2017年四川省南充市中考数学试卷(含答案解析)
2017年四川省南充市中考数学试题(含答案)
2017年四川省南充市中考数学试卷(满分120分,时间120分钟)一、选择题(本大题共10个小题,每小题3分,共30分) 1.(2017四川南充,1,3分)31-的值是( ) A .3 B .-3 C .13 D .-13【答案】C2.(2017四川南充,2,3分)下列运算正确的是( )A .a 3a 2=a 5B .(a 2) 3=a 5C .a 3+a 3=a 6D .(a +b )2=a 2+b 2 【答案】A 3.(2017四川南充,3,3分)下列几何体的主视图既是中心对称图形又是轴对称图形的是( )A B C D【答案】D 4.(2017四川南充,4,3分)如图,已知AB ∥CD ,65C ∠=︒,30E ∠=︒,则A ∠的度数为( )DA(第2题图)A .30°B .32.5°C .35°D .37.5°【答案】C5.(2017四川南充,5,3分)如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,则点C的坐标为()(第5题图)A.1)B.(-1C.1)D.1)【答案】A6.(2017四川南充,6,3分)不等式组1(1)22331xx x⎧+⎪⎨⎪-<+⎩…的解集在数轴上表示正确的是()【答案】D7.(2017四川南充,7,3分)为积极响应南充市创建“全国卫生城市”的号召,某校1500名学生参加了卫生知识竞赛,成绩记为A、B、C、D四等。
从中随机抽取了部分学生成绩进行统计,绘制成如下两幅不完整的统计图表,根据图表信息,以下说法不正确...的是()DBA.样本容量是200B.D等所在扇形的圆心角为15°C.样本中C等所占百分比是10% D.估计全校学生成绩为A等大约有900人【答案】B-23A B C D8.(2017四川南充,8,3分)如图,在△ABC 中,AB =AC ,且D 为BC 上一点,CD =AD ,AB =BD ,则∠B 的度数为( )A .30°B .36°C .40°D .45°(第8题图)【答案】B9.(2017四川南充,9,3分)如图,矩形ABCD 中,AB =5,AD =12,将矩形ABCD 按如图所示的方式在直线l 上进行两次旋转,则点B 在两次旋转过程中经过的路径的长是( )(第9题图)A .25π2B .13πC .25π D.【答案】B10.(2017四川南充,10,3分)二次函数y =2ax bx c ++(a ≠0)图象如图所示,下列结论:①abc >0;②2a b +=0;③当m ≠1时,a b +>2am bm +;④a b c -+>0;⑤若211ax bx +=222ax bx +,且1x ≠2x ,则12x x +=2.其中正确的有( )A .①②③B .②④C .②⑤D .②③⑤(第10题图)【答案】D北京初中数学周老师的博客:/beijingstudyAB CDl二、填空题(本大题共6个小题,每小题3分,共18分) 11.(2017四川南充,11,3分)分式方程212011x x +=--的解是__________. 【答案】x= -312.(2017四川南充,12,3分)因式分解3269x x x -+=__________. 【答案】2-x x 3()13.(2017四川南充,13,3分)一组数据按从小到大的顺序排列为1,2,3,x ,4,5,若这组数据的中位数为3,则这组数据的方差是__________. 【答案】5314.(2017四川南充,14,3分)如图,两圆圆心相同,大圆的弦AB 与小圆相切,AB =8,则图中阴影部分的面积是__________.(结果保留π)【答案】16π15. (2017四川南充,15,3分)一列数123,,,a a a ……n a ,其中1231211111,,,,111n n a a a a a a a -=-===---L L ,则12a a a a ++++=L L__________.【答案】2011216.(2017四川南充,16,3分)如图,有一矩形纸片ABCD ,AB =8,AD =17,将此矩形纸片折叠,使顶点A 落在BC 边的A ′处,折痕所在直线同时经过边AB 、AD (包括端点),设BA ′=x ,则x 的取值范围是.(第14题图)【答案】28x ≤≤北京初中数学周老师的博客:/beijingstudy 三、解答题(本大题共9个小题,共72分)17.(2017四川南充,17,6分)计算:13130tan 3)23()12014(-⎪⎭⎫⎝⎛++---【答案】解:103130tan 3)23()12014(-⎪⎭⎫⎝⎛++---2+3+113218. (2017四川南充,18,8分)如图,AD 、BC 相交于O ,OA=OC ,∠OBD=∠ODB .求证:AB=CD.【答案】证明:∵∠OBD=∠ODB . ∴OB=OD在△AOB 与△COD 中,OA OC AOB OD OB OD =⎧⎪∠=∠⎨⎪=⎩∴△AOB ≌△COD (SAS ) ∴AB=CD.19.(2017四川南充,19,8分)(8分)在学习“二元一次方程组的解”时,数学张老师设计了一个数学活动. 有A 、B 两组卡片,每组各3张,A 组卡片上分别写有0,2,3;B 组卡片上分别写有-5,-1,1.每张卡片除正面写有不同数字外,其余均相同.甲从A 组中随机抽取一张记为x ,乙从B 组中随机抽取一张记为y .(1)若甲抽出的数字是2,乙抽出的数是-1,它们恰好是ax -y =5的解,求a 的值; (2)求甲、乙随机抽取一次的数恰好是方程ax -y =5的解的概率.(请用树形图或列表法求解) 【答案】解:AB OC D(18题图)20. (2017四川南充,20,8分)(8分)已知关于x 的一元二次方程x 2-22x +m =0,有两个不相等的实数根.⑴求实数m 的最大整数值;⑵在⑴的条下,方程的实数根是x 1,x 2,求代数式x 12+x 22-x 1x 2的值. 【答案】解:⑴由题意,得:△>0,即:(24m -- >0,m <2,∴m 的最大整数值为m=1(2)把m=1代入关于x 的一元二次方程x 2-22x +m =0得x 2-22x +1=0,根据根与系数的关系:x 1+x 2 = 22,x 1x 2=1,∴x 12+x 22-x 1x 2= (x 1+x 2)2-3x 1x 2=(22)2-3×1=521.(2017四川南充,21,8分)(8分)如图,一次函数y 1=kx +b 的图象与反比例函数y 2=mx 的图象相交于点A (2,5)和点B ,与y 轴相交于点C (0,7). (1)求这两个函数的解析式; (2)当x 取何值时,1y <2y .(第21题图)【答案】解:∵反比例函数y 2=mx 的图象过点A (2,5)∴5=2m,m=10 即反比例函数的解析式为y =10x。
四川省南充市2017年中考数学试题
四川省南充市2017年中考数学试题解密时间:20】7年& 月13日上午8 :00南充市二O—匕年初屮学业水平考试数学试题{满分120分*苛间120分抻)注总事项:1.菩鸟注祷姓老、俺位号、爰份证号、准哮证号填在券爲卡指定位JT2.所有解莠內審均需涂、写屋厚题卡上,3.选择題预网2B船笔将答题卡杞应题号站应迭项奉黑,若需改动*预擦净片涂.4.填空题、耕答鬲在答超卡苛应题常位辽同0』总耒黑色字逮蕙书写.一、选择题(本尢题共10金小财.年小题孑分、共30孑)毎小題命有代号为A RJ\D四个拿案选頊”真屮只幻一个是正嘴的.请根摒正确选坯的代号境涂尋超卡对总位JT填洽正琥记3分■不涂、蜡亲或多涂记0上.L Wa+3=0>耶么庙的值为(A) 3 (B) -3 (C) + (D) —!-K? ST2,下图是由7卜小正方体组合而曲的几何体,它的主观图是3. 1K统计,参加南充市2016邯為中阶戦学校扌fH暂试的人数为好354人这个数用科学计数法表示为(A) 0. 553 54X101人(B)玉535 4却0‘ 人(C) 5.535 4x10* 人(D) 55. 354 xlO1* 人丄如图.ft线““筑将一个宜角三角尺按如图所示的位呂摆放,若.ZL1 = 5S°.鳧U2的度救为丄「(A) 30’(B) 32°((:) 42°(D) 5S a JTT7^ tf5.下列计算止确的是L厂J 打(A) d H -ro^ K a2(B) (2a*)a = 6」"(C) 3^-2^-a(D) 3<i ( I -ri) = 3—3 J、6.卑校數学兴趣小组样一次數学滦外活动中,随机捕售该校10名同 (第譚题) 学琴加今勺初中学业水平考试的棒肓成缔,待到结黑如r袤所示.成娠份3637383940人救/人12M-142(A)这10名同学体育直苓眄中応数为3JI井(B)这帕名同学律育成绩的平均数为丽分(C)这⑷名同学体育成绩的众数为刘分(D)这10名同学体育展绮的方止为2牧学试宦第I切(共4贞]7. 如图.等边△O4B 的边长为2.则点〃的坐标为8. 如图.在 RtAXW ;中•・4C=5m. fiC=12cm,乙ACB = 90。
四川省南充市中考数学试卷及答案
四川省南充市中考数学试卷及答案(满分100分,考题时间90分钟)一、选择题(本大题共8个小题,每小题3分,共24分)每小题都有代号为A 、B 、C 、D 的四个答案选项,其中只有一个是正确的,请把正确选项的代号填在相应的括号内.填写正确记3分,不填、填错或填出的代号超过一个记0分.1. 计算22--的结果是( A ).(A )0 (B )-2 (C )-4 (D )4 2. 下面调查统计中,适合做全面调查的是( D ).(A )雪花牌电冰箱的市场占有率 (B )蓓蕾专栏电视节目的收视率 (C )飞马牌汽车每百公里的耗油量 (D )今天班主任张老师与几名同学谈话3. 如图,立体图形由小正方体组成,这个立体图形有小正方体( C ). (A )9个 (B )10个(C )11个 (D )12个 4. 如果分式2xx-的值为0,那么x 为( D ). (A )-2 (B )0 (C )1 (D )25. 如果鞋店要购进100双这种女鞋,那么购进24厘米、24.5厘米和25厘米三种女鞋数量之和最合适...的是( B ). (A )20双 (B )30双 (C )50双 (D )80双6. 一艘轮船由海平面上A 地出发向南偏西40º的方向行驶40海里到达B 地,再由B 地向北偏西10º的方向行驶40海里到达C 地,则A 、C 两地相距( ). (A )30海里(B )40海里 (C )50海里 (D )60海里(第6题) (第7题) (第8题)小正方体 立体图形 (第3题)7. 如图是一个零件示意图,A 、B 、C 处都是直角,MN 是圆心角为90º的弧,其大小尺寸如图标示.MN 的长是( ). (A )π(B )32π (C )2π (D )4π8. 如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出四个结论:①b 2>4ac ;②2a +b =0;③a -b +c =0;④5a <b .其中正确结论是( ).(A )②④ (B )①④ (C )②③ (D )①③二、填空题(本大题共4个小题,每小题3分,共12分)请将答案直接填写在题中横线上.9. 计算: 20120072-⎛⎫+ ⎪⎝⎭=__________.10. 据四川省统计信息网《1季度四川民营经济发展状况解析》,1季度四川民营经济增加(第12题)请判断扇形统计图中对应组别名称:A 对应______,B 对应_______,C 对应______. 11. 已知反比例函数的图象经过点(3,2)和(m ,-2),则m 的值是____.12. 点M 、N 分别是正八边形相邻的边AB 、BC 上的点,且AM =BN ,点O 是正八边形的中心,则∠MON =____度. OA BCM N (第12题)三、(本大题共2个小题,每小题6分,共12分)13. 化简:22221422x x x x x x +⋅----.14. 如图,已知BE ⊥AD ,CF ⊥AD ,且BE =CF .请你判断AD 是△ABC 的中线还是角平分线?请说明你判断的理由.四、(本大题共2个小题,每小题6分,共12分)15. 某商场举行“庆元旦,送惊喜” 抽奖活动,10000个奖券中设有中奖奖券200个.