 2a 1=2也满足上式,所以a n 是首项为1,公比为2的等比数列,所以a n =2n -1n ∈N ∗ .(2)由(1)知a n +1=2n ,所以b n =n2n ,所以T n =1×12+2×12 2+3×12 3+⋯+n ×12 n⋯①12T n =1×12 2+2×12 3+⋯+(n -1)×12 n +n ×12n +1⋯②①-②得12T n =12+12 2+12 3+⋯+12 n -n ×12 n +1=121-12 n1-12-n ×12 n +1=1-1+n 2 12 n ,所以T n =2-n +22n.【经典例题2】已知等差数列a n 的前n 项和为S n ,数列b n 为等比数列,且a 1=b 1=1,S 3=3b 2=12.(1)求数列a n ,b n 的通项公式;(2)若c n =a n b n +1,求数列c n 的前n 项和T n .【答案】(1)a n =3n -2,b n =4n -1(2)T n =4+n -1 4n +1【解析】(1)设等差数列a n 的公差为d ,等比数列b n 的公比为q ,由题意得:3a 1+3d =12,解得:d =3,所以a n =1+3n -1 =3n -2,由3b 2=12得:b 2=4,所以q =a2a 1=4,所以b n =4n -1(2)c n =a n b n +1=3n -2 ⋅4n ,则T n =4+4×42+7×43+⋯+3n -2 4n ①,4T n =42+4×43+7×44+⋯+3n -2 4n +1②,两式相减得:-3T n =4+3×42+3×43+3×44+⋯+3×4n -3n -2 4n +1=4+3×16-4n +11-4-3n -2 4n +1=-12+3-3n 4n +1,所以T n =4+n -1 4n +1【经典例题3】已知各项均为正数的等比数列a n 的前n 项和为S n ,且S 2=6,S 3=14.(1)求数列a n 的通项公式;(2)若b n =2n -1a n,求数列b n 的前n 项和T n .【答案】(1)a n =2n n ∈N * (2)T n =3-2n +32n 【解析】(1)设等比数列a n 的公比为q ,当q =1时,S n =na 1,所以S 2=2a 1=6,S 3=3a 1=14,无解.当q ≠1时,S n =a 11-q n 1-q ,所以S 2=a 11-q 21-q =6,S 3=a 11-q 31-q=14.解得a 1=2,q =2或a 1=18,q =-23(舍).所以a n =2×2n -1=2n n ∈N * .(2)b n =2n -1a n =2n -12n .所以T n =12+322+523+⋯+2n -32n -1+2n -12n ①,则12T n=122+323+524+⋯+2n -32n+2n -12n +1②,①-②得,12T n =12+222+223+224+⋯+22n -2n -12n +1=12+2122+123+124+⋯+12n -2n -12n +1=12+2×141-12n -1 1-12-2n -12n +1=32-2n +32n +1.所以T n =3-2n +32n.【练习1】已知数列a n 满足a 1=1,a n +1=2a n +1n ∈N ∗ .(1)求数列a n 的通项公式;(2)求数列n a n +1 的前n 项和S n .【答案】(1)a n =2n -1(2)S n =n -1 ⋅2n +1+2【解析】(1)由a n +1=2a n +1得:a n +1+1=2a n +1 ,又a 1+1=2,∴数列a n +1 是以2为首项,2为公比的等比数列,∴a n +1=2n ,∴a n =2n -1.(2)由(1)得:n a n +1 =n ⋅2n ;∴S n =1×21+2×22+3×23+⋅⋅⋅+n -1 ⋅2n -1+n ⋅2n ,2S n =1×22+2×23+3×24+⋅⋅⋅+n -1 ⋅2n +n ⋅2n +1,∴-S n =2+22+23++2n-n ⋅2n +1=21-2n1-2-n ⋅2n +1=1-n ⋅2n +1-2,∴S n =n -1 ⋅2n +1+2.【练习2】已知数列a n 的前n 项和为S n ,且S n =2a n -1.(1)求a n 的通项公式;(2)设b n =na n ,求数列b n 的前n 项和T n .【答案】(1)a n =2n -1(2)T n =(n -1)⋅2n +1【解析】(1)令n =1得S 1=a 1=2a 1-1,∴a 1=1,当n ≥2时,S n -1=2a n -1-1,则a n =S n -S n -1=2a n -2a n -1,整理得a n =2a n -1,∴an a n -1=2,∴数列a n 是首项为1,公比为2的等比数列,∴a n =2n -1;(2)由(1)得b n =na n =n ⋅2n -1,则T n =1⋅20+2⋅21+3⋅22+⋅⋅⋅+n ⋅2n -1,2T n =1⋅21+2⋅22+3⋅23+⋅⋅⋅+n ⋅2n ,两式相减得-T n =20+21+22+23+⋅⋅⋅+2n -1-n ⋅2n =1-2n1-2-n ⋅2n ,化简得T n =1-2n +n ⋅2n =(n -1)⋅2n +1.【练习3】已知数列a n 的前n 项和为S n ,且3S n =4a n -2.(1)求a n 的通项公式;(2)设b n =a n +1⋅log 2a n ,求数列b n 的前n 项和T n .【答案】(1)a n =22n -1(2)T n =409+6n -59×22n +3【解析】(1)当n =1时,3S 1=4a 1-2=3a 1,解得a 1=2.当n ≥2时,3a n =3S n -3S n -1=4a n -2-4a n -1-2 ,整理得a n =4a n -1,所以a n 是以2为首项,4为公比的等比数列,故a n =2×4n -1=22n -1.(2)由(1)可知,b n =a n +1⋅log 2a n =2n -1 ×22n +1,则T n =1×23+3×25+⋯+2n -1 ×22n +1,4T n =1×25+3×27+⋯+2n -1 ×22n +3,则-3T n =23+26+28+⋯+22n +2-2n -1 ×22n +3=23+26-22n +41-4-2n -1 ×22n +3=-403-6n -53×22n +3.故T n =409+6n -59×22n +3.【练习4】已知数列a n 满足a 1=1,a n +1=2n +1a na n +2n(n ∈N +).(1)求证数列2n a n 为等差数列;(2)设b n =n n +1 a n ,求数列b n 的前n 项和S n .【答案】(1)证明见解析 (2)S n =n -1 ⋅2n +1+2【解析】(1)由已知可得a n +12n +1=a n a n +2n ,即2n +1a n +1=2n a n +1,即2n +1a n +1-2n a n =1,∴2n a n 是等差数列.