矩阵的基本运算
数学矩阵的基本运算
数学矩阵的基本运算引言:在数学中,矩阵是一种非常重要的工具,它在多个学科和领域都有广泛的应用。
矩阵不仅可以表示线性方程组,还可以描述向量空间的变换。
矩阵的基本运算是我们学习矩阵的第一步,掌握了这些基本运算,我们才能在后续的学习中更好地应用矩阵解决问题。
本次教案将系统地介绍数学矩阵的基本运算,包括加法、减法、数乘和乘法,并结合具体的例子进行解释和演示。
第一节加法运算1.1 矩阵加法的定义矩阵加法是指将两个具有相同行数和列数的矩阵对应位置上的元素相加,得到一个新的矩阵。
例如,对于两个3行2列的矩阵A和B,它们的加法运算可以表示为:C=A+B。
C矩阵中的每个元素c(i,j)等于矩阵A中元素a(i,j)和矩阵B中元素b(i,j)的和。
1.2 矩阵加法的性质矩阵加法具有以下性质:- 结合律:(A+B)+C=A+(B+C),即矩阵加法满足结合律。
- 交换律:A+B=B+A,即矩阵加法满足交换律。
- 零矩阵:对于任意的矩阵A,都有A+O=A,其中O是全零矩阵。
1.3 矩阵加法的例子考虑以下两个矩阵:A = [1 2 34 5 6]B = [7 8 910 11 12]它们的加法运算为:C = A + B = [8 10 1214 16 18]解释:C矩阵中的第一个元素c(1,1)等于矩阵A中元素a(1,1)和矩阵B中元素b(1,1)的和,即1+7=8,以此类推。
第二节减法运算2.1 矩阵减法的定义矩阵减法是指将两个具有相同行数和列数的矩阵对应位置上的元素相减,得到一个新的矩阵。
例如,对于两个3行2列的矩阵A和B,它们的减法运算可以表示为:C=A-B。
C矩阵中的每个元素c(i,j)等于矩阵A中元素a(i,j)和矩阵B中元素b(i,j)的差。
2.2 矩阵减法的性质矩阵减法具有以下性质:- 结合律:(A-B)-C=A-(B-C),即矩阵减法满足结合律。
- 零矩阵:对于任意的矩阵A,都有A-O=A,其中O是全零矩阵。
矩阵的基本运算
如果 AT A 则矩阵A称为反对称矩阵.
由此可知,反对称矩阵旳对角元必为零,即 aii = 0
0 5 4
例如
B
5
0 1 是3阶反对称矩阵.
4 1 0
例 设列矩阵 X x1, x2 , , xn T 满足 X T X 1,
E为n阶单位矩阵, H E 2XX T , 证明 H是对称矩阵, 且HH T E.
(i 1, 2, m; j 1, 2, , n)
把此乘积记作 C AB
例如
C 2 1
4 2
222 3
4
16
?
32
622 8 16 22
1 0
例
若
A
1
1
0 5
求AB.
1 3 1
2
0
4
0
B
1
3
1
3 2 1 2
4
1
1
1
解
因
A
aij
,B
34
bij
证 因为 H T (E 2 XX T )T ET 2( XX T )T E 2XX T H
所以H 是对称矩阵. HH T H 2 (E 2 XX T )2
E 4XX T 4( XX T )( XX T ) E 4XX T 4X ( X T X )X T E 4XX T 4XX T E
(3) (AB)( A)B A(B) (其中为常数)
(4) AE EA A
注 矩阵乘法不满足互换律,即 AB BA
例如
设
A
1
1
,
B
1
1
1 1
1 1
两个非零矩阵旳 乘积可能是零矩阵
则
第二章矩阵的运算及与矩阵的秩
第1页,共80页。
一、矩阵的线性运算
§2.1 矩阵的基本运算
A=(aij ) m×n ,B=(bij ) m×n ,l为给定的数. (1)加法:C=(aij+bij)为矩阵A与B相加的和,记作A+B
(2)数乘:C=l(aij)为数 l与矩阵A相乘的积,记作lA
l 0 0
§2.1 矩阵的基本运算 ➢ 推论:若m×n矩阵A与B等价,则存在若干个m×m初等矩阵Pi(i=1,2-----,s)和若干个n×n初等矩阵Qj(j=1,2-----,t)使得
P 1 P 2 P sA Q 1 Q 2 Q tB
第26页,共80页。
三、矩阵的转置 定义2.3:把m×n矩阵A的行和列依次互换得到的一个n×m 矩阵,称为A的转置,记作AT或A’.
001 a 31a 32a 33a 3 4 a 31 a 32 a 33 a 34
100 a 11 a 12 a 13 a 1 4a 11 a 12 a 13 a 14 E ( 2 ,3 ( k )A ) 01k a 21 a 22 a 23 a 2 4 a 2 1 k3a 1 a 2 2 k3a 2 a 2 3 k3a 3 a 2 4 k3 a 4
上述过程也可以等同于:
a11 a12 a13 a14
a11 a12 a13 a14
a21 a22 a23 a24 r 2 r3 a31 a32 a33 a34
a31 a32 a33 a34
a21 a22 a23 a24
第20页,共80页。
§2.1 矩阵的基本运算
100 a 11a 12a 13a 1 4 a 11 a 12 a 13 a 14 E (2 (k)A ) 0k0 a 21a 22a 23a 2 4 k2a 1k2a 2k2a 3k2a 4
矩阵的运算及其运算规则
矩阵的运算及其运算规则矩阵是线性代数中的基本概念,也是数学、计算机科学、物理、经济学等领域中广泛运用的工具之一。
矩阵的运算是矩阵代数的重要组成部分,并且矩阵的运算规则是进行代数运算、求解线性方程组、计算特征值和特征向量等的关键。
1.基本矩阵运算矩阵的四则运算:加法、减法、乘法和除法是矩阵运算的基础。
加减法均是对应元素相加减,必须两个矩阵形状相同才可加减。
例如A、B是两个3\*3矩阵,那么它们相加后我们可以表示为C=A+B,C的每个元素都等于A和B对应位置的元素之和。
矩阵的乘法是相乘并对乘积元素求和,而不是元素相乘。
A\*B中A的列数应该等于B的行数,乘积C则应该是A的行数和B的列数构成的矩阵。
例如A是一个3\*2 的矩阵,B是一个2\*4 的矩阵,则将A的每一行和B的每一列依次相乘求和,得到一个3\*4的结果矩阵C。
除法在矩阵中一般不存在,但是可以通过矩阵的逆来实现除法运算。
如果乘积A\*B=C,且B是可逆的,那么我们可以利用B的逆矩阵来得出矩阵A,即A=B^{-1}C。
2.转置和逆矩阵矩阵的转置是将矩阵的行和列交换位置得到的新矩阵。
如果矩阵A的形状是m\*n,则转置后的矩阵形状是n\*m。
例如A=\begin{bmatrix}1 & 2 \\ 3 & 4 \\ 5 & 6\end{bmatrix},则A的转置为A^T=\begin{bmatrix}1 & 3 & 5 \\ 2 & 4 & 6\end{bmatrix}。
矩阵的逆矩阵是一个矩阵,使得矩阵和它的逆矩阵的乘积为单位矩阵。
只有方阵才有逆矩阵,而且并不是所有的方阵都有逆矩阵。
如果一个矩阵A不能求逆,那么我们称它是奇异矩阵或不可逆矩阵。
如果一个矩阵A可以求逆,那么我们称它是非奇异矩阵或可逆矩阵。
逆矩阵的求解方法有伴随矩阵法、高斯-约旦消元法、矩阵分块法等。
3.矩阵的性质及运算规则矩阵的性质包括转置、对称、正交、幂等、奇异等性质。
矩阵的计算方法总结
矩阵的计算方法总结矩阵是线性代数中的重要概念,广泛应用于各个科学领域。
矩阵的计算方法主要包括矩阵的基本运算、矩阵的乘法、矩阵的逆以及特殊矩阵的计算等。
本文将对这些计算方法进行详细的总结。
首先,矩阵的基本运算包括矩阵的加法和减法。
矩阵的加法和减法都是对应位置上的元素进行相加或相减的操作。
具体而言,对于两个相同大小的矩阵A和B,矩阵的加法计算公式为C = A + B,其中C的第i行第j列的元素等于A的第i行第j列的元素加上B的第i行第j列的元素。
矩阵的减法同样遵循相同的规则。
接下来,矩阵的乘法是比较复杂的计算方法。
矩阵的乘法不遵循交换律,即AB不一定等于BA。
矩阵的乘法计算公式为C= AB,其中A是m×n矩阵,B是n×p矩阵,C是m×p矩阵。
具体来说,在矩阵乘法中,C的第i行第j列的元素等于A的第i行的元素与B的第j列的元素进行内积运算得到的结果。
在进行矩阵乘法计算时,需要注意两个矩阵的维度是否满足相乘的条件。
若A的列数不等于B的行数,则无法进行矩阵乘法运算。
矩阵的逆是指对于一个n阶方阵A,通过运算求解另一个方阵B,使得AB = BA = I,其中I为单位矩阵。
矩阵的逆是在求解线性方程组和矩阵方程时经常使用的工具。
具体来说,对于一个n阶非奇异矩阵A,如果存在一个矩阵B,使得AB = BA = I,那么矩阵B就是矩阵A的逆矩阵,记作A^-1。
逆矩阵的计算可以使用高斯-约旦消元法、伴随矩阵法等多种方法,其中伴随矩阵法是逆矩阵计算的一种常用方法。
此外,还有一些特殊矩阵的计算方法。
例如,对称矩阵是指矩阵的转置等于它本身的矩阵。
对称矩阵的特殊性质使得其在计算中有着很多便利,例如,对称矩阵一定可以对角化,即可以通过相似变换变为对角矩阵。
对角矩阵是指非对角线上的元素都为0的矩阵,对角线上的元素可以相同也可以不同。
对角矩阵的计算相对简单,只需要对角线上的元素进行相应的运算即可。
综上所述,矩阵的计算方法包括矩阵的基本运算、矩阵的乘法、矩阵的逆以及特殊矩阵的计算等。
矩阵的定义与基本运算
矩阵的定义与基本运算矩阵是线性代数中的重要概念,广泛应用于各个领域,如数学、物理、计算机科学等。
它是由一组数按照规定的排列方式组成的矩形阵列。
在本文中,我们将探讨矩阵的定义、基本运算以及其在实际应用中的重要性。
一、矩阵的定义矩阵可以用一个大写字母表示,如A、B等。
一个m行n列的矩阵可以表示为A=[a_ij],其中1 ≤ i ≤ m,1 ≤ j ≤ n。
矩阵中的每个元素a_ij都是一个实数或复数。
