七年级实数易错题
七年级数学上册实数重点易错题

(每日一练)七年级数学上册实数重点易错题单选题1、下列计算正确的是()A.√0.09=±0.3B.√414=2√12C.√−273=−3D.−√|−25|=5答案:C解析:根据平方根的性质、立方根的性质以及绝对值的性质即可求出答案.A、原式=0.3,故A不符合题意.B、原式=√174=√172,故B不符合题意.C、原式=﹣3,故C符合题意.D、原式=﹣5,故D不符合题意.故选:C.小提示:本题考查了平方根的性质、立方根的性质以及绝对值的性质,正确进行平方根与立方根的计算是关键,要注意平方根与算术平方根的区别.2、有一个数值转换器,原理如图所示,当输入x为64时,输出y的值是()A.4B.√43C.√3D.√23答案:B解析:由图中的程序知:输入x的值后,当√x3是无理数时,y=√x3;若√x3的值是有理数,将3再取立方根,直至输出的结果为无理数,也就求出了y的值.√x3=4, 4是有理数,将4的值代入x中;当x=4时,解: 解:由题意,得:x=64时, √643是无理数.√4故选:B.小提示:本题考查实数的运算,弄清程序的计算方法是解题关键.3、下列命题是真命题的是()A.如果一个数的平方等于这个数本身,那么这个数一定是0B.如果一个数的平方根等于这个数本身,那么这个数一定是0C.如果一个数的算术平方根等于这个数本身,那么这个数定是0D.如果一个数的立方根等于这个数本身,那么这个数定是0答案:B解析:根据平方、平方根、算术平方根、立方根的定义,思考特殊值,即可求出答案.解:A、如果一个数的平方等于这个数本身,那么这个数一定是0或1,故A是假命题;B、如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题;C、如果一个数的算术平方根等于这个数本身,那么这个数一定是0或1,故C是假命题;D、如果一个数的立方根等于这个数本身,那么这个数是0、1、-1,故D是假命题.故选:B.小提示:此题主要考查了命题与定理,关键是掌握正确的命题为真命题,错误的命题为假命题.填空题4、比较下列各数的大小:(1)3√24 ____3√26;(2)−22____-π7答案:<;<解析:(1)根据数轴上表示的两个实数,右边的总比左边的大进行比较;(2)根据两个负数,绝对值大的反而小进行比较.解:(1)∵√24<√26,∴3√24<3√26;≈-3.143,-π≈-3.141,(2)−227∵3.143>3.141∴−22<-π.7故答案为<,<.小提示:本题考查了实数的大小比较,解题的关键是注意:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.5、如果a、b分别是√2的整数部分和小数部分,那么b−a=__________.答案:√2−2解析:√2的整数部分是1,即a是1,小数部分是√2-1,即b是√2-1,再代入代数式计算.解:∵√2的整数部分是1,小数部分是√2-1,∴a=1,b=√2-1,∴b-a=(√2-1)-1=√2-1-1=√2-2.所以答案是:√2-2.小提示:此题考查的估算无理数大小的能力,解答此类题目的关键是先对无理数进行估算,再计算.解答题6、设x、y是任意两个有理数,规定x与y之间的一种运算“⊕”为:x⊕y={3x+4y−5(x≥y)4x+3y−5(x<y)(1)求1⊕(−1)的值;(2)若(m−2)⊕(m+3)=2,求m的值.答案:(1)−6;(2)m=67解析:(1)根据新运算中的代数式,将式子进行化简求值即可.(2)分情况进行讨论,当m-2≥m+3时,当m-2<m+3时分别根据新运算的法则进行运算求值即可.解:(1)1⊕(−1)=3×1+4×(−1)−5=3-4-5=−6;(2)∵m-2≥m+3不成立,∴当m-2<m+3时4(m−2)+3(m+3)−5=2,4m−8+3m+9−5=27m=6m=67小提示:本题考查新运算,解决本题的关键是正确理解题意,熟练掌握新运算的运算步骤.。
七年级实数易错题-教师版

七年级实数易错题1( )A .3B .3-C .3±D .6 【答案】A2( )A .9B .9或9-C .3D .3或3- 【答案】D3,0.13,27,2π,1.3131131113⋯(每两个3之间依次加一个1),无理数有( )个.A .1B .2C .3D .4 【答案】C40=,则2020()a b -的值为( )A .1B .1-C .1±D .0【答案】D5.下列叙述中,正确的是( )①1的立方根为1±;②4的平方根为2±;③8-立方根是2-; ④116的算术平方根为14. A .①②③B .①②④C .①③④D .②③④【答案】D 6.下列运算正确的是( )A .2020(1)1-=-B .224-=C 4±D 3=-【答案】D7.面积为5的正方形边长为m ,且3n m =-,则估计n 的值所在的范围是( )A .01n <<B .12n <<C .23n <<D .34n << 【答案】A8.如果a的平方根是4±=.【答案】49 1.312= 4.147=,那么172010的平方根是.【答案】414.7±10.已知x y1(xy--的算术平方根为.【答案】311的平方根,338的算术平方根是.【答案】2±.12.若1x-与23x-是同一个数的平方根,则x=.【答案】43或213.一个正数的平方根为21x+和7x-,则这个正数为.【答案】2514.1=23=,⋯,.【答案】n15的平方根是,的立方根是,如果3±,则a=.【答案】2±;2-;8116.若24(1)120x--=,则等式中x的值为.【答案】1+或1-17.规定:[]a表示小于a的最大整数,例如:[5]4=,[ 6.7]7-=-,则方程[]26xπ-+=的解是.【答案】5x=18.已知264x==.【答案】2±19.实数大小比较:【答案】<20.已知5的小数部分是a ,5的小数部分是b ,则2019()a b += .【答案】121.如图,AB AC =,则数轴上点C 所表示的数为 .【答案】122.已知a b <,且a 、b 为两个连续的整数,则a b += .【答案】723.求下列式子中x 的值.(1)218(2)225x -=; (2)364(1)1250x ++=. 【答案】(1)解:(1)218(2)225x -=, 24(2)25x -=,2x -= 225x -=±, 225x =+,或225x =-, 1125x =,285x =; (2)364(1)1250x ++=, 3125(1)64x +=-,1x += 514x +=, 514x =--, 94x =-.。
《易错题》初中七年级数学下册第六单元《实数》经典题(培优专题)

一、选择题1.下列说法:①所有无理数都能用数轴上的点表示;②若一个数的平方根等于它本身,则这个数是0或1;③任何实数都有立方根;4±,其中正确的个数有()A.0个B.1个C.2个D.3个C解析:C【分析】分别根据相关的知识点对四个选项进行判断即可.【详解】解:①所有无理数都能用数轴上的点表示,故①正确;②若一个数的平方根等于它本身,则这个数是0,故②错误;③任何实数都有立方根,③说法正确;2±,故④说法错误;故其中正确的个数有:2个.故选:C.【点睛】本题考查的是实数,需要注意掌握实数的概念、平方根以及立方根的相关知识点.2.下列各式计算正确的是()A B= ±2 C= ±2 D. A解析:A【分析】根据平方根和立方根分别对四个选项进行计算即可.【详解】解:∵-1= 2= 2,,故只有A计算正确;故选:A.【点睛】本题考查的是平方根、算术平方根和立方根,计算的时候需要注意审题是求平方根还是算术平方根.3.下列说法中错误的有()①实数和数轴上的点是一一对应的;②负数没有立方根;③算术平方根和立方根均等于其本身的数只有0;④49的平方根是7±7=±.A.0个B.1个C.2个D.3个D解析:D【分析】利用实数和数轴的关系,算术平方根,立方根及平方根定义判断即可.【详解】①实数和数轴上的点是一一对应的,正确;②负数有立方根,错误;③算术平方根和立方根均等于其本身的数有0和1,错误;④49的平方根是7±7=,错误.综上,错误的个数有3个.故选:D.【点睛】本题考查了实数和数轴,平方根,算术平方根及立方根,熟练掌握各自的定义是解本题的关键.4.在0、0.536227-、π、-0.1616616661……(它的位数无限,相邻两个“1”之间“6”的个数依次增加1个)这些数中,无理数的个数是()A.3 B.4 C.5 D.6B 解析:B【分析】根据无理数的定义逐一判断即可.【详解】解:0、0.536、227-是有理数,π,0.1616616661-(它的位数无限,相邻两个“1”之间“6”的个数依次增加1个)是无理数,故选:B.【点睛】本题考查无理数的定义,掌握无理数的定义是解题的关键.5.下列实数中,是无理数的为()A.3.14 B.13C D解析:C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】A.3.14是有限小数,属于有理数;B.13是分数,属于有理数;3,是整数,属于有理数.故选:C .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.各个数位上数字的立方和等于其本身的三位数叫做“水仙花数”.例如153是“水仙花数”,因为333153153++=.以下四个数中是“水仙花数”的是( )A .135B .220C .345D .407D 解析:D【分析】分别算出某数各个数位上数字的立方和,看其是否等于某数本身,若等于即为“水仙花数”,若不等于,即不是“水仙花数” .【详解】解:∵333135153135++=≠,∴A 不是“水仙花数”;∵332216220+=≠,∴B 不是“水仙花数”;∵333345216345++=≠,∴C 不是“水仙花数”;∵3347407+=,∴D 是“水仙花数”;故选D .【点睛】本题考查新定义下的实数运算,正确理解题目所给概念并熟练应用实数运算法则去完成有关计算是解题关键.7.已知n 是正整数,并且n -1<3+<n ,则n 的值为( )A .7B .8C .9D .10C 解析:C【分析】根据实数的大小关系比较,得到5<6,从而得到n 的值.【详解】解:∵<5<6,∴8<<9,∴n =9.故选:C .【点睛】8.0.31,3π,27-12- 1.212212221…(每两个1之间依次多一个2)中,无理数的个数为( )A .1B .2C .3D .4C 解析:C【分析】无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,据此逐一判断即可得.【详解】解∵3=2=,∴在所列的83π,1.212 212 221…(每两个1之间依次多一个2)这3个,故选:C .【点睛】 本题主要考查的是无理数的概念,熟练掌握无理数的三种类型是解题的关键.9.下列各数中,属于无理数的是( )A .227B .3.1415926C .2.010010001D .π3- D 解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A 、227是有理数,故选项A 不符合题意; B 、3.1415926是有理数,故选项B 不符合题意;C 、2.010010001是有理数,故选项C 不符合题意;D 、π3-是无理数,故选项D 题意; 故选:D .【点睛】 此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.10.一个正方体的体积为16,那么它的棱长在( )之间A .1和2B .2和3C .3和4D .4和5B解析:B【分析】可以利用方程先求正方体的棱长,然后再估算棱长的近似值即可解决问题.【详解】设正方体的棱长为x ,由题意可知316x =,解得x =,∵332163<<, ∴23<,那么它的棱长在2和3之间.故选:B .【点睛】的范围.二、填空题11.计算(1)22234x +=;(2)38130125x +=(3)2|12|(2)---; (4)(x +2)2=25.(1);(2)x=;(3);(4)【分析】(1)方程整理后利用平方根定义开方即可求出解;(2)先求出x3的值再根据立方根的定义解答;(3)直接利用绝对值的性质平方根定义和负指数幂的性质分别化简得出答解析:(1)12x x ==-2)x=35;(3)12;(4)123,7x x ==-. 【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)先求出x 3的值,再根据立方根的定义解答;(3)直接利用绝对值的性质、平方根定义和负指数幂的性质分别化简得出答案; (4)依据平方根的定义求解即可.【详解】(1)22234x +=,2x²=32,x²=18,,∴12x x ==-(2)38130125x +=, 327125x =-,x=35; (3)21|12|(2)16----- =1-1144-=311442-= (4)(x +2)2=25,(x+2)=±5,x+2=5,x+2=-5,∴123,7x x ==-.【点睛】本题考查了利用平方根和立方根解方程,绝对值的性质和负指数幂的性质,掌握有关性质是解题的关键.12.计算:3011(2)(20043)22-+---【分析】根据运算法则和运算顺序准确计算即可【详解】解:【点睛】本题考查了实数得混合运算掌握运算法则和顺序是解题的关键解析:8-【分析】根据运算法则和运算顺序准确计算即可.【详解】解:3011(2)(20043)22-+--- 11822=-+- 8=-【点睛】本题考查了实数得混合运算,掌握运算法则和顺序是解题的关键.13.如图,A ,B ,C 在数轴上对应的点分别为a ,1-,2,其中1a <-,且AB BC =,则a =_______.【分析】根据题意先求出BC 的长度然后求出a 的值即可得到答案【详解】解:根据题意∴∵∴∴∴;故答案为:【点睛】本题考查了数轴上两点之间的距离以及绝对值的意义解题的关键是掌握数轴的定义正确的求出a 的值解析:22+【分析】根据题意,先求出BC 的长度,然后求出a 的值,即可得到答案.【详解】解:根据题意,(1)1BC =-=, ∴1AB BC ==, ∵1AB a =--, ∴11a --=, ∴2a =-∴22a =-=;故答案为:2+【点睛】本题考查了数轴上两点之间的距离,以及绝对值的意义,解题的关键是掌握数轴的定义,正确的求出a 的值.14.一个正方体的木块的体积是3343cm ,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是________.5cm3【分析】先根据正方体的体积求出正方体的边长要使它锯成8块同样大小的小正方体木块只需要将正方体的每条棱长平均分为两份即可得到小正方体的棱长即可求出表面积【详解】解:∵一个正方体的木块的体积是∴解析:5cm 3.