(2)由(1)知,2n a n =2a 1+n -1 ×1=n +1,∴a n =2nn +1,∴b n =n ⋅2nS n =1⋅2+2⋅22+3⋅23+⋅⋅⋅+n ⋅2n2S n =1⋅22+2⋅23+⋅⋅⋅+n -1 ⋅2n +n ⋅2n +1相减得,-S n=2+22+23+⋅⋅⋅+2n-n⋅2n+1=21-2n1-2-n⋅2n+1=2n+1-2-n⋅2n+1∴S n=n-1⋅2n+1+2◆裂项相消法把数列的通项拆成相邻两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.在消项时要注意前面保留第几项,最后也要保留相对应的倒数几项.例如消项时保留第一项和第3项,相应的也要保留最后一项和倒数第三项.常见的裂项形式:(1)1n(n+k)=1k1n-1n+k;(2)1(2n-1)(2n+1)=1212n-1-12n+1;(3)1n+k+n=1k(n+k-n);(4)2n+1n2(n+1)2=1n2-1(n+1)2;(5)2n2n-12n+1-1=12n-1-12n+1-1;(6)2n(4n-1)n(n+1)=2n+1n+1-2nn;(7)n+1(2n-1)(2n+1)2n =1(2n-1)2n+1-1(2n+1)2n+2;(8)(-1)n(n+1)(2n+1)(2n+3)=14(-1)n2n+1-(-1)n+12n+3(9)(-1)nn-n-1=(-1)n(n+n-1)=(-1)n n-(-1)n-1n-1(10)1n(n+1)(n+2)=121n(n+1)-1(n+1)(n+2).(11)n⋅n!=n+1!-n!(12)kk+1!=1k!-1k+1!【经典例题1】已知正项数列a n中,a1=1,a2n+1-a2n=1,则数列1a n+1+a n的前99项和为( )A.4950B.10C.9D.14950【答案】C【解析】因为a2n+1-a2n=1且a21=1,所以,数列a2n是以1为首项,1为公差的等差数列,所以,a2n=1+n-1=n,因为数列a n为正项数列,则a n=n,则1a n+1+a n=1n+1+n=n+1-nn+1+nn+1-n=-n+n+1,所以,数列1a n+1+a n的前99项和为-1+2-2+3-⋯-99+100=10-1=9.故选:C.【经典例题2】数列a n 的通项公式为a n =2n +1n 2n +12n ∈N *,该数列的前8项和为__________.【答案】8081【解析】因为a n =2n +1n 2n +12=1n 2-1(n +1)2,所以S 8=1-122+122-132 +⋯+182-192 =1-181=8081.故答案为:8081.【经典例题3】已知数列a n 的前n 项和为S n =n 2,若b n =1a n a n +1,则数列{b n }的前n 项和为________.【答案】n 2n +1【解析】当n =1时,a 1=S 1=12=1,当n ≥2时,a n =S n -S n -1=n 2-n -1 2=2n -1,且当n =1时,2n -1=1=a 1,故数列a n 的通项公式为a n =2n -1,b n =1a n a n +1=1(2n -1)(2n +1)=1212n -1-12n +1 ,则数列{b n }的前n 项和为:121-13 +13-15 +15-17 +⋯+12n -1-12n +1 =121-12n +1 =n 2n +1.故答案为:n2n +1【练习1】数列12n +1+2n -1的前2022项和为( )A.4043-12B.4045-12C.4043-1D.4045-1【答案】B 【解析】解:12n +1+2n -1=2n +1-2n -12n +1+2n -1 2n +1-2n -1=2n +1-2n -12记12n +1+2n -1 的前n 项和为T n ,则T 2022=123-1+5-3+7-5+⋯+4045-4043=124045-1 ;故选:B 【练习2】数列a n 的各项均为正数,S n 为其前n 项和,对于任意的n ∈N *,总有a n ,S n ,a 2n 成等差数列,又记b n =1a 2n +1⋅a 2n +3,数列b n 的前n 项和T n =______.【答案】n6n +9【解析】由对于任意的n ∈N *,总有a n ,S n ,a 2n 成等差数列可得:2S n =a 2n +a n ,当n ≥2时可得2S n -1=a 2n -1+a n -1,所以2a n =2S n -2S n -1=a 2n +a n -a 2n -1-a n -1,所以a 2n -a n -a 2n -1-a n -1=0,所以(a n +a n -1)(a n -a n -1-1)=0,由数列a n 的各项均为正数,所以a n -a n -1=1,又n =1时a 2n -a n =0,所以a 1=1,所以a n =n ,b n =1a 2n +1⋅a 2n +3=1(2n +1)(2n +3)=1212n +1-12n +3 ,T n =1213-15+15-17+⋯12n +1-12n +3 =1213-12n +3 =n 6n +9.故答案为:n6n +9.【练习3】12!+23!+34!+⋅⋅⋅+nn +1 !=_______.【答案】1-1n +1 !【解析】∵k k +1 !=k +1-1k +1 !=1k !-1k +1 !,∴12!+23!+34!+⋅⋅⋅+n n +1 !=1-12!+12!-13!+13!-14!+⋅⋅⋅+1n -1 !-1n !+1n !-1n +1 !=1-1n +1 !.故答案为:1-1n +1 !.【练习4】设数列a n 满足a 1+4a 2+⋯+(3n -2)a n =3n .(1)求a n 的通项公式;(2)求数列a n3n +1 的前n 项和T n .【答案】(1)a n =33n -2(2)T n =3n3n +1【解析】(1)解:数列a n 满足a 1+4a 2+⋯+(3n -2)a n =3n ,当n =1时,得a 1=3,n ≥2时,a 1+4a 2+⋯+(3n -5)a n -1=3(n -1),两式相减得:(3n -2)a n =3,∴a n =33n -2,当n =1时,a 1=3,上式也成立.∴a n =33n -2;(2)因为a n 3n +1=3(3n -2)(3n +1),=13n -2-13n +1,∴T n =11-14+14-17+⋯+13n -2-13n +1,=1-13n +1=3n3n +1.【练习5】已知数列a n 的前n 项和为S n ,且2S n =1-a n n ∈N ∗ .(1)求数列a n 的通项公式;(2)设b n =log 13a n ,C n =n +1-nb n b n +1,求数列C n 的前n 项和T n【答案】(1)a n =13n (2)T n =1-1n +1【解析】(1)当n =1时,2a 1=2S 1=1-a 1,解得:a 1=13;当n ≥2时,2a n =2S n -2S n -1=1-a n -1+a n -1,即a n =13a n -1,∴数列a n 是以13为首项,13为公比的等比数列,∴a n =13 n =13n .(2)由(1)得:b n =log 1313 n =n ,∴C n =n +1-n n n +1=1n -1n +1,∴T n =1-12+12-13+13-14+⋅⋅⋅+1n -1-1n +1n -1n +1=1-1n +1.