矩阵的行数m和列数n分别称为矩阵的维数,记作m×n。
二、矩阵的基本运算1. 矩阵的加法矩阵的加法是指对应位置上的元素相加。
如果两个矩阵A和B的维数相同,即都是m×n,则它们的和记作C=A+B,其中C的维数也是m×n。
具体而言,C的第i行第j列的元素等于A的第i行第j列的元素与B的第i行第j列的元素之和。
2. 矩阵的数乘矩阵的数乘是指将矩阵的每个元素都乘以一个常数。
如果矩阵A的维数是m×n,常数k是一个实数或复数,则kA表示将A的每个元素都乘以k得到的新矩阵。
具体而言,kA的第i行第j列的元素等于k乘以A的第i行第j列的元素。
3. 矩阵的乘法矩阵的乘法是指将两个矩阵相乘得到一个新的矩阵。
如果矩阵A的维数是m×n,矩阵B的维数是n×p,则它们的乘积记作C=AB,其中C的维数是m×p。
具体而言,C的第i行第j列的元素等于A的第i行的元素与B的第j列的元素分别相乘后再相加得到的结果。
4. 矩阵的转置矩阵的转置是指将矩阵的行和列互换得到的新矩阵。
如果矩阵A的维数是m×n,则它的转置记作A^T,维数是n×m。
具体而言,A^T的第i行第j列的元素等于A的第j行第i列的元素。
三、矩阵在实际应用中的重要性矩阵在实际应用中具有广泛的重要性。
以下是矩阵在几个领域中的应用示例:1. 线性代数矩阵在线性代数中起着重要的作用。
线性方程组的求解可以通过矩阵的运算来实现。
矩阵的基本运算法则
矩阵的基本运算法则1、矩阵的加法矩阵加法满足下列运算规律(设A 、B 、C 都是m n ⨯矩阵,其中m 和n 均为已知的正整数):(1)交换律:+=+A B B A(2)结合律:()()++++A B C =A B C注意:只有当两个矩阵为同型矩阵(两个矩阵的行数和列数分别相等)时,这两个矩阵才能进行加法运算。
2、数与矩阵相乘数乘矩阵满足下列运算规律(设A 、B 是m n ⨯矩阵,λ和μ为数):(1)结合律:()λμλμ=A A(2)分配律:()λμλμ+=+A A A(3)分配律:()λλλ+=+A B A B注意:矩阵相加与数乘矩阵合起来,统称为矩阵的线性运算。
3、矩阵与矩阵相乘矩阵与矩阵的乘法不满足交换律、但是满足结合律和分配率(假设运算都是可行的):(1)交换律:≠AB BA (不满足)(2)结合律:()()=AB C A BC(3)结合律:()()()λλλλ==其中为数AB A B A B(4)分配律:()(),+=++=+A B C AB AC B C A BA CA4、矩阵的转置矩阵的转置满足下述运算规律(假设运算都是可行的,符号()T g 表示转置):(1)()T T =A A(2)()T T T +=+A B A B(3)()TT λλ=A A(4)()T T T =AB B A 5、方阵的行列式由A 确定A 这个运算满足下述运算法则(设A 、B 是n 阶方阵,λ为数):(1)T =A A(2)n λλ=A A(3)=AB A B6、共轭矩阵共轭矩阵满足下述运算法则(设A 、B 是复矩阵,λ为复数,且运算都是可行的):(1)+=+A B A B(2)λλ=A A(3)=AB AB7、逆矩阵方阵的逆矩阵满足下述运算规律:(1)若A 可逆,则1-A 亦可逆,且()11--=A A(2)若A 可逆,数0λ≠,则λA 可逆,且()111λλ--=A A(3)若A 、B 为同阶矩阵且均可逆,则AB 亦可逆,且()111---=AB B A参考文献:【1】线性代数(第五版),同济大学。
矩阵运算求解总结
矩阵运算求解总结概述矩阵运算是线性代数中的重要内容,广泛应用于数学、物理、计算机科学等领域。
通过矩阵运算,我们可以求解线性方程组、计算矩阵的特征值和特征向量、进行矩阵分解等。
本文将对常见的矩阵运算及其求解方法进行总结和介绍。
矩阵的基本运算矩阵的基本运算包括加法、减法和乘法。
在矩阵加法和减法中,只需要对应位置的元素进行相加或相减。
矩阵乘法是一种较为复杂的运算,需要满足两个矩阵的列数等于另一个矩阵的行数。
矩阵乘法的结果是一个新的矩阵,其行数等于第一个矩阵的行数,列数等于第二个矩阵的列数。
线性方程组的求解线性方程组是矩阵运算的一个重要应用领域。
对于一个具有n个未知数和m 个方程的线性方程组,可以使用矩阵运算求解。
我们可以将线性方程组的系数矩阵和常数矩阵进行相乘,得到一个增广矩阵。
通过对增广矩阵进行行变换,可以将其转化为一个行简化阶梯形矩阵,从而求解出线性方程组的解。
矩阵的特征值和特征向量矩阵的特征值和特征向量是矩阵运算中的重要内容。
给定一个n阶方阵A,如果存在一个非零向量v,使得Av=λv,其中λ 是一个标量,那么λ 称为矩阵 A 的特征值,v 称为 A 的对应于特征值λ 的特征向量。
求解矩阵的特征值和特征向量可以通过求解矩阵的特征方程,即 det(A-λI)=0,其中 I 是单位矩阵。
特征值可以通过求解特征方程得到,特征向量可以通过将特征值代入矩阵进行求解。
矩阵分解矩阵分解是将一个矩阵表示为多个矩阵相乘的形式。
常见的矩阵分解包括LU 分解、QR分解和SVD分解等。
LU分解是将一个矩阵表示为一个下三角矩阵和一个上三角矩阵相乘的形式。
QR分解是将一个矩阵表示为一个正交矩阵和一个上三角矩阵相乘的形式。
SVD分解是将一个矩阵表示为一个正交矩阵、一个对角矩阵和另一个正交矩阵相乘的形式。
矩阵分解可以用于简化矩阵运算、求解线性方程组和计算矩阵的特征值等问题。
矩阵运算的应用矩阵运算在现实世界中有广泛的应用。
在计算机科学中,矩阵运算被用于机器学习、图像处理和数据分析等领域。
三矩阵的基本运算
第三节矩阵的基本运算§3.1 加和减§3.2矩阵乘法§3.2.1 矩阵的普通乘法§3.2.2 矩阵的Kronecker乘法§3.3 矩阵除法§3.4矩阵乘方§3.5 矩阵的超越函数§3.6数组运算§3.6.1数组的加和减§3.6.2数组的乘和除§3.6.3 数组乘方§3.7 矩阵函数§3.7.1三角分解§3.7.2正交变换§3.7.3奇异值分解§3.7.4 特征值分解§3.7.5秩§3.1 加和减如矩阵A和B的维数相同,则A+B与A-B表示矩阵A与B的和与差.如果矩阵A和B的维数不匹配,Matlab会给出相应的错误提示信息.如:A= B=1 2 3 1 4 74 5 6 2 5 87 8 0 3 6 0C =A+B返回:C =2 6 106 10 1410 14 0如果运算对象是个标量(即1×1矩阵),可和其它矩阵进行加减运算.例如:x= -1 y=x-1= -20 -12 1§3.2矩阵乘法Matlab中的矩阵乘法有通常意义上的矩阵乘法,也有Kronecker乘法,以下分别介绍.§3.2.1 矩阵的普通乘法矩阵乘法用“ * ”符号表示,当A 矩阵列数与B 矩阵的行数相等时,二者可以进行乘法运算,否则是错误的.计算方法和线性代数中所介绍的完全相同.如:A=[1 2 ; 3 4]; B=[5 6 ; 7 8]; C=A*B ,结果为C=×==即Matlab 返回:C =19 2243 50如果A 或B 是标量,则A*B 返回标量A (或B )乘上矩阵B (或A )的每一个元素所得的矩阵.§3.2.2 矩阵的Kronecker 乘法对n ×m 阶矩阵A 和p ×q 阶矩阵B ,A 和B 的Kronecher 乘法运算可定义为:由上面的式子可以看出,Kronecker 乘积A B 表示矩阵A 的所有元素与B 之间的乘积组合而成的较大的矩阵,B A 则完全类似.A B 和B A 均为np ×mq 矩阵,但一般情况下A B B A .和普通矩阵的乘法不同,Kronecker 乘法并不要求两个被乘矩阵满足任何维数匹配方面的要求.Kronecker 乘法的Matlab 命令为C=kron(A,B),例如给定两个矩阵A 和B :A= B=则由以下命令可以求出A 和B 的Kronecker 乘积C :A=[1 2; 3 4]; B=[1 3 2; 2 4 6]; C=kron(A,B)C =1 32 2 6 42 4 6 4 8 123 9 64 12 86 12 18 8 16 24作为比较,可以计算B 和A 的Kronecker 乘积D ,可以看出C 、D 是不同的:A=[1 2; 3 4]; B=[1 3 2; 2 4 6]; D=kron(B,A)D =1 2 3 6 2 43 4 9 12 6 82 4 4 8 6 126 8 12 16 18 24§3.3 矩阵除法在Matlab 中有两种矩阵除法符号:“\”即左除和“/”即右除.如果A 矩阵是非奇异方阵,则A\B 是A 的逆矩阵乘B ,即inv(A)*B ;而B/A 是B 乘A 的逆矩阵,即B*inv(A).具体计算时可不用逆矩阵而直接计算.通常:⎪⎪⎭⎫ ⎝⎛4321⎪⎪⎭⎫ ⎝⎛8765⎪⎪⎭⎫ ⎝⎛⨯+⨯⨯+⨯⨯+⨯⨯+⨯8463745382617251⎪⎪⎭⎫ ⎝⎛50432219⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⊗=B a B a B a B a B a B a B a B a B a B A C nm n n m m (2122221)11211 ⊗⊗⊗⊗⊗≠⊗1234⎛⎝ ⎫⎭⎪132246⎛⎝ ⎫⎭⎪x=A\B就是A*x=B的解;x=B/A就是x*A=B的解.当B与A矩阵行数相等可进行左除.如果A是方阵,用高斯消元法分解因数.解方程:A*x(:, j)=B(:, j),式中的(:, j)表示B矩阵的第j列,返回的结果x具有与B矩阵相同的阶数,如果A是奇异矩阵将给出警告信息.如果A矩阵不是方阵,可由以列为基准的Householder正交分解法分解,这种分解法可以解决在最小二乘法中的欠定方程或超定方程,结果是m×n的x矩阵.m是A矩阵的列数,n是B矩阵的列数.