【分析】先根据正方体的体积求出正方体的边长,要使它锯成8块同样大小的小正方体木块,只需要将正方体的每条棱长平均分为两份即可,得到小正方体的棱长,即可求出表面积.【详解】解:∵一个正方体的木块的体积是3343cm ,∴(cm 3),要将它锯成8块同样大小的小正方体木块,则每个小正方体的棱长为7÷2=3.5(cm 3), ∴每个小正方体的表面积为6×3.52=73.5(cm 3).故答案为73.5cm 3.【点睛】本题考查了立方根.解题的关键是能够通过空间想象得出如何将正方体分成8块同样大小的小正方体木块.15.已知290x ,310y +=,求x y +的值.2或4【分析】根据平方根和立方根的性质计算得到x 和y 的值再结合绝对值的性质计算即可得到答案【详解】∵∴∵∴∴当时=当时=【点睛】本题考查了平方根立方根绝对值的知识;解题的关键是熟练掌握平方根立方根绝解析:2或4【分析】根据平方根和立方根的性质计算,得到x 和y 的值,再结合绝对值的性质计算,即可得到答案.【详解】∵290x∴3x =±∵310y +=∴1y =- ∴当3x =,1y =-时,x y +=312-=当3x =-,1y =-时,x y +=314--=.【点睛】本题考查了平方根、立方根、绝对值的知识;解题的关键是熟练掌握平方根、立方根、绝对值的性质,从而完成求解.16.a 是不为2的有理数,我们把2称为a 的“文峰数”如:3的“文峰数”是2223=--,-2的“文峰数”是()21222=--,已知a 1=3,a 2是a 1的“文峰数”, a 3是a 2的“文峰数”, a 4是a 3的“文峰数”,……,以此类推,则a 2020=______【分析】先根据题意求得发现规律即可求解【详解】解:∵a1=3∴∴该数列为每4个数为一周期循环∵∴a2020=故答案为:【点睛】此题主要考查规律的探索解题的关键是根据题意发现规律 解析:43. 【分析】 先根据题意求得2a 、3a 、4a 、5a ,发现规律即可求解.【详解】解:∵a 1=3 ∴22223a ==--,()321222a ==--,4241322a ==-,523423a ==-, ∴该数列为每4个数为一周期循环,∵20204505÷=∴a 2020=443a =. 故答案为:43. 【点睛】此题主要考查规律的探索,解题的关键是根据题意发现规律.17.根据如图所示的程序计算,若输出y 的值为16,则输入x 的值为 ______.或【分析】根据题意得出解方程即可求解【详解】依题意得:∵∴或∴或故答案为:或【点睛】本题考查了乘方的意义解一元一次方程熟练掌握乘方的意义是解题的关键 解析:6或2-【分析】根据题意得出()2216x -=,解方程即可求解.【详解】依题意得:()2216x -=,∵2416=,()2416-=,∴24x -=或24x -=-,∴6x =或2x =-,故答案为:6或2-.【点睛】本题考查了乘方的意义,解一元一次方程,熟练掌握乘方的意义是解题的关键. 18.对于有理数x 、y ,当x ≥y 时,规定x ※y =y x ;而当x <y 时,规定x ※y =y -x ,那么4※(-2)=_______;如果[(-1)※1]※m=36,则m 的值为______.或【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可【详解】解:4※(-2)=;(-1)※1=(-1)※1※m=2※m=36当时原式可化为解得:;解析:6m =-或38m =.【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可.【详解】解:42>-∴4※(-2)=()42=16-;11-<∴(-1)※1=()11=2--∴[(-1)※1]※m=2※m=36当2m ≥时,原式可化为236m =解得:6m =±6m ∴=-;当2m <时,原式可化为:236m -=解得:38m =;综上所述,m 的值为:6m =-或38m =;故答案为:16;6m =-或38m =.【点睛】本题考查了新定义的运算,读懂新定义的式子,将值正确代入是解题的关键.19.规定新运算:()*4a b a ab =+.已知算式()3*2*2x =-,x =_______.【分析】根据新运算可得由得到关于x 的一元一次方程求解即可【详解】解:根据新运算可得∵∴解得故答案为:【点睛】本题考查新定义运算解一元一次方程根据题意得出一元一次方程是解题的关键 解析:43- 【分析】根据新运算可得()3*334x x =+,()()2*22440-=⨯-+=,由()3*2*2x =-得到关于x 的一元一次方程,求解即可.【详解】解:根据新运算可得()3*334x x =+,()()2*22440-=⨯-+=,∵()3*2*2x =-,∴()3340x +=,解得43x =-, 故答案为:43-. 【点睛】本题考查新定义运算、解一元一次方程,根据题意得出一元一次方程是解题的关键. 20.请仔细阅读材料并完成相应的任务.据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:一个数是59319,希望求它的立方根(提示:59319是一个整数的立方).华罗庚脱口而出答案,邻座的乘客十分惊奇,忙问计算的奥妙.你知道华罗庚是怎样迅速准确地计算出来的吗?(1)由3101000=,31001000000=,11000593191000000<<______位数;(2)由59319的个位数字是9______;(3)如果划去59319后面的319得到数59,而3327=,3464=上的数是______.(1)两(2)9(3)3【分析】(1)根据题意可以确定为两位数;(2)只有9的立方的个位数字才是9据此可判断;(3)<59<据此可判断【详解】解:(1)∵103=10001003=1 000 000解析:(1)两 (2)9 (3)3.【分析】(1)根据题意可以确定为两位数;(2)只有9的立方的个位数字才是9,据此可判断;(3)33<59<34,据此可判断.【详解】解:(1)∵103=1000,1003=1 000 000,而1000<59319<1000000,∴10100,因此结果为两位数;故答案是:两;(2)因为只有9的立方的个位数字才是9,因此结果的个位数字为9,故答案是:9;(3)∵33<59<343.故答案为:3.【点睛】考查实数的意义,立方根的意义以及立方的尾数特征等知识,理解题意是关键.三、解答题21.计算(1)121|24|234⎛⎫-+-⨯- ⎪⎝⎭ (2)1110623⎛⎫÷-⨯⎪⎝⎭ (3)41(1)(54)3⎛⎫---÷- ⎪⎝⎭(4+解析:(1)-2;(2)360;(3)4;(4)143. 【分析】(1)先去括号和绝对值,再进行混合运算即可.(2)先将括号内通分运算,再将除法改为乘法,最后计算即可.(3)先去括号,再将除法改为乘法,最后计算即可.(4)分别计算出根式的值,在进行加法运算即可.【详解】(1)121|24|234⎛⎫-+-⨯- ⎪⎝⎭ 121242424234=-⨯+⨯-⨯ 12166=-+-2=-(2)1110623⎛⎫÷-⨯ ⎪⎝⎭ 61061=÷⨯ 1066=⨯⨯360=(3)41(1)(54)3⎛⎫---÷- ⎪⎝⎭11(3)=-⨯-13=+4=(4+=153=- 143= 【点睛】本题考查实数的混合运算.掌握其运算法则是解答本题的关键.22.定义一种新运算;观察下列各式;131437=⨯+=()3134111-=⨯-=5454424=⨯+= ()4344313-=⨯-=(1)请你想一想:a b = ;(2)若a b ,那么a b b a (填“=”或“≠” );(3)先化简,再求值:()()2a b a b -+,其中1a =-,2b =. 解析:(1)4a+b ;(2)≠;(3)6a-3b ,-12【分析】 (1)观察得到新运算等于第一个数乘以4,加上第二个数,据此列式即可;(2)根据新运算分别计算出a b 与b a 即可得到答案; (3)根据新运算分别化简再将a 、b 的值代入计算.【详解】(1)ab =4a+b , 故答案为:4a+b ; (2)a b =4a+b ,b a =4b+a , ∵a b , ∴a b ≠b a ,故答案为:≠;(3)()()2a b a b -+ =4(a-b )+(2a+b ) =4a-4b+2a+b=6a-3b ,当1a =-,2b =时,原式=-6-6=-12.【点睛】此题考查新定义运算,整式的加减混合运算,正确理解新定义的运算规律并解决问题是解题的关键.23.计算:(12)-+(2解析:(1)-2;(2)【分析】 (1)原式去括号合并即可得到结果;(2)首先计算开方,然后从左向右依次计算,求出算式的值是多少即可.【详解】解:(1)原式=2-2=-(2)原式22=+=【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.24.对数运算是高中常用的一种重要运算,它的定义为:如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作:x =log a N ,例如:32=9,则log 39=2,其中a =10的对数叫做常用对数,此时log 10N 可记为lgN .当a >0,且a ≠1,M >0,N >0时,log a (M •N )=log a M +log a N .(1)解方程:log x 4=2;(2)求值:log 48;(3)计算:(lg2)2+lg2•1g5+1g5﹣2018解析:(1)x=2;(2)32;(3)-2017【分析】(I)根据对数的定义,得出x2=4,求解即可;(Ⅱ)根据对数的定义求解即可;(Ⅲ)根据log a(M•N)=log a M+log a N求解即可.【详解】解:(I)解:∵log x4=2,∴x2=4,∴x=2或x=-2(舍去)(II)解法一:log48=log4(4×2)=log44+log42=1+12=32;解法二:设log48=x,则4x=8,∴22x=32,∴2x=3,x=32,即log48=32;(Ⅲ)解:(lg2)2+lg2•1g5+1g5﹣2018= lg2•( lg2+1g5) +1g5﹣2018= lg2 +1g5﹣2018=1-2018=-2017故答案为-2017.【点睛】本题主要考查同底数幂的乘法,有理数的乘方,是一道关于新定义运算的题目,解答本题的关键是理解给出的对数的定义和运算法则.25.计算下列各题(1)﹣2;(2)﹣(结果保留2位有效数字).解析:(1);(2)2.6【分析】(1)计算立方根、平方根,再合并即可;(2)根据实数的运算法则和顺序计算即可.【详解】(1)(2)100.2=-⨯ 2 1.732 2.23622≈⨯+÷-2.6≈.【点睛】本题考查了平方根和立方根,熟练掌握相关的运算法则是解题的关键.26.解方程:(1)2810x -=;(2)38(1)27x +=.解析:(1)9x =±;(2)12x =. 【分析】 (1)移项,利用平方根的性质解方程;(2)方程两边同时除以8,然后利用立方根的性质解方程.【详解】(1)2810x -=,移项得:281x =,解得:9x =±;(2)()38127x +=,方程两边同时除以8,得:()32718x +=, ∴312x +=, 解得:31122x =-=. 【点睛】本题考查了平方根和立方根,熟练掌握平方根和立方根的定义与性质是解题关键. 27.计算:(1)2019(1)|2|-(2)[(x ﹣2y )2+(x ﹣2y )(x +2y )﹣2x (2x ﹣y )]÷2x解析:(1)1--2)y x --【分析】(1)先根据正整数指数幂、立方根、平方根、去绝对值化简各项,再进行加减运算即可; (2)先去括号,根据完全平方公式和平方差公式计算后合并同类项,再计算除法即可求解.【详解】(1)原式= 1242-+-+1=-(2)原式=22222444422x xy y x y x xy x ⎡⎤-++-⎣⎦÷-+ ()2222xy x x =-÷-y x =--.【点睛】本题主要考查整式的混合运算,解题的关键是掌握立方根、平方根、绝对值及多项式与单项式的除法法则.28.已知52a +的立方根是3,31a b +-的算术平方根是4,c 的整数部分. (1)求a ,b ,c 的值;(2)求3a b c -+的平方根.解析:(1)5a =,2b =,3c =;(3)4±【分析】(1)利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a 、b 、c 的值.(2)将a 、b 、c 的值代数式求出值后,进一步求得平方根即可.【详解】解:(1)∵52a +的立方根是3,31a b +-的算术平方根是4,∴5227a +=,3116a b +-=,∴5a =,2b =; ∵34<<,c 的整数部分,∴3c =;(2)当5a =,2b =,3c =时,3152316a b c -+=-+=,16的平方根是4±∴3a b c -+的平方根是4±.【点睛】本题考查立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可.。
(word版)七年级实数易错题