【练习6】已知数列a n 中,2n a 1+2n -1a 2+⋯+2a n =n ⋅2n .(1)证明:a n 为等比数列,并求a n 的通项公式;(2)设b n =(n -1)a nn (n +1),求数列b n 的前n 项和S n .【答案】(1)证明见解析;a n =2n -1n ∈N *(2)2n n +1-1【解析】(1)解:2n a 1+2n -1a 2+⋯+2a n =n ⋅2n ,即为a 1+a 22+⋯+a n2n -1=n ·······①,又a 1+a 22+⋯+a n -12n -2=n -1,········②,①-②得a n2n -1=1,即a n =2n -1(n ≥2),又当n =1时,a 1=1=21-1,故a n =2n -1n ∈N * ;从而a n +1a n =2n2n -1=2n ∈N * ,所以a n 是首项为1,公比为2的等比数列;(2)由(1)得b n =(n -1)2n -1n (n +1)=2n n +1-2n -1n ,所以S n =212-201 +223-212 +⋯+2n n +1-2n -1n =2nn +1-1.【练习7】记S n 是公差不为零的等差数列a n 的前n 项和,若S 3=6,a 3是a 1和a 9的等比中项.(1)求数列a n 的通项公式;(2)记b n =1a n ⋅a n +1⋅a n +2,求数列b n 的前20项和.【答案】(1)a n =n ,n ∈N *(2)115462【解析】(1)由题意知a 23=a 1⋅a 9,设等差数列a n 的公差为d ,则a 1a 1+8d =a 1+2d 2,因为d ≠0,解得a 1=d又S 3=3a 1+3d =6,可得a 1=d =1,所以数列a n 是以1为首项和公差为1的等差数列,所以a n =a 1+n -1 d =n ,n ∈N *(2)由(1)可知b n =1n n +1 n +2 =121n n +1 -1n +1 n +2,设数列b n 的前n 和为T n ,则T n =1211×2-12×3+12×3-13×4+⋅⋅⋅+1n n +1 -1n +1 n +2=1212-1n +1 n +2,所以T 20=12×12-121×22 =115462所以数列b n 的前20和为115462【练习8】已知等差数列a n 满足a 3=7,a 5+a 7=26,b n =1a 2n -1(n ∈N +).(1)求数列a n ,b n 的通项公式;(2)数列b n 的前n 项和为S n ,求S n .【答案】(1)a n =2n +1,b n =14n n +1(2)S n =n 4n +1【解析】(1)由题意,可设等差数列a n 的公差为d ,则a 1+2d =72a 1+10d =26,解得a 1=3,d =2,∴a n =3+2n -1 =2n +1;∴b n =1a 2n -1=12n +1 2-1=14n 2+4n =14n n +1 ;(2)∵b n =14n n +1=141n -1n +1 ,S n =141-12+12-13+⋯+1n -1n +1 =141-1n +1 =n 4n +1.【练习9】已知正项数列a n 的前n 项和为S n ,且4、a n +1、S n 成等比数列,其中n ∈N ∗.(1)求数列a n 的通项公式;(2)设b n =4S na n a n +1,求数列b n 的前n 项和T n .【答案】(1)a n =2n -1(2)T n =n +n2n +1【解析】(1)解:对任意的n ∈N ∗,a n >0,由题意可得4S n =a n +1 2=a 2n +2a n +1.当n =1时,则4a 1=4S 1=a 21+2a 1+1,解得a 1=1,当n ≥2时,由4S n =a 2n +2a n +1可得4S n -1=a 2n -1+2a n -1+1,上述两个等式作差得4a n =a 2n -a 2n -1+2a n -2a n -1,即a n +a n -1 a n -a n -1-2 =0,因为a n +a n -1>0,所以,a n -a n -1=2,所以,数列a n 为等差数列,且首项为1,公差为2,则a n =1+2n -1 =2n -1.(2)解:S n =n 1+2n -12=n 2,则b n =4S n a n a n +1=4n 22n -1 2n +1 =4n 2-1+12n -1 2n +1 =1+12n -1 2n +1=1+1212n -1-12n +1,因此,T n =n +121-13+13-15+⋯+12n -1-12n +1 =n +n2n +1.【练习10】已知S n 是数列a n 的前n 项和,a 1=1,___________.①∀n ∈N ∗,a n +a n +1=4n ;②数列S n n 为等差数列,且S nn 的前3项和为6.从以上两个条件中任选一个补充在横线处,并求解:(1)求a n ;(2)设b n =a n +a n +1a n ⋅a n +1 2,求数列b n 的前n 项和T n .【答案】(1)条件选择见解析,a n =2n -1(2)T n =2n n +12n +12【解析】(1)解:选条件①:∀n ∈N ∗,a n +a n +1=4n ,得a n +1+a n +2=4n +1 ,所以,a n +2-a n =4n +1 -4n =4,即数列a 2k -1 、a 2k k ∈N ∗ 均为公差为4的等差数列,于是a 2k -1=a 1+4k -1 =4k -3=22k -1 -1,又a 1+a 2=4,a 2=3,a 2k =a 2+4k -1 =4k -1=2⋅2k -1,所以a n =2n -1;选条件②:因为数列S n n 为等差数列,且S nn 的前3项和为6,得S 11+S 22+S 33=3×S 22=6,所以S 22=2,所以S n n 的公差为d=S 22-S 11=2-1=1,得到Sn n =1+n -1 =n ,则S n =n 2,当n ≥2,a n =S n -S n -1=n 2-n -1 2=2n -1.又a 1=1满足a n =2n -1,所以,对任意的n ∈N ∗,a n =2n -1.(2)解:因为b n =a n +a n +1a n ⋅a n +1 2=4n 2n -1 22n +1 2=1212n -1 2-12n +1 2,所以T n =b 1+b 2+⋅⋅⋅+b n =12112-132+132-152+⋅⋅⋅+12n -1 2-12n +1 2 =121-12n +1 2 =2n n +1 2n +12.【过关检测】一、单选题1.S n=12+24+38+⋯+n2n=( )A.2n-n2n B.2n+1-n-22nC.2n-n+12n+1D.2n+1-n+22n【答案】B 【解析】由S n=12+24+38+⋯+n2n,得12S n=1×122+2×123+3×124+⋯+n⋅12n+1,两式相减得12S n=12+122+123+124+⋯+12n-n⋅12n+1=121-12n1-12-n12 n+1=1-12n-n⋅12 n+1=2n+1-n-22n+1.