每个矩阵的列向量最多有k个非零元素,k 是A的有效秩.右除B/A可由B/A=(A'\B')'左除来实现.§3.4矩阵乘方A^P意思是A的P次方.如果A是一个方阵,P是一个大于1的整数,则A^P表示A 的P次幂,即A自乘P次.如果P不是整数,计算涉及到特征值和特征向量的问题,如已经求得:[V,D]=eig(A),则:A^P=V*D.^P/V(注:这里的.^表示数组乘方,或点乘方,参见后面的有关介绍)如果B是方阵,a是标量,a^B就是一个按特征值与特征向量的升幂排列的B次方程阵.如果a和B都是矩阵,则a^B是错误的.§3.5 矩阵的超越函数在Matlab中解释exp(A)和sqrt(A)时曾涉及到级数运算,此运算定义在A的单个元素上.Matlab可以计算矩阵的超越函数,如矩阵指数、矩阵对数等.一个超越函数可以作为矩阵函数来解释,例如将“m”加在函数名的后边而成expm(A)和sqrtm(A),当Matlab运行时,有下列三种函数定义:expm 矩阵指数logm 矩阵对数sqrtm 矩阵开方所列各项可以加在多种m文件中或使用funm.请见应用库中sqrtm.m,1ogm.m,funm.m 文件和命令手册.§3.6数组运算数组运算由线性代数的矩阵运算符“*”、“/”、“\”、“^”前加一点来表示,即为“.*”、“./”、“.\”、“.^”.注意没有“.+”、“.-”运算.§3.6.1数组的加和减对于数组的加和减运算与矩阵运算相同,所以“+”、“-”既可被矩阵接受又可被数组接受.§3.6.2数组的乘和除数组的乘用符号.*表示,如果A与B矩阵具有相同阶数,则A.*B表示A和B单个元素之间的对应相乘.例如x=[1 2 3]; y=[ 4 5 6];计算z=x.*y结果z=4 10 18数组的左除(.\)与数组的右除(./),由读者自行举例加以体会.§3.6.3 数组乘方数组乘方用符号.^表示.例如:键入:x=[ 1 2 3]y=[ 4 5 6]则z=x.^y=[1^4 2^5 3^6]=[1 32 729](1) 如指数是个标量,例如x.^2,x同上,则:z=x.^2=[1^2 2^2 3^2]=[ 1 4 9](2) 如底是标量,例如2 .^[x y] ,x、y同上,则:z=2 .^[x y]=[2^1 2^2 2^3 2^4 2^5 2^6]=[2 4 8 16 32 64] 从此例可以看出Matlab算法的微妙特性,虽然看上去与其它乘方没什么不同,但在2和“.”之间的空格很重要,如果不这样做,解释程序会把“.”看成是2的小数点.Matlab 看到符号“^”时,就会当做矩阵的幂来运算,这种情况就会出错,因为指数矩阵不是方阵.§3.7 矩阵函数Matlab的数学能力大部分是从它的矩阵函数派生出来的,其中一部分装入Matlab本身处理中,它从外部的Matlab建立的M文件库中得到,还有一些由个别的用户为其自己的特殊的用途加进去的.其它功能函数在求助程序或命令手册中都可找到.手册中备有为Matlab 提供数学基础的LINPACK和EISPACK软件包,提供了下面四种情况的分解函数或变换函数:(1)三角分解;(2)正交变换;(3) 特征值变换;(4)奇异值分解.§3.7.1三角分解最基本的分解为“LU”分解,矩阵分解为两个基本三角矩阵形成的方阵,三角矩阵有上三角矩阵和下三角矩阵.计算算法用高斯变量消去法.从lu函数中可以得到分解出的上三角与下三角矩阵,函数inv得到矩阵的逆矩阵,det 得到矩阵的行列式.解线性方程组的结果由方阵的“\”和“/”矩阵除法来得到.例如:A=[ 1 2 34 5 67 8 0]LU分解,用Matlab的多重赋值语句[L,U]=lu(A)得出注:L结果只需计算L*U即可.求逆由下式给出:x=inv(A)x =从LU的值可由下式给出:d=det(A)d =27直接由三角分解计算行列式:d=det(L)*det(U)d =27.0000为什么两种d的显示格式不一样呢? 当Matlab做det(A)运算时,所有A的元素都是整数,所以结果为整数.但是用LU分解计算d时,L、U的元素是实数,所以Matlab产生的d也是实数.例如:线性联立方程取b=[ 135]解Ax=b方程,用Matlab矩阵除得到x=A\b结果x=0.33330.33330.0000由于A=L*U,所以x也可以有以下两个式子计算:y=L\b,x=U\y.得到相同的x值,中间值y为:y =5.00000.28570.0000Matlab中与此相关的函数还有rcond、chol和rref.其基本算法与LU分解密切相关.chol 函数对正定矩阵进行Cholesky分解,产生一个上三角矩阵,以使R'*R=X.rref用具有部分主元的高斯-约当消去法产生矩阵A的化简梯形形式.虽然计算量很少,但它是很有趣的理论线性代数.为了教学的要求,也包括在Matlab中.§3.7.2正交变换“QR”分解用于矩阵的正交-三角分解.它将矩阵分解为实正交矩阵或复酉矩阵与上三角矩阵的积,对方阵和长方阵都很有用.例如A=[ 1 2 34 5 67 8 910 11 12]是一个降秩矩阵,中间列是其它二列的平均,我们对它进行QR分解:[Q,R]=qr(A)R的下三角都给出0,并且R(3,3)=0.0000,说明矩阵R与原来矩阵A都不是满秩的.下面尝试利用QR分解来求超定和降秩的线性方程组的解.例如:b=[ 1357]讨论线性方程组Ax=b,我们可以知道方程组是超定的,采用最小二乘法的最好结果是计算x=A\b.结果为:Warning: Rank deficient, rank = 2 tol = 1.4594e-014x =0.50000.1667我们得到了缺秩的警告.用QR分解法计算此方程组分二个步骤:y=Q'*bx=R\y求出的y值为xWarning: Rank deficient, rank = 2 tol = 1.4594e-014x =0.50000.1667用A*x来验证计算结果,我们会发现在允许的误差范围内结果等于b.这告诉我们虽然联立方程Ax=b是超定和降秩的,但两种求解方法的结果是一致的.显然x向量的解有无穷多个,而“QR”分解仅仅找出了其中之一.§3.7.3奇异值分解在Matlab中三重赋值语句[U,S,V]=svd(A)在奇异值分解中产生三个因数:A=U*S*V 'U矩阵和V矩阵是正交矩阵,S矩阵是对角矩阵,svd(A)函数恰好返回S的对角元素,而且就是A的奇异值(其定义为:矩阵A'*A的特征值的算术平方根).注意到A矩阵可以不是方的矩阵.奇异值分解可被其它几种函数使用,包括广义逆矩阵pinv(A)、秩rank(A)、欧几里德矩阵范数norm(A,2)和条件数cond(A).§3.7.4 特征值分解如果A是n×n矩阵,若λ满足Ax=λx,则称λ为A的特征值,x为相应的特征向量.函数eig(A)返回特征值列向量,如果A是实对称的,特征值为实数.特征值也可能为复数,例如:A=[ 0 1-1 0]eig(A)产生结果ans =0 + 1.0000i0 - 1.0000i如果还要求求出特征向量,则可以用eig(A)函数的第二个返回值得到:[x,D]=eig(A)D的对角元素是特征值.x的列是相应的特征向量,以使A*x=x*D.计算特征值的中间结果有两种形式:Hessenberg形式为hess(A),Schur形式为schur(A).schur形式用来计算矩阵的超越函数,诸如sqrtm(A)和logm(A).如果A和B是方阵,函数eig(A,B)返回一个包含一般特征值的向量来解方程Ax= Bx双赋值获得特征向量[X,D]=eig(A,B)产生特征值为对角矩阵D.满秩矩阵X的列相应于特征向量,使A*X=B*X*D,中间结果由qz(A,B)提供.§3.7.5秩Matlab计算矩阵A的秩的函数为rank(A),与秩的计算相关的函数还有:rref(A)、orth(A)、null(A)和广义逆矩阵pinv(A)等.利用rref(A),A的秩为非0行的个数.rref方法是几个定秩算法中最快的一个,但结果上并不可靠和完善.pinv(A)是基于奇异值的算法.该算法消耗时间多,但比较可靠.其它函数的详细用法可利用Help求助.上一页回目录下一页。
矩阵的运算
矩阵的运算第三节矩阵的基本运算§ 3.1加和减§ 3.2矩阵乘法§ 3.2.1矩阵的普通乘法§ 3.2.2 矩阵的Kronecker乘法§ 3.3矩阵除法§ 3.4矩阵乘方§ 3.5矩阵的超越函数§ 3.6数组运算§ 3.6.1数组的加和减§ 3.6.2数组的乘和除§ 3.6.3数组乘方§ 3.7矩阵函数§ 3.7.1三角分解§ 3.7.2正交变换§ 3.7.3奇异值分解§ 3.7.4特征值分解§ 3.7.5 秩§ 3.1加和减如矩阵A和B的维数相同,则A+B与A-B表示矩阵A与B的和与差•如果矩阵A和B的维数不匹配,Matlab 会给出相应的错误提示信息•如:A= B=1 2 3 1 4 74 5 6 2 5 87 8 0 3 6 0C =A+B返回: C =2 6 106 10 1410 14 0如果运算对象是个标量(即1X 1矩阵),可和其它矩阵进行加减运算.例如:x= -1 y=x-1= -20 -12 1 「書二§ 3.2矩阵乘法Matlab中的矩阵乘法有通常意义上的矩阵乘法,也有Kronecker乘法,以下分别介绍.mo § 3.2.1矩阵的普通乘法矩阵乘法用“ * ”符号表示,当A矩阵列数与B 矩阵的行数相等时,二者可以进行乘法运算,否则是错误的.计算方法和线性代数中所介绍的完全相同.