(1)小红第一个参与抽奖且抽取一张奖券,她中奖的概率有多大?(2)元旦当天在商场购物的人中,估计有2000人次参与抽奖,商场当天准备多少个奖品较合适?16. 在一幅长8分米,宽6分米的矩形风景画(如图①)的四周镶宽度相同的金色纸边,制成一幅矩形挂图(如图②).如果要使整个挂图的面积是80平方分米,求金色纸边的宽.图① 图②ABCD FE五、(本大题共2个小题,每小题8分,共16分)17. 如图是某城市一个主题雕塑的平面示意图,它由置放于地面l 上两个半径均为2米的半圆与半径为4米的⊙A 构成.点B 、C 分别是两个半圆的圆心,⊙A 分别与两个半圆相切于点E 、F ,BC 长为8米.求EF 的长.18. 平面直角坐标系中,点A 的坐标是(4,0),点P 在直线y =-x +m 上,且AP =OP =4.求m 的值.六、(本题满分8分)19. 某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货量的一半.电视机与洗衣机的进价和售价如下表: 类 别 电视机 洗衣机 进价(元/台) 1800 1500 售价(元/台)20001600元.(1)请你帮助商店算一算有多少种进货方案?(不考虑除进价之外的其它费用) (2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润.(利润=售价-进价)得分评卷人得分评卷人AOxyA E Fl BC七、(本题满分8分)20. 如图, 等腰梯形ABCD 中,AB =15,AD =20,∠C =30º.点M 、N 同时以相同速度分别从点A 、点D 开始在AB 、AD (包括端点)上运动.(1)设ND 的长为x ,用x 表示出点N 到AB 的距离,并写出x 的取值范围. (2)当五边形BCDNM 面积最小时,请判断△AMN 的形状.八、(本题满分8分)21. 如图,点M (4,0),以点M 为圆心、2为半径的圆与x 轴交于点A 、B .已知抛物线216y x bx c =++过点A 和B ,与y 轴交于点C . (1)求点C 的坐标,并画出抛物线的大致图象. (2)点Q (8,m )在抛物线216y x bx c =++上,点P 为此抛物线对称轴上一个动点,求PQ +PB 的最小值.(3)CE 是过点C 的⊙M 的切线,点E 是切点,求OE 所在直线的解析式.D南充市二OO七年高中阶段学校招生统一考题数学试题参照答案及评分意见说明:1.正式阅卷前务必认真阅读参照答案和评分意见,明确评分标准,不得随意拔高或降低标准.2.全卷满分100分,参照答案和评分意见所给分数表示考生正确完成当前步骤时应得的累加分数.3.参照答案和评分意见仅是解答的一种,如果考生的解答与参照答案不同,只要正确就应该参照评分意见给分.合理精简解答步骤,其简化部分不影响评分.4.要坚持每题评阅到底.如果考生解答过程发生错误,只要不降低后继部分的难度且后继部分再无新的错误,可得不超过后继部分应得分数的一半,如果发生第二次错误,后面部分不予得分;若是相对独立的得分点,其中一处错误不影响其它得分点的评分.一、选择题(本大题共8个小题,每小题3分,共24分)题号 1 2 3 4 5 6 7 8答案 A D C D B B C B二、填空题(本大题共4个小题,每小题3分,共12分)9.5;10.第一产业,第三产业,第二产业;11.-3;12.45.三、(本大题共2个小题,每小题6分,共12分)13.解:原式221(2)(2)(2)2x xx x x x x+=⋅-+---………………………………(3分)222(2)(2)x xx x-=---………………………………(5分)22.(2)x=-………………………………(6分)14.解:AD是△ABC的中线.………………………………(1分)理由如下:在Rt△BDE和Rt△CDF中,∵BE=CF,∠BDE=∠CDF,∴Rt△BDE≌Rt△CDF.………………………………(5分)∴BD=CD.故AD是△ABC的中线.………………………………(6分)四、(本大题共2个小题,每小题6分,共12分)15.解:(1)小红中奖的概率20011000050==;………………………………(3分)(2)1200050⨯=40,因此商场当天准备奖品40个比较合适.………………………………(6分)16.解:设金色纸边的宽为x分米,根据题意,得(2x+6)(2x+8)=80. ………………………………(3分)解得:x 1=1,x 2=-8(不合题意,舍去).答:金色纸边的宽为1分米. ………………………………(6分) 五、(本大题共2个小题,每小题8分,共16分)17. 解:∵ ⊙A 分别与两个半圆相切于点E 、F ,点A 、B 、C 分别是三个圆的圆心,∴ AE =AF =4,BE =CF =2,AB =AC =6. ………………………………(3分) 则在△AEF 和△ABC 中,∠EAF =∠BAC ,4263AE AF AB AC ===. ∴ △AEF ∽△ABC .………………………………(6分)故EF AE BC AB =.则 EF =AE BC AB ⋅=216833⨯=. …………………………(8分) 18. 解:由已知AP =OP ,点P 在线段OA 的垂直平分线PM 上. ………………(2分) 如图,当点P 在第一象限时,OM =2,OP =4.在Rt △OPM 中,PM== ……………………(4分) ∴ P (2,.∵ 点P 在y =-x +m 上,∴ m =2+………………………………(6分)当点P 在第四象限时,根据对称性,P '((2,-.∵ 点P'在y =-x +m 上,∴ m =2- ………………………………(8分) 则m 的值为2+2-六、(本题满分8分) 19. 解:(1)设商店购进电视机x 台,则购进洗衣机(100-x )台,根据题意,得1(100),218001500(100)161800.x x x x ⎧≥-⎪⎨⎪+-≤⎩ ………………………………(3分)解不等式组,得 1333≤x ≤1393. ………………………………(5分)即购进电视机最少34台,最多39台,商店有6种进货方案. ………………(6分) (2)设商店销售完毕后获利为y 元,根据题意,得y =(2000-1800)x +(1600-1500)(100-x )=100x +10000. ………………(7分) ∵ 100>0,∴ 当x 最大时,y 的值最大.即 当x =39时,商店获利最多为13900元. ………………………………(8分) 七、(本题满分8分) 20. 解:(1)过点N 作BA 的垂线NP ,交BA 的延长线于点P . ………………(1分)由已知,AM =x ,AN =20-x .∵ 四边形ABCD 是等腰梯形,AB ∥CD ,∠D =∠C =30º, ∴ ∠PAN =∠D =30º.在Rt △APN 中,PN =AN sin ∠PAN =12(20-x ), 即点N 到AB 的距离为12(20-x ).………………………………(3分)∵ 点N 在AD 上,0≤x ≤20,点M 在AB 上,0≤x ≤15,∴ x 的取值范围是 0≤x ≤15. ………………………………(4分) (2)根据(1),S △AMN =12AM •NP =14x (20-x )=2154x x -+. ……(5分)∵ 14-<0,∴ 当x =10时,S △AMN 有最大值. …………………………(6分)又∵ S 五边形BCDNM =S 梯形-S △AMN ,且S 梯形为定值,∴ 当x =10时,S 五边形BCDNM 有最小值. …………………………(7分) 当x =10时,即ND =AM =10,AN =AD -ND =10,即AM =AN . 则当五边形BCDNM 面积最小时,△AMN 为等腰三角形. …………(8分)八、(本题满分8分) 21. 解:(1)由已知,得 A (2,0),B (6,0),∵ 抛物线216y x bx c =++过点A 和B ,则 221220,61660,6b c b c ⎧⨯++=⎪⎪⎨⎪⨯++=⎪⎩ 解得4,32.b c ⎧=-⎪⎨⎪=⎩ 则抛物线的解析式为 214263y x x =-+. 故 C (0,2). …………………………(2分)(说明:抛物线的大致图象要过点A 、B 、C ,其开口方向、顶点和对称轴相对准确)…………………………(3分)(2)如图①,抛物线对称轴l是x=4.∵Q(8,m)抛物线上,∴m=2.过点Q作QK⊥x轴于点K,则K(8,0),QK=2,AK=6,∴AQ=…………………………(5分)又∵B(6,0)与A(2,0)关于对称轴l对称,∴PQ+PB的最小值=AQ=(3)如图②,连结EM和CM.由已知,得EM=OC=2.CE是⊙M的切线,∴∠DEM=90º,则∠DEM=∠DOC.又∵∠ODC=∠EDM.故△DEM≌△DOC.∴OD=DE,CD=MD.又在△ODE和△MDC中,∠ODE=∠MDC,∠DOE=∠DEO=∠DCM=∠DMC.则OE∥CM.…………………………(7分)设CM所在直线的解析式为y=kx+b,CM过点C(0,2),M(4,0),∴40,2,k bb+=⎧⎨=⎩解得1,22,kb⎧=-⎪⎨⎪=⎩直线CM的解析式为122y x=-+.又∵直线OE过原点O,且OE∥CM,则OE的解析式为y=12-x.…………………………(8分)。
2017南充中考数学练习试卷
2017南充中考数学练习试卷备战中考的学生要多对中考数学试题进行练习才可以提高成绩,为了帮助各位考生,以下是店铺为你整理的2017南充中考数学练习试题,希望能帮到你。
2017南充中考数学练习试题一、选择题(本大题共15小题,每小题3分,共45分)1.﹣2的绝对值等于( )A.﹣B.C.﹣2D.22.数字3300用科学记数法表示为( )A.0.33×104B.3.3×103C.3.3×104D.33×1033.如图,直线a∥b,直线c与直线a,b相交,若∠1=56°,则∠2等于( )A.24°B.34°C.56°D.124°4.若2(a+3)的值与4互为相反数,则a的值为( )A. B.﹣5 C.﹣ D.﹣15.如图所示的几何体是由一个圆柱体和一个长方形组成的,则这个几何体的俯视图是( )A. B. C. D.6.下列运算正确的是( )A.x2+x3=x5B.(x﹣2)2=x2﹣4C.(x3)4=x7D.2x2⋅x3=2x57.下面四个手机应用图标中是中心对称图形的是( )A. B. C. D.8.实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为( )A.4,5B.5,4C.4,4D.5,59.如图,在10×6的网格中,每个小方格的边长都是1个单位,将△ABC平移到△DEF的位置,下面正确的平移步骤是( )A.先向左平移5个单位,再向下平移2个单位B.先向右平移5个单位,再向下平移2个单位C.先向左平移5个单位,再向上平移2个单位D.先向右平移5个单位,再向下平移2个单位10.化简÷ 是( )A.mB.﹣mC.D.﹣11.如图,直线l经过第二、三、四象限,l的解析式是y=(m﹣2)x+n,则m的取值范围在数轴上表示为( )A. B. C. D.12.如图,AB是⊙O的直径,C、D是⊙O上的点,∠CDB=30°,过点C作⊙O的切线交AB的延长线于点E,则sin∠E的值是( )A. B. C. D.13.已知关于x的二元一次方程组,若x+y>3,则m的取值范围是( )A.m>1B.m<2C.m>3D.m>514.对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[ ]=1,[﹣2.5]=﹣3.现对82进行如下操作:82 [ ]=9 [ ]=3 [ ]=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1( )A.1B.2C.3D.415.如图,直线y= 与y轴交于点A,与直线y=﹣交于点B,以AB为边向右作菱形ABCD,点C恰与原点O重合,抛物线y=(x﹣h)2+k的顶点在直线y=﹣上移动.若抛物线与菱形的边AB、BC都有公共点,则h的取值范围是( )A.﹣2B.﹣2≤h≤1C.﹣1D.﹣1二、填空题(本大题共6小题,每小题3分,共18分)16.因式分解:xy2﹣4x= .17.