所以S n=2n+1-n-22n.故选:B.2.数列n⋅2n的前n项和等于( ).A.n⋅2n-2n+2B.n⋅2n+1-2n+1+2C.n⋅2n+1-2nD.n⋅2n+1-2n+1【答案】B【解析】解:设n⋅2n的前n项和为S n,则S n=1×21+2×22+3×23+⋯+n⋅2n, ①所以2S n=1×22+2×23+⋯+n-1⋅2n+n⋅2n+1, ②①-②,得-S n=2+22+23+⋯+2n-n⋅2n+1=21-2n1-2-n⋅2n+1,所以S n=n⋅2n+1-2n+1+2.故选:B.3.已知等比数列{an}的前n项和为Sn,若S3=7,S6=63,则数列{nan}的前n项和为( )A.-3+(n+1)×2nB.3+(n+1)×2nC.1+(n+1)×2nD.1+(n-1)×2n【答案】D【解析】设等比数列{an}的公比为q,易知q≠1,所以由题设得S3=a11-q31-q=7S6=a11-q61-q=63 ,两式相除得1+q3=9,解得q=2,进而可得a1=1,所以an=a1qn-1=2n-1,所以nan=n×2n-1.设数列{nan }的前n 项和为Tn ,则Tn =1×20+2×21+3×22+⋯+n ×2n -1,2Tn =1×21+2×22+3×23+⋯+n ×2n ,两式作差得-Tn =1+2+22+⋯+2n -1-n ×2n =1-2n1-2-n ×2n =-1+(1-n )×2n ,故Tn =1+(n -1)×2n .故选:D .4.已知等差数列a n ,a 2=3,a 5=6,则数列1a n a n +1的前8项和为( ).A.15B.25C.35D.45【答案】B 【解析】由a 2=3,a 5=6可得公差d =a 5-a 23=1 ,所以a n =a 2+n -2 d =n +1,因此1a n a n +1=1n +1 n +2 =1n +1-1n +2 ,所以前8项和为12-13 +13-14 +⋯+19-110 =12-110=25故选:B 5.已知数列a n 的前n 项和为S n ,S n +4=a n +n +1 2.记b n =8a n +1a n +2,数列的前n 项和为T n ,则T n 的取值范围为( )A.863,47 B.19,17C.47,+∞D.19,17【答案】A 【解析】因为数列a n 中,S n +4=a n +(n +1)2,所以S n +1+4=a n +1+n +2 2,所以S n +1+4-S n +4 =a n +1-a n +2n +3,所以a n =2n +3.因为b n =8a n +1a n +2,所以b n =82n +5 2n +7=412n +5-12n +7 ,所以T n =417-19+19-111+⋅⋅⋅+12n +5-12n +7=417-12n +7 .因为数列T n 是递增数列,当n =1时,T n =863,当n →+∞时,12n +7→0,T n →47,所以863≤T n <47,所以T n 的取值范围为863,47 .故选:A .6.已知数列满足a 1+2a 2+3a 3+⋯+na n =n 2,设b n =na n ,则数列1b n b n +1的前2022项和为( )A.40424043B.20214043C.40444045D.20224045【答案】D【解析】因为a 1+2a 2+3a 3+⋯+na n =n 2①,当n =1时,a 1=1;当n ≥2时,a 1+2a 2+3a 3+⋯+n -1 a n -1=(n -1)2②,①-②化简得a n =2n -1n ,当n =1时:a 1=2×1-11=1=1,也满足a n =2n -1n,所以a n =2n -1n ,b n =na n =2n -1,1b n b n +1=1(2n -1)(2n +1)=1212n -1-12n +1 所以1b n b n +1的前2022项和121-13+13-15+⋯+12×2022-1-12×2022+1 =121-12×2022+1 =20224045.故选:D .7.已知数列a n 满足a 1=1,且a n =1+a n a n +1,n ∈N *,则a 1a 2+a 2a 3+a 3a 4+⋯⋯+a 2020a 2021=( )A.2021 B.20202021C.122021D.22021【答案】B 【解析】∵a n =1+a n a n +1,即a n +1=a n 1+a n ,则1a n +1=1+a n a n =1a n +1∴数列1a n是以首项1a 1=1,公差d =1的等差数列则1a n =1+n -1=n ,即a n =1n∴a n a n +1=1n n +1=1n -1n +1则a 1a 2+a 2a 3+a 3a 4+⋯⋯+a 2020a 2021=1-12+12-13+...+12020-12021=20202021故选:B .8.等差数列a n 中,a 3=5,a 7=9,设b n =1a n +1+a n,则数列b n 的前61项和为( )A.7-3B.7C.8-3D.8【答案】C 【解析】解:因为等差数列满足a 3=5,a 7=9,所以d =a 7-a 37-3=1,所以a n =a 3+n -3 d =n +2,所以b n =1n +3+n +2=n +3-n +2,令数列b n 的前n 项和为S n ,所以数列b n 的前n 项和S n =4-3+5-4+⋯+n +3-n +2=n +3-3,所以S 61=8-3.故选:C .9.设数列n 22n -1 2n +1的前n 项和为S n ,则( )A.25<S 100<25.5B.25.5<S 100<26C.26<S 100<27D.27<S 100<27.5【答案】A 【解析】由n 2(2n -1)(2n +1)=14⋅4n 24n 2-1=141+14n 2-1 =141+121(2n -1)(2n +1)=14+1812n -1-12n +1,∴S n =n 4+181-13+13-15+⋅⋅⋅+12n -1-12n +1 =n 4+181-12n +1 =n (n +1)2(2n +1),∴S 100=100×1012(2×100+1)≈25.12,故选:A .10.已知数列a n 满足a n =1+2+4+⋯+2n -1,则数列2n a n a n +1 的前5项和为( )A.131B.163C.3031D.6263【答案】D 【解析】因为a n =1+2+4+⋯+2n -1=2n -1,a n +1=2n +1-1,所以2n a n a n +1=2n 2n -1 2n +1-1 =2n +1-1 -2n-1 2n -1 2n +1-1=12n -1-12n +1-1.所以2n a n a n +1 前5项和为121-1-122-1 +122-1-123-1 +⋯+125-1-126-1 =121-1-126-1=1-163=6263故选:D 11.