如:A=[1 2 ; 3 4]; B=[5 6 ; 7 8]; C=A*B ,结果为1 2 5 6 1 5 2 7 1 6 2 8 19 22C= 3 4x7 8 = 3 5 4 7 3 6 4 8 = 43 50 即Matlab 返C =19 2243 50如果A 或B 是标量,则A*B 返回标量A (或 B )乘上矩阵B (或A )的每一个元素所得的矩 阵. 「二口 \§ 322矩阵的Kronecker 乘法对n X m 阶矩阵A 和p X q 阶矩阵B , A 和B 的Kronecher 乘法运算可定义为:a 〔[B a^B .・・ a ^m Ba21B a 22B... a 2m BCABan1B an2B... a nm B由上面的式子可以看出,Kronecker 乘积 A B 表示矩阵A 的所有元素与B 之间的乘积组 合而成的较大的矩阵,B A 则完全类似.A B 和B A 均为叩X mq 矩阵,但一般情况下 ABBA.和普通矩阵的乘法不同,Kronecker 乘法并不要求两个被乘矩阵满足任何维数匹配 方面的要求.Kronecker 乘法的 Matlab 命令为C=kron (A,B ),例如给定两个矩阵A 和B :1 2 1 3 2积C :A=[12;34];B=[1 3 2; 24 6]; C=kro n(A,B)C =13 2 2 6 424 6 4 8 123 9 64 12 86 1218816242 4 6A 和B 的 Kronecker 乘A= B=则由以下命令可以求出作为比较,可以计算 B 和 A 的Kronecker 乘积D,可以看出C、D是不同的:A=[1 2; 3 4]; B=[1 3 2; 2 4 6]; D=kro n(B,A)D =1 2 3 6 2 43 4 9 12 6 82 4 4 8 6 126 8 12 16 18 24§ 3.3矩阵除法在Matlab中有两种矩阵除法符号:"\"即左除和“/”即右除•如果A矩阵是非奇异方阵,贝V A\B 是A的逆矩阵乘B,即inv(A)*B ;而B/A是B乘A的逆矩阵,即B*inv(A) •具体计算时可不用逆矩阵而直接计算.通常:x=A\B就是A*x=B的解;x=B/A就是x*A=B的解.当B与A矩阵行数相等可进行左除•如果 A 是方阵,用高斯消元法分解因数.解方程:A*x(:, j)=B(:, j),式中的(:,j)表示B矩阵的第j列,返回的结果x 具有与B矩阵相同的阶数,如果 A 是奇异矩阵将给出警告信息.如果A矩阵不是方阵,可由以列为基准的Householder正交分解法分解,这种分解法可以解决在最小二乘法中的欠定方程或超定方程,结果是m x n的x矩阵.m是A矩阵的列数,n是B矩阵的列数.每个矩阵的列向量最多有k个非零元素,k 是A的有效秩.右除B/A可由B/A=(A'\B')'左除来实现•二^§ 3.4矩阵乘方A A P意思是A的P次方.如果A是一个方阵,P是一个大于1的整数,则A A P表示A的P次幂,即A自乘P次•如果P不是整数,计算涉及到特征值和特征向量的问题,如已经求得:[V,D]=eig(A),则:A A P=V*D.A P/V (注:这里的八表示数组乘方,或点乘方,参见后面的有关介绍)如果B是方阵,a是标量,aAB就是一个按特征值与特征向量的升幂排列的B次方程§ 3.5矩阵的超越函数在Matlab中解释exp(A)和sqrt(A)时曾涉及到级数运算,此运算定义在A的单个元素上.Matlab可以计算矩阵的超越函数,如矩阵指数、矩阵对数等. 一个超越函数可以作为矩阵函数来解释,例如将“ m ”加在函数名的后边而成expm(A)和sqrtm(A),当Matlab运行时,有下列三种函数定义:expm logm sqrtm 矩阵指数矩阵对数矩阵开方阵.如果a和B都是矩阵,则「以凹、aAB是错误所列各项可以加在多种m文件中或使用funm •请见应用库中sqrtm.m , logm.m, f unm.m 文件和命令手册.§ 3.6数组运算数组运算由线性代数的矩阵运算符“ * ”、“/”、”、“八”前加一点来表示,即为“.* ”、“./”、”、“八”・注意没有“ .+ ”、“.-”运算・§ 3.6.1数组的加和减对于数组的加和减运算与矩阵运算相同,所以“+ ”、“ - ”既可被矩阵接受又可被数组接§ 3.6.2数组的乘和除数组的乘用符号.*表示,如果A与B矩阵具有相同阶数,则A.*B表示A和B单个元素之间的对应相乘•例如x=[1 2 3]; y=[ 4 5 6];计算z=x.*y结果z=4 10 18数组的左除()与数组的右除(./),由读者自行举例加以体会.§ 3.6.3数组乘方数组乘方用符号八表示.例如:键入:x=[ 1 2 3]y=[ 4 5 6]贝V z=x.A y=[1A4 2八5 3A6]=[1 32 729]⑴如指数是个标量,例如x.A2 , x同上,则:z=x.A2=[1A2 22 3八2]=[ 1 4 9](2)如底是标量,例如2 .A[x y] , x、y同上,则:z=2 .A[x y]=[2A1 2A2 2A3 2八4 2八5 2八6]=[2 4 816 32 64]从此例可以看出Matlab算法的微妙特性,虽然看上去与其它乘方没什么不同,但在2和“・” 之间的空格很重要,如果不这样做,解释程序会把“・”看成是2的小数点.Matlab看到符号“ A”时,就会当做矩阵的幂来运算,这种情况就会出错,因为指数矩阵不是方阵. 二二§ 3.7矩阵函数Matlab的数学能力大部分是从它的矩阵函数派生出来的,其中一部分装入Matlab本身处理中,它从外部的Matlab建立的M文件库中得到,还有一些由个别的用户为其自己的特殊的用途加进去的.其它功能函数在求助程序或命令手册中都可找到.手册中备有为Matlab提供数学基础的LINPACK和EISPACK软件包,提供了下面四种情况的分解函数或变换函数:(1)三角分解;(2)正交变换;(3)特征值变换;(4)奇异值分解.§ 3.7.1三角分解最基本的分解为“ LU ”分解,矩阵分解为两个基本三角矩阵形成的方阵,三角矩阵有上三角矩阵和下三角矩阵•计算算法用高斯变量消去法.从lu函数中可以得到分解出的上三角与下三角矩阵,函数inv得到矩阵的逆矩阵,det得到矩阵的行列式•解线性方程组的结果由方阵的“ ”和“/”矩阵除法来得到.例如:A=[ 1 2 34 5 67 8 0]LU分解,用Matlab的多重赋值语句[L,U]=lu(A) 得出0.1429 1.0000 00.5714 0.5000 1.00001.0000 0 07.0000 8.0000 00 0.8571 3.00000 0 4.5000注:L是下三角矩阵的置换,U是上三角矩阵的正交变换,分解作如下运算,检测计算结果只需计算L*U即可.求逆由下式给出:x=i nv(A)x =从LU分解得到的行列式的值是精确的,d=det(U)*det(L)的值可由下式给出:d=det(A)d =27直接由三角分解计算行列式:d=det(L)*det(U) d =27.0000为什么两种d的显示格式不一样呢?当Matlab做det(A)运算时,所有A的元素都是整数,所以结果为整数.但是用LU分解计算d时,L、U的元素是实数,所以Matlab产生的d也是实数.例如:线性联立方程取b=[ 135]解Ax=b方程,用Matlab矩阵除得到x=A\b结果x=0.3333 0.3333 0.0000由于A=L*U ,所以x 也可以有以下两个式子 计算:y=L\b ,x=U\y .得到相同的x 值,中间值 y 为:y = 5.0000 0.2857 0.0000Matlab 中与此相关的函数还有 rcond 、chol 和rref .其基本算法与LU 分解密切相关.chol 函数对正定矩阵进行Cholesky 分解,产生一个 上三角矩阵,以使R'*R=X .rref 用具有部分主 元的高斯一约当消去法产生矩阵 A 的化简梯形 形式.虽然计算量很少,但它是很有趣的理论线 性代数.为了教学的要求,也包括在 Matlab 中.C J ZED§ 3.7.2正交变换“QR ”分解用于矩阵的正交一三角分解.它 将矩阵分解为实正交矩阵或复酉矩阵与上三角 矩阵的积,对方阵和长方阵都很有用. 例如A=[ 4 7 10是一个降秩矩阵,中间列是其它二列的平均,1 5 8 112 36 9我们对它进行QR分解:QR]=qr(A)Q =R =-12.8841 -14.5916 -16.29920 -1.0413 -2.08260 0 0.00000 0 0可以验证Q*R就是原来的A矩阵.由R的下三角都给出0,并且R(3,3)=0.0000,说明矩阵R 与原来矩阵A 都不是满秩的.下面尝试利用QR分解来求超定和降秩的线性方程组的解.例如:b=[ 1357]讨论线性方程组Ax=b,我们可以知道方程组是超定的,采用最小二乘法的最好结果是计算x=A\b . 结果为:Warning: Rank deficient, rank = 2 tol=1.4594e-014x =0.5000 00.1667我们得到了缺秩的警告.用QR分解法计算此方程组分二个步骤:y=Q'*b x=R\y求出的y值为y 二—-9.1586-0.34710.00000.0000x的结果为Warning: Rank deficient, rank = 2 tol=1.4594e-014x =0.50000.1667用A*x来验证计算结果,我们会发现在允许的误差范围内结果等于b •这告诉我们虽然联立方程Ax=b是超定和降秩的,但两种求解方法的结果是一致的•显然x向量的解有无穷多个,而“ QR ”分解仅仅找出了其中之一. =§ 3.7.3奇异值分解在Matlab中三重赋值语句[U,S,V]=svd(A)在奇异值分解中产生三个因数:A=U*S*V 'U矩阵和V矩阵是正交矩阵,S矩阵是对角矩阵,svd(A)函数恰好返回S的对角元素,而且就是A 的奇异值(其定义为:矩阵A'*A的特征值的算术平方根)•注意到A矩阵可以不是方的矩阵.