计算﹣(﹣1)2= .18.小明把如图所示的平行四边形纸板挂在墙上,完飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是.19.方程 = 的解是.20.如图,A.B是双曲线y= 上的两点,过A点作AC⊥x轴,交OB 于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为.21.如图,将一张矩形纸片ABCD沿对角线BD折叠,点C的对应点为C′,再将所折得的图形沿EF折叠,使得点D和点A重合.若AB=3,BC=4,则折痕EF的长为.三、解答题(本大题共8小题,共57分)22.(1)先化简,再求值:(x+1)2+x(2﹣x),其中x=(2)解不等式组,并把解集表示在数轴上.23.如图,C是AB的中点,AD=BE,CD=CE.求证:∠A=∠B.24.如图,⊙O是△ABC的外接圆,∠A=45°,BD是直径,且BC=2,连接CD,求BD的长.25.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?26.商店只有雪碧、可乐、果汁、奶汁四种饮料,某同学去该店购买饮料,每种饮料被选中的可能性相同.(1)若他去买一瓶饮料,则他买到奶汁的概率是多少?(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率.27.如图1,已知双曲线y= (k>0)与直线y=k′x交于A、B两点,点A在第一象限,试回答下列问题:(1)若点A的坐标为(3,1),则点B的坐标为;当x满足:时,≤k′x;(2)如图2,过原点O作另一条直线l,交双曲线y= (k>0)于P,Q 两点,点P在第一象限.①四边形APBQ一定是;②若点A的坐标为(3,1),点P的横坐标为1,求四边形APBQ 的面积.(3)设点A,P的横坐标分别为m,n,四边形APBQ可能是矩形吗?可能是正方形吗?若可能,直接写出m,n应满足的条件;若不可能,请说明理由.28.如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.(1)求证:BD=CE;(2)若AB=2,AD=1,把△ADE绕点A旋转,①当∠EAC=90°时,求PB的长;②直接写出旋转过程中线段PB长的最小值与最大值.29.如图,二次函数y= x2+bx﹣的图象与x轴交于点A(﹣3,0)和点B,以AB为边在x轴上方作正方形ABCD,点P是x轴上一动点,连接DP,过点P作DP的垂线与y轴交于点E.(1)请直接写出点D的坐标:;(2)当点P在线段AO(点P不与A、O重合)上运动至何处时,线段OE的长有最大值,求出这个最大值;(3)是否存在这样的点P,使△PED是等腰三角形?若存在,请求出点P的坐标及此时△PED与正方形ABCD重叠部分的面积;若不存在,请说明理由.2017南充中考数学练习试题答案一、选择题(本大题共15小题,每小题3分,共45分)1.﹣2的绝对值等于( )A.﹣B.C.﹣2D.2【考点】绝对值.【分析】根据绝对值的性质:一个负数的绝对值是它的相反数解答即可.【解答】解:根据绝对值的性质,|﹣2|=2.故选D.2.数字3300用科学记数法表示为( )A.0.33×104B.3.3×103C.3.3×104D.33×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:3300用科学记数法可表示为:3.3×103,故选:B.3.如图,直线a∥b,直线c与直线a,b相交,若∠1=56°,则∠2等于( )A.24°B.34°C.56°D.124°【考点】平行线的性质.【分析】根据对顶角相等求出∠3,根据平行线的性质得出∠2=∠3,即可得出答案.【解答】解:∵∠1=56°,∴∠3=∠1=56°,∵直线a∥b,∴∠2=∠3=56°,故选C.4.若2(a+3)的值与4互为相反数,则a的值为( )A. B.﹣5 C.﹣ D.﹣1【考点】相反数.【分析】依据相反数的定义列出关于a的方程求解即可.【解答】解:∵2(a+3)的值与4互为相反数,∴2(a+3)=﹣4,解得:a=﹣5.故选:B.5.如图所示的几何体是由一个圆柱体和一个长方形组成的,则这个几何体的俯视图是( )A. B. C. D.【考点】简单组合体的三视图.【分析】根据俯视图是从上面看得到的图形,可得答案.【解答】解:从上面看外边是一个矩形,里面是一个圆,故选:C.6.下列运算正确的是( )A.x2+x3=x5B.(x﹣2)2=x2﹣4C.(x3)4=x7D.2x2⋅x3=2x5【考点】幂的乘方与积的乘方;合并同类项;完全平方公式.【分析】根据合并同类项法则、幂的乘方、单项式乘以单项式、完全平方公式分别求出每个式子的值,再判断即可.【解答】解:A、x2和x3不能合并,故本选项不符合题意;B、结果是x2﹣4x+4,故本选项不符合题意;C、结果是x12,故本选项不符合题意;D、结果是2x5,故本选项符合题意;故选D.7.下面四个手机应用图标中是中心对称图形的是( )A. B. C. D.【考点】中心对称图形.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A图形不是中心对称图形;B图形是中心对称图形;C图形不是中心对称图形;D图形不是中心对称图形,故选:B.8.实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为( )A.4,5B.5,4C.4,4D.5,5【考点】众数;中位数.【分析】根据众数及中位数的定义,结合所给数据即可作出判断.【解答】解:将数据从小到大排列为:1,2,3,3,4,4,5,5,5,5,这组数据的众数为:5;中位数为:4.故选A.9.如图,在10×6的网格中,每个小方格的边长都是1个单位,将△ABC平移到△DEF的位置,下面正确的平移步骤是( )A.先向左平移5个单位,再向下平移2个单位B.先向右平移5个单位,再向下平移2个单位C.先向左平移5个单位,再向上平移2个单位D.先向右平移5个单位,再向下平移2个单位【考点】坐标与图形变化﹣平移.【分析】根据网格结构,可以利用一对对应点的平移关系解答.【解答】解:根据网格结构,观察对应点A、D,点A向左平移5个单位,再向下平移2个单位即可到达点D的位置,所以平移步骤是:先把△ABC向左平移5个单位,再向下平移2个单位.故选:A.10.化简÷ 是( )A.mB.﹣mC.D.﹣【考点】分式的乘除法.【分析】原式利用除法法则变形,约分即可得到结果.【解答】解:原式=﹣• =﹣m,故选B.11.如图,直线l经过第二、三、四象限,l的解析式是y=(m﹣2)x+n,则m的取值范围在数轴上表示为( )A. B. C. D.【考点】一次函数图象与系数的关系;在数轴上表示不等式的解集.【分析】根据一次函数图象与系数的关系得到m﹣2<0且n<0,解得m<2,然后根据数轴表示不等式的方法进行判断.【解答】解:∵直线y=(m﹣2)x+n经过第二、三、四象限,∴m﹣2<0且n<0,∴m<2且n<0.故选:C.12.如图,AB是⊙O的直径,C、D是⊙O上的点,∠CDB=30°,过点C作⊙O的切线交AB的延长线于点E,则sin∠E的值是( )A. B. C. D.【考点】切线的性质;解直角三角形.【分析】连接OC,如图,利用圆周角定理得到∠BOC=∠CDB=30°,再根据切线的性质得∠OCE=90°,所以∠E=30°,然后根据特殊角的三角函数值求解.【解答】解:连接OC,如图,∠BOC=∠CDB=30°,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,∴∠E=30°,∴sinE=sin30°= .故选A.13.已知关于x的二元一次方程组,若x+y>3,则m的取值范围是( )A.m>1B.m<2C.m>3D.m>5【考点】二元一次方程组的解;解一元一次不等式.【分析】将m看做已知数表示出x与y,代入x+y>3计算即可求出m的范围.【解答】解:,①+②得:4x=4m﹣6,即x= ,①﹣②×3得:4y=﹣2,即y=﹣,根据x+y>3得:﹣ >3,去分母得:2m﹣3﹣1>6,解得:m>5.故选D14.对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[ ]=1,[﹣2.5]=﹣3.现对82进行如下操作:82 [ ]=9 [ ]=3 [ ]=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1( )A.1B.2C.3D.4【考点】估算无理数的大小.【分析】[x]表示不大于x的最大整数,依据题目中提供的操作进行计算即可.【解答】解:121 [ ]=11 [ ]=3 [ ]=1,∴对121只需进行3次操作后变为1,故选:C.15.如图,直线y= 与y轴交于点A,与直线y=﹣交于点B,以AB为边向右作菱形ABCD,点C恰与原点O重合,抛物线y=(x﹣h)2+k的顶点在直线y=﹣上移动.若抛物线与菱形的边AB、BC都有公共点,则h的取值范围是( )A.﹣2B.﹣2≤h≤1C.﹣1D.﹣1【考点】二次函数综合题.【分析】将y= 与y=﹣联立可求得点B的坐标,然后由抛物线的顶点在直线y=﹣可求得k=﹣,于是可得到抛物线的解析式为y=(x﹣h)2﹣h,由图形可知当抛物线经过点B和点C时抛物线与菱形的边AB、BC均有交点,然后将点C和点B的坐标代入抛物线的解析式可求得h的值,从而可判断出h的取值范围.【解答】解:∵将y= 与y=﹣联立得:,解得: .∴点B的坐标为(﹣2,1).由抛物线的解析式可知抛物线的顶点坐标为(h,k).∵将x=h,y=k,代入得y=﹣得:﹣ h=k,解得k=﹣,∴抛物线的解析式为y=(x﹣h)2﹣ h.如图1所示:当抛物线经过点C时.将C(0,0)代入y=(x﹣h)2﹣h得:h2﹣h=0,解得:h1=0(舍去),h2= .如图2所示:当抛物线经过点B时.将B(﹣2,1)代入y=(x﹣h)2﹣h得:(﹣2﹣h)2﹣h=1,整理得:2h2+7h+6=0,解得:h1=﹣2,h2=﹣ (舍去).综上所述,h的范围是﹣2≤h≤ .故选A.二、填空题(本大题共6小题,每小题3分,共18分)16.因式分解:xy2﹣4x= x(y+2)(y﹣2) .【考点】提公因式法与公式法的综合运用.【分析】先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:xy2﹣4x,=x(y2﹣4),=x(y+2)(y﹣2).17.计算﹣(﹣1)2= 4 .【考点】实数的运算.【分析】先分别根据数的开方法则、有理数乘方的法则求出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=5﹣1=4.故答案为:4.18.小明把如图所示的平行四边形纸板挂在墙上,完飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是.【考点】中心对称图形;平行四边形的性质.【分析】先根据平行四边形的性质求出平行四边形对角线所分的四个三角形面积相等,再求出S1=S2即可.【解答】解:根据平行四边形的性质可得:平行四边形的对角线把平行四边形分成的四个面积相等的三角形,根据平行线的性质可得S1=S2,则阴影部分的面积占,则飞镖落在阴影区域的概率是 .故答案为: .19.方程 = 的解是x=6 .【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3x﹣6=2x,解得:x=6,经检验x=6是分式方程的解.故答案为:x=620.如图,A.B是双曲线y= 上的两点,过A点作AC⊥x轴,交OB 于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为.【考点】反比例函数系数k的几何意义.【分析】过点B作BE⊥x轴于点E,根据D为OB的中点可知CD 是△OBE的中位线,即CD= BE,设A(x, ),则B(2x, ),故CD= ,AD= ﹣,再由△ADO的面积为1求出y的值即可得出结论.【解答】解:过点B作BE⊥x轴于点E,。
四川省南充市2017年中考数学真题试题(含解析)
考点:解分式方程.