已知数列a n 的首项a 1=1,且满足a n +1-a n =2n n ∈N * ,记数列a n +1a n +2 a n +1+2的前n 项和为T n ,若对于任意n ∈N *,不等式λ>T n 恒成立,则实数λ的取值范围为( )A.12,+∞ B.12,+∞C.13,+∞D.13,+∞【答案】C 【解析】解:因为a n +1-a n =2n n ∈N * ,所以a 2-a 1=21,a 3-a 2=22,a 4-a 3=23,⋯⋯,a n -a n -1=2n -1,所以a n -a 1=21+22+⋯+2n -1=21-2n -1 1-2=2n -2,n ≥2 ,又a 1=1,即a n =2n -1,所以a n +1=2n ,所以a n +1a n +2 a n +1+2 =2n 2n +1 2n +1+1=12n +1-12n +1+1,所以T n =121+1-122+1+122+1-123+1+⋯+12n +1-12n +1+1=13-12n +1+1<13所以λ的取值范围是13,+∞ .故选:C 12.在数列a n 中,a 2=3,其前n 项和S n 满足S n =n a n +12 ,若对任意n ∈N +总有14S 1-1+14S 2-1+⋯+14S n -1≤λ恒成立,则实数λ的最小值为( )A.1B.23C.12D.13【答案】C 【解析】当n ≥2时,2S n =na n +n ,2S n -1=n -1 a n -1+n -1 ,两式相减,整理得n -2 a n =(n -1)a n -1-1①,又当n ≥3时,n -3 a n -1=n -2 a n -2-1②,①-②,整理得n -2 a n +a n -2 =2n -4 a n -1,又因n -2≠0,得a n +a n -2=2a n -1,从而数列a n 为等差数列,当n =1时,S 1=a 1+12即a 1=a 1+12,解得a 1=1,所以公差d =a 2-a 1=2,则a n =2n -1,S n =na 1+n (n -1)2d =n 2,故当n ≥2时,14S 1-1+14S 2-1+⋯+14S n -1=122-1+142-1+⋯+12n 2-1=11×3+13×5+⋯+12n -1 2n +1=121-13+13-15+⋯+12n -1-12n +1 =121-12n +1 ,易见121-12n +1 随n 的增大而增大,从而121-12n +1 <12恒成立,所以λ≥12,故λ的最小值为12,故选:C .二、填空题13.已知正项数列{an }满足a 1=2且an +12-2an 2-anan +1=0,令bn =(n +2)an ,则数列{bn }的前8项的和等于__.【答案】4094【解析】由a 2n +1-2a 2n -a n a n +1=0,得(an +1+an )(an +1-2an )=0,又an >0,所以an +1+an >0,所以an +1-2an =0,所以an +1a n=2,所以数列{an }是以2为首项,2为公比的等比数列,所以a n =2×2n -1=2n ,所以b n =n +2 a n =n +2 ⋅2n ,令数列{bn }的前n 项的和为Tn ,T 8=3×21+4×22+⋯+9×28,则2T 8=3×22+4×23+⋯+9×29,-T 8=6+22+23+⋯+28 -9×29=6+221-271-2-9×29=2-8×29=-4094,则T 8=4094,故答案为:4094.14.已知数列{an }的前n 项和为Sn ,且Sn =2an -2,则数列n a n的前n 项和Tn =__.【答案】2-n +22n.【解析】解:∵Sn =2an -2,∴Sn -1=2an -1-2(n ≥2),设公比为q ,两式相减得:an =2an -2an -1,即an =2an -1,n ≥2,又当n =1时,有S 1=2a 1-2,解得:a 1=2,∴数列{an }是首项、公比均为2的等比数列,∴an =2n ,n a n =n2n ,又Tn =121+222+323+⋯+n2n ,12Tn =122+223+⋯+n -12n +n 2n +1,两式相减得:12Tn =12+122+123+⋯+12n -n 2n +1=121-12n1-12-n2n +1,整理得:Tn =2-n +22n.故答案为:Tn =2-n +22n .15.将1+x n (n ∈Ν+)的展开式中x 2的系数记为a n ,则1a 2+1a 3+⋅⋅⋅+1a 2015=__________.【答案】40282015【解析】1+xn的展开式的通项公式为T k +1=C k n x k ,令k =2可得a n =C 2n =n n -12;1a n =2n n -1=21n -1-1n ;所以1a 2+1a 3+⋅⋅⋅+1a 2015=21-12 +212-13 +⋯+212014-12015=21-12015 =40282015.故答案为:40282015.16.数列a n 的前项n 和为S n ,满足a 1=-12,且a n +a n +1=2n 2+2nn ∈N * ,则S 2n =______.【答案】2n 2n +1【解析】由题意,数列{a n }满足a n +a n +1=2n 2+2n,可得a 2n -1+a 2n =2(2n -1)2+2(2n -1)=2(2n -1)(2n +1)=12n -1-12n +1,所以S 2n =11-13+13-15+⋯+12n -1-12n +1=1-12n +1=2n2n +1,故答案为:2n2n +1三、解答题17.已知数列a n 满足a 1=1,2a n +1a n +a n +1-a n =0.(1)求证:数列1a n 为等差数列;(2)求数列a n a n +1 的前n 项和S n .【答案】(1)证明见解析;(2)S n =n2n +1.【解析】(1)令b n =1a n ,因为b n +1-b n =1a n +1-1a n =a n -a n +1a n ⋅a n +1=2,所以数列b n 为等差数列,首项为1,公差为2;(2)由(1)知:b n =2n -1;故a n =12n -1;所以a n a n +1=12n -1 2n +1=1212n -1-12n +1 ;所以S n =a 1a 2+a 2a 3+⋯+a n a n +1=11×3+13×5+⋯+12n -1 2n +1=121-13+13-15+⋯+12n -1-12n +1 =n 2n +1;18.已知正项数列a n 的前n 项和为S n ,a n +1-a n =3n ∈N * ,且S 3=18.(1)求数列a n 的通项公式;(2)若b n =1a n a n +1,求数列b n 的前n 项和T n .【答案】(1)a n =3n (2)T n =n9n +9【解析】(1)∵a n +1-a n =3,∴数列a n 是以公差为3的等差数列.又S 3=18,∴3a 1+9=18,a 1=3,∴a n =3n .(2)由(1)知b n =13n ×3n +1=19×1n -1n +1 ,于是T n =b 1+b 2+b 3+⋅⋅⋅+b n =191-12 +12-13 +13-14 +⋅⋅⋅+1n -1n +1 =191-1n +1 =n 9n +919.已知数列a n 的首项为3,且a n -a n +1=a n +1-2 a n -2 .