奇异值分解可被其它几种函数使用,包括广义逆矩阵pinv(A)、秩rank(A)、欧几里德矩阵范数norm(A,2)和条件数cond(A) • •§ 3.7.4特征值分解如果A是n X n矩阵,若满足Ax= x,则称为A的特征值,x为相应的特征向量.函数eig(A)返回特征值列向量,如果A是实对称的,特征值为实数•特征值也可能为复数,例如:A=[ 0 1-1 0]eig(A)产生结果ans =0 + I.OOOOi0 -I.OOOOi如果还要求求出特征向量,则可以用eig(A)函数的第二个返回值得到:[x,D]=eig(A)D的对角元素是特征值.x的列是相应的特征向量,以使A*x=x*D .计算特征值的中间结果有两种形式:Hessenberg 形式为hess(A), Schur 形式为schur(A). schur形式用来计算矩阵的超越函数,诸如sqrtm(A)和logm(A).如果A和B是方阵,函数eig(A,B)返回一个包含一般特征值的向量来解方程Ax= Bx双赋值获得特征向量[X,D]=eig(A,B)产生特征值为对角矩阵D •满秩矩阵X的列相应于特征向量,使A*X=B*X*D ,中间结果由qz(A,B)提供. 「以凹一】§ 3.7.5 秩Matlab计算矩阵A的秩的函数为rank(A),与秩的计算相关的函数还有:rref(A)、orth(A)、null(A)和广义逆矩阵pinv(A)等.利用rref(A) , A的秩为非0行的个数.rref 方法是几个定秩算法中最快的一个,但结果上并不可靠和完善.pinv(A)是基于奇异值的算法.该算法消耗时间多,但比较可靠.其它函数的详细用法可利用Help求助.上一页回目录下一页。
线性代数矩阵论——矩阵的基本运算——加、减、取负、乘、数乘、转置 - 6DAN - 博客园
线性代数矩阵论——矩阵的基本运算——加、减、取负、乘、数乘、转置- 6DAN - 博客园线性代数矩阵论——矩阵的基本运算——加、减、取负、乘、数乘、转置1. 矩阵加法前提条件:同型矩阵操作数:两个m*n矩阵A=[aij],B=[bij]基本动作:元素对应相加2. 矩阵减法前提条件:同型矩阵操作数:两个m*n矩阵A=[aij],B=[bij]基本动作:元素对应相减3. 矩阵取负前提条件:无操作数:任意一个m*n矩阵A=[aij]基本动作:元素对应取负4. 矩阵乘法前提条件:左矩阵A的列数与右矩阵B的行数相等操作数:m*n矩阵A=[aij],n*m矩阵B=[bij],A是具有m行的行矩阵,,B是具有n列的列矩阵,基本动作:行列积5. 矩阵数乘前提条件:无操作数:任意一个m*n矩阵A=[aij],数k基本动作:数k乘以每一个元素6. 矩阵转置前提条件:无,任意一个m*n矩阵A=[aij]基本动作:行列互换,第i行第j列的元素换为第j行第i列的元素,m*n的矩阵转置后为n*m矩阵,矩阵运算不满足交换律和消去率Matlab实现<table class="MsoNormalTable"style="border-collapse:collapse;border:none;mso-border-a lt:solid black .5pt;mso-yfti-tbllook:1184;mso-padding-alt:0cm 5.4pt 0cm 5.4pt;mso-border-insideh:.5pt solid black;mso-border-insidev:.5pt solid black" border="1" cellpadding="0" cellspacing="0">矩阵运算<td style="width:40.9pt;border:solid black 1.0pt;border-left:none;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="55">算符<td style="width:71.75pt;border:solid black 1.0pt;border-left:none;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="96">形式<td style="width:62.0pt;border:solid black 1.0pt;border-top:none;mso-border-top-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="83">矩阵加法<td style="width:40.9pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solid black .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="55">+<td style="width:71.75pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solidblack .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="96">A+B<td style="width:62.0pt;border:solid black 1.0pt;border-top:none;mso-border-top-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="83">矩阵减法<td style="width:40.9pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solid black .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="55">-<td style="width:71.75pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solidblack .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm5.4pt 0cm 5.4pt" valign="top" width="96">A-B<td style="width:62.0pt;border:solid black 1.0pt;border-top:none;mso-border-top-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="83">矩阵取负<td style="width:40.9pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solid black .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="55">-<td style="width:71.75pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solidblack .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="96">-A<td style="width:62.0pt;border:solid black 1.0pt;border-top:none;mso-border-top-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="83">矩阵乘法<td style="width:40.9pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solid black .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="55">*<td style="width:71.75pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solidblack .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="96">A*B<td style="width:62.0pt;border:solid black 1.0pt;border-top:none;mso-border-top-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="83">矩阵数乘<td style="width:40.9pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solid black .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="55">*<td style="width:71.75pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solidblack .