12.计算:|1 5 | ( 3)0 = .
【答案】 5 .
【解析】
试题分析:原式= 5 ﹣1+1= 5 .故答案为: 5 .
考点:实数的运算;零指数幂.
13.经过某十字路口的汽车,可直行,也可向左转或向右转,如果这三种可能性大小相同,则两辆汽车经
过该十字路口时都直行的概率是 .
考点:旋转的性质;全等 个小题,满分 72 分)解答应写出必要的文字说明,证明过程或验算步骤
x x 1
17.化简 (1
) ,再任取一个你喜欢的数代入求值.
x2 x x 1
x
5
【答案】 ,当 x=5 时,原式= .
x 1
4
【解析】
试题分析:先根据分式混合运算的法则把原式进行化简,再选取合适的 x 的值代入进行计算即可.
②BE⊥DG;③ DE 2 BG2 2a2 2b2 ,其中正确结论是
(填序号)
【答案】①②③. 【解析】 试题分析:设 BE,DG 交于 O,∵四边形 ABCD 和 EFGC 都为正方形,∴BC=CD,CE=CG,∠BCD=∠ECG=90°,
∴∠BCE+∠DCE=∠ECG+∠DCE=90°+∠DCE,即∠BCE=∠DCG,在△BCE 和△DCG 中,∵BC=DC,∠BCE=∠DCG, CE=CG,∴△BCE≌△DCG(SAS),∴BE=DG,∴∠1=∠2,∵∠1+∠4=∠3+∠1=90°,∴∠2+∠3=90°,∴∠ BOC=90°,∴BE⊥DG;故①②正确; 连接 BD,EG,如图所示,∴DO2+BO2=BD2=BC2+CD2=2a2,EO2+OG2=EG2=CG2+CE2=b2,则 BG2+DE2=DO2+BO2+EO2+OG2=2a2+b2, 故③正确. 故答案为:①②③.
中考数学专题02代数式和因式分解(第03期)-2017年中考数学试题分项版解析汇编(解析版)
一、选择题目1.(2017四川省南充市)下列计算正确的是( ) A.842a a a ÷= B .236(2)6a a = C .3232a a a -=D .23(1)33a a a a -=-【答案】D . 【解析】试题分析:A .原式=4a ,不符合题意; B .原式=68a ,不符合题意; C .原式不能合并,不符合题意; D .原式=233a a -,符合题意. 故选D .考点:整式的混合运算.2.(2017四川省广安市)下列运算正确的是( )A .|√2−1|=√2−1B .x 3⋅x 2=x 6C .x 2+x 2=x 4D .(3x 2)2=6x 4 【答案】A . 【解析】试题分析:A .|√2−1|=√2−1,正确,符合题意; B .325x x x ⋅=,故此选项错误; C .2222x x x +=,故此选项错误;D .224(3)9x x =,故此选项错误;故选A .考点:1.幂的乘方与积的乘方;2.实数的性质;3.合并同类项;4.同底数幂的乘法.学科*网 3.(2017四川省广安市)要使二次根式√2x −4在实数范围内有意义,则x 的取值范围是( ) A .x >2 B .x ≥2 C .x <2 D .x =2 【答案】B .【解析】试题分析:∵二次根式√2x −4在实数范围内有意义,∴2x ﹣4≥0,解得:x ≥2,则实数x 的取值范围是:x ≥2.故选B .考点:二次根式有意义的条件.4.(2017四川省眉山市)下列运算结果正确的是( )A-= B .2(0.1)0.01--= C .222()2a b ab a b ÷= D .326()m m m -=-【答案】A .考点:1.二次根式的加减法;2.同底数幂的乘法;3.幂的乘方与积的乘方;4.分式的乘除法;5.负整数指数幂.5.(2017四川省眉山市)已知2211244m n n m +=--,则11m n -的值等于( ) A .1 B .0 C .﹣1 D .14-【答案】C . 【解析】试题分析:由2211244m n n m +=--,得:22(2)(2)0m n ++-= ,则m =﹣2,n =2,∴11m n -=1122--=﹣1.故选C .考点:1.分式的化简求值;2.条件求值. 6.(2017四川省绵阳市)使代数式√x+3+√4−3x 有意义的整数x 有( )A .5个B .4个C .3个D .2个 【答案】B .考点:二次根式有意义的条件.7.(2017四川省绵阳市)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a 1,第2幅图形中“●”的个数为a 2,第3幅图形中“●”的个数为a 3,…,以此类推,则1a 1+1a 2+1a 3+⋯+1a 19的值为( )A .2021B .6184C .589840D .421760【答案】C . 【解析】试题分析:a 1=3=1×3,a 2=8=2×4,a 3=15=3×5,a 4=24=4×6,…,a n =n (n +2);∴1a 1+1a 2+1a3+⋯+1a 19=11111 (13243546)1921+++++⨯⨯⨯⨯⨯ =1111111111(1...)232435461921-+-+-+-++-=1111(1)222021+--=589840,故选C .学科#网 考点:1.规律型:图形的变化类;2.综合题. 8.(2017四川省达州市)下列计算正确的是( ) A .235a b ab +=B 6=±C .22122a b ab a ÷=D .()323526ab a b =【答案】C .【解析】试题分析:A .2a 与3b 不是同类项,故A 不正确; B .原式=6,故B 不正确; C .22122a b ab a÷=,正确;D .原式=368a b ,故D 不正确; 故选C .考点:1.整式的除法;2.算术平方根;3.合并同类项;4.幂的乘方与积的乘方. 9.(2017山东省枣庄市)下列计算,正确的是( )A-= B .13|2|22-=-C= D .11()22-=【答案】D . 【解析】=,A 错误;13|2|22-=,B 错误;2,C 错误;11()22-=,D 正确,故选D .考点:1.立方根;2.有理数的减法;3.算术平方根;4.负整数指数幂. 10.(2017山东省枣庄市)实数a ,b在数轴上对应点的位置如图所示,化简||a 的结果是( )A .﹣2a +bB .2a ﹣bC .﹣bD .b 【答案】A .考点:1.二次根式的性质与化简;2.实数与数轴.11.(2017山东省济宁市)单项式39m x y 与单项式24n x y 是同类项,则m +n 的值是( ) A .2 B .3 C .4 D .5 【答案】D . 【解析】试题分析:由题意,得m =2,n =3.m +n =2+3=5,故选D . 考点:同类项.12.(20171+在实数范围内有意义,则x 满足的条件是( )A .x ≥12B .x ≤12C .x =12D .x ≠12【答案】C . 【解析】试题分析:由题意可知:210120x x -≥⎧⎨-≥⎩,解得:x =12.故选C .考点:二次根式有意义的条件. 13.(2017山东省济宁市)计算()322323a a a a a -+-÷,结果是( )A .52a a - B .512a a -C .5aD .6a【答案】D .考点:1.幂的乘方与积的乘方;2.同底数幂的乘法;3.负整数指数幂.14.(2017山西省)如图,将矩形纸片ABCD 沿BD 折叠,得到△BC ′D ,C ′D 与AB 交于点E .若∠1=35°,则∠2的度数为( )A .20B .30C .35D .55 【答案】A . 【解析】试题分析:由翻折的性质得,∠DBC =∠DBC ′,∵∠C =90°,∴∠DBC =∠DBC ′=90°-35°=55°,∵矩形的对边AB ∥DC ,∴∠1=∠DBA =35°,∴∠2=∠DBC ′-∠DBA =55°-35°=20°.故选A . 考点:1.平行线的性质;2.翻折变换(折叠问题). 15.(2017广东省)下列运算正确的是( )A .223a a a +=B .325a a a ⋅=C .426()a a =D .424a a a +=【答案】B . 【解析】试题分析:A .a +2a =3a ,此选项错误; B .325a a a ⋅=,此选项正确;C .428()a a =,此选项错误;D .4a 与2a 不是同类项,不能合并,此选项错误;故选B .考点:1.幂的乘方与积的乘方;2.合并同类项;3.同底数幂的乘法. 16.(2017广西四市)下列运算正确的是( )A .−3(x −4)=−3x +12B .(−3x)2⋅4x 2=−12x 4C .3x +2x 2=5x 3D .x 6÷x 2=x 3 【答案】A .考点:整式的混合运算.17.(2017江苏省盐城市)下列运算中,正确的是( )A .277a a aB .236a aa C .32a aa D .22abab【答案】C . 【解析】 试题分析:A .错误、7a +a =8a .B .错误.235aa a . C .正确.32a aa .D .错误.222aba b故选C .考点:1.幂的乘方与积的乘方;2.合并同类项;3.同底数幂的乘法.18.(2017江苏省连云港市)计算2a a 的结果是( )A .aB .2aC .22aD .3a 【答案】D .考点:同底数幂的乘法.19.(2017江苏省连云港市)如图所示,一动点从半径为2的⊙O 上的A 0点出发,沿着射线A 0O 方向运动到⊙O 上的点A 1处,再向左沿着与射线A 1O 夹角为60°的方向运动到⊙O 上的点A 2处;接着又从A 2点出发,沿着射线A 2O 方向运动到⊙O 上的点A 3处,再向左沿着与射线A 3O 夹角为60°的方向运动到⊙O 上的点A4处;…按此规律运动到点A2017处,则点A2017与点A0间的距离是()A.4B.23C.2D.0【答案】A.【解析】试题分析:如图,∵⊙O的半径=2,由题意得,OA1=4,OA2=,OA3=2,OA4=,OA5=2,OA6=0,OA7=4,…∵2017÷6=336…1,∴按此规律运动到点A2017处,A2017与A1重合,∴OA2017=2R=4.故选A.考点:1.规律型:图形的变化类;2.综合题.20.(2017河北省)如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是()A.446+=B.004446++=C.46+=D.1446-=【答案】D.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.图表型.21.(2017河北省)若321xx--= +11x-,则中的数是()A.﹣1B.﹣2C.﹣3D.任意实数【答案】B.【解析】试题分析:∵321xx-- = +11x-,∴321xx--﹣11x-=3211xx---=2(1)1xx--=﹣2,故____中的数是﹣2.故选B.考点:分式的加减法.22.(2017浙江省丽水市)计算23a a⋅,正确结果是()A.5a B.4a C.8a D.9a 【答案】A.【解析】试题分析:23a a⋅=23a+=5a,故选A.考点:同底数幂的乘法.23.(2017浙江省丽水市)化简2111x x x +--的结果是( )A .x +1B .x ﹣1C .21x -D .211x x +-【答案】A .考点:分式的加减法.24.(2017浙江省台州市)下列计算正确的是( ) A .()()2222a a a +-=-B .()()2122a a a a +-=+-C .()222a b a b +=+D .()2222a b a ab b -=-+【答案】D . 【解析】试题分析:A .原式=24a -,不符合题意;B .原式=22a a --,不符合题意; C .原式=222a ab b ++,不符合题意;D .原式=222a ab b -+,符合题意. 故选D .考点:整式的混合运算.25.(2017湖北省襄阳市)下列运算正确的是( )A .32a a -=B .()325a a = C . 235a a a = D .632a a a ÷=【答案】C .考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.学科*网 26.