实数易错题一.〔共26小〕1.〔2021?雅安〕9的平方根是〔〕A.3B.3C.±3D.812.〔2021?黔南州〕的平方根是〔〕A.3 B.±3C. D.±3.〔2005?南充〕一个数的平方是4,个数的立方是〔〕A.8 B. 8 C.8或8 D.4或44.〔2003?广西〕m≠n,按以下A,B,C,D的推理步,最后推出的是m=n,其中出的推理步是〔〕C.∴mn=nm D.∴m=nA.∵〔mn〕2=〔nm〕B.∴=25.以下出的“25的平方根是±5〞的表达式中,正确的选项是〔〕A.=±5B. = 5 C.±=±5D. =56.数的平方根〔〕A.a B.±a C.±D.±7.〔通州区二模〕,那么〔a+b〕2021的〔〕A.1B.1C.32021D.320218.的算平方根与2的相反数的倒数的是〔〕A.4B.16C.D.9.〔永州〕以下判断正确的选项是〔〕B.2<+<3C.1<<2D.4<<5A.<<210.〔2021?瑞安市模〕以下各中,最小的数是〔〕A.3B.0C.D .11.在数、、0、、3.1415、π、、2.123122312223⋯中,无理数的个数〔〕A.2个B.3个C.4个D.5个12.以下法中正确的选项是〔〕A.根号的数是无理数B.无理数不能在数上表示出来C.无理数是无限小数 D.无限小数是无理数13.估算的是在〔〕A.2与3之B.3与4之C.4与5之D.5与6之114.〔2004?富阳市模〕数上有两点 A、B分表示数a、b,段AB的度是〔〕A.a b B.a+b C.|a b| D.|a+b|15.在中无理数有〔〕个.A.3个B.4个C.5个D.616.数,,π,,0.2021020002⋯〔每两个2之依次增加一个0〕中,无理数的个数是〔〕A.2个B.3个C.4个D.5个17.在数,0,,3.14,,,0,,0.03745,π,,3.14,2.123122312233中,无理数有〔〕A.2B.3C.4D.518.一个立方体的体是9,它的棱是〔〕A.3B.3C.D.19.以下句:①1是1的平方根.②根号的数都是无理数.③1的立方根是1.④的立方根是2.⑤〔2〕2的算平方根是2.⑥125的立方根是±5.⑦有理数和数上的点一一.其中正确的有〔〕A.2个B.3个C.4个D.5个20.的平方根〔〕A.±8B.±4C.±2D.4 21.假设x2=〔3〕2,y327=0,x+y的是〔〕A.0B.6C.0或6D.0或622.使最大的整数,a的〔〕A.±5B.5C.5D.不存在23.以下算正确的选项是〔〕A.B.C.D.24.两个无理数的和,差,,商一定是〔〕A.无理数B.有理数C.0D.数25.化的果是〔〕A.B.C.D.26.假设|a |+〔b+1〕2=0,的是〔〕2A. B. C.D.二.填空题〔共3小题〕27.假设〔x﹣15〕2=169,〔y﹣1〕3=﹣0.125,那么= _________ .28.〔2021?咸宁模拟〕: a和b都是无理数,且a≠b,下面提供的6个数a+b,a﹣b,ab,,ab+a﹣b,ab+a+b可能成为有理数的个数有_________ 个.29.的平方根与﹣的立方根的积为_________ .三.解答题〔共1小题〕30.计算:﹣+ + .32021年11月安琪儿的初中数学组卷参考答案与试题解析一.选择题〔共26小题〕1.〔2021?雅安〕9的平方根是〔〕A.3 B.﹣3 C.±3D.81考点:平方根.分析:如果一个非负数x的平方等于a,那么x是a是算术平方根,根据此定义解题即可解决问题.解答:解:∵〔±3〕2=9,∴9的平方根是±3.应选C.点评:此题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.〔2021?黔南州〕的平方根是〔〕A.3B.±3C.D.±考点:算术平方根;平方根.分析:首先根据平方根概念求出=3,然后求3的平方根即可.解答:解:∵=3,∴的平方根是±.应选D.点评:此题主要考查了平方根、算术平方根概念的运用.如果x2=a〔a≥0〕,那么x是a的平方根.假设a>0,那么它有两个平方根并且互为相反数,我们把正的平方根叫a的算术平方根;假设a=0,那么它有一个平方根,即0的平方根是0,0的算术平方根也是0,负数没有平方根.3.〔2005?南充〕一个数的平方是4,这个数的立方是〔〕A.8B.﹣8C.8或﹣8D.4或﹣4考点:平方根;有理数的乘方.分析:首先利用平方根的定义先求出这个数,再求其立方即可.解答:解:∵〔±2〕2=4,∴这个数为±2,∴〔±2〕3=±8.应选C.点评:此题考查了平方根的定义和求一个数的立方.注意一个正数有两个平方根,它们互为相反数.4.〔2003?广西〕m≠n,按以下A,B,C,D的推理步骤,最后推出的结论是m=n,其中出错的推理步骤是〔〕A.∵〔m﹣n〕2B.C.∴m﹣n=n﹣m D.∴m=n2=〔n﹣m〕∴=B考点:平方根.C专题:计算题.D分析:A、根据平方的定义即可判定;E、根据平方根的定义即可判定;4C、根据平方根的定义即可判定;、根据等式的性质即可判定.解答:解:A、〔m﹣n〕2=〔n﹣m〕2是正确的,应选项正确;B、 = 正确,应选项正确;C、只能说|m﹣n|=|n﹣m|,应选项错误;D、由C可以得到D,应选项正确.应选C.点评:此题主要考查了学生开平方的运算能力,也考查了学生的推理能力.5.以下给出的“25的平方根是±5〞的表达式中,正确的选项是〔〕A.=±5B.=﹣5C.±=±5D.=5考点:算术平方根.分析:根据平方根的定义,一个a数平方后等于这个数,那么它就是这个数的平方根,即可得出答案.解答:解:∵“25的平方根是±5〞,根据平方根的定义,即可得出±=±5.应选C.点评:此题主要考查了平方根的定义,根据平方根的定义直接得出答案是解决问题的关键.6.实数的平方根为〔〕A.a B.±a C.±D.±考点:平方根.专题:计算题.分析:首先根据算术平方根的定义可以求得=|a|,再利用绝对值的定义可以化简|a|即可得到结果.解答:解:∵当a为任意实数时,=|a|,而|a|的平方根为.∴实数的平方根为.应选D.点评:此题主要考查了平方根的性质,注意此题首先利用了=|a|,然后要注意区分平方根、算术平方根的概念.7.〔2021?通州区二模〕,那么〔a+b〕2021的值为〔〕A.﹣1B.1C.﹣32021D.32021考点:非负数的性质:算术平方根;非负数的性质:绝对值.分析:此题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0〞解出a、b的值,再代入原式即可.解答:解:依题意得:a+2=0,b﹣1=0,a=﹣2,b=1,a+b〕2021=〔﹣1〕2021=1.应选B.点评:此题考查了非负数的性质,初中阶段有三种类型的非负数:〔1〕绝对值;52〕偶次方;3〕二次根式〔算平方根〕.当它相加和0,必足其中的每一都等于0.根据个可以求解目.8.的算平方根与2的相反数的倒数的是〔〕A.4B.16C.D.考点:算平方根.分析:首先根据算平方根的定求出的,然后利用相反数、倒数的定即可求出果.解答:解:∵的算平方根2,2的相反数的倒数,∴的算平方根与2的相反数的倒数的是.故C.点:此主要考了算平方根的定,算平方根的概念易与平方根的概念混淆而致.弄清概念是解决本的关.9.〔2021?永州〕以下判断正确的选项是〔〕A.<<2B.2<+<3C.1<<2D.4<<5考点:数大小比.分析:先每一的无理数行估算,再每一行逐一比即可.解答:解:∵≈1.7,≈1.4,≈2.2,∴A、1.5<1.7<2,即<<2,故正确;B、∵+≈1.7+1.4=3.1,∴2<+<4,故;C、∵≈2.21.7=0.5,∴1<<2,故;D、∵×= ≈3.9,∴2<<6,故.故A.点:此主要考了数的大小的比,比,解答此的关是无理数行估算,再根据其和差行比.10.〔2021?瑞安市模〕以下各中,最小的数是〔〕A.3B.0C.D.考点:数大小比.:推理填空.分析:先根据数的大小比法行比,再求出答案即可.解答:解:∵3<<0<,∴最小的数是3,故A.点:本考了数的大小比法的用,数的大小比法是:数都小于0,正数都大于0,正数大于一切数,两个数,其大的反而小,目比典型,是一道比容易出的目.11.在数、、0、、3.1415、π、、2.123122312223⋯中,无理数的个数〔〕A.2个B.3个C.4个D.5个6考点:无理数.:推理填空.分析:根据无理数的意:①含π的;②开方开不尽的根式;③一些有律的数,判断即可.解答:解:无理数有、、π、2.123122312223⋯,共4个.故C.点:本考了无理数的意的理解和运用,关是能正确判断一个数是否是无理数.12.以下法中正确的选项是〔〕A.根号的数是无理数B.无理数不能在数上表示出来C.无理数是无限小数 D.无限小数是无理数考点:无理数.:推理填空.分析:出反例如,循小数 1.333⋯,即可判断A、D;根据数上能表示任何一个数即可判断B;根据无理数的定即可判断C.解答:解:A、如=2,不是无理数,故本;、无理数都能在数上表示出来,故本;C、无理数是无限不循小数,即无理数都是无限小数,故本正确;D、如 1.33333333⋯,是无限循小数,是有理数,故本;故C.点:本考了无理数的意的理解和运用,无理数包括:①开方开不尽的数,②含π的,③一些有律的数.13.估算的是在〔〕A.2与3之B.3与4之C.4与5之D.5与6之考点:估算无理数的大小.:算.分析:根据根式的性得出<<,求出、的,代入即可.解答:解:∵<<,4<<5,在4和5之.故C.点:本考了有理数的大小比的用,主要考学生能否知道的范.14.〔2004?富阳市模〕数上有两点 A、B分表示数a、b,段AB的度是〔〕A.a b B.a+b C.|a b| D.|a+b|考点:数与数.分析:根据数上两点之的距离公式即可解决.解答:解:根据数上两点之的距离公式可知,段AB的度是|a b|.故C.点:此主要考了数与数之关系,很,解答此的关是熟知数上两点之的距离公式:7|AB|=|ab|.15.在中无理数有〔〕个.A.3个B.4个C.5个D.6考点:无理数.分析:根据无理数、有理数的定即可判定求解.解答:解:在中,然,=14、3.14、是有理数;0.333⋯是循小数是有理数;是分数,是有理数;所以,在上一列数中,、、0.58588558885⋯是无理数,共有3个;故A.点:此主要考了无理数的定.注意根号的要开不尽方才是无理数,无限不循小数无理数.如π,,0.8080080008⋯〔每两个8之依次多1个0〕等形式.16.数,,π,,0.2021020002⋯〔每两个2之依次增加一个0〕中,无理数的个数是〔〕A.2个B.3个C.4个D.5个考点:无理数.:推理填空.分析:无理数包括三方面的数:①含π的;②开方开不尽的根式;③一些有律的数,根据以上判断即可.解答:解:无理数有,,π,0.2021020002⋯,共4个,故C.点:本考了无理数的定的理解和运用,理解无理数的定是解此的关,无理数是指无限不循小数,包括三方面的①含π的;②开方开不尽的根③一些有律的数.型好,度适中.数:式;17.在数,0,,3.14,,,0,,0.03745,π,,3.14,2.123122312233中,无理数有〔〕A.2B.3C.4D.5考点:无理数.:推理填空.分析:根据无理数的定〔包括①含π的②开方开不尽的数,③一些有律的数〕行判断即可.解答:解:无理数有,,π,共3个,故B.点:本考了无理数的定的理解,关是能判断一个数是否是无理数.18.一个立方体的体是9,它的棱是〔〕A.3B.3C.D.8考点:立方根.专题:常规题型.分析:根据立方根的定义解答即可.解答:解:设立方体的棱长为a,那么a3=9,∴a=.应选D.点评:此题主要考查了立方体的体积公式与立方根的概念,是根底题,但计算时容易出错.19.以下语句:①﹣1是1的平方根.②带根号的数都是无理数.③﹣1的立方根是﹣1.④的立方根是2.⑤〔﹣2〕2的算术平方根是2.⑥﹣125的立方根是±5.⑦有理数和数轴上的点一一对应.其中正确的有〔〕A.2个B.3个C.4个D.5个考点:无理数;平方根;算术平方根;立方根;实数与数轴.专题:推理填空题.分析:根据平方根的意义求出±〔a≥0〕,即可判断①,根据无理数的意义即可判断②;根据立方根的意义求出,即可判断③④⑥,根据算术平方根求出〔a≥0〕,即可判断⑤;根据实数和数轴上的点能建立一一对应关系,即可判断⑦.解答:解:1的平方根是±1,∴①正确;如=2,但是有理数,∴②错误;﹣1的立方根是﹣1,∴③正确;=2,2的立方根是,∴④错误;〔﹣2〕2=4,4的算术平方根是=2,∴⑤正确;125的立方根是﹣5,∴⑥错误;实数和数轴上的点一一对应,∴⑦错误;∴正确的有3个.应选B.点评:此题考查了对无理数,平方根,算术平方根,立方根,实数和数轴等知识点的理解和运用,关键是考查学生能否根据这些定义求出数的平方根、立方根、算术平方根等等.20.的平方根为〔〕A.±8B.±4C.±2D.4考点:立方根;平方根.分析:首先根据立方根的定义化简,然后根据平方根的定义即可求出结果.解答:解:∵=4,又∵〔±2〕2=4,∴的平方根是±2.应选C.点评:此题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.921.假设x2=〔﹣3〕2,y3﹣27=0,那么x+y的值是〔〕A.0B.6C.0或6D.0或﹣6考点:立方根;平方根.分析:先根据平方根和立方根的概念求出x、y的值,然后代入所求代数式求解即可.解答:解:由题意,知:x2=〔﹣3〕2,y3=27,即x=±3,y=3,∴x+y=0或6.应选C.点评:此题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根是0.22.使为最大的负整数,那么a的值为〔〕A.±5B.5C.﹣5D.不存在考点:立方根.分析:由于使为最大的负整数,那么其中的被开方数必须是一个整数的立方,利用立方根的定义和绝对值意义来解即可.解答:解:∵最大负整数为﹣1,∴=﹣1,∴a=±5应选A.点评:此题主要考查了立方根的定义和绝对值的性质,解题关键利用最大负整数为﹣1建立含有绝对值的方程,求出a的值.23.以下计算正确的选项是〔〕A.B.C.D .考点:立方根.分析:A、B、C、D都可以直接根据立方根的定义求解即可判定.解答:解:A、0.53=0.625,应选项错误;、应取负号,应选项错误;C、∵等于,∴的立方根等于,应选项正确;、应取正号,应选项错误.应选C点评:此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.24.两个无理数的和,差,积,商一定是〔〕A.无理数B.有理数C.0 D.实数考点:实数的运算.10分析:根据无理数的加减乘除运算的法那么和无理数的定义即可判定.解答:解:因为+〔﹣〕=0,+=2,所以其和可以为有理数,也可为无理数;因为﹣=0,﹣2=﹣,所以其差可以为有理数,也可为无理数;因为=2,=,所以其积可以为有理数,也可为无理数;因为=1,=,所以其商可以为有理数,也可为无理数.所以两个无理数的和,差,积,商一定是实数.应选D.点评:此题主要考查了实数的运算及无理数的定义,也考查了学生的综合应用能力,要注意举实例的方法.25.化简的结果是〔〕A. B. C.D.考点:实数的运算.分析:在进行根式的运算时要先根据最简二次根式和最简三次根式的性质化简,再计算可使计算简便.解答:解:原式=1﹣+2=3﹣.应选B.点评:此题主要考查了实数的运算,解题关键首先化简去掉根号.26.假设|a﹣|+〔b+1〕2=0,那么的值是〔〕A. B. C.D.考点:实数的运算;非负数的性质:绝对值;非负数的性质:偶次方.专题:计算题.分析:根据非负整数的性质得到a﹣ =0,b+1=0,那么a= ,b=﹣1,然后把它们代入计算即可.解答:解:∵|a﹣|+〔b+1〕2=0,a﹣=0,b+1=0,a=,b=﹣1,∴×2=×2=2.应选A.点评:此题考查了实数的运算:先进行乘法运算,再进行乘除运算,然后进行加减运算;有括号先算括号.也考查了非负整数的性质.二.填空题〔共3小题〕27.假设〔x﹣15〕2=169,〔y﹣1〕3=﹣0.125,那么=1或3.考点:实数的运算.分析:先根据平方根、立方根的定义解的两个方程求出x、y的值,然后再代值求解.解答:解:方程〔x﹣15〕2=169两边开平方得x﹣15=±13,解得:x1=28,x2=2,3方程〔y﹣1〕=﹣0.125两边开立方得11当x=28,y=0.5时,=3;当x=2,y=0.5时,=1.故答案为:1或3.点评:此题主要考查了直接开平方法,直接开立方法的运用,也考查了实数的运算,注意两种开方的结果的不同.28.〔2021?咸宁模拟〕: a和b都是无理数,且a≠b,下面提供的6个数a+b,a﹣b,ab,,ab+a﹣b,ab+a+b可能成为有理数的个数有 6 个.考点:实数的运算.分析:由于a和b都是无理数,且a≠b,可以由此取具体数值,然后根据实数的运算顺序进行计算即可判定.解答:解:当a=,b=﹣,时,a+b=0,ab=﹣2,ab+a+b=﹣2,=﹣1,当a=+1,b=﹣1时,a﹣b=+1﹣+1=2,ab+a﹣b=3+2=5.故可能成为有理数的个数有6个.点评:此题主要考查了实数的运算.解题关键注意无理数的运算法那么与有理数的运算法那么是一样的.29.的平方根与﹣的立方根的积为﹣1或1 .考点:实数的运算.专题:计算题.分析:先求出,再根据平方根的定义求解,然后根据立方根的定义求出﹣的立方根,最后讨论求解即可.解答:解:∵=4,∴的平方根是±2,∵〔﹣〕3=﹣,∴﹣的立方根为﹣,∵2×〔﹣〕=﹣1,﹣2×〔﹣〕=1,∴的平方根与﹣的立方根的积为﹣1或1.故答案为:﹣1或1.点评:此题主要考查了平方根与立方根的定义,注意先求出的值,这也是此题容易出错的地方.三.解答题〔共1小题〕30.计算:﹣+ + .考点:实数的运算.专题:计算题.分析:分别进行开立方及开平方的运算,然后合并即可.解答:解:原式=﹣〔﹣2〕+5+2=9.点评:此题考查了实数的运算,属于根底题,关键是掌握开平方及开立方得运算法那么.12。