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="96">A*k或k*A<td style="width:62.0pt;border:solid black 1.0pt;border-top:none;mso-border-top-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="83">矩阵转置<td style="width:40.9pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solid black .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="55">’<td style="width:71.75pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solidblack .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="96">A’<td style="width:62.0pt;border:solid black 1.0pt;border-top:none;mso-border-top-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="83">矩阵乘方<td style="width:40.9pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solid black .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="55">^<td style="width:71.75pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solidblack .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="96">A^N<td style="width:62.0pt;border:solid black 1.0pt;border-top:none;mso-border-top-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="83">数组加法<td style="width:40.9pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solid black .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="55">+<td style="width:71.75pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solidblack .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="96">X+Y<td style="width:62.0pt;border:solid black 1.0pt;border-top:none;mso-border-top-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="83">数组减法<td style="width:40.9pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solid black .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="55">-<td style="width:71.75pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solidblack .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="96">X-Y<td style="width:62.0pt;border:solid black 1.0pt;border-top:none;mso-border-top-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="83">数组乘法<td style="width:40.9pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solid black .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="55"><td style="width:71.75pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solidblack .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="96">X.*Y<td style="width:62.0pt;border:solid black 1.0pt;border-top:none;mso-border-top-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="83">数组除法<td style="width:40.9pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solid black .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top"width="55">./或.\<td style="width:71.75pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solidblack .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="96">X./Y或X.\Y<td style="width:62.0pt;border:solid black 1.0pt;border-top:none;mso-border-top-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="83">数组乘方<td style="width:40.9pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solid black .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="55">.^<td style="width:71.75pt;border-top:none;border-left:none;border-bottom:solid black1.0pt;border-right:solid black 1.0pt;mso-border-top-alt:solidblack .5pt;mso-border-left-alt:solid black .5pt;mso-border-alt:solid black .5pt;padding:0cm 5.4pt 0cm 5.4pt" valign="top" width="96">X.^N。
矩阵的基本运算与性质知识点
矩阵的基本运算与性质知识点矩阵是线性代数中重要的概念之一,广泛应用于数学、物理、计算机科学等领域。
本文将介绍矩阵的基本运算与性质知识点,包括矩阵的定义、加法、数乘、乘法、转置、逆矩阵等内容。
一、矩阵的定义矩阵是由m行n列数字组成的一个矩形数组,通常用大写字母表示。
其中,m表示矩阵的行数,n表示矩阵的列数。
例如,一个3行2列的矩阵可以表示为:A = [a11 a12a21 a22a31 a32]其中a11, a12, a21等表示矩阵中的元素。
二、矩阵的加法对于两个同型矩阵A和B,即行数和列数相等的矩阵,可以进行加法运算。
加法的结果是一个同型矩阵C,其每个元素等于相应位置的两个矩阵元素之和。
例如,对于两个3行2列的矩阵A和B,其加法C可以表示为:C = A + B = [a11 + b11 a12 + b12a21 + b21 a22 + b22a31 + b31 a32 + b32]三、矩阵的数乘矩阵的数乘是指将一个数与矩阵的每个元素相乘。
结果是一个与原矩阵同型的矩阵。
例如,将一个3行2列的矩阵A乘以一个数k,得到的结果可以表示为:C = kA = [ka11 ka12ka21 ka22ka31 ka32]四、矩阵的乘法矩阵的乘法是指将一个m行n列的矩阵A与一个n行p列的矩阵B 相乘,得到一个m行p列的矩阵C。
矩阵乘法的定义是,C的第i行第j列的元素等于A的第i行与B的第j列对应元素的乘积之和。
例如,对于一个2行3列的矩阵A和一个3行2列的矩阵B,其乘法C可以表示为:C = AB = [a11b11 + a12b21 + a13b31 a11b12 + a12b22 + a13b32a21b11 + a22b21 + a23b31 a21b12 + a22b22 + a23b32]五、矩阵的转置矩阵的转置是指将矩阵的行与列对换得到的新矩阵。
如果原矩阵为A,转置后的矩阵表示为A^T。