(2017重庆市B 卷)计算53a a ÷结果正确的是( ) A .a B .2a C .3a D .4a 【答案】B . 【解析】试题分析:53a a ÷=2a .故选B . 考点:同底数幂的除法.27.(2017重庆市B 卷)若x =﹣3,y =1,则代数式2x ﹣3y +1的值为( ) A .﹣10 B .﹣8 C .4 D .10 【答案】B . 【解析】试题分析:∵x =﹣3,y =1,∴2x ﹣3y +1=2×(﹣3)﹣3×1+1=﹣8,故选B . 考点:代数式求值.28.(2017重庆市B卷)若分式13x -有意义,则x 的取值范围是( )A .x >3B .x <3C .x ≠3D .x =3 【答案】C . 【解析】试题分析:∵分式13x -有意义,∴x ﹣3≠0,∴x ≠3;故选C .考点:分式有意义的条件.29.(2017重庆市B 卷)下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为( )A .116B .144C .145D .150 【答案】B .考点:规律型:图形的变化类. 二、填空题目30.(2017四川省南充市)计算:0|1(π+= .【解析】试题分析:原式1+1 考点:1.实数的运算;2.零指数幂.31.(2017四川省广安市)分解因式:24mx m -= . 【答案】m (x +2)(x ﹣2). 【解析】试题分析:24mx m -=2(4)m x -=m (x +2)(x ﹣2).故答案为:m (x +2)(x ﹣2).考点:提公因式法与公式法的综合运用.32.(2017四川省眉山市)分解因式:228ax a -= . 【答案】2a (x +2)(x ﹣2).考点:提公因式法与公式法的综合运用.33.(2017四川省绵阳市)分解因式:282a -= . 【答案】2(2a +1)(2a ﹣1). 【解析】试题分析:282a -=22(41)a - =2(2a +1)(2a ﹣1).故答案为:2(2a +1)(2a ﹣1).考点:提公因式法与公式法的综合运用.34.(2017四川省达州市)因式分解:3228a ab -= .【答案】2a (a +2b )(a ﹣2b ). 【解析】试题分析:2a 3﹣8ab 2 =2a (a 2﹣4b 2) =2a (a +2b )(a ﹣2b ).故答案为:2a (a +2b )(a ﹣2b ). 考点:提公因式法与公式法的综合运用.35.(2017山东省枣庄市)化简:2223321(1)x x xx x x ++÷-+-= . 【答案】1x .【解析】试题分析:2223321(1)x x x x x x ++÷-+-=223(1)(1)(3)x x x x x +-⋅-+=1x ,故答案为:1x . 考点:分式的乘除法.36.(2017山东省济宁市)分解因式:222ma mab mb ++=.【答案】2()m a b + .【解析】试题分析:原式=22(2)m a ab b ++=2()m a b +,故答案为:2()m a b +.考点:提公因式法与公式法的综合运用.37.(2017山西省)计算:-= .【答案】.考点:二次根式的加减法.38.(2017广东省)分解因式:a a +2= .【答案】a (a +1). 【解析】试题分析:a a +2=a (a +1).故答案为:a (a +1).考点:因式分解﹣提公因式法.学&科网39.(2017广东省)已知4a +3b =1,则整式8a +6b ﹣3的值为 . 【答案】﹣1. 【解析】试题分析:∵4a +3b =1,∴8a +6b =2,8a +6b ﹣3=2﹣3=﹣1;故答案为:﹣1. 考点:1.代数式求值;2.整体思想.40.(2017江苏省盐城市)分解因式2a b a 的结果为 .【答案】a (ab ﹣1). 【解析】试题分析:2a b a =a (ab ﹣1),故答案为:a (ab ﹣1).考点:提公因式法与公式法的综合运用.41.(2017在实数范围内有意义,则x 的取值范围是 . 【答案】x ≥3. 【解析】试题分析:根据题意得x ﹣3≥0,解得x ≥3.故答案为:x ≥3. 考点:二次根式有意义的条件.42.(2017江苏省连云港市)分式11x 有意义的x 的取值范围为 . 【答案】x ≠1.考点:分式有意义的条件.43.(2017江苏省连云港市)计算(a ﹣2)(a +2)=. 【答案】24a -. 【解析】试题分析:(a ﹣2)(a +2)=24a -,故答案为:24a -. 考点:平方差公式.44.(2017浙江省丽水市)分解因式:22m m += . 【答案】m (m +2). 【解析】试题分析:原式=m (m +2).故答案为:m (m +2). 考点:因式分解﹣提公因式法.45.(2017浙江省丽水市)已知21a a +=,则代数式23a a --的值为 . 【答案】2. 【解析】试题分析:∵21a a +=,∴原式=23()a a -+=3﹣1=2.故答案为:2.考点:1.代数式求值;2.条件求值;3.整体思想.46.(2017浙江省台州市)因式分解:26x x += .【答案】x (x +6). 【解析】试题分析:原式=x (6+x ),故答案为:x (x +6). 考点:因式分解﹣提公因式法.47.(2017浙江省绍兴市)分解因式:2x y y -= .【答案】y (x +1)(x ﹣1).考点:1.提公因式法与公式法的综合运用;2.因式分解.48.(2017重庆市B 卷)计算:0|3|(4)-+- .【答案】4. 【解析】试题分析:原式=3+1=4.故答案为:4. 考点:1.实数的运算;2.零指数幂.三、解答题49.(2017四川省南充市)化简21(1)1x x x x x --÷++,再任取一个你喜欢的数代入求值.【答案】1x x -,当x =5时,原式=54.【解析】试题分析:先根据分式混合运算的法则把原式进行化简,再选取合适的x 的值代入进行计算即可.试题解析:原式=2211x x x x x xx +-+⋅+-=21(1)1x x x x x +⋅+-=1x x - ∵x ﹣1≠0,x (x +1)≠0,∴x ≠±1,x ≠0,当x =5时,原式=551-=54.考点:分式的化简求值.50.(2017四川省广安市)计算:6118cos 4520173--+⨯-+.【答案】13 .考点:1.二次根式的混合运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.51.(2017四川省广安市)先化简,再求值:2211a a a aa +-⎛⎫+÷⎪⎝⎭,其中a =2. 【答案】11a a +-,3.【解析】试题分析:先化简分式,再代入求值.试题解析:原式=221(1)(1)a a a a a a ++⨯+-=2(1)(1)(1)a a a a a +⨯+-=11a a +- 当a =2时,原式=3. 考点:分式的化简求值.52.(2017四川省眉山市)先化简,再求值:2(3)2(34)a a +-+,其中a =﹣2. 【答案】21a +,5. 【解析】试题分析:原式利用完全平方公式化简,去括号合并得到最简结果,把a 的值代入计算即可求出值. 试题解析:原式=26968a a a ++--=21a +,当a =﹣2时,原式=4+1=5. 考点:整式的混合运算—化简求值.53.(2017四川省绵阳市)(1)计算:√0.04+cos 2450−(−2)−1−|−12|;(2)先化简,再求值:(x−y x 2−2xy +y 2−x x 2−2xy )÷yx−2y ,其中x=y.【答案】(1)0.7;(2)1y x -,.考点:1.分式的化简求值;2.实数的运算;3.负整数指数幂;4.特殊角的三角函数值.54.(2017四川省达州市)计算:11201712cos453-⎛⎫--+︒⎪⎝⎭.【答案】5.【解析】试题分析:首先计算乘方、乘法,然后从左向右依次计算,求出算式的值是多少即可.试题解析:原式=1132+++55.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.学科#网55.(2017四川省达州市)设A=223121a aaa a a-⎛⎫÷-⎪+++⎝⎭.(1)化简A;(2)当a=3时,记此时A的值为f(3);当a=4时,记此时A的值为f(4);…解关于x的不等式:()()()27341124x xf f f---≤+++,并将解集在数轴上表示出来.【答案】(1)21a a+;(2)x≤4.考点:1.分式的混合运算;2.在数轴上表示不等式的解集;3.解一元一次不等式;4.阅读型;5.新定义.56.(2017山东省枣庄市)我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=p q.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=3 4.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.【答案】(1)证明见解析;(2)15,26,37,48,59;(3)3 4.考点:1.因式分解的应用;2.新定义;3.因式分解;4.阅读型.57.(2017广东省)计算:()11713π-⎛⎫---+ ⎪⎝⎭.【答案】9. 【解析】试题分析:直接利用绝对值的性质以及零指数幂的性质和负整数指数幂的性质分别化简求出答案. 试题解析:原式=7﹣1+3=9.考点:1.实数的运算;2.零指数幂;3.负整数指数幂.58.(2017广东省)先化简,再求值:()211422x x x ⎛⎫+⋅- ⎪-+⎝⎭,其中x【答案】2x , 【解析】试题分析:先计算括号内分式的加法,再计算乘法即可化简原式,将x 的值代入求解可得.试题解析:原式=()()()()222222x x x x x x ++-+--+=2x当x= 考点:分式的化简求值.59.(2017广西四市)先化简,再求值:2211121x x x x x ---÷++,其中x =√5−1. 【答案】11x +考点:分式的化简求值.60.(201711()20172.【答案】3. 【解析】试题分析:首先计算开方,乘方、然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可. 试题解析:原式=2+2﹣1=3.考点:1.实数的运算;2.零指数幂;3.负整数指数幂. 61.(2017江苏省盐城市)先化简,再求值:35222x x x x ,其中33x .【答案】13x -.【解析】试题分析:原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把x 的值代入计算即可求出值. 试题解析:原式=3(2)(2)5[]222x x x x x x =23922x x x x +-÷--=322(3)(3)x x x x x +-⋅-+-=13x -当33x 时,原式.考点:分式的化简求值.62.(2017江苏省连云港市)计算:0318 3.14.【答案】0. 【解析】试题分析:先去括号、开方、零指数幂,然后计算加减法. 试题解析:原式=1﹣2+1=0.考点:1.实数的运算;2.零指数幂.63.(2017江苏省连云港市)化简: 211a aa a .【答案】21a .考点:分式的乘除法.64.(2017河北省)发现 任意五个连续整数的平方和是5的倍数.验证 (1)22222(1)0123-++++的结果是5的几倍?(2)设五个连续整数的中间一个为n ,写出它们的平方和,并说明是5的倍数. 延伸 任意三个连续整数的平方和被3整除余数是几呢?请写出理由. 【答案】(1)3;(2)见解析;延伸 2,理由见解析. 【解析】试题分析:(1)直接计算这个算式的值;(2)先用代数式表示出这几个连续整数的平方和,再化简,根据代数式的形式作出结论. 试题解析:(1)∵()2222210123-++++=1+0+1+4+9=15=5×3,∴结果是5的3倍.(2)()()()()() 2222222 211251052n n n n n n n-+-+++++=+=+.∵n为整数,∴这个和是5的倍数.延伸余数是2.