实数易错易混淆专题集训(解析版)七年级数学下册

第04讲实数易错易混淆专题集训一.实数与数轴1.若实数a、b、c在数轴上对应点的位置如图所示,则|c﹣a|﹣|b+a|+|b﹣c|等于()A.﹣2c B.﹣a+2b C.﹣a﹣b D.a﹣2b【分析】根据数轴得出a,b,c的符号并判断它们的绝对值大小,从而根据绝对值的意义可得答案.【解答】解:由图知,c<b<0<a,|b|<|a|,∴|c﹣a|﹣|b+a|+|b﹣c|=a﹣c﹣(a+b)+b﹣c=a﹣c﹣a﹣b+b﹣c=﹣2c.故选:A.2.实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是()A.a>﹣2B.|a|>b C.a+b>0D.a⋅b>0【分析】利用数轴比较有理数的大小,绝对值的含义,有理数的加法与乘法的符号确定,利用以上知识逐一分析判断即可.【解答】解:∵﹣3<a<﹣2<0<b<1,|a|>|b|,∴a+b<0,ab<0,∴A,C,D不符合题意,B符合题意.故选:B.3.如图,正方形的边长为1,在正方形的4个顶点处标上字母A,B,C,D,先让正方形上的顶点A与数轴上的数﹣2所对应的点重合,再让正方形沿着数轴按顺时针方向滚动,那么数轴上的数2020将与正方形上的哪个字母重合()A.字母A B.字母B C.字母C D.字母D【分析】正方形滚动一周的长度为4,从﹣2到2020共滚动2022,由2022÷4=505......2,即可作出判断.【解答】解:∵正方形的边长为1,∴正方形的周长为4,∴正方形滚动一周的长度为4,∵正方形的起点在﹣2处,∴2020﹣(﹣2)=2022,∵2022÷4=505......2,∴数轴上的数2020将与正方形上的点C重合,故选:C.4.已知实数a,b在数轴上的位置如图所示,下列结论错误的是()A.1<|a|<b B.1<﹣a<b C.|a|<1<|b|D.﹣b<a<﹣1【分析】根据相反数的意义,绝对值的性质,有理数的大小比较,可得答案.【解答】解:由题意,得1<|a|<b,1<﹣a<b,﹣b<a<﹣1,故C符合题意;故选:C.5.一个正数x的两个不同的平方根分别是2a﹣2和a﹣7.如图,在数轴上表示实数的点是()A.点P B.点Q C.点M D.点N【分析】根据一个正数x的两个不同的平方根互为相反数及平方根的定义,可得2a﹣2+a﹣7=0,x=(2a ﹣2)2,得出a=3,x=16表示出的值,再利用夹逼法进行无理数的估算即可.【解答】解:∵一个正数x的两个不同的平方根分别是2a﹣2和a﹣7,∴2a﹣2+a﹣7=0,x=(2a﹣2)2,解得a=3,x=16,∴,∵23=8,33=27,∴,即,故选:B.6.如图,数轴上,点A为线段BC的中点,A,B两点对应的实数分别是和﹣1,则点C所对应的实数是()A.B.C.D.【分析】根据数轴中绝对值的几何意义,得出线段AB的长度,根据题意点A为线段BC的中点,得出线段AC的长度,求出点C对应的实数.【解答】解:由题可知:AB=﹣(﹣1)=+1,∵点A 为线段BC 的中点,∴AC =AB =+1,∵A 对应的实数是,∴C 点对应的实数是2+1.故选:D .7.如图,面积为5的正方形ABCD 的顶点A 在数轴上,且表示的数为1,若点E 在数轴上,(点E 在点A 的右侧)且AB =AE ,则E 点所表示的数为()A .B .C .D .【分析】根据正方形的边长是面积的算术平方根得AD =AE =,结合A 点所表示的数及AE 间距离可得点E 所表示的数.【解答】解:∵正方形ABCD 的面积为5,且AD =AE ,∴AD =AE =,∵点A 表示的数是1,且点E 在点A 右侧,∴点E 表示的数为1+.故选:B .8.如图,面积为2的正方形ABCD 的顶点A 在数轴上,以A 为圆心,AB 为半径画弧交数轴于点E ,点E 表示的数为,则点A 表示的数是()A .﹣B .C .D .【分析】根据正方形的面积是2,先求出边长AE 的长度,再在数轴上求出点A 对应的数.【解答】解:AB 2=2,所以AB =,AB =﹣(舍去),点A 对应的数为:.故选:D .9.点A,B在数轴上,以AB为边作正方形,该正方形的面积是10.若点A对应的数是﹣2,则点B对应的数是﹣2.【分析】先求出AB的长,再设B点表示的数为x,根据数轴上两点间的距离公式求出x的值即可.【解答】解:∵正方形的面积是10,∴AB=.设B点表示的数为x,∵点A对应的数是﹣2,∴x+2=,解得x=﹣2.∴点B对应的数是﹣2.故答案为:﹣2.10.如图,半径为2个单位长度的半圆,从原点沿数轴向右滚动一周,圆上的一点由原点O到达点O′,则点O′所对应的数是()A.π+4B.2π+4C.3πD.3π+2【分析】点O′所对应的数应为半圆的周长,据此即可求得答案.【解答】解:根据题意可知,点O′所对应的数应为半圆的周长,可得.故选:B.11.正方形ABCD在数轴上的位置如图所示,点D、A对应的数分别为0和1,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为2;则翻转2022次后,数轴上数2023所对应的点是()A.点A B.点B C.点C D.点D【分析】正确根据题意找到规律:1对应的数是A,2对应的数是B,3对应的数是C,4对应的数是D,每4次翻折为一循环,根据规律就、分析即可.【解答】解:在翻转过程中,1对应的数是A,2对应的数是B,3对应的数是C,4对应的数是D,…依此类推,可知每4次翻折为一循环,∵2023÷4=505…3,∴2023所对应的点是C,故选:C.12.正方形ABCD在数轴上的位置如图所示,点A、B对应的数分别是0、1,若正方形ABCD绕顶点沿逆时针方向连续翻转,第一次翻转后点D所对应的数为﹣1,第二次翻转后点C所对应的数为﹣2,则翻转2023次后点C所对应的数是()A.﹣2021B.﹣2022C.﹣2023D.﹣2024【分析】根据翻转规律以及在数轴上所对应的数进行解答即可.【解答】解:由于2023÷4=505…3,根据翻折规律以及所对应的数可得以下规律:所以第2023次翻转后,落在数轴最左侧的点是点B,此时点C在点B的右侧,因此点C所对应的数是﹣2022,故选:B.二.实数大小比较13.实数a、b的相反数分别为c、d,在数轴上点A、B、C、D分别表示数a、b、c、d,我们把A、D间的距离记为AD,B、C间的距离记为BC,则AD、BC的大小关系为()A.AD<BC B.AD=BC C.AD>BC D.不能确定【分析】两点之间的距离的综合应用,根据题意得出c=﹣a,b=﹣d,AD=|a﹣d|,BC=|b﹣c|,把c=﹣a,b=﹣d代入整理即可得出答案.【解答】解:∵实数a、b的相反数分别为c、d,∴c=﹣a,b=﹣d,∵在数轴上点A、B、C、D分别表示数a、b、c、d,A、D间的距离记为AD,B、C间的距离记为BC,∴AD=|a﹣d|,BC=|b﹣c|,∴BC=|b﹣c|=|﹣d+a|=|a﹣d|,∴AD=BC.故选:B.14.若实数a,b,c,d满足,则a,b,c,d这四个实数中最大的是()A.a B.b C.c D.d【分析】根据题目所给等式进行依次变形,然后进行比较即可得出答案.【解答】解:∵a﹣1=b﹣,∴b=a﹣1+,即b>a,∵a﹣1=c+1,∴a=c+2,∴a>c,∵c+1=d+2,∴c=d+1,即c>d,∴b>a>c>d,∴b最大.故选:B.15.a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,﹣a,b,﹣b按照从小到大的顺序排列,正确的是()A.﹣b<﹣a<a<b B.﹣b<a<﹣a<b C.﹣a<﹣b<a<b D.﹣b<b<﹣a<a【分析】根据图示,可得:a<0<b,且﹣a<b,据此把a,﹣a,b,﹣b按照从小到大的顺序排列即可.【解答】解:∵a<0<b,且﹣a<b,∴﹣a>0,﹣b<0,∵﹣a<b,∴﹣b<a,∴﹣b<a<﹣a<b.故选:B.16.a,b是有理数,它们在数轴上的位置如图所示.把a,b,﹣a,﹣b按照从小到大的顺序排列,正确的是()A.b<a<﹣a<﹣b B.﹣a<b<﹣b<a C.b<﹣a<a<﹣b D.﹣b<﹣a<a<b【分析】先根据a,b两点在数轴上的位置判断出其符号,进而可得出结论.【解答】解:∵由图可知,b<0<a,|a|<|b|,∴0<a<﹣b,b<﹣a<0,∴b<﹣a<a<﹣b.故选:C.17.比较,和的大小,正确的是()A.B.C.D.【分析】先根据算术平方根的定义,立方根的定义,得,,再直接分别将与5和4比较大小,进而得出答案.【解答】解:,,∵,故.故选:D.三.估算无理数的大小18.已知,且a,b是两个连续的整数,则a+b等于()A.5B.6C.7D.8【分析】先根据夹逼原则得到,则a=3,b=4,据此代值计算即可.【解答】解:∵9<12<16,∴,即,∵,且a,b是两个连续的整数,∴a=3,b=4,∴a+b=3+4=7,故选:C.19.正整数a、b分别满足,,则b a=()A.16B.9C.8D.4【分析】结合已知条件,利用无理数的估算分别求得a,b的值,然后代入b a中计算即可.【解答】解:∵53<64<98,2<4<7,∴<4<,<2<,∴a=4,b=2,∴b a=24=16,故选:A.20.估计实数介于整数()A.0与1之间B.1与2之间C.2与3之间D.3与4之间【分析】利用无理数的估算即可求得答案.【解答】解:∵9<11<16,∴3<<4,∴2<﹣1<3,即﹣1介于整数2与3之间,故选:C.21.实数在两个相邻的整数m与m+1之间,则整数m是()A.5B.6C.7D.8【分析】由,即,易得,即可求得m.【解答】解:∵,∴,则,∴m=5.故选:A.22.已知a是的整数部分,b是它的小数部分,则(﹣a)3+(b+3)2=﹣12.【分析】由于3<<4,由此可得的整数部分和小数部分,再进一步代入求得数值即可.【解答】解:∵3<<4,∴的整数部分=3,小数部分为﹣3,则(﹣a)3+(b+3)2=(﹣3)3+(﹣3+3)2=﹣27+15=﹣12.故答案为:﹣12.23.估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【分析】估算出的大小即可.【解答】解:∵3<<4,∴5<+2<6,∴+2在5和6之间.故选:D.24.估计的值()A.4到5之间B.3到4之间C.2到3之间D.1到2之间【分析】先估算出2的值的范围,从而估算出1+2的值的范围,即可解答.【解答】解:∵9<12<16,∴3<2<4,∴4<1+2<5,∴估计的值在4到5之间,故选:A.25.介于和之间的整数是3.【分析】由题意易得,然后问题可求解.【解答】解:∵,∴,∴介于和之间的整数是3;故答案为:3.26.若6﹣的整数部分为x,小数部分为y,则(2x+)y的值为3【分析】直接利用二次根式的性质得出x,y的值,进而估算的取值范围,进而得出答案.【解答】解:∵3<<4,∴2<6﹣<3∴6﹣的整数部分为x为:2,小数部分为y=6﹣﹣2=4﹣,故(2x+)y=(4+)×(4﹣=3.故答案为:3.四.实数的运算27.在实数范围内定义运算“⊗”:a⊗b=2a﹣b,例如:3⊗2=2×3﹣2=4.若代数式1﹣4b+2a的值是17,则b⊗a的值为()A.2B.4C.8D.﹣8【分析】首先根据a⊗b=2a﹣b,可得:b⊗a=2b﹣a;然后根据1﹣4b+2a=17,求出2b﹣a的值即可.【解答】解:∵a⊗b=2a﹣b,∴b⊗a=2b﹣a,∵代数式1﹣4b+2a的值是17,∴1﹣4b+2a=17,∴4b﹣2a=1﹣17=﹣16,∴2b﹣a=﹣8,∴b⊗a=2b﹣a=﹣8.故选:D.28.设x,y是有理数,且x,y满足等式,则的平方根是()A.±1B.±2C.±3D.±4【分析】根据合并同类项法则列出关于x与y的方程组,求解方程组得到x=25,y=﹣4,代入计算即可求出的平方根.【解答】解:x,y是有理数,且x,y满足等式,∴,解得:,∴,∴的平方根是±1,故选:A.29.在实数范围内定义一种新运算“*”,其规则是a*b=a2﹣b2,如果(x+2)*5=(x﹣5)(5+x),那么x 的值是()A.x=﹣1B.x=1C.x=46D.x=﹣46【分析】按照定义的新运算可得(x+2)2﹣25=x2﹣25,然后进行计算即可解答.【解答】解:由题意得:(x+2)*5=(x﹣5)(5+x),(x+2)2﹣25=x2﹣25,x2+4x+4﹣25=x2﹣25,x2+4x﹣x2=﹣25+25﹣4,4x=﹣4,x=﹣1,故选:A.30.对于实数a、b,定义一种运算:a*b=(a﹣b)2.给出三个推断:①a*b=b*a;②(a*b)2=a2*b2;③(﹣a)*b=a*(﹣b);其中正确的推断个数是()A.0B.1C.2D.3【分析】根据新定义运算分别进行计算,从而作出判断.【解答】解:a*b=(a﹣b)2,b*a=(b﹣a)2,∵(a﹣b)2=(b﹣a)2,∴a*b=b*a,故①推断正确,符合题意;(a*b)2=[(a﹣b)2]2=(a﹣b)4,a2*b2=(a2﹣b2)2=(a+b)2(a﹣b)2,∵(a﹣b)4与(a+b)2(a﹣b)2不一定相等,∴(a*b)2与a2*b2不一定相等,故②推断错误,不符合题意;(﹣a)*b=(﹣a﹣b)2=[﹣(a+b)]2=(a+b)2,a*(﹣b)=[a﹣(﹣b)]2=(a+b)2,∴(﹣a)*b=a*(﹣b);故③推断正确,符合题意;正确的推断共2个,故选:C.。