(1)证明数列1a n -2 是等差数列,并求a n 的通项公式;(2)若b n =-1 n an n +1,求数列b n 的前n 项和S n .【答案】(1)证明见解析;a n =1n+2(2)-1+-1 n1n +1【解析】(1)因为a n -a n +1=a n +1-2 a n -2 ,所a n -2 -a n +1-2 =a n +1-2 a n -2 ,则1a n +1-2-1a n -2=1,所以数列1a n -2 是以13-2=1 为首项,公差等于1的等差数列,∴1a n -2=1+n -1 =n ,即a n =1n+2;(2)b n =-1 n a n n +1=-1 n 1n n +1+2n +1 =-1 n 1n +1n +1 ,则S n =-1+12 +12+13 -13+14 +⋅⋅⋅+-1 n 1n +1n +1 =-1+-1 n 1n +1;综上,a n =1n +2,S n =-1+-1 n 1n +1 .20.已知数列a n 中,a 1=-1,且满足a n +1=2a n -1.(1)求证:数列a n -1 是等比数列,并求a n 的通项公式;(2)若b n =n +11-a n +1,求数列b n 的前n 项和为T n .【答案】(1)证明见解析,a n=-2n+1(2)T n=32-n+32n+1【解析】(1)解:对任意的n∈N∗,a n+1=2a n-1,所以a n+1-1=2a n-1,且a1-1=-2,所以数列a n-1是以-2为首项,2为公比的等比数列.所以a n-1=-2n,所以a n=-2n+1.(2)解:由已知可得b n=n+11-a n+1=n+12n+1,则T n=222+323+424+⋯+n+12n+1,所以,12T n=223+324+⋯+n 2n+1+n+12n+2,两式相减得12T n=222+123+⋯+12n+1-n+12n+2=12+181-12n-11-12-n+12n+2=34-1 2n+1-n+12n+2=34-n+32n+2,因此,T n=32-n+32n+1.21.已知等比数列a n,a1=2,a5=32.(1)求数列a n的通项公式;(2)若数列a n为正项数列(各项均为正),求数列(2n+1)⋅a n的前n项和T n.【答案】(1)a n=2n或a n=2·-2n-1;(2)T n=2+(2n-1)⋅2n+1.【解析】(1)等比数列a n的公比为q,a1=2,a5=32,则q4=a5a1=16,解得q=±2,所以当q=2时,a n=2n,当q=-2时,a n=2⋅(-2)n-1.(2)由(1)知,a n=2n,则有(2n+1)⋅a n=(2n+1)⋅2n,则T n=3×21+5×22+7×23+⋯+(2n+1)⋅2n,于是得2T n=3×22+5×23+⋯+(2n-1)⋅2n+(2n+1)⋅2n+1,两式相减,得-T n=6+2×(22+23+⋯+2n)-(2n+1)⋅2n+1=6+2×22×(1-2n-1)1-2-(2n+1)⋅2n+1=-2-(2n-1)⋅2n+1,所以T n=2+(2n-1)⋅2n+1.22.已知等差数列a n满足a1=1,a2⋅a3=a1⋅a8,数列b n的前n项和为S n,且S n=32b n.(1)求数列a n,b n的通项公式;(2)求数列a n b n的前n项和T n.【答案】(1)a n=1或a n=2n-1;b n=3n;(2)若a n=1,则T n=33n-13;若a n=2n-1,则T n=n-13n+1+3.【解析】(1)设等差数列a n的公差为d,∵a1=1,a2⋅a3=a1⋅a8,∴1+d1+2d=1+7d,化简得2d2-4d=0,解得:d=0或d=2,若d=0,则a n=1;若d=2,则a n=2n-1;由数列b n的前n项和为S n=32b n-32①,当n=1时,得b1=3,当n≥2时,有S n-1=32b n-1-32②;①-②有b n=32b n-32b n-1,即b nb n-1=3,n≥2,所以数列b n是首项为3,公比为3的等比数列,所以b n=3n,综上所述:a n=1或a n=2n-1;b n=3n;(2)若a n=1,则a n b n=b n=3n,则T n=3+32+⋯+3n=31-3n1-3=33n-12,若a n=2n-1,则a n b n=2n-13n,则T n=1×3+3×32+⋯+2n-1×3n③;③×3得3T n=1×32+3×33+⋯+2n-1×3n+1④;③-④得:-2T n=3+2×32+2×33+⋯+2×3n-2n-1×3n+1=3+2×32(1-3n-1)1-3-(2n-1)×3n+1整理化简得:T n=n-13n+1+3,综上所述:若a n=1,则T n=33n-13;若a n=2n-1,则T n=n-13n+1+3.。
专题一 数列求和(2)裂项相消法+错位相减法
专题一(2)裂项相消法求数列前n 项和学习目标 1裂项相消法求和的步骤和注意事项 2使学生能用裂项相消法来解决分式数列的求和探究(一)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.例1、说明:(1)裂项相消法的关键就是将数列的每一项拆成二项或多项,使数列中的项出现有规律的抵消项,进而达到求和的目的。
即:把数列的通项拆成两项之差,在求和时一些正负项相互抵消,于是前n 项和变成首尾若干项之和. 适合于分式型数列的求和。
(2)利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项,再就是将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原通项公式相等.(3)一般地若{a n }是等差数列,则1a n a n +1=1d (1a n -1a n +1),1a n ·a n +2=12d (1a n -1a n +2).(4)此外根式在分母上时可考虑利用有理化因式相消求和.变式练习:项和的前)2(1,,531,421,311求数列n n n +⋅⋅⋅⨯⨯⨯.变式与拓展:1、项和的前)13)(23(1,,,741,411求数列n n n +-⋅⋅⋅⨯⨯例2、设{a n }是等差数列,且a n ≠0.求证1a 1a 2+1a 2a 3+…+1a n a n +1=na 1a n +1.证明:设{a n }的公差为d ,则1a 1a 2+1a 2a 3+…+1a n a n +1=⎝ ⎛⎭⎪⎫1a 1-1a 2·1a 2-a 1+⎝ ⎛⎭⎪⎫1a 2-1a 3·1a 3-a 2+…+⎝ ⎛⎭⎪⎫1a n -1a n +1·1a n +1-a n=1d ⎝ ⎛⎭⎪⎫1a 1-1a 2+1a 2-1a 3+…+1a n -1a n +1=1d ⎝ ⎛⎭⎪⎫1a 1-1a n +1=1d ·a 1+nd -a 1a 1a n +1=na 1a n +1. 所以1a 1a 2+1a 2a 3+…+1a n a n +1=n a 1a n +1.常见的拆项公式有:例3、已知数列{a n }:11,211+,3211++,…1123n+++,…,求它的前n 项和。
[市示范课课件]数列求和之裂项相消法
(4) 裂项的关健是紧抓相邻两项的相同项!