理由:设中间的整数为n,()()22221132n n n n-+++=+被3除余2.考点:1.完全平方公式;2.整式的加减.65.(2017浙江省丽水市)计算:011(2017)()3---【答案】1.【解析】试题分析:本题涉及零指数幂、负整数指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.学&科网试题解析:原式=1﹣3+3=1.考点:1.实数的运算;2.零指数幂;3.负整数指数幂.66.(2017)013 +---.【答案】1.考点:1.实数的运算;2.零指数幂.67.(2017浙江省台州市)先化简,再求值:1211x x⎛⎫-⋅⎪+⎝⎭,其中x=2017.【答案】21x+,11009.【解析】试题分析:根据分式的减法和乘法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.试题解析:原式=1121xx x+-⨯+ =21xx x⨯+=21x+当x =2017时,原式=220171+=22018=11009.考点:分式的化简求值.68.(2017浙江省绍兴市)(1)计算:()4π-+-(2)解不等式:()4521x x +≤+.【答案】(1)﹣3;(2)x ≤32-.考点:1.解一元一次不等式;2.实数的运算;3.零指数幂.69.(2017湖北省襄阳市)先化简,再求值:2111x y x y xy y ⎛⎫+÷ ⎪+-+⎝⎭,其中2x =,2y =-.【答案】2xy x y -,12.【解析】试题分析:先根据分式的混合运算顺序和法则化简原式,再将x 、y 的值代入求解可得.试题解析:原式=1[]()()()()()x y x y x y x y x y x y y x y -++÷+-+-+=2()()()x y x y x y x y ⋅++- =2xyx y -当2x =+,2y =-时,原式24=12. 考点:分式的化简求值. 70.(2017重庆市B 卷)计算:(1)2()(2)x y x y x+--;(2)23469 (2)22a a aaa a--++-÷--.【答案】(1)222x y+;(2)3aa-.考点:1.分式的混合运算;2.单项式乘多项式;3.完全平方公式.71.(2017重庆市B卷)对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=()()F sF t,当F(s)+F(t)=18时,求k的最大值.【答案】(1)F(243)=9,F(617)=14;(2)54.【解析】试题分析:(1)根据F(n)的定义式,分别将n=243和n=617代入F(n)中,即可求出结论;(2)由s=100x+32、t=150+y结合F(s)+F(t)=18,即可得出关于x、y的二元一次方程,解之即可得出x、y的值,再根据“相异数”的定义结合F(n)的定义式,即可求出F(s)、F(t)的值,将其代入k= ()()F sF t中,找出最大值即可.试题解析:(1)F (243)=(423+342+234)÷111=9; F (617)=(167+716+671)÷111=14.(2)∵s ,t 都是“相异数”,s =100x +32,t =150+y ,∴F (s )=(302+10x +230+x +100x +23)÷111=x +5,F (t )=(510+y +100y +51+105+10y )÷111=y +6.∵F (t )+F (s )=18,∴x +5+y +6=x +y +11=18,∴x +y =7.∵1≤x ≤9,1≤y ≤9,且x ,y 都是正整数,∴16x y =⎧⎨=⎩或25x y =⎧⎨=⎩或34x y =⎧⎨=⎩或43x y =⎧⎨=⎩或52x y =⎧⎨=⎩或61x y =⎧⎨=⎩.∵s 是“相异数”,∴x ≠2,x ≠3.∵t 是“相异数”,∴y ≠1,y ≠5,∴16x y =⎧⎨=⎩或43x y =⎧⎨=⎩或52x y =⎧⎨=⎩,∴()6()12F s F t =⎧⎨=⎩或()9()9F s F t =⎧⎨=⎩或()10()8F s F t =⎧⎨=⎩,∴k =()()F s F t =12或k =()()F s F t =1或k =()()F s F t =54,∴k 的最大值为54.考点:1.因式分解的应用;2.二元一次方程的应用;3.新定义;4.阅读型;5.最值问题;6.压轴题.祝你考试成功!祝你考试成功!。
2017年四川省各市中考数学试题汇编(1)(含参考答案与解析)
2017年四川省各市中考数学试题汇编(1)(含参考答案)(word版,9份)目录1.四川省成都市中考数学试题及参考答案 (2)2.四川省攀枝花市中考数学试题及参考答案 (15)3.四川省自贡市中考数学试题及参考答案 (36)4.四川省泸州市中考数学试题及参考答案 (53)5.四川省宜宾市中考数学试题及参考答案 (70)6.四川省绵阳市中考数学试题及参考答案 (87)7.四川省眉山市中考数学试题及参考答案 (109)8.四川省南充市中考数学试题及参考答案 (125)9.四川省达州市中考数学试题及参考答案 (136)2017年四川省成都市中考数学试题及参考答案A 卷(共100分)一、选择题(本大题共10 个小题,每小题3 分,共30 分).1. 《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若气温为零上010C 记作010C +,则03C -表示气温为 ( ) A.零上03C B.零下03C C.零上07C D.零下07C2. 如图所示的几何体是由4 个大小相同的小立方体搭成,其俯视图是( )A. B. C. D.3. 总投资647 亿元的西域高铁预计2017 年11月竣工,届时成都到西安只需3 小时,上午游武侯区,晚上看大雁塔将成为现实.用科学计数法表示647 亿元为( )A.864710⨯B.96.4710⨯C.106.4710⨯D. 116.4710⨯4. x 的取值范围是( )A.1x ≥B. 1x >C. 1x ≤D.1x < 5. 下列图标中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D.6. 下列计算正确的是 ( )A.5510a a a +=B. 76a a a ÷=C. 326a a a =D.()236aa -=-7. 学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:则得分的众数和中位数分别为( )A.70 分,70 分B.80 分,80 分C. 70 分,80 分D.80 分,70 分 8. 如图,四边形ABCD 和A B C D '''' 是以点O 为位似中心的位似图形,若:2:3OA OA '= ,则四边形ABCD 与四边形A B C D ''''的面积比为( )A. 4:9B. 2:5C. 2:3 9. 已知3x =是分式方程2121kx k x x--=-的解,那么实数k 的值为( ) A.-1 B. 0 C. 1 D.210. 在平面直角坐标系xOy 中,二次函数2y ax bx c =++的图像如图所示,下列说法正确的是 ( )A. 20,40abc b ac <-> B.20,40abc b ac >-> C. 20,40abc b ac <-< D.20,40abc b ac >-< 二、填空题(本大题共4 个小题,每小题4 分,共16 分).11.)1=________________.12. 在ABC ∆中,::2:3:4A B C ∠∠∠=,则A ∠的度数为______________.13.如图,正比例函数11y k x =和一次函数22y k x b =+的图像相交于点()2,1A .当2x <时,1y2y .(填“>”或“<”)14.如图,在平行四边形ABCD 中,按以下步骤作图:①以A 为圆心,任意长为半径作弧,分别交,AB AD 于点,M N ;②分别以,M N 为圆心,以大于12MN 的长为半径作弧,两弧相交于点P ;③作AP 射线,交边CD 于点Q ,若2,3DQ QC BC ==,则平行四边形ABCD 周长为 .三、解答题(本大题共6 个小题,共54 分)15.(12112sin 452-⎛⎫+ ⎪⎝⎭.(2)解不等式组:()2731423133x x x x ⎧-<-⎪⎨+≤-⎪⎩①② . 16.化简求值:2121211x x x x -⎛⎫÷- ⎪+++⎝⎭,其中1x = .17. 随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类, 并将检查结果绘制成下面两个统计图.(1)本次调查的学生共有__________人,估计该校1200 名学生中“不了解”的人数是__________人. (2)“非常了解”的4 人有12,A A 两名男生,12,B B 两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.18. 科技改变生活,手机导航极大方便了人们的出行.如图,小明一家自驾到古镇C 游玩,到达A 地后,导航显示车辆应沿北偏西60°方向行驶4 千米至B 地,再沿北偏东45°方向行驶一段距离到达古镇C ,小明发现古镇C 恰好在A 地的正北方向,求,B C 两地的距离.19. 如图,在平面直角坐标系xOy 中,已知正比例函数12y x =的图象与反比例函数ky x=的图象交于(),2,A a B -两点.(1)求反比例函数的表达式和点B 的坐标;(2)P 是第一象限内反比例函数图像上一点,过点P 作y 轴的平行线,交直线AB 于点C ,连接PO ,若POC ∆的面积为3,求点P 的坐标.20. 如图,在ABC ∆中,AB AC =,以AB 为直径作圆O ,分别交BC 于点D ,交CA 的延长线于点E ,过点D 作DH AC ⊥于点H ,连接DE 交线段OA 于点F . (1)求证:DH 是圆O 的切线;(2)若AE 为H 的中点,求EFFD的值; (3)若1EA EF ==,求圆O 的半径.B 卷(共50分)一、填空题(本大题共5 个小题,每小题4 分,共20 分) 21. 如图,数轴上点A 表示的实数是_____________.22.已知12,x x 是关于x 的一元二次方程250x x a -+=的两个实数根,且221210x x -=,则a =___________. 23.已知O 的两条直径,AC BD 互相垂直,分别以,,,AB BC CD DA 为直径向外作半圆得到如图所示的图形.现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为1P ,针尖落在O 内的概率为2P ,则12P P =______________.24.在平面直角坐标系xOy 中,对于不在坐标轴上的任意一点(),P x y ,我们把点11,P x y ⎛⎫'⎪⎝⎭称为点P 的 “倒影点”.直线1y x =-+上有两点,A B ,它们的倒影点,A B ''均在反比例函数ky x=的图像上.若AB =k =____________.25.如图1,把一张正方形纸片对折得到长方形ABCD ,再沿ADC ∠的平分线DE 折叠,如图2,点C 落在点C '处,最后按图3所示方式折叠,使点A 落在DE 的中点A '处,折痕是FG .若原正方形纸片的边长为6cm ,则FG =_____________cm .二、解答题(共3个小题 ,共30分)26. 随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的,,,,A B C D E 中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x ,(单位:千米),乘坐地铁的时间1y 单位:分钟)是关于x 的一次函数, 其关系如下表:(1)求1y 关于x 的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x 的影响,其关系可以用22111782y x x =-+来描述,请问:李华应选择在哪一站出地铁,才能使他从文化宫回到家里所需的时间最短?