七年级初一数学第二学期第六章 实数单元 易错题质量专项训练试题

七年级初一数学第二学期第六章 实数单元 易错题质量专项训练试题一、选择题1.对一组数(),x y 的一次操作变换记为()1,P x y ,定义其变换法则如下:()()1,,P x y x y x y =+-,且规定()()()11,,n n Px y P P x y -=(n 为大于1的整数), 如,()()11,23,1P =-,()()()()()21111,21,23,12,4P P P P ==-=,()()()()()31211,21,22,46,2P P P P ===-,则()20171,1P -=( ). A .()10080,2B .()10080,2-C .()10090,2-D .()10090,22.设记号*表示求,a b 算术平均数的运算,即*2a ba b +=,那么下列等式中对于任意实数,,a b c 都成立的是( )①()()()**a b c a b a c +=++;②()()**a b c a b c +=+;③()()()**a b c a b a c +=++;④()()**22aa b c b c +=+ A .①②③B .①②④C .①③④D .②④3.如图将1、2、3、6按下列方式排列.若规定(,)m n 表示第m 排从左向右第n 个数,则(5,4)与(15,8)表示的两数之积是( ).A .1B 2C 3D 64.下列计算正确的是( ) A 42=±B .1193= C .2(5)5= D 382=±5.若一个正方形边长为a ,面积为3,即23a =,可知a 是无理数,它的大小在下列哪两个数之间( ) A .1.5 1.6a << B .1.6 1.7a <<C .1.7 1.8a <<D .1.8 1.9a <<6.定义a *b =3a -b ,2a b b a ⊕=-则下列结论正确的有( )个.①3*2=11. ②()215⊕-=-.③(13*25)712912425⎛⎫⊕⊕=-⎪⎝⎭. ④若a *b=b *a ,则a=b. A .1个B .2个C .3个D .4个7.对于两数a 、b ,定义运算:a*b=a+b —ab ,则在下列等式中,①a*2=2*a ;②(-2)*a=a*(-2);③(2*a )*3=2*(a*3);④0*a=a ,正确的为( ) ①a*2=2*a ②(-2)*a=a*(-2) ③(2*a )*3=2*(a*3) ④0*a=a A .① ③B .① ② ③C .① ② ③ ④D .① ② ④8.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等; ②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行; ④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的. 其中真命题的个数是( ) A .2个B .3个C .4个D .5个9.下列说法:①±3都是27的立方根;②116的算术平方根是±14;③﹣38-=2;④16的平方根是±4;⑤﹣9是81的算术平方根,其中正确的有( ) A .1个 B .2个 C .3个 D .4个10.已知实数x ,y 满足关系式241x y -++|y 2﹣9|=0,则6x y +的值是( ) A .±3B .3C .﹣3或3D .3或3二、填空题11.如图,按照程序图计算,当输入正整数x 时,输出的结果是161,则输入的x 的值可能是__________.12.若已知()21230a b c -++-=,则a b c -+=_____. 13.[x )表示小于x 的最大整数,如[2.3)=2,[-4)=-5,则下列判断:①[385-)= 8-;②[x )–x 有最大值是0;③[x ) –x 有最小值是-1;④x 1-≤[x )<x ,其中正确的是__________ (填编号). 14.已知M 是满足不等式36a <<N 是满足不等式x ≤3722的最大整数,则M +N 的平方根为________.15.数轴上表示1、2的点分别为A 、B ,点A 是BC 的中点,则点C 所表示的数是____.16.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n 值为正整数,最后输出的结果为656,则开始输入的n 值可以是________.17.将2π93-272这三个数按从小到大的顺序用“<”连接________. 18.2x -﹣x|=x+3,则x 的立方根为_____. 19.已知正实数x 的平方根是m 和m b +. (1)当8b =时,m 的值为_________;(2)若22()4m x m b x ++=,则x 的值为___________20.若x ,y 为实数,且|2|30x y ++-=,则(x+y) 2012的值为____________.三、解答题21.阅读下面文字: 对于5231591736342⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭可以如下计算:原式()()()5231591736342⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦()()()5231591736342⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-+-+-++-⎡⎤ ⎪ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦1014⎛⎫=+- ⎪⎝⎭114=-上面这种方法叫拆项法,你看懂了吗? 仿照上面的方法,计算: (1)115112744362⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭(2)235120192018201720163462⎛⎫⎛⎫-++-+ ⎪ ⎪⎝⎭⎝⎭22.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯ , 将以上三个等式两边分别相加得:11111111112233422334++=-+-+-⨯⨯⨯=13144-= (1)猜想并写出:1n(n 1)+ = .(2)直接写出下列各式的计算结果:①1111...12233420152016++++⨯⨯⨯⨯= ; ②1111...122334(1)n n ++++⨯⨯⨯⨯+= ; (3)探究并计算:1111 (24466820142016)++++⨯⨯⨯⨯.23.(1的一系列不足近似值和过剩近似值来估计它的大小的过程如下:因为2211,24==,所以12,<<因为21.4 1.96=,21.5 2.25=,所以1.4 1.5,<<因为221.41 1.9881,1.422.0164==,所以1.41 1.42<<因为221.414 1.999396,1.4152.002225==,所以1.414 1.415,<<1.41≈(精确到百分位),(精确到百分位).(2)我们规定用符号[]x 表示数x 的整数部分,例如[]0,2.42,34=⎤⎢⎥⎦=⎡⎣①按此规定2⎤⎦= ;a ,b 求a b -的值.24.z 是64的方根,求x y z -+的平方根 25.阅读下列解题过程:为了求23501222...2+++++的值,可设23501222...2S =+++++,则2345122222...2S =+++++,所以得51221S S -=-,所以5123505121:1222...221S =-+++++=-,即;仿照以上方法计算:(1)2320191222...2+++++= . (2)计算:2320191333...3+++++ (3)计算:101102103200555...5++++26.如果有一列数,从这列数的第2个数开始,每一个数与它的前一个数的比等于同一个非零的常数,这样的一列数就叫做等比数列(Geometric Sequences ).这个常数叫做等比数列的公比,通常用字母q 表示(q ≠0).(1)观察一个等比列数1,1111,,,24816,…,它的公比q = ;如果a n (n 为正整数)表示这个等比数列的第n 项,那么a 18= ,a n = ; (2)如果欲求1+2+4+8+16+…+230的值,可以按照如下步骤进行:令S =1+2+4+8+16+…+230…①等式两边同时乘以2,得2S =2+4+8+16++32+…+231…② 由② ﹣ ①式,得2S ﹣S =231﹣1 即(2﹣1)S =231﹣1所以 3131212121S -==--请根据以上的解答过程,求3+32+33+…+323的值;(3)用由特殊到一般的方法探索:若数列a 1,a 2,a 3,…,a n ,从第二项开始每一项与前一项之比的常数为q ,请用含a 1,q ,n 的代数式表示a n ;如果这个常数q ≠1,请用含a 1,q ,n 的代数式表示a 1+a 2+a 3+…+a n .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【详解】 因为()()11,10,2P -=,()()()()()21111,11,10,2=2,2P P P P -=-=-,()()()()()31211,11,22,20,4P P P P -=-=-=,()()41,14,4P -=-,()()51,10,8P -= ()()61,18,8P -=-,所以()()211,10,2n n P --=,()()21,12,2n n n P -=-,所以 ()()100920171,10,2P -=,故选D.2.B解析:B 【分析】根据材料新定义运算的描述,把等式的两边进行变形比较即可. 【详解】①中()*2b c a b c a ++=+,()*()22a b a c b ca b a c a ++++++==+,所以①成立;②中()2a b c a b c ++*+=,()*2a b c a b c +++=,所以②成立; ③中,()()32*2a b c a b a c ++++=,()2*2a b ca b c +++=,所以③不成立; ④中()2a b a b c c +*+=+,22(*2)22222a abc a b c a b b c c +++++=+==+,所以④成立. 故选:B . 【点睛】考核知识点:代数式.理解材料中算术平均数的定义是关键.3.B解析:B 【分析】首先从排列图中可知:第1排有1个数,第2排有2个数,第3排有3个数,然后抽象出第5排第4个数,第15排第8个数,然后可以得到答案. 【详解】解:(5,4)表示第5排从左往右第4,(15,8) 表示第15排第8个数,从上面排列图中可以看出奇数行1排在最中间,所以第15行最中间是1,且为第8个,所以1和.故本题选B . 【点睛】本题是规律题的呈现,考查学生的从具体情境中抽象出一般规律,考查学生观察与归纳能力.4.C解析:C 【分析】A 、根据算术平方根的定义即可判定;B 、根据平方根的定义即可判定;C 、根据平方根的性质计算即可判定;D 、根据立方根的定义即可判定. 【详解】A 2=,故选项错误;B 、13=±,故选项错误;C 、2(=5,故选项正确;D 2,故选项错误. 故选:C . 【点睛】此题考查平方根,立方根,解题关键在于掌握运算法则.5.C解析:C 【分析】分别计算出1.5、1.6、1.7、1.8、1.9的平方,然后与3进行比较,即可得出a 的范围. 【详解】解:∵222221.52.25,1.6 2.56,1.7 2.89,1.83.24,1.9 3.61===== 又2.89<3<3.24 ∴1.7 1.8a << 故选:C. 【点睛】此题主要考查了估算无理数的大小,利用平方法是解题关键.6.B解析:B 【分析】根据新定义的运算把各式转化成混合运算进行计算,即可得出结果. 【详解】解:∵a *b =3a -b ,2a b b a ⊕=-, ∴①3*2=3×3-2=7,故①错误;②()22112145,⊕-=--=--=-故②正确;③(13*25)7124⎛⎫⊕⊕ ⎪⎝⎭. 21217(3)()3542⎡⎤=⨯-⊕-⎢⎥⎣⎦3(12)5=⊕- 2312()5=--30925=-故③错误;④若a *b=b *a ,则有3a -b=3b-a, 化简得a=b,故④正确;正确的有②④,故选:B【点睛】本题考查了含有乘方的有理数的混合运算,熟练掌握计算法则是解题关键.7.C解析:C【分析】原式各项利用题中的新定义计算得到结果,即可作出判断.【详解】解:根据题意得:①a*2=a+2-2a,2*a=2+a-2a,成立;②(-2)*a=-2+a+2a,a*(-2)=a-2+2a,成立;③(2*a)*3=(2-a)*3=2-a+3-3(2-a)=2-a+3-6+3a=2a-1,2*(a*3)=2*(a+3-3a)=2+a+3-3a-2(a+3-3a)=2a-1,成立;④0*a=0+a-0=a,成立.故选:C.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.8.B解析:B【分析】根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数,进行判断即可.【详解】①正确;②在两直线平行的条件下,内错角相等,②错误;③正确;④反例:两个无理数π和-π,和是0,④错误;⑤坐标平面内的点与有序数对是一一对应的,正确;故选:B.【点睛】本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.9.A解析:A【分析】根据平方根,算术平方根,立方根的定义找到错误选项即可.【详解】①3是27的立方根,原来的说法错误;②116的算术平方根是14,原来的说法错误;2是正确的;4,4的平方根是±2,原来的说法错误;⑤9是81的算术平方根,原来的说法错误.故其中正确的有1个.故选:A.