南海中学 钱耀周
问题探究• 提炼方法
海中
高三数学
问题3、 若数列 {an}为等差数列, an ¹ 0 ,公差 d ¹ 0 ,
你会求下列的 Sn 吗?
Sn
=
1 a1a2
+
1 a2a3
+
1 a3a4
+L +
1 anan+1
=
_____
南海中学 钱耀周
问题探究• 提炼方法
作一些推广吗?
南海中学 钱耀周
问题探究• 提炼方法
海中
高三数学
问题1、 你会求数列
ìï 1 üï
í ïî
n
(
n
+
1)
ý ïþ
的前
n 项和
Sn
吗?
Sn
=
1 1´2
+
1 2´3
+
1 3´4
+L +
1
n´(n
+ 1)
=
?
南海中学 钱耀周
问题探究• 提炼方法
海中
高三数学
问题2、
你会求数列
ìï í ïî
(
海中
高三数学
问题4、 数列
ìï í ïî
n
(
1 n+
2)
üïý的前 ïþ
n
项和
Sn
=
1 1´3
+
1 2´4
+
1 3´5
+L +
1
n( n +
2)
=
______ .
裂项相消法求和
裂项相消法求和
四、裂项相消法求和
这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:
4.在数列{a n }中,11211++⋅⋅⋅++++=
n n n n a n ,又11+⋅=n n n a a b ,求数列{b n }的前n 项的和.
练习:求数列
⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.
五、利用数列的通项求和
先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.
5.求
11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和.
实战练习:已知等差数列{}n a 的前n 项和为n S ,公差,50,053=+≠S S d 且1341,,a a a 成等比数列.
(Ⅰ)求数列{}n a 的通项公式;
(Ⅱ)设⎭
⎬⎫⎩⎨⎧n n a b 是首项为1,公比为3的等比数列,求数列{}n b 的前n 项和n T .。
数列求和————裂项相消法高考常见的类型总结
数列求和————裂项相消法高考常见的类型总结裂项相消法是数列求和中的常见求解策略,说是高考的高频考点,通常出现在数列解答题的第二问,是学生必须掌握的内容,本文章就是对裂项相消法常见的经典题型进行总结,,基本上,数列的通项中含有乘积的分式的形式,就应该想到这种方法。
(一)、减法型:裂项为减法,分母之“差”等于分子裂项相消法就是将代数式中的项拆分成“两项的差”的形式,使得其在进行求和运算时恰好能够“抵消”多数项而剩余少数几项,从而达到简便求和的目的﹒本文试举例说明﹒常用的裂项公式(1);(2);(3);(4);(5);(6)类型一:等差型(裂项主要是逆用通分,把乘积式转化为两式的差)(1)连续两项型1.已知等差数列的前项和为 ,则数列的前100项和为A.B.C.D.解、设等差数列{an }的首项为a1,公差为d.∵a5=5,S5=15,∴⇒⇒an=n.∴==,S100=++…+=1-= .2.已知数列满足,, .(1)求证:数列是等比数列;(2)已知,求数列的前项和 .解、(1)当时,、当时∴数列是首项为2,公比为的等比数列(2)由(1)知∴∴∴ .3.若的前项和为,点均在函数的图像上.(1)求数列的通项公式;(2),求数列的前项和 .解、(1)由于点在函数的图像上,所以①.当时,;当时,②,①-②得 .当时上式也满足,所以数列的通项公式为.(2)由于,所以,所以所以 .(2)相隔项4.记为数列的前n项和,已知 .(1)求的值及的通项公式;(2)设,求数列的前n项和.解:(1)当时,,故,即,又,故对任意, .(2)由题知,则前n项和 .变式2.已知正项数列的前项和为,满足.(1)求数列的通项公式;(2)已知对于,不等式恒成立,求实数的最小值.解、(1)时,,又,∴.当时,,,作差得.∵,故,∴,故数列为等差数列,∴.(2)由(1)知,∴,从而,∴,故的最小值为.总结:(1)利用裂项相消求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面剩两项。
运用裂项相消法求和的步骤
解题宝典裂项相消法是求数列和的一种重要方法,是指将数列的通项公式通过变形,分裂为两项之差的形式,在求和时通过抵消中间的部分项,达到求和目的的方法.一般地,运用裂项相消法求和主要有以下两个步骤.第一步,裂项运用裂项相消法求和的关键在于裂项,这也是很多同学感觉比较困难的地方.其实裂项是通分的逆运算,例如,a n =1n (n +1)可裂为a n =1n -1n +1,我们若将1n -1n +1通分即可得到1n (n +1).同学们只要把握这一点,便能顺利将通项公式裂项.常见的裂项方式有1n ()n +k =1k æèöø1n -1n +k 、n (n +1)!=1n !-1(n +1)!、1()2n -1()2n +1=12æèöø12n -1-12n +1、1n +n +k =1k ()n +k -n 、1n ()n +1()n +2=12[1n ()n +1-1()n +1()n +2].例1.数列{}c n 满足c n =2n +1(2n +1-2)(2n +1-1),其前n 项和为T n ,若T n <9991000,则n 的最大值是.分析:仔细观察,可发现该通项公式是分式的形式,将12n -1-12n +1-1通分可得2n +1(2n +1-2)(2n +1-1),即可将{}c n 的通项公式裂为c n =12n -1-12n +1-1,这样便可利用裂项相消法来求和.解:c n =2n +1(2n +1-2)(2n +1-1)=2n (2n -1)(2n +1-1)=1(2n -1)-1(2n +1-1),∴T n =c 1+c 2+⋯+c n =(12-1-122-1)+(122-1-123-1)+⋯+(12n -1-12n +1-1)=12-1-12n +1-1=1-12n +1-1.由1-12n +1-1<1-11000可得12n +1-1>11000,即2n +1*,则n +1≤9,即n ≤8.第二步,求和裂项的目的是为了将数列中的每项分解,然后重新组合,以便能消去其中的一些项.需要注意的是,必须搞清楚消掉了哪些项,保留了哪些项.一般保留的项前后具有对称的特点,即前面剩下的项数与后面剩下的项数相等.例2.若数列{}a n 满足a 1=1,a n -1+a n =a n a n -1(n 2-n )∙(-1)n(n ∈N *,且n ≥2)则数列{}a n +1(2n +1)(2n +3)的前6项和为.解:∵a n -1+a n =a n a n -1()n 2-n ∙()-1n,∴(-1)n (1a n +1a n -1)=1n -1-1n,∴(1a 1+1a 2)-(1a 2+1a 3)+(1a 3+1a 4)-…+(-1)n (1a n -1+1a n )=(1-12)+(12-13)+…+(1n -1-1n)=1-1n .当n 为奇数时,1a 1-1a n =1-1n,∴a n =n .当n 为偶数时,1a 1+1a n =1-1n,∴a n =-n .∴a n =(-1)n +1n .∴a n +1()2n +1()2n +3=(-1)n ()n +1()2n +1()2n +3=(-1)n 14(12n +1+12n +3).∴数列ìíîüýþa n +1()2n +1()2n +3的前6项和为14[-(13+15)+(15+17)-…+(113+115)]=14(115-13)=-115.本题主要运用了数列求和的方法——裂项求和法以及分类讨论思想.我们需分n 为奇数和偶数两种情况进行讨论,然后将数列的通项公式裂项,重新组合再来求和.在求和时,同学们要注意把握其中的规律,有的是前后项相消,有的是隔项相消.裂项相消法看似“千变万化”,实则“有迹可循”,同学们只要把握其中的规律,就能以不变应万变,顺利求得数列的和.(作者单位:吉林省长春市十一高中)付禹41。
数列求和-裂项法
通项an 1 cn cn1
2n( n 1) Sn 2n 1
3 5 7 2n 1 3.求和Sn . 2 2 2 2 (1 2) (2 3) (3 4) [n(n 1)]
试一试:可以调整一下,一步到位吗?