并求出最短时间. 27.问题背景:如图1,等腰ABC ∆中,0,120AB AC BAC =∠=,作AD BC ⊥于点D ,则D 为BC的中点,01602BAD BAC ∠=∠=,于是2BC BD AB AB== 迁移应用:如图2,ABC ∆和ADE ∆都是等腰三角形,0120BAC ADE ∠=∠=,,,D E C 三点在同一条直线上,连接BD .① 求证:ADB AEC ∆≅∆;② 请直接写出线段,,AD BD CD 之间的等量关系式;拓展延伸:如图3,在菱形ABCD 中,0120BAC ∠=,在ABC ∠内作射线BM ,作点C 关于BM 的对称点E ,连接AE 并延长交BM 于点F ,连接,CE CF . ① 证明:CEF ∆是等边三角形; ② 若5,2AE CE ==,求BF 的长.28.如图1,在平面直角坐标系xOy 中,抛物线2:C y ax bx c =++与x 轴相交于,A B 两点,顶点为()0,4D ,AB =(),0F m 是x 轴的正半轴上一点,将抛物线C 绕点F 旋转180°,得到新的抛物线C '.(1)求抛物线C 的函数表达式;(2)若抛物线C '与抛物线C 在y 轴的右侧有两个不同的公共点,求m 的取值范围;(3)如图2,P 是第一象限内抛物线C 上一点,它到两坐标轴的距离相等,点P 在抛物线C '上的对应点为P ',设M 是C 上的动点,N 是C '上的动点,试探究四边形PMP N '能否成为正方形,若能,求出m 的值;若不能,请说明理由.试卷答案A 卷一、选择题1-5:BCCAD 6-10: BCADB. 二、填空题11. 1; 12. 40°; 13. <; 14. 15. 三、解答题15.(1)解:原式1241432-⨯+=-= (2)解:①可化简为:2733x x -<-,4x -<,∴4x >-; ②可化简为:213x ≤-,∴1x ≤- ∴ 不等式的解集为41x -<≤-. 16.解:原式=()()2211211111111x x x x x x x x x -+--+÷==+-+++,当1x =时,原式=. 17.解:(1)50,360;(2)树状图:由树状图可知共有12种结果,抽到1男1女分别为1112212212112122A B A B A B A B B A B A B A B A 、、、、、、、 共8种.∴82123P ==. 18.解:过点B 作BD AC ⊥,由题060,4BAD AB ∠==,∴0cos602AD AB ==,∵0145∠=, ∴045CBD ∠=,∴BD CD =,∵0sin 60BD AB ==∴CD =∴0cos 45BC BD ==19.解:(1)把(),2A a -代入12y x =,4a ⇒=-, ∴()4,2A --, 把()4,2A --代入ky x=,8k ⇒=, ∴8y x=, 联立812y x y x ⎧=⎪⎪⎨⎪=⎪⎩4x ⇒=-或4x =,∴()4,2B ;(2)如图,过点P 作//PE y 轴,设8,P m m ⎛⎫⎪⎝⎭,AB y kx b =+,代入A B 、两点, 12AB y x ⇒=, ∴1,2C m m ⎛⎫ ⎪⎝⎭, 118322POCS m m m ∆=-=,1862m m m -=,2862m m -=⇒=,218622m m -=⇒=,∴P ⎛ ⎝⎭或()2,4P . 20.(1)证明: 连接OD ,∵OB OD =,∴OBD ∆是等腰三角形, OBD ODB ∠=∠ ①,又在ABC ∆中, ∵AB AC =, ∴ABC ACB ∠=∠ ②,则由①②得,ODB OBD ACB ∠=∠=∠, ∴//OD AC , ∵DH AC ⊥, ∴DH OD ⊥,∴DH 是O 的切线;(2)在O 中, ∵E B ∠=∠, ∵由O 中可知,E B C ∠=∠=∠,EDC ∆是等腰三角形,又∵DH AC ⊥且点A 是EH 中点,∴设,4AE x EC x ==,则3AC x =, 连接AD ,则在O 中,090ADB ∠=,即AD BD ⊥,又∵ABC ∆是等腰三角形,∴D 是BC 中点, 则在ABC ∆中,OD 是中位线, ∴13//,22OD AC OD x =, ∵//OD AC , ∴E ODF ∠=∠,在AEF ∆和ODF ∆中,E ODFOFD AFE ∠=∠⎧⎨∠=∠⎩, ∴AEFODF ∆∆,∴2,332EF AE AE x FD OD OD x ===, ∴23EF FD =. (3)设O 半径为r ,即OD OB r ==, ∵EF EA =, ∴EFA EAF ∠=∠, 又∵//OD EC , ∴FOD EAF ∠=∠,则FOD EAF EFA OFD ∠=∠=∠=∠, ∴OF OD r ==, ∴1DE DF EF r =+=+, ∴1BD CD DE r ===+,在O 中, ∵BDE EAB ∠=∠,∴BFD EFA EAB BDE ∠=∠=∠=∠, ∵BF BD =,BDF ∆是等腰三角形, ∴1BF BD r ==+,∴()2211AF AB BF OB BF r r r =-=-=-+=-, 在BFD ∆与EFA ∆中BFD EFAB E ∠=∠⎧⎨∠=∠⎩,∵BFD EFA ∆∆,∴11,1EF BF r FA DF r r+==-,解得12r r ==(舍) ∴综上,O.B 卷一、填空题21.; 22.752; 23.2π; 24.43-;二、解答题26. 解:(1)设y 1=kx+b ,将(8,18),(9,20),代入得:818920k b k b +=⎧⎨+=⎩,解得:22k b =⎧⎨=⎩, 故y 1关于x 的函数表达式为:y 1=2x+2;(2)设李华从文化宫回到家所需的时间为y ,则y=y 1+y 2=2x+2+12x 2﹣11x+78=12x 2﹣9x+80, ∴当x=9时,y 有最小值,y min =2148092142⨯⨯-⨯=39.5, 答:李华应选择在B 站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟. 27. 迁移应用:①证明:如图2,∵∠BAC=∠ADE=120°, ∴∠DAB=∠CAE , 在△DAE 和△EAC 中,DA EA DAB EAC AB AC =⎧⎪∠=∠⎨⎪=⎩, ∴△DAB ≌△EAC ,②解:结论:理由:如图2﹣1中,作AH ⊥CD 于H.∵△DAB ≌△EAC , ∴BD=CE ,在Rt △ADH 中,, ∵AD=AE ,AH ⊥DE , ∴DH=HE ,∵AD+BD.拓展延伸:①证明:如图3中,作BH ⊥AE 于H ,连接BE.∵四边形ABCD 是菱形,∠ABC=120°, ∴△ABD ,△BDC 是等边三角形, ∴BA=BD=BC ,∵E 、C 关于BM 对称,∴BC=BE=BD=BA ,FE=FC , ∴A 、D 、E 、C 四点共圆, ∴∠ADC=∠AEC=120°, ∴∠FEC=60°,∴△EFC 是等边三角形, ②解:∵AE=5,EC=EF=2, ∴AH=HE=2.5,FH=4.5,在Rt △BHF 中,∵∠BHF=30°, ∴HFBF=cos30°,∴BF ==28.解:(1)由题意抛物线的顶点C (0,4),A(0),设抛物线的解析式为y=ax 2+4,把A(0)代入可得a=12-, ∴抛物线C 的函数表达式为y=12-x 2+4.(2)由题意抛物线C′的顶点坐标为(2m ,﹣4),设抛物线C′的解析式为y=12(x ﹣m )2﹣4, 由()221421242y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y 得到x 2﹣2mx+2m 2﹣8=0, 由题意,抛物线C′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()()2222428020280m m m m ⎧--⎪⎪⎨⎪-⎪⎩>>>,解得2<m<∴满足条件的m 的取值范围为2<m<(3)结论:四边形PMP′N 能成为正方形.理由:1情形1,如图,作PE ⊥x 轴于E ,MH ⊥x 轴于H.由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP′N 是正方形, ∴PF=FM ,∠PFM=90°,易证△PFE ≌△FMH ,可得PE=FH=2,EF=HM=2﹣m , ∴M (m+2,m ﹣2), ∵点M 在y=﹣12x 2+4上, ∴m ﹣2=﹣12(m+2)2+4,解得﹣3﹣3(舍弃), ∴﹣3时,四边形PMP′N 是正方形. 情形2,如图,四边形PMP′N 是正方形,同法可得M (m ﹣2,2﹣m ),把M(m﹣2,2﹣m)代入y=﹣12x2+4中,2﹣m=﹣12(m﹣2)2+4,解得m=6或0(舍弃),∴m=6时,四边形PMP′N是正方形.2017年四川省攀枝花市中考数学试题及参考答案一、选择题(本大题共l0小题,每小题3分,共30分)1.长城、故宫等是我国第一批成功入选世界遗产的文化古迹,长城总长约6 700 000米,将6 700 000用科学记数法表示应为()A.6.7×106B.6.7×10﹣6C.6.7×105D.0.67×1072.下列计算正确的是()A.33=9 B.(a﹣b)2=a2﹣b2C.(a3)4=a12D.a2•a3=a63.如图,把一块含45°角的直角三角板的直角顶点放在直尺的一边上,如果∠1=33°,那么∠2为()A.33°B.57°C.67°D.60°4.某篮球队10名队员的年龄如下表所示:则这10名队员年龄的众数和中位数分别是()年龄(岁)18 19 20 21人数 2 4 3 1 A.19,19 B.19,19.5 C.20,19 D.20,19.55.如图是每个面上都有一个汉字的正方体的一种表面展开图,那么在这个正方体的表面,与“我”相对的面上的汉字是()A.花B.是C.攀D.家6.关于x的一元二次方程(m﹣1)x2﹣2x﹣1=0有两个实数根,则实数m的取值范围是()A.m≥0B.m>0 C.m≥0且m≠1D.m>0且m≠17.下列说法正确的是()A.真命题的逆命题都是真命题B.在同圆或等圆中,同弦或等弦所对的圆周角相等C.等腰三角形的高线、中线、角平分线互相重合D.对角线相等且互相平分的四边形是矩形8.如图,△ABC内接于⊙O,∠A=60°,BC=6√3,则BĈ的长为()A .2πB .4πC .8πD .12π9.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,则下列命题中正确的是( )A .a >b >cB .一次函数y=ax+c 的图象不经第四象限C .m (am+b )+b <a ( m 是任意实数)D .3b+2c >010.如图,正方形ABCD 中.点E ,F 分别在BC ,CD 上,△AEF 是等边三角形.连接AC 交EF 于点G .过点G 作GH ⊥CE 于点H ,若S △EGH =3,则S △ADF =( )A .6B .4C .3D .2二、填空题(本大题共6小题,每小题4分,共24分)11.在函数y =中,自变量x 的取值范围是 .12.一个不透明的袋中装有除颜色外均相同的5个红球和n 个黄球,从中随机摸出一个,摸到红球的概率是58,则n .13.计算:()113|12π-⎛⎫-+= ⎪⎝⎭.14.若关于x 的分式方程7311mxx x +=--无解,则实数m= . 15.如图,D 是等边△ABC 边AB 上的点,AD=2,DB=4.现将△ABC 折叠,使得点C 与点D 重合,折痕为EF ,且点E 、F 分别在边AC 和BC 上,则CFCE= .16.如图1,E为矩形ABCD的边AD上一点,点P从点B出发沿折线BE﹣ED﹣DC运动到点C 停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、点Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示.给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=48cm2;③当14<t<22时,y=110﹣5t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤△BPQ与△ABE相似时,t=14.5.