【点睛】本题考查了立方根,平方根,算术平方根的知识;用到的知识点为:一个正数的正的平方根叫做这个数的算术平方根;一个正数的平方根有2个;任意一个数的立方根只有1个.10.D解析:D【分析】由非负数的性质可得y2=9,4x-y2+1=0,分别求出x与y的值,代入所求式子即可.【详解】2﹣9|=0,∴y2=9,4x﹣y2+1=0,∴y=±3,x=2,∴y+6=9或y+6=3,3=故选:D.【点睛】本题考查绝对值、二次根式的性质;熟练掌握绝对值和二次根式的性质,能够准确计算是解题的关键.二、填空题11.、、、.【解析】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;解析:53、17、5、1.【解析】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;如果四次才输出结果:则x=(5-2)÷3=1;则满足条件的整数值是:53、17、5、1. 故答案为:53、17、5、1.点睛:此题的关键是要逆向思维.它和一般的程序题正好是相反的.12.6 【分析】分别根据绝对值、平方和算术平方根的非负性求得a 、b 、c 的值,代入即可. 【详解】 解:因为, 所以, 解得, 故,故答案为:6. 【点睛】本题考查非负数的性质,主要考查绝对值、平方解析:6 【分析】分别根据绝对值、平方和算术平方根的非负性求得a 、b 、c 的值,代入即可. 【详解】解:因为()2120a b -+++=, 所以10,20,30a b c -=+=-=, 解得1,2,3a b c ==-=, 故1(2)36a b c -+=--+=, 故答案为:6. 【点睛】本题考查非负数的性质,主要考查绝对值、平方和算术平方根的非负性.理解几个非负数(式)的和为0,那么这几个数或(式)都为0是解题关键.13.③,④ 【分析】①[x) 示小于x 的最大整数,由定义得[x)x≤[x)+1,[)<<-8,[)=-9即可, ②由定义得[x)x 变形可以直接判断, ③由定义得x≤[x)+1,变式即可判断, ④由定义解析:③,④ 【分析】①[x) 示小于x 的最大整数,由定义得[x )<x≤[x )+1,[385-)<385-<-8,[385-)=-9即可,②由定义得[x)<x变形可以直接判断,③由定义得x≤[x)+1,变式即可判断,④由定义知[x)<x≤[x)+1,由x≤[x)+1变形的x-1≤[x),又[x)<x联立即可判断.【详解】由定义知[x)<x≤[x)+1,①[385-)=-9①不正确,②[x)表示小于x的最大整数,[x)<x,[x) -x<0没有最大值,②不正确③x≤[x)+1,[x)-x≥-1,[x)–x有最小值是-1,③正确,④由定义知[x)<x≤[x)+1,由x≤[x)+1变形的x-1≤[x),∵[x)<x,∴x1-≤[x)<x,④正确.故答案为:③④.【点睛】本题考查实数数的新规定的运算,阅读题给的定义,理解其含义,掌握性质[x)<x≤[x)+1,利用性质解决问题是关键.14.±2【分析】首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.【详解】解:∵M是满足不等式-的所有整数a的和,∴M=-1+0+1+2=2,∵N是满足不等式x≤的解析:±2【分析】首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.【详解】解:∵M a<<a的和,∴M=-1+0+1+2=2,∵N是满足不等式x∴N=2,∴M+N=±2.故答案为:±2.此题主要考查了估计无理数的大小,得出M,N的值是解题关键.15.【分析】设点C表示的数是x,再根据中点坐标公式即可得出x的值.【详解】解:设点C表示的数是x,∵数轴上1、的点分别表示A、B,且点A是BC的中点,根据中点坐标公式可得:,解得:,故答案解析:2【分析】设点C表示的数是x,再根据中点坐标公式即可得出x的值.【详解】解:设点C表示的数是x,∵数轴上1的点分别表示A、B,且点A是BC的中点,,解得:,根据中点坐标公式可得:=12故答案为:【点睛】本题考查的是实数与数轴,熟知数轴上的点与实数是一一对应关系是解答此题的关键.16.131或26或5.【解析】试题解析:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5.解析:131或26或5.【解析】试题解析:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5.【分析】先根据数的开方法则计算出和的值,再比较各数大小即可.【详解】==,==,∵>3>2,∴<<,即<<,故答案为:<<【点睛】本题考查实数的大小比较,正确化简得出和的值是解解析:3<2π 【分析】的值,再比较各数大小即可. 【详解】3=33=22=32-=32, ∵π>3>2,∴22<32<2π,即3<2π,故答案为:3<2π 【点睛】本题考查实数的大小比较,正确化简得出3的值是解题关键. 18.3【分析】 直接利用二次根式有意义的条件得出x 的取值范围进而得出x 的值,求出答案.【详解】解:∵有意义,∴x﹣2≥0,解得:x≥2,∴+x﹣2=x+3,则=5,故x ﹣2=25,解得解析:3【分析】直接利用二次根式有意义的条件得出x 的取值范围进而得出x 的值,求出答案.【详解】∴x ﹣2≥0,解得:x≥2,﹣2=x+3,5,故x ﹣2=25,解得:x =27,故x 的立方根为:3.故答案为:3.【点睛】此题主要考查了二次根式有意义的条件,正确掌握二次根式的性质是解题关键.19.-4【分析】(1)根据正实数平方根互为相反数即可求出m 的值;(2)根据题意可知,再代入求解即可.【详解】解:(1)∵正实数的平方根是和,∴,∵,∴,∴;(2)∵正解析:【分析】(1)根据正实数平方根互为相反数即可求出m 的值;(2)根据题意可知22,()m x m b x +==,再代入求解即可.【详解】解:(1)∵正实数x 的平方根是m 和m b +,∴0m b m ++=,∵8b =,∴28m =-,∴4m =-;(2)∵正实数x 的平方根是m 和m b +,∴22,()m x m b x +==,∴224x x +=,∴22x =,∵x 是正实数,∴x .故答案为:-4.【点睛】本题考查的知识点是平方根,掌握正实数平方根的性质是解此题的关键.20.1【分析】先根据绝对值的非负性、算术平方根的非负性求出x 、y 的值,再代入计算有理数的乘方即可.【详解】由绝对值的非负性、算术平方根的非负性得:解得则故答案为:1.【点睛】本题考查了解析:1【分析】先根据绝对值的非负性、算术平方根的非负性求出x 、y 的值,再代入计算有理数的乘方即可.【详解】由绝对值的非负性、算术平方根的非负性得:2030x y +=⎧⎨-=⎩解得23x y =-⎧⎨=⎩则201220122012()(23)11x y +=-+==故答案为:1.【点睛】本题考查了绝对值的非负性、算术平方根的非负性、有理数的乘方运算,利用绝对值的非负性、算术平方根的非负性求解是常考知识点,需重点掌握.三、解答题21.(1)14-(2)124- 【分析】(1)根据例子将每项的整数部分相加,分数部分相加即可解答;(2)根据例子将每项的整数部分相加,分数部分相加即可解答.【详解】(1)115112744362⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭()115112744362⎛⎫=--+-+--+- ⎪⎝⎭ 104⎛⎫=+- ⎪⎝⎭ 14=- (2)原式()235120192018201720163462⎛⎫=-+-++-+-+ ⎪⎝⎭ 124⎛⎫=-+- ⎪⎝⎭ 124=- 【点睛】此题考察新计算方法,正确理解题意是解题的关键,根据例子即可仿照计算.22.(1)111n n -+;(2)①20152016;②1n n +;(3)10074032. 【分析】(1)观察所给的算式可得:分子为1,分母为两个相邻整数的分数可化为这两个整数的倒数之差,由此即可解答;(2)根据所得的规律把各分数进行转化,再进行分数的加减运算即可解答;(3)先提取14,类比(2)的运算方法解答即可. 【详解】 (1)()11n n + =111n n -+; (2)①1111...12233420152016++++⨯⨯⨯⨯=11111122334-+-+-+…+1120152016-=112016-=20152016; ②()1111...1223341n n ++++⨯⨯⨯⨯+=11111122334-+-+-+…+111n n -+=111n -+=1n n +; (3)1111 (24466820142016)++++⨯⨯⨯⨯ =14(1111 (12233410071008)++++⨯⨯⨯⨯), =14(11111122334-+-+-+…+1110071008-), =14(111008-), =14×10071008=10074032. 【点睛】 本题考查了有理数的运算,根据题意找出规律是解决问题的关键.23.(1)2.24;(2)①5,②3-【分析】(1近似值的方法解答即可;(22的范围,再根据规定解答即可;的整数部分a b 的值,再代入所求式子化简计算即可.【详解】解:(1)因为2224,39==,所以23,<<因为222.2 4.84,2.3 5.29==,所以2.2 2.3<<,因为222.23 4.9729,2.24 5.0176==,所以2.23 2.24,<<因为222.236 4.999696,2.237 5.004169==,所以2.236 2.237<<,2.24≈.(2)①因为3.12=9.61,3.22=10.24,所以3.1 3.2<<,所以5.12 5.2<<,所以2⎤⎦=5;故答案为:5;②因为12,23<<<,所以1,2a b ==,所以原式12=)12123=-== 【点睛】本题考查了利用夹逼法求算术平方根的近似值、对算术平方根的整数和小数部分的认识以及实数的简单计算,属于常考题型,正确理解题意、熟练掌握算术平方根的相关知识是解题关键.24.【分析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列方程求出x 、y 的值,然后求出z 的值,再根据平方根的定义解答.【详解】,∴x+1=0,2-y=0,解得x=-1,y=2,∵z 是64的方根,∴z=8所以,x y z -+=-1-2+8=5,所以,x y z -+的平方根是【点睛】此题考查非负数的性质,相反数,平方根的定义,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.25.(1)202021-;(2)2020312-;(3)201101554-. 【分析】仿照阅读材料中的方法求出所求即可.【详解】解:(1)根据2350511222...221+++++=-得:2320191222...2+++++=202021-(2)设2320191333...3S =+++++,则234202033333...3S =+++++,∴2020331S S -=-, ∴2020312S -= 即:2020232019311333 (32)-+++++= (3)设232001555...5S =+++++,则23420155555...5S =+++++,∴201551S S -=-, ∴201514S -= 即:20123200511555 (5)4-+++++= 同理可求⸫10123100511555 (5)4-+++++= ∵1011021032002320023100555...51555...5)(1555...5)++++=+++++-+++++( 201101201101101102103200515155555 (5444)---∴++++=-= 【点睛】此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.26.(1)12 ,1712 ,n-112 ;(2)24332-;(3)()11111n a a a -- 【分析】(1)12÷1即可求出q ,根据已知数的特点求出a 18和a n 即可; (2)根据已知先求出3S ,再相减,即可得出答案;(3)根据(1)(2)的结果得出规律即可.【详解】 解:(1)12÷1=12, a 18=1×(12)17=1712,a n =1×(12)n ﹣1=112n -, 故答案为:12,1712,112n -; (2)设S =3+32+33+ (323)则3S =32+33+…+323+324,∴2S =324﹣3,∴S=2433 2-(3)a n=a1•q n﹣1,a1+a2+a3+…+a n=() 11111na aa--.【点睛】本题考查了整式的混合运算的应用,主要考查学生的理解能力和阅读能力,题目是一道比较好的题目,有一定的难度.。
人教版七年级初一数学第二学期第六章 实数单元 易错题难题测试题