小结:
在分式求和中,恰当地裂开通项 转化为新数列的两项差以达到累加相 消,实现无限到有限的跨越!
an = cn - cn + k (n , n + k ? N )
*
裂项相消法与错位相减法
例题已知数列 . {an }满足:a1 , a2 a1 , a3 a2 , , an an 1 , 是首 项、公差均为2的等差数列. ( Ⅰ求数列 ) {an }的通项公式an; (2n 1) 3n * (Ⅱ)令bn (n N ),求数列{bn }的前 an n项和Tn .
2n 1 2n 1 通项an 2 2 2 [n(n 1)] n (n 1)
1 1 2 n (n 1) 2
cn cn1
1 Sn 1 2 (n 1)
2 4.求和:Sn = k+1 k -1)(2 -1) k=1 (2 2 (2 - 1) - (2 -1) n+1 n+1 n n (2 -1)(2 -1) (2 -1)(2 -1)
2 4.求和:Sn = k+1 k -1)(2 -1) k=1 (2
n
k
4 12 4 22 4 32 4 n2 2.求数列 2 , , , , , 2 2 2 4 1 1 4 2 1 4 3 1 4 n 1 的前n项和.
数列裂项相消法求和
数列的求和是高考的必考题型,求和问题关键在于分析通项的结构特征,选择恰当的求和方法。
常见的求和方法有:公式法、错位相减法、裂项相消法、分组求和法等。
今天讲讲裂项相消法求和。
常见的列项求和公式()11111)1(+-=+n n n n())11(11)2(kn n k k n n +-=+ )121121(21141)3(2+--=-n n n nn n n -+=++111)4( )(11)5(n k n k kn n -+=++nn na a a log )1(log )11(log )6(-+=+注意:裂开后,两项之差前面的系数为小分母大分母-1【典例1】形如)(1k n n a n+=型{}{}{}nn nn n n nn n n T n b s b a n a a s s n a 项和的前求数列设项公式。
是等比数列,并求其通证明数列都成立。
对任意的正整数且满足项和为的各项为正数,前已知数列,1)2()1(324,2=-+= ⎩⎨⎧≥-==-2,1n ,11n S S S a a S n n n n n ,得用公式求分析:已知下面求n>1时,(1)【典例2】形如kn n a n++=1型 {}2019,,)()1(124)(S S n a N n n f n f a x x f n n n a求项和为的前记数列,令),,的图像过点(已知函数+∈++==解析:【规律方法】利用裂项相消法求和的注意事项。
1、抵消后并不定只剩下第一项和最后一项,也有可能是前面两项,和后两项;或者是前面几项,后面几项。
2、将通项裂开后,有时需要调整前面的系数,系数为:裂开的两项分母之差的倒数。
高中数学数列求和的七种方法
高中数学数列求和的七种方法
数列求和的七种方法:倒序相加法、分组求和法、错位相减法、裂项相消法、乘公比错项相减(等差等比)、公式法、迭加法。
下面是小编给大家带来的数列求和的七种方法,希望能够帮助到大家!
高中数学数列求和的七种方法
1、倒序相加法
倒序相加法如果一个数列{an}满足与首末两项等距离的两项的和相等(或等于同一常数),那么求这个数列的前n项和,可用倒序相加法。
2、分组求和法
分组求和法一个数列的通项公式是由几个等差或等比或可求和的数列的通项公式组成,求和时可用分组求和法,分别求和而后相加。
3、错位相减法
错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和可用此法来求,如等比数列的前n项和公式就是用此法推导的。
4、裂项相消法
裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和。
5、乘公比错项相减(等差等比)
这种方法是在推导等比数列的前n项和公式时所用的方法,这种
方法主要用于求数列{anbn}的前n项和,其中{an},{bn}分别是等差数列和等比数列。
6、公式法
对等差数列、等比数列,求前n项和Sn可直接用等差、等比数列的前n项和公式进行求解。
运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。
7、迭加法
主要应用于数列{an}满足an+1=an+f(n),其中f(n)是等差数列或等比数列的条件下,可把这个式子变成an+1-an=f(n),代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出an,从而求出Sn。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[中学]数列求和裂项相消法
裂项相消法
典型例题
(以下n均为正整数)
例1: 这是一道较为简单的裂项相消法化简题,,到,,,到,,,到,,……,n 到n,,,都相差,,直接裂项即可。
(化成1/1-1/2+1/2-1/3...)
例2: 这是例,的升华题,是将分母稍作变化,题目就不一样了.,到3,3到5,5到7,……,2n-1到2n,,,都相差2,裂项后总体要乘以1/2,这样才可以。
例3:
这是例2的拓展题,此时分母每个因数相差3了,做法一样,裂项后总体要乘以1/3,这样才行。
例4:
这是将例1一般化,此时分母每个因数相差1,裂项后直接相消。
例5:
这是将例3的拓展题,此时分母每个因数相差3,做法一样,裂项后总体要乘以1/3,这样才行。
例6: 这道题易错题,易写成,这样就造成错误,原来是正的,现在是负的。
正好相反,这一点多注意。
例7:
这道题易错题,这样就造成错误,原来是正的,现在是负的。
正好相反,这一点多注意。