例如,对于一个3行2列的矩阵A,其转置矩阵表示为:A^T = [a11 a21 a31a12 a22 a32]六、逆矩阵对于一个n阶矩阵A,如果存在一个n阶矩阵B,使得AB=BA=I,其中I为单位矩阵,则称矩阵A可逆,矩阵B称为矩阵A的逆矩阵,记作A^-1。
矩阵的基本运算
矩阵的基本运算矩阵是线性代数中的重要概念之一,被广泛应用于数学、工程、物理等领域。
矩阵的基本运算包括矩阵的加法、减法、乘法以及数量乘法等,本文将从这四个方面分析并论述矩阵的基本运算。
1. 矩阵的加法矩阵的加法是指两个矩阵进行逐元素相加的运算。
假设有两个矩阵A和B,它们的维度相同(即行数和列数相等),那么它们的加法定义如下:C = A + B,其中矩阵C的第(i, j)个元素等于矩阵A和B对应元素的和。
2. 矩阵的减法矩阵的减法与加法类似,也是逐元素进行运算。
与加法不同的是,减法是将第二个矩阵的每个元素从第一个矩阵的对应元素中减去。
设两个矩阵A和B,它们的维度相同,那么它们的减法定义如下:C = A - B,其中矩阵C的第(i, j)个元素等于矩阵A和B对应元素的差。
3. 矩阵的乘法矩阵的乘法是指两个矩阵按照一定规则进行运算,得到一个新的矩阵。
设两个矩阵A和B,它们的乘法定义如下:C = A * B,其中矩阵C的第(i, j)个元素等于矩阵A的第i行与矩阵B的第j列的乘积之和。
矩阵A的列数必须与矩阵B的行数相等,否则乘法无法进行。
4. 矩阵的数量乘法矩阵的数量乘法是指将矩阵的每个元素与一个常数相乘得到的新矩阵。
设矩阵A和一个常数k,那么矩阵A的数量乘法定义如下:B = kA,其中矩阵B的第(i, j)个元素等于矩阵A的第(i, j)个元素与常数k的乘积。
综上所述,矩阵的基本运算包括加法、减法、乘法和数量乘法。
通过这些运算,我们可以进行复杂的矩阵计算,如求解线性方程组、矩阵的逆运算等。
熟练掌握矩阵的基本运算对于理解线性代数及其应用至关重要。
通过学习矩阵的基本运算,我们可以更好地理解矩阵的性质及其在实际问题中的应用。
矩阵运算在计算机科学、人工智能等领域也发挥着重要作用,如图像处理、模式识别等。
因此,对于矩阵的基本运算的深入理解和掌握对于我们的学习和工作都具有重要意义。
总而言之,矩阵的基本运算包括加法、减法、乘法和数量乘法,这些运算为我们应用线性代数解决实际问题提供了有力工具。
矩阵运算加减乘除
矩阵运算加减乘除矩阵是线性代数中一个重要的概念,通过矩阵运算可以对数据进行处理和分析。
本文将介绍矩阵的加法、减法、乘法和除法运算,并展示其在实际问题中的应用。
一、矩阵加法矩阵的加法是指将两个相同尺寸的矩阵对应位置的元素相加,得到一个新的矩阵。
设有两个m×n阶的矩阵A和B,它们的加法运算可以表示为C=A+B。
具体的计算方法如下:A = [a11 a12 a13B = [b11 b12 b13C = [a11+b11 a12+b12a13+b13a21 a22 a23] b21 b22 b23] a21+b21 a22+b22a23+b23]其中C为结果矩阵,其每个元素等于A和B对应位置上元素的和。
二、矩阵减法矩阵的减法和加法相似,也是将两个相同尺寸的矩阵对应位置的元素相减,得到一个新的矩阵。
设有两个m×n阶的矩阵A和B,它们的减法运算可以表示为C=A-B。
具体的计算方法如下:A = [a11 a12 a13B = [b11 b12 b13C = [a11-b11 a12-b12a13-b13a21 a22 a23] b21 b22 b23] a21-b21 a22-b22 a23-b23]其中C为结果矩阵,其每个元素等于A和B对应位置上元素的差。
三、矩阵乘法矩阵的乘法是指通过将一个m×n阶的矩阵A与一个n×p阶的矩阵B相乘,得到一个m×p阶的矩阵C。
矩阵乘法的计算规则如下:C = A × B其中C矩阵的第i行第j列的元素为A矩阵的第i行与B矩阵的第j列对应元素之积的和。
为了满足矩阵乘法的定义要求,A矩阵的列数必须等于B矩阵的行数。
若A是一个m×n阶的矩阵,B是一个n×p阶的矩阵,则C为一个m×p阶的矩阵。
四、矩阵除法矩阵的除法运算是指通过将一个m×n阶的矩阵A除以一个n×p阶的矩阵B,得到一个m×p阶的矩阵C。
矩阵的基本运算与性质
矩阵的基本运算与性质矩阵是线性代数中一项重要的数学工具,常用于解决多变量的线性方程组、线性变换等问题。
本文将介绍矩阵的基本运算和性质,帮助读者更好地理解和应用矩阵。
一、基本运算1. 矩阵的定义矩阵是一个由m行n列元素组成的矩形阵列。
我们用大写字母A、B、C等表示矩阵,元素用小写字母a_ij、b_ij、c_ij等表示。
2. 矩阵的加法若A、B是同阶矩阵(即m行n列),则A + B的结果是一个与A、B同阶的矩阵,其每个元素等于A、B对应元素的和。
3. 矩阵的减法若A、B是同阶矩阵,A - B的结果是一个与A、B同阶的矩阵,其每个元素等于A、B对应元素的差。
4. 矩阵的数乘若A是一个矩阵,k是一个标量(实数或复数),kA的结果是一个与A同阶的矩阵,其每个元素等于A对应元素乘以k。
5. 矩阵的乘法若A是一个m行p列的矩阵,B是一个p行n列的矩阵,那么AB 的结果是一个m行n列的矩阵。
其中,AB的第ij个元素等于A的第i 行与B的第j列的乘积之和。
6. 矩阵的转置若A是一个m行n列的矩阵,AT表示A的转置矩阵,即A的行列互换得到的n行m列的矩阵。
二、基本性质1. 矩阵的分配律对于任意的矩阵A、B、C和标量k,满足下列性质:(A + B)C = AC + BCA(B + C) = AB + ACk(AC) = (kA)C = A(kC)2. 矩阵的结合律对于任意的矩阵A、B和C,满足下列性质:(AB)C = A(BC)3. 矩阵的逆若A是一个可逆矩阵(行列式不等于零),则存在一个矩阵B,使得AB = BA = I,其中I是单位矩阵。
4. 矩阵的转置性质对于任意的矩阵A和B,以及标量k,满足下列性质:(A + B)T = AT + BT(kA)T = kAT(AB)T = BTAT5. 矩阵的幂若A是一个n阶矩阵,定义A^k为将A连乘k次,其中k是正整数。
若A的特征值都不为零,则有(A^m)(A^n) = A^(m+n)。
线性代数 矩阵的基本运算
ai1
⋮
am1
a12 ⋮
ai2 ⋮
am2
⋯ ⋯ ⋯
a1n ⋮
ain ⋮
amn
bb1211 ⋮ bn1
⋯ b1j ⋯ b2 j
⋮ ⋯ bnj
⋯ ⋯
b1s b2s ⋮
=
c11 ⋮ ci1
⋯ bns
⋮ cm1
⋯ c1j ⋮
⋯ cij ⋮
⋯ cmj
⋯
c1s ⋮
⋯
cis
⋮
3 2
=
(1
×
3
+
2
×
2
+
3
×
1)
= (10).
1
例 C = − 2
1
4 2 − 22×2 − 3
4 = − 16 − 32 − 62×2 8 16 2 × 2
2
C2
=
2 3
(1
2) =
2 ×1 2×1 3 ×1
2 × 2 2
2×2 3×2
=
2 3
4 4. 6
例设
A
=
例2(向量的线性变换)
y a′ 在同的坐标平中,向量 a 绕时绕绕绕θ .
确定 a′ 和 a 的坐标的的的关平 .
θα a
O
x
a
=
x y
,
a′
=
x′ y′
.
r = x2 + y2 = x′2 + y′2 . x = r cosα , y = r sinα . x′ = r cos(α +θ ) = r cosα cosθ − r sin α sinθ
= x cosθ − y sinθ .
矩阵及其运算
矩阵及其运算矩阵是在数学中常见的一种数据结构,它由行和列组成的矩形或方形的数表。
矩阵的运算涉及到加法、减法、乘法等多种操作。
下面将对矩阵及其运算进行详细介绍。
1. 矩阵定义与表示方法:矩阵可以用一个大写字母表示,如A;矩阵的行数和列数分别用小写m和n表示,记为A(m,n)。
也可以用方括号表示矩阵,如A=[a_ij](m×n),其中a_ij表示矩阵A的第i行第j列的元素。
2. 矩阵的加法:矩阵加法要求两个矩阵具有相同的行数和列数,即A(m,n)和B(m,n)。
两个矩阵相加的结果是一个新的矩阵C,C(i,j) = A(i,j) + B(i,j),其中1≤i≤m,1≤j≤n。
3. 矩阵的减法:矩阵减法与矩阵加法类似,也要求两个矩阵具有相同的行数和列数。
两个矩阵相减的结果是一个新的矩阵D,D(i,j) = A(i,j) - B(i,j),其中1≤i≤m,1≤j≤n。
4. 矩阵的乘法:矩阵乘法要求第一个矩阵的列数等于第二个矩阵的行数,即A(m,p)和B(p,n)。
两个矩阵相乘的结果是一个新的矩阵E,E(i,j) = ΣA(i,k) * B(k,j),其中1≤i≤m,1≤j≤n,1≤k≤p。
矩阵乘法是非交换的,即A·B≠B·A。
5. 矩阵的转置:矩阵的转置是将矩阵的行和列互换得到的新矩阵。
若A的转置记为A^T,则矩阵A(m,n)的转置是一个新的矩阵F(n,m),F(i,j) = A(j,i),其中1≤i≤n,1≤j≤m。
6. 矩阵的数量积:矩阵的数量积又称为点积或内积,是两个矩阵对应元素相乘后求和的结果。
若A(m,n)和B(m,n)为两个矩阵,其数量积记为G,G = ΣA(i,j) * B(i,j),其中1≤i≤m,1≤j≤n。
7. 矩阵的幂:矩阵的幂是指矩阵连乘自身多次得到的结果。
若A是一个矩阵,其幂记为A^k,k为正整数,A^k = A·A·...·A。
矩阵的基本运算法则
矩阵的基本运算法则1、矩阵的加法矩阵加法满足下列运算规律(设A 、B 、C 都是m n ⨯矩阵,其中m 和n 均为已知的正整数):(1)交换律:+=+A B B A(2)结合律:()()++++A B C =A B C注意:只有当两个矩阵为同型矩阵(两个矩阵的行数和列数分别相等)时,这两个矩阵才能进行加法运算。