人教版七年级初一数学第二学期第六章 实数单元 易错题难题测试题一、选择题1.一个正数a 的平方根是2x ﹣3与5﹣x ,则这个正数a 的值是( )A .25B .49C .64D .81 2.若24a =,29b =,且0ab <,则-a b 的值为( ) A .5±B .2-C .5D .5- 3.若()2320m n -++=,则m n +的值为( )A .5-B .1-C .1D .5 4.16的算术平方根是( )A .2B .2±C .4D .4± 5.下列命题中,①81的平方根是9;②16的平方根是±2;③−0.003没有立方根;④−64的立方根为±4;⑤5,其中正确的个数有( )A .1B .2C .3D .4 6.估计27的值在( ) A .2和3之间 B .3和4之间 C .4和5之间 D .5和6之间7.已知m 是整数,当|m ﹣40|取最小值时,m 的值为( ) A .5B .6C .7D .8 8.下列说法正确的是( )A .a 2的正平方根是aB .819=±C .﹣1的n 次方根是1D .321a --一定是负数 9.在实数13-,0.7,34,π,16中,无理数有( )个.A .1B .2C .3D .4 10.在数轴上表示7和6-的两点间的距离是( )A .76-B .67-C .76+D .(76)-+二、填空题11.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个实数中,绝对值最大的是________.12.对于有理数a ,b ,规定一种新运算:a ※b=ab +b ,如2※3=2×3+3=9.下列结论:①(﹣3)※4=﹣8;②若a ※b=b ※a ,则a=b ;③方程(x ﹣4)※3=6的解为x=5;④(a ※b )※c=a ※(b ※c ).其中正确的是_____(把所有正确的序号都填上).13.对于三个数a ,b ,c ,用M{a ,b ,c}表示这三个数的平均数,用min{a ,b ,c}表示这三个数中最小的数.例如:M{-1,2,3}=123433-++=,min{-1,2,3}=-1,如果M{3,2x +1,4x -1}=min{2,-x +3,5x},那么x =_______. 14.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n 值为正整数,最后输出的结果为656,则开始输入的n 值可以是________.152(2)-的平方根是 _______ ;38a 的立方根是 __________.16.一个数的立方等于它本身,这个数是__.17.写出一个大于3且小于4的无理数:___________.18.有若干个数,第1个数记作1a ,第2个数记为2a ,第3个数记为3a ,……,第n 个数记为n a ,若1a =13,从第2个数起,每个数都等于1与前面的那个数的差的倒数,则2019a =_____.19.若x <0323x x ____________.20.若实数x ,y (2230x y ++=,则22x y --的值______.三、解答题21.观察下列两个等式:1122133-=⨯+,2255133-=⨯+,给出定义如下:我们称使等式 1a b ab -=+成立的一对有理数,a b 为“共生有理数对”,记为(),a b ,如:数对12,3⎛⎫ ⎪⎝⎭,25,3⎛⎫ ⎪⎝⎭,都是“共生有理数对”. (1)判断下列数对是不是“共生有理数对”,(直接填“是”或“不是”).(2,1)- ,(13,2) . (2)若 5,2a ⎛⎫- ⎪⎝⎭是“共生有理数对”,求a 的值; (3)若(),m n 是“共生有理数对”,则(),n m --必是“共生有理数对”.请说明理由; (4)请再写出一对符合条件的 “共生有理数对”为 (注意:不能与题目中已有的“共生有理数对”重复).22.阅读下列材料:问题:如何计算1111122334910++++⨯⨯⨯⨯呢? 小明带领的数学活动小组通过探索完成了这道题的计算.他们的解法如下:解:原式1111111(1)()()()22334910=-+-+-++- 1110=- 910= 请根据阅读材料,完成下列问题: (1)计算:111112233420192020++++⨯⨯⨯⨯; (2)计算:111126129900++++; (3)利用上述方法,求式子111115599131317+++⨯⨯⨯⨯的值. 23.你会求(a ﹣1)(a 2012+a 2011+a 2010+…+a 2+a+1)的值吗?这个问题看上去很复杂,我们可以先考虑简单的情况,通过计算,探索规律:()()2111a a a -+=-,()()23111a a a a -++=-,()()324111a a a a a -+++=-,(1)由上面的规律我们可以大胆猜想,得到(a ﹣1)(a 2014+a 2013+a 2012+…+a 2+a+1)= 利用上面的结论,求:(2)22014+22013+22012+…+22+2+1的值是 .(3)求52014+52013+52012+…+52+5+1的值.24.已知2a -的平方根是2±,33a b --的立方根是3,整数c 满足不等式1c c <+. (1)求,,a b c 的值.(2)求2232a b c ++的平方根.25.对非负实数x “四舍五入”到各位的值记为x <>.即:当n 为非负整数时,如果12n x -≤<1n 2+,则x n <>=;反之,当n 为非负整数时,如果x n <>=,则1122n x n -<+≤. 例如: 00.480<>=<>=,0.64 1.491, 3.5 4.124<>=<>=<>=<>=.(1)计算: 1.87<>= ;= ;(2)①求满足12x <->=的实数x 的取值范围,②求满足43x x <>=的所有非负实数x 的值; (3)若关于x 的方程21122a x x -<>+-=-有正整数解,求非负实数a 的取值范围. 26.如果有一列数,从这列数的第2个数开始,每一个数与它的前一个数的比等于同一个非零的常数,这样的一列数就叫做等比数列(Geometric Sequences).这个常数叫做等比数列的公比,通常用字母q表示(q≠0).(1)观察一个等比列数1,1111,,,24816,…,它的公比q=;如果a n(n为正整数)表示这个等比数列的第n项,那么a18=,a n=;(2)如果欲求1+2+4+8+16+…+230的值,可以按照如下步骤进行:令S=1+2+4+8+16+…+230…①等式两边同时乘以2,得2S=2+4+8+16++32+…+231…②由② ﹣①式,得2S﹣S=231﹣1即(2﹣1)S=231﹣1所以3131212121S-==--请根据以上的解答过程,求3+32+33+…+323的值;(3)用由特殊到一般的方法探索:若数列a1,a2,a3,…,a n,从第二项开始每一项与前一项之比的常数为q,请用含a1,q,n的代数式表示a n;如果这个常数q≠1,请用含a1,q,n的代数式表示a1+a2+a3+…+a n.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据一个正数的两个平方根互为相反数可得(2x﹣3)+(5﹣x)=0,可求得x,再由平方根的定义即可解答.【详解】解:由正数的两个平方根互为相反数可得(2x﹣3)+(5﹣x)=0,解得x=﹣2,所以5﹣x=5﹣(﹣2)=7,所以a=72=49.故答案为B.【点睛】本题考查了平方根的性质,理解平方根与算术平方根的区别及联系是解答本题的关键.2.A解析:A【分析】首先根据平方根的定义求出a、b的值,再由ab<0,可知a、b异号,由此即可求出a-b 的值.【详解】解:∵a2=4,b2=9,∴a=±2,b=±3,而ab<0,∴①当a>0时,b<0,即当a=2时,b=-3,a-b=5;②a<0时,b>0,即a=-2时,b=3,a-b=-5.故选:A.【点睛】本题考查了平方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.3.C解析:C【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.【详解】由题意得,m-3=0,n+2=0,解得m=3,n=-2,所以,m+n=3+(-2)=1.故选:C.【点睛】此题考查非负数的性质,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.4.C解析:C【分析】本题是求16的算术平方根,应看哪个正数的平方等于16,由此即可解决问题.【详解】∵(±4)2=16,∴16的算术平方根是4.故选:C.【点睛】此题主要考查了算术平方根的运算.一个数的算术平方根应该是非负数.5.A解析:A【分析】根据平方根的定义对①②进行判断;根据立方根的定义对③④进行判断;根据命题的定义对⑤进行判断.【详解】解:81的平方根是±9,所以①错误;±2,所以②正确;-0.003有立方根,所以③错误;−64的立方根为-4,所以④错误;故选:A .【点睛】本题考查了立方根和平方根的应用,主要考查学生的辨析能力,题目比较典型,但是一道比较容易出错的题目.6.D解析:D【分析】用平方法进行比较,看27在哪两个整数平方之间即可.【详解】∵252527=<,263627=>∴5<6故选:D【点睛】本题考查比较二次根式的大小,常见方法有2种:(1)将数字平方,转化为不含二次根号的数字比较;(2)将数字都转化到二次根式中,然后进行比较.7.B解析:B【分析】根据绝对值是非负数,所以不考虑m 为整数,则m 取最小值是0,又0的绝对值为0,令0m =,得出m =m 的整数可得:m=6.【详解】解:因为m 取最小值,0m ∴=,0m ∴=,解得:m =240m =,67m ∴<<,且m 更接近6,∴当6m =时,40m -有最小值. 故选:B . 【点睛】本题考查绝对值的非负性,以及估算二次根式的大小,理解并熟练掌握绝对值的非负性是本题解题关键;在估算二次根式大小的时候,先算出二次根式的平方,再看这个平方在哪两个平方数之间,就相应的得出二次根式在哪两个整数之间,即可估算出二次根式的大小.8.D解析:D【分析】根据平方根、算术平方根、立方根的定义判断A 、B 、D ,根据乘方运算法则判断C 即可.【详解】A :a 2的平方根是a ±,当0a ≥时,a 2的正平方根是a ,错误;B :819=,错误;C :当n 是偶数时,()1=1n - ;当n 时奇数时,()1=-1n -,错误;D :∵210a --< ,∴321a --一定是负数,正确【点睛】本题考查平方根、算术平方根、立方根的定义以及乘方运算,掌握相关的定义与运算法则是解题关键. 9.B解析:B【分析】根据无理数的定义判断即可.【详解】13-,0.7,16=4,是有理数,34和π是无理数, 故选:B .【点睛】本题主要考查无理数的定义,熟练掌握定义是关键.10.C解析:C【分析】在数轴上表示7和-6,7在右边,-6在左边,即可确定两个点之间的距离.【详解】如图,和在右边,在左边,和-().故选:C .【点睛】本题考查了数轴,可以发现借助数轴有直观、简捷,举重若轻的优势.二、填空题11.【分析】根据可以得到的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.【详解】∵,∴n 和q 互为相反数,O 在线段NQ 的中点处,∴绝对值最大的是点P 表示的数.故解析:p【分析】根据0n q +=可以得到n q 、的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.【详解】∵0n q +=,∴n 和q 互为相反数,O 在线段NQ 的中点处,∴绝对值最大的是点P 表示的数p .故答案为:p .【点睛】本题考查了实数与数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答.12.①③【解析】【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断.【详解】(−3)※4=−3×4+4=−8,所以①正确;a※b=ab+b,b※a=ab+a,若 a=b ,两式解析:①③【解析】【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断.【详解】(−3)※4=−3×4+4=−8,所以①正确;a※b=ab+b,b※a=ab+a,若a=b,两式相等,若a≠b,则两式不相等,所以②错误;方程(x−4) )※3=6化为3(x−4)+3=6,解得x=5,所以③正确;左边=(a※b)※c=(a×b+b) )※c=(a×b+b)·c+c=abc+bc+c右边=a※(b※c)=a※(b×c+c)=a(b×c+c) +(b×c+c)=abc+ac+bc+c2两式不相等,所以④错误.综上所述,正确的说法有①③.故答案为①③.【点睛】有理数的混合运算, 解一元一次方程,属于定义新运算专题,解决本题的关键突破口是准确理解新定义.本题主要考查学生综合分析能力、运算能力.13.或【解析】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}==2x+1解析:12或13【解析】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}=321413x x+++-=2x+1,∵M{3,2x+1,4x-1}=min{2,-x+3,5x},∴有如下三种情况:①2x+1=2,x=12,此时min{2,-x+3,5x}= min{2,52,52}=2,成立;②2x+1=-x+3,x=23,此时min{2,-x+3,5x}= min{2,73,103}=2,不成立;③2x+1=5x,x=13,此时min{2,-x+3,5x}= min{2,83,53}=53,成立,∴x=12或13,故答案为12或13.【点睛】本题考查了阅读理解题,一元一次方程的应用,分类讨论思想的运用等,解决问题的关键是读懂题意,依题意分情况列出一元一次方程进行求解.14.131或26或5.【解析】试题解析:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5.解析:131或26或5.【解析】试题解析:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5.15.2a【分析】根据平方根的定义及立方根的定义解答.【详解】的平方根是,的立方根是2a,故答案为:,2a.【点睛】此题考查平方根及立方根的定义,利用定义求一个数的平方根及立解析:【分析】根据平方根的定义及立方根的定义解答.【详解】38a的立方根是2a,故答案为:,2a.【点睛】此题考查平方根及立方根的定义,利用定义求一个数的平方根及立方根. 16.0或±1.【分析】根据立方的定义计算即可.【详解】解:∵(﹣1)3=﹣1,13=1,03=0,∴一个数的立方等于它本身,这个数是0或±1.故答案为:0或±1.【点睛】本题考查了乘方的解析:0或±1.【分析】根据立方的定义计算即可.【详解】解:∵(﹣1)3=﹣1,13=1,03=0,∴一个数的立方等于它本身,这个数是0或±1.故答案为:0或±1.【点睛】本题考查了乘方的定义,熟练掌握立方的定义是解题关键,注意本题要分类讨论,不要漏数.17.如等,答案不唯一.【详解】本题考查无理数的概念.无限不循环小数叫做无理数.介于和之间的无理数有无穷多个,因为,故而9和16都是完全平方数,都是无理数.解析:π等,答案不唯一.【详解】本题考查无理数的概念.无限不循环小数叫做无理数.介于3和4之间的无理数有无穷多个,因为2239,416==,故而9和16,15都是无理数.18.-2【分析】根据1与它前面的那个数的差的倒数,即,即可求得、、……,然后根据得到结果出现的规律,即可确定.【详解】解:=……所以数列以,,三个数循环,所以==故答案为:.【解析:-2【分析】根据1与它前面的那个数的差的倒数,即111n n a a +=-,即可求得2a 、3a 、4a ……,然后根据得到结果出现的规律,即可确定2019a .【详解】解:1a =13 2131213a ==-312312a ==--411123a ==+ …… 所以数列以13,32,2-三个数循环, 20193673÷=所以2019a =3a =2-故答案为:2-.【点睛】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.19.0【分析】分别利用平方根和立方根直接计算即可得到答案.【详解】解:∵x<0,∴,故答案为:0.【点睛】本题只要考查了平方根和立方很的性质;平方根的被开方数不能是负数,开方的结果必须是解析:0【分析】分别利用平方根和立方根直接计算即可得到答案.【详解】解:∵x <0,0x x =-+=,故答案为:0.【点睛】本题只要考查了平方根和立方很的性质;平方根的被开方数不能是负数,开方的结果必须是非负数;立方根的符号与被开方的数的符号相同;解题的关键是正确判断符号.20.【分析】利用非负数的性质求出x ,y 的值,代入原式计算即可得到结果【详解】解:∵∴∴∴故答案为:-1【点睛】本题考查了平方和二次根式的非负性,解题的关键是掌握计算的方法,准确地进解析:1-【分析】利用非负数的性质求出x ,y 的值,代入原式计算即可得到结果【详解】(20y +=∴x 20y 0+=⎧⎪⎨+=⎪⎩∴x -2=⎧⎪⎨⎪⎩∴(2222-=-=2-3=-1y故答案为:-1【点睛】本题考查了平方和二次根式的非负性,解题的关键是掌握计算的方法,准确地进行化简求值.三、解答题21.(1)不是;是;(2)a=37-;(3)见解析;(4)(4,35)或(6,57)【分析】(1)根据“共生有理数对”的定义即可判断;(2)根据“共生有理数对”的定义,构建方程即可解决问题;(3)根据“共生有理数对”的定义即可判断;(4)根据“共生有理数对”的定义即可解决问题;【详解】解:(1)-2-1=-3,-2×1+1=1,∴-2-1≠-2×1+1,∴(-2,1)不是“共生有理数对”,∵3-12=52,3×12+1=52,∴3-12=3×12+1,∴(3,12)是“共生有理数对”;故答案为:不是;是;(2)由题意得:a-5()2- =512a-+,解得a=37 -.(3)是.理由:-n-(-m)=-n+m,-n•(-m)+1=mn+1∵(m,n)是“共生有理数对”∴m-n=mn+1∴-n+m=mn+1∴(-n,-m)是“共生有理数对”,(4)3344155-=⨯+;5566177-=⨯+∴(4,35)或(6,57)等.故答案为:是,(4,35)或(6,57)【点睛】本题考查有理数的混合运算、“共生有理数对”的定义,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.22.(1)原式=20192020(2)原式=99100(3)原式=417【分析】(1)类比题目中的拆项方法,类比得出答案即可;(2)先把原式拆分成题(1)原式的样子,再根据(1)的拆项方法,类比得出答案即可;(3)分母是相差4的两个自然数的乘积,类比拆成以两个自然数为分母,分子为1的两个自然数差的14即可.【详解】解:(1)原式=(1-12)+(12-13)+(13-14)+……+(12019-12020)=1-1 2020=2019 2020;(2)原式=1111 12233499100 ++++⨯⨯⨯⨯=(1-12)+(12-13)+(13-14)+……+(199-1100)=1-1 100=99 100(3)原式=14×(4444155********+++⨯⨯⨯⨯)=14×(1-15+15-19+19-113+113-117)=14×(1-117)=14×1617=4 17【点睛】本题考查算式的规律,注意分子、分母的特点,解题的关键是根据规律灵活拆项,并进一步用规律解决问题.23.(1)a2015﹣1;(2)22015﹣1;(3)2015514-.【分析】(1)根据已知算式得出规律,即可得出答案.(2)先变形,再根据规律得出答案即可.(3)先变形,再根据规律得出答案即可.【详解】(1)由上面的规律我们可以大胆猜想,(a ﹣1)(a 2012+a 2011+a 2010+…+a 2+a+1)=a 2015﹣1,故答案为:a 2015﹣1;(2)22014+22013+22012+…+22+2+1=(2﹣1)×(22014+22013+22012+…+22+2+1)=22015﹣1,故答案为:22015﹣1;(3)52014+52013+52012+…+52+5+1 =14×(5﹣1)×(52014+52013+52012+…+52+5+1) =2015514-. 【点睛】本题考查了实数运算的规律题,掌握算式的规律是解题的关键.24.(1)6a =,8b =-,2c =;(2)12±【分析】(1)利用平方根,立方根定义以及估算方法确定出a ,b ,c 的值即可;(2)把a ,b ,c 的值代入计算即可求出所求.【详解】解:(1)根据题意得:a−2=4,a−3b−3=27,23<<,∴a=6,b=−8,c=2;(2)原式=2×62+(-8)2+23=72+64+8=144,144的平方根是±12.∴2232a b c ++的平方根是±12.【点睛】此题考查了估算无理数的大小,平方根以及立方根的定义,熟练掌握运算法则是解本题的关键.25.(1)2,3 (2)①5722x ≤<②330,,42(3)00.5a ≤< 【分析】(1)根据新定义的运算规则进行计算即可;(2)①根据新定义的运算规则即可求出实数x 的取值范围;②根据新定义的运算规则和43x 为整数,即可求出所有非负实数x 的值;(3)先解方程求得22x a =-<>,再根据方程的解是正整数解,即可求出非负实数a 的取值范围.【详解】(1) 1.87<>=2;=3;(2)①∵12x <->= ∴1121222x --<+≤ 解得5722x ≤<; ②∵43x x <>= ∴41413232x x x -<+≤ 解得3322x -<≤ ∵43x 为整数 ∴333,0,,442x =- 故所有非负实数x 的值有330,,42; (3)21122a x x -<>+-=- 1241a x x -<>+-=-22x a =-<>∵方程的解为正整数∴21a -<>=或2①当21a -<>=时,2x =是方程的增根,舍去②当22a -<>=时,00.5a ≤<.【点睛】本题考查了新定义下的运算问题,掌握新定义下的运算规则是解题的关键.26.(1)12 ,1712 ,n-112 ;(2)24332-;(3)()11111n a a a -- 【分析】(1)12÷1即可求出q ,根据已知数的特点求出a 18和a n 即可; (2)根据已知先求出3S ,再相减,即可得出答案;(3)根据(1)(2)的结果得出规律即可.【详解】解:(1)12÷1=12,a18=1×(12)17=1712,a n=1×(12)n﹣1=112n-,故答案为:12,1712,112n-;(2)设S=3+32+33+ (323)则3S=32+33+…+323+324,∴2S=324﹣3,∴S=2433 2-(3)a n=a1•q n﹣1,a1+a2+a3+…+a n=() 11111na aa--.【点睛】本题考查了整式的混合运算的应用,主要考查学生的理解能力和阅读能力,题目是一道比较好的题目,有一定的难度.。
初一实数20道经典易错题型

初一实数20道经典易错题型
初一实数常见的易错题型有很多,以下是其中的20道经典题型:
1. 计算两个数的和、差、积或商。
2. 比较两个数的大小。
3. 求一个数的相反数。
4. 求一个数的倒数。
5. 计算一个数的平方。
6. 计算一个数的平方根。
7. 计算一个数的立方。
8. 计算一个数的立方根。
9. 计算一个数的百分之几。
10. 求两个数的平均值。
11. 求两个数的比例。
12. 求一个数的正负性。
13. 求两个数的最大公约数。
14. 求两个数的最小公倍数。
15. 求一个数的整数部分。
16. 求一个数的小数部分。
17. 求一个数的绝对值。
18. 判断一个数是否是整数。
19. 判断一个数是否是正数、负数或零。
20. 判断一个数是否是有理数或无理数。
以上是初一实数常见的易错题型,掌握了这些题型的解题方法,可以帮助学生更好地理解和掌握实数的概念和运算规则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
———————————————————————————————— 作者:
———————————————————————————————— 日期:
ﻩ
实数易错题
一.选择题(共26小题)
1.(2012•雅安)9的平方根是()
A.
3
B.
﹣3
C.
±3
D.
81
2.(2011•黔南州) 的平方根是()
4.(2003•广西)已知m≠n,按下列A,B,C,D的推理步骤,最后推出的结论是m=n,其中出错的推理步骤是()
A.
∵(m﹣n)2=(n﹣m)2
B.
∴ =
C.
∴m﹣n=n﹣m
D.
∴m=n考点:平方根.专:计算题.分析:
A、根据平方的定义即可判定;
B、根据平方根的定义即可判定;
C、根据平方根的定义即可判定;
A.
﹣4
B.
﹣16
C.
D.
9.(永州)下列判断正确的是()
A.
< <2
B.
2< + <3
C.
1< ﹣ <2
D.
4< <5
10.(2012•瑞安市模拟)下列各选项中,最小的实数是( )
A.
﹣3
B.
0
C.
D.
11.在实数 、 、0、 、3.1415、π、 、2.123122312223…中,无理数的个数为()
A.
3
B.
±3
C.
D.
±
3.(2005•南充)一个数的平方是4,这个数的立方是()
A.
8
B.
﹣8
C.
8或﹣8
D.
4或﹣4
4.(2003•广西)已知m≠n,按下列A,B,C,D的推理步骤,最后推出的结论是m=n,其中出错的推理步骤是()
A.
∵(m﹣n)2=(n﹣m)2
B.
∴ =
C.
∴m﹣n=n﹣m
D.
A.
无理数
B.
有理数
C.
0
D.
实数
25.化简 的结果是()
A.
B.
C.
D.
26.若|a﹣ |+(b+1)2=0,则 的值是()
A.
B.
C.
D.
二.填空题(共3小题)
27.若(x﹣15)2=169,(y﹣1)3=﹣0.125,则 =_________.
28.(2013•咸宁模拟)已知:a和b都是无理数,且a≠b,下面提供的6个数a+b,a﹣b,ab, ,ab+a﹣b,ab+a+b可能成为有理数的个数有_________个.
∴m=n
5.下列给出的“25的平方根是±5”的表达式中,正确的是()
A.
=±5
B.
=﹣5
C.
± =±5
D.
=5
6.实数 的平方根为()
A.
a
B.
±a
C.
±
D.
±
7.(通州区二模)已知 ,那么(a+b)2016的值为()
A.
﹣1
B.
1
C.
﹣32016
D.
32016
8. 的算术平方根与2的相反数的倒数的积是()
3个
C.
4个
D.
5个
20. 的平方根为( )
A.
±8
B.
±4
C.
±2
D.
4
21.若x2=(﹣3)2,y3﹣27=0,则x+y的值是()
A.
0
B.
6
C.
0或6
D.
0或﹣6
22.使 为最大的负整数,则a的值为()
A.
±5
B.
5
C.
﹣5
D.
不存在
23.下列计算正确的是()
A.
B.
C.
D.
24.两个无理数的和,差,积,商一定是()
3.(2005•南充)一个数的平方是4,这个数的立方是()
A.
8
B.
﹣8
C.
8或﹣8
D.
4或﹣4
考点:
平方根;有理数的乘方.
分析:
首先利用平方根的定义先求出这个数,再求其立方即可.
解答:
解:∵(±2)2=4,
∴这个数为±2,
∴(±2)3=±8.
故选C.
点评:
本题考查了平方根的定义和求一个数的立方.注意一个正数有两个平方根,它们互为相反数.
解答:
解:∵ =3,
∴ 的平方根是± .
故选D.
点评:
本题主要考查了平方根、算术平方根概念的运用.如果x2=a(a≥0),则x是a的平方根.若a>0,则它有两个平方根并且互为相反数,我们把正的平方根叫a的算术平方根;若a=0,则它有一个平方根,即0的平方根是0,0的算术平方根也是0,负数没有平方根.
A.
=±5
B.
=﹣5
C.
± =±5
D.
=5
考点:
算术平方根.
分析:
根据平方根的定义,一个a数平方后等于这个数,那么它就是这个数的平方根,即可得出答案.
D、根据等式的性质即可判定.
解答:
解:A、(m﹣n)2=(n﹣m)2是正确的,故选项正确;
B、 = 正确,故选项正确;
C、只能说|m﹣n|=|n﹣m|,故选项错误;
D、由C可以得到D,故选项正确.
故选C.
点评:
本题主要考查了学生开平方的运算能力,也考查了学生的推理能力.
5.下列给出的“25的平方根是±5”的表达式中,正确的是()
29. 的平方根与﹣ 的立方根的积为_________.
三.解答题(共1小题)
30.计算:﹣ + + .
ﻬ
2013年11月安琪儿的初中数学组卷
参考答案与试题解析
一.选择题(共26小题)
1.(2012•雅安)9的平方根是()
A.
3
B.
﹣3
C.
±3
D.
81
考点:
平方根.
分析:
如果一个非负数x的平方等于a,那么x是a是算术平方根,根据此定义解题即可解决问题.
解答:
解:∵(±3)2=9,
∴9的平方根是±3.
故选C.
点评:
本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.
2.(2011•黔南州) 的平方根是()
A.
3
B.
±3
C.
D.
±
考点:
算术平方根;平方根.
分析:
首先根据平方根概念求出 =3,然后求3的平方根即可.
A.
2个
B.
3个
C.
4个
D.
5个
12.下列说法中正确的是()
A.
带根号的数是无理数
B.
无理数不能在数轴上表示出来
C.
无理数是无限小数
D.
无限小数是无理数
13.估算 的值是在()
A.
2与3之间
B.
3与4之间
C.
4与5之间
D.
5与6之间
14.(2004•富阳市模拟)数轴上有两点A、B分别表示实数a、b,则线段AB的长度是()
A.
2
B.
3
C.
4
D.
5
18.一个立方体的体积是9,则它的棱长是()
A.
3
B.
3
C.
D.
19.下列语句:①﹣1是1的平方根.②带根号的数都是无理数.③﹣1的立方根是﹣1.④ 的立方根是2.⑤(﹣2)2的算术平方根是2.⑥﹣125的立方根是±5.⑦有理数和数轴上的点一一对应.其中正确的有()
A.
2个
B.
A.
a﹣b
B.
a+b
C.
|a﹣b|
D.
|a+b|
15.在 中无理数有()个.
A.
3个
B.
4个
C.
5个
D.
6
16.实数 , ,π, ,0.2020020002…(每两个2之间依次增加一个0)中,无理数的个数是( )
A.
2个
B.
3个
C.
4个
D.
5个
17.在实数 ,0, ,﹣3.14, , ,0, ,﹣0.03745,π, ,3.14,2.123122312233中,无理数有()