2、数与矩阵相乘数乘矩阵满足下列运算规律(设A 、B 是m n ⨯矩阵,λ和μ为数):(1)结合律:()λμλμ=A A(2)分配律:()λμλμ+=+A A A(3)分配律:()λλλ+=+A B A B注意:矩阵相加与数乘矩阵合起来,统称为矩阵的线性运算。
3、矩阵与矩阵相乘矩阵与矩阵的乘法不满足交换律、但是满足结合律和分配率(假设运算都是可行的):(1)交换律:≠AB BA (不满足)(2)结合律:()()=AB C A BC(3)结合律:()()()λλλλ==其中为数AB A B A B(4)分配律:()(),+=++=+A B C AB AC B C A BA CA4、矩阵的转置矩阵的转置满足下述运算规律(假设运算都是可行的,符号()T g 表示转置):(1)()T T =A A(2)()T T T +=+A B A B(3)()TT λλ=A A(4)()T T T =AB B A 5、方阵的行列式由A 确定A 这个运算满足下述运算法则(设A 、B 是n 阶方阵,λ为数):(1)T =A A(2)n λλ=A A(3)=AB A B6、共轭矩阵共轭矩阵满足下述运算法则(设A 、B 是复矩阵,λ为复数,且运算都是可行的):(1)+=+A B A B(2)λλ=A A(3)=AB AB7、逆矩阵方阵的逆矩阵满足下述运算规律:(1)若A 可逆,则1-A 亦可逆,且()11--=A A(2)若A 可逆,数0λ≠,则λA 可逆,且()111λλ--=A A(3)若A 、B 为同阶矩阵且均可逆,则AB 亦可逆,且()111---=AB B A参考文献:【1】线性代数(第五版),同济大学。
矩阵的基本概念与运算
矩阵的基本概念与运算矩阵是线性代数中的基本概念之一,它具有广泛的应用。
本文将介绍矩阵的基本概念以及涉及的运算方法。
一、矩阵的定义与表示方法矩阵是一个按照矩形排列的数阵,它由m行n列的数构成。
一个矩阵可以用一个大写字母加上下标的方式表示,例如A、B、C等。
如果一个矩阵共有m行n列,我们将其记作A(m×n)。
二、矩阵的基本运算1. 矩阵的加法设有两个矩阵A(m×n)和B(m×n),矩阵A与矩阵B的和记作A + B,其定义为矩阵中对应元素相加所得的新矩阵,即(A + B)(i,j) = A(i,j) +B(i,j)。
需要注意的是,两个矩阵进行加法运算时,必须满足相加的两个矩阵具有相同的行数和列数。
2. 矩阵的数乘设有一个矩阵A(m×n)和一个常数k,矩阵A乘以常数k的结果记作kA,其定义为将矩阵A的每个元素都乘以k所得的新矩阵,即(kA)(i,j) = k * A(i,j)。
同样需要注意的是,常数与矩阵的乘法满足交换律,即kA = Ak。
3. 矩阵的乘法矩阵的乘法是矩阵运算中的重要一环。
设有两个矩阵A(m×n)和B(n×p),这两个矩阵可以相乘得到一个新的矩阵C,记作C = A * B。
新矩阵C的元素由矩阵A的行向量与矩阵B的列向量的内积所得,即C(i,j) = A(i,1) * B(1,j) + A(i,2) * B(2,j) + ... + A(i,n) * B(n,j)。
4. 矩阵的转置设有一个矩阵A(m×n),将A的行换成列,列换成行所得到的新矩阵称为A的转置矩阵,记作A^T。
三、矩阵的特殊类型1. 零矩阵零矩阵是指所有元素都为零的矩阵,记作O。
零矩阵的尺寸通常根据上下文来确定。
2. 方阵方阵是行数与列数相等的矩阵,记作A(n×n)。
方阵具有许多重要的性质和特点。
3. 单位矩阵单位矩阵是一个主对角线上元素都为1,其余元素都为零的方阵,记作I。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4) AE EA A
注 矩阵乘法不满足交换律,即 AB BA
例如
设
A
1
1
,
B
1
1
1 1
1 1
两个非零矩阵的 乘积可能是零矩阵
则
AB
0
0
BA
2
2
Байду номын сангаасB BA
0 0
2 2
问题 矩阵不满足交换律,可能有哪几种情形? (1)AB有意义,但BA没意义; (2)AB与BA都有意义,但可能不是同阶方阵; (3)两者都有意义,且为同阶方阵,但仍有可能不相等.
结论 在矩阵的乘法中必须注意矩阵相乘的顺序 “左乘” & “右乘”
但也有例外,比如设 A 2 0, B 1 1,
0 2
1 1
则有 AB
2 2
2,
2
BA
22 22
AB
BA.
定义 满足AB=BA的矩阵称为可交换的.
结论 两个同阶对角矩阵是可交换的.
结论 n阶单位矩阵与任意n阶矩阵是可交换的.即
的元素相等,即
aij bij i 1,2,,m; j 1,2,,n,
则称矩阵A与矩阵B相等,记作 A B
❖矩阵的加法
设有两个mn矩阵A(aij)和B(bij) 矩阵A与B的和记 为AB 规定为AB(aijbij ) 即
a11 b11
A
B
a21 b21
am1 bm1
a12 b12 a22 b22
3 2 1 2 2 2 3 2 1 2 2 2 1 0 1
4 5 6 1 2 3 4 5 6 1 2 3 3 3
3
❖矩阵的数乘
数与矩阵A的乘积记作A或A , 规定为
a11
A
A
a21
a12
a22
a1n
a2n
.
am1 am1 amn
❖矩阵数乘的运算规律
(1) 1A A;
2
0
4
0
B
1
3
1
3 2 1 2
4
1
1
1
解
因
A
aij
,B
34
bij
,故 C
43
cij
.
33
1 C AB 1
0
0 1 5
1 3 1
2 0 4
0 1 3 1
3 2 1 2
4 1 1 1
5 6 7
10 2 6.
2 17 10
注 只有当第一个矩阵的列数等于第二个矩阵的行 数时,两个矩阵才能相乘.
am2 bm2
a1n b1n a2n b2n
amn bmn
注 只有当两个矩阵是同型矩阵时, 才能进行加法运算.
10 3 5 1 8 9 10 1 3 8 5 9 11 11 4
1
3
9 3
0
6
8 3
5 2
4
1
1 3
6 3
9 5 3 2
0
4
a2
b1
b2
an nn
bn nn
a1b1
a2b2
anbn nn
结论 两个n 阶对角阵之积仍为n 阶对角阵.
结论 两个n阶上(下)三角阵之积仍为n阶上(下)三角阵.
❖矩阵乘法的运算规律 (1) 结合律: ( AB)C A(BC)
(2) 分配律: A(B+C) AB AC (左乘分配律) (B+C)A BA CA(右乘分配律)
nan1
1a12 2a22
nan2
1a1s
2a2s
nans
ns
a1s
a2s
ans ns
a11 a12
a21
a22
an1 an2
a1n
a2
n
1
2
ann nn
1a11
1a21
1an1
2a12 2a22
2an2
na1n
na2n
nann
nn
n
nn
a1
(2) ()A ( A);
(3) ( )A A A;
(4) ( A B) A B.
矩阵相加与数乘矩阵合起来,统称为矩阵的线性运算.
❖矩阵乘法
设 A (aij )是一个m×s矩阵,
B (bij ), 是一个s×n矩阵, 那么规定矩阵A与矩阵B的
乘积是一个m×n 矩阵 C (cij ), 其中
——A可左乘B的可相乘条件.
例如
1 3 5
2 2 8
3 1 9
1 6
6 0
8 不存在. 1
乘积AB 维的关系
A
mn
B
n s
=
C ms
注 两个矩阵相乘, 乘积有可能是一个数.
1
2
3
3 2
1 3
22
3 1
10.
1
练习 计算下列矩阵的乘积,并观察结果.
1
1 2 1 4 1 2 1 4
§2.2 矩阵的基本运算
1、运算定义&运算规则 2、矩阵应用举例
1、运算定义&运算规则
同型矩阵与矩阵相等的概念 1.两个矩阵的行数相等,列数相等时,称为同型矩阵.
例如
1 5
62 与 184
3 4
为同型矩阵.
3 7 3 9
2.两个矩阵 A aij 与B bij 为同型矩阵,并且对应
Em Amn Amn En
注 矩阵乘法不满足消去律,即
AB AC, A 0 不能推出 B C
例如
设A
1
1
1
,
B
7
8 1 6
4 4 1 9
❖矩阵加法的运算规律 设A B C都是mn矩阵 则 (1) ABBA (2) (AB)CA(BC)
设矩阵A(aij) 记A(aij) A称为矩阵A的负矩阵; 另,把元全为零的矩阵称为零矩阵,记作O;
(3) A= A+O = O+A
由此,规定矩阵的减法为ABA(B),例如
EA=AE=A
证明
设 A
aij
为任意n阶矩阵,则有
nn
1
EA
1
a11 a12
a21
a22
1
an1
an2
a1n
a2n
aij
A
nn
ann
a11 a12
AE
a21
a22
an1 an2
a1n 1
a2n
1
ann
aij
A
nn
1
注 此例表明单位矩阵在矩阵乘法中的地位与数1在 数的乘法中的地位相当. 即
s
cij ai1b1 j ai 2b2 j aisbsj aikbkj k 1
(i 1, 2, m; j 1, 2, , n)
把此乘积记作 C AB
例如
C 2 1
4 2
222 3
4
16
?
32
622 8 16 22
1 0
例
若
A
1
1
0 5
求AB.
1 3 1
1
5
8
0
2
5
8
0
2
1 33 10 1 3 7 34 10 1 3 7 34
1
1 2 1 4
5
10
8 1
0 3
2 7
34
1
1
1
1 44
5
10
2 8
1
1 0 3
4
2
7 34
1
2
a11 a12
a21
a22
n
nn
an1
an2
1a11
2a21