其中正确结论的序号是.三、解答题(本大题共8小题,共66分)17.(本题满分6分)先化简,再求值:222111xx x x-⎛⎫-÷⎪++⎝⎭,其中x=2.18.(本题满分6分)中华文明,源远流长;中华汉字,寓意深广.为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整.请你根据统计图解答下列问题:(1)参加比赛的学生共有名;(2)在扇形统计图中,m的值为,表示“D等级”的扇形的圆心角为度;(3)组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.19.(本题满分6分)如图,在平行四边形ABCD中,AE⊥BC,CF⊥AD,垂足分别为E,F,AE,CF分别与BD交于点G和H,且AB=(1)若tan∠ABE=2,求CF的长;(2)求证:BG=DH.20.(本题满分8分)攀枝花芒果由于品质高、口感好而闻名全国,通过优质快捷的网络销售渠道,小明的妈妈先购买了2箱A品种芒果和3箱B品种芒果,共花费450元;后又购买了1箱A品种芒果和2箱B品种芒果,共花费275元(每次两种芒果的售价都不变).(1)问A品种芒果和B品种芒果的售价分别是每箱多少元?(2)现要购买两种芒果共18箱,要求B品种芒果的数量不少于A品种芒果数量的2倍,但不超过A品种芒果数量的4倍,请你设计购买方案,并写出所需费用最低的购买方案.21.(本题满分8分)如图,在平面直角坐标系中,坐标原点O是菱形ABCD的对称中心.边AB与x轴平行,点B(1,﹣2),反比例函数kyx(k≠0)的图象经过A,C两点.(1)求点C的坐标及反比例函数的解析式.(2)直线BC与反比例函数图象的另一交点为E,求以O,C,E为顶点的三角形的面积.22.(本题满分8分)如图,△ABC中,以BC为直径的⊙O交AB于点D,AE平分∠BAC交BC 于点E,交CD于点F.且CE=CF.(1)求证:直线CA是⊙O的切线;(2)若BD=43DC,求DFCF的值.23.(本题满分12分)如图1,在平面直角坐标系中,直线MN分别与x轴、y轴交于点M(6,0),N(0,2√3),等边△ABC的顶点B与原点O重合,BC边落在x轴正半轴上,点A恰好落在线段MN上,将等边△ABC从图l的位置沿x轴正方向以每秒l个单位长度的速度平移,边AB,AC分别与线段MN交于点E,F(如图2所示),设△ABC平移的时间为t(s).(1)等边△ABC的边长为;(2)在运动过程中,当t=时,MN垂直平分AB;(3)若在△ABC开始平移的同时.点P从△ABC的顶点B出发.以每秒2个单位长度的速度沿折线BA﹣AC运动.当点P运动到C时即停止运动.△ABC也随之停止平移.①当点P在线段BA上运动时,若△PEF与△MNO相似.求t的值;②当点P在线段AC上运动时,设S△PEF=S,求S与t的函数关系式,并求出S的最大值及此时点P 的坐标.24.(本题满分12分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0).与y 轴交于点C(0,3).(1)求抛物线的解析式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,求点D的坐标;②若△BCD是锐角三角形,求点D的纵坐标的取值范围.参考答案与解析一、选择题1.长城、故宫等是我国第一批成功入选世界遗产的文化古迹,长城总长约6 700 000米,将6 700 000用科学记数法表示应为()A.6.7×106B.6.7×10﹣6C.6.7×105D.0.67×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:6 700 000=6.7×106,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.下列计算正确的是()A.33=9 B.(a﹣b)2=a2﹣b2C.(a3)4=a12D.a2•a3=a6【考点】幂的乘方与积的乘方;同底数幂的乘法;完全平方公式.【分析】直接利用完全平方公式以及幂的乘方运算法则和同底数幂的乘法运算法则计算得出答案.【解答】解:A、33=27,故此选项错误;B、(a﹣b)2=a2﹣2ab+b2,故此选项错误;C、(a3)4=a12,正确;D、a2•a3=a5,故此选项错误;故选:C.【点评】此题主要考查了完全平方公式以及幂的乘方运算和同底数幂的乘法运算等知识,正确掌握运算法则是解题关键.3.如图,把一块含45°角的直角三角板的直角顶点放在直尺的一边上,如果∠1=33°,那么∠2为()A.33°B.57°C.67°D.60°【考点】平行线的性质.【分析】由题意可求得∠3的度数,然后由两直线平行,同位角相等,求得∠2的度数.【解答】解:如图,∵把一块直角三角板的直角顶点放在直尺的一边上,∴∠3=90°﹣∠1=90°﹣33°=57°,∵a∥b,∴∠2=∠3=57°.故选:B.【点评】此题考查了平行线的性质.注意运用:两直线平行,同位角相等.4.某篮球队10名队员的年龄如下表所示:则这10名队员年龄的众数和中位数分别是()年龄(岁)18 19 20 21人数 2 4 3 1 A.19,19 B.19,19.5 C.20,19 D.20,19.5【考点】众数;中位数.【分析】由表格中的数据可以直接看出众数,然后将这十个数据按照从小到大的顺序排列即可得到中位数,本题得以解决.【解答】解:由表格可知,一共有2+4+3+1=10个数据,其中19出现的次数最多,故这组数据的众数是19,按从小到大的数据排列是:18、19、19、19、19、19、20、20、20、21,故中位数是19.故选A.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义.5.如图是每个面上都有一个汉字的正方体的一种表面展开图,那么在这个正方体的表面,与“我”相对的面上的汉字是()。
中考复习【数学】2017年四川省南充市中考真题(解析版)
2AO•BO=4,∴菱形的面积= 1 AC•BD=2AO•BO=4;故选 D. 2
考点:菱形的性质. 10. 【答案】D.
考点:二次函数图象与系数的关系. 二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分) 11.【答案】2.
【解析】 试题分析:去分母得:1=m﹣1,解得:m=2,经检验 m=2 是分式方程的解,故答案为:2. 考点:解分式方程.
试题解析:原式=
x2 x2
x
x
x
x x
1 1
=
x2 x(x 1)
x x
1 1
=
x
x 1
∵x﹣1≠0,x(x+1)≠0,∴x≠±1,x≠0,当 x=5 时,原式= 5 = 5 . 51 4
考点:分式的化简求值.
18.
【答案】(1)60,72;(2)360.
【解析】
补全的条形统计图如图所示;
(2)由题意可得,800× 27 =360. 60
12.【答案】 5 .
【解析】
试题分析:原式= 5 ﹣1+1= 5 .故答案为: 5 .
考点:实数的运算;零指数幂.
13.【答案】 1 . 9
【解析】
试题分析:画树状图为:
共有 9 种等可能的结果数,其中两辆汽车都直行的结果数为 1,所以则两辆汽车都直行的概
率为 1 ,故答案为: 1 .
9
9
考点:列表法与树状图法. 14. 【答案】4.
考点:平行四边形的性质. 15. 【答案】0.3. 【解析】
考点:一次函数的应用. 16. 【答案】①②③. 【解析】 试题分析:设 BE,DG 交于 O,∵四边形 ABCD 和 EFGC 都为正方形,∴BC=CD,CE=CG, ∠BCD=∠ECG=90°,∴∠BCE+∠DCE=∠ECG+∠DCE=90°+∠DCE,即∠BCE=∠DCG, 在△BCE 和△DCG 中,∵BC=DC,∠BCE=∠DCG,CE=CG,∴△BCE≌△DCG(SAS), ∴BE=DG,∴∠1=∠2,∵∠1+∠4=∠3+∠1=90°,∴∠2+∠3=90°,∴∠BOC=90°,∴BE ⊥DG;故①②正确; 连接 BD,EG,如图所示,∴DO2+BO2=BD2=BC2+CD2=2a2,EO2+OG2=EG2=CG2+CE2=b2, 则 BG2+DE2=DO2+BO2+EO2+OG2=2a2+b2,故③正确. 故答案为:①②③.
2017年四川省南充市中考数学真题及答案 精品
2017年四川省南充市中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.(2017年江苏南充)=()A.3 B.﹣3 C.D.﹣分析:按照绝对值的性质进行求解.解:根据负数的绝对值是它的相反数,得:|﹣|=.故选C.点评:绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(2017年江苏南充)下列运算正确的是()A.a3•a2=a5B.(a2)3=a5C.a3+a3=a6D.(a+b)2=a2+b2分析:根据同底数幂的乘法,可判断A;根据幂的乘方,可判断B;根据合并同类项,可判断C;根据完全平方公式,可判断D.解:A、底数不变指数相加,故A正确;B、底数不变指数相乘,故B 错误;C、系数相加字母部分不变,故C错误;D、和的平方等于平方和加积的二倍,故D错误;故选:A.点评:本题考查了完全平方公式,和的平方等于平方和加积的二倍.3.(2017年江苏南充)下列几何体的主视图既是中心对称图形又是轴对称图形的是()A.B.C.D.分析:先判断主视图,再根据轴对称图形与中心对称图形的概念求解.解:A、主视图是扇形,扇形是轴对称图形,不是中心对称图形,故错误;B、主视图是等腰三角形,是轴对称图形,不是中心对称图形,故错误;C、主视图是等腰梯形,是轴对称图形,不是中心对称图形,故错误;D、主视图是矩形,是轴对称图形,也是中心对称图形,故正确.故选D.点评:掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.(2017年江苏南充)如图,已知AB∥CD,∠C=65°,∠E=30°,则∠A的度数为()A.30°B.32.5°C.35°D.37.5°分析:根据平行线的性质求出∠EOB,根据三角形的外角性质求出即可.解:设AB、CE交于点O.∵AB∥CD,∠C=65°,∴∠EOB=∠C=65°,∵∠E=30°,∴∠A=∠EOB﹣∠E=35°,故选C.点评:本题考查了平行线的性质和三角形的外角性质的应用,解此题的关键是求出∠EOB的度数和得出∠A=∠EOB﹣∠E.5.(2017年江苏南充)如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1)B.(﹣1,)C.(,1)D.(﹣,﹣1)分析:过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C 在第二象限写出坐标即可.解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故选A.点评:本题考查了全等三角形的判定与性质,正方形的性质,坐标与图形性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.6.(2017年江苏南充)不等式组的解集在数轴上表示正确的是()A.B.C.D.分析:根据不等式的基本性质解不等式得解集为﹣2<x≤3,所以选D.解:解不等式得:x≤3.解不等式x﹣3<3x+1得:x>﹣2所以不等式组的解集为﹣2<x≤3.故选D.点评:考查了在数轴上表示不等式的解集,不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.7.(2017年江苏南充)为积极响应南充市创建“全国卫生城市”的号召,某校1500名学生参加了卫生知识竞赛,成绩记为A、B、C、D 四等.从中随机抽取了部分学生成绩进行统计,绘制成如图两幅不完整的统计图表,根据图表信息,以下说法不正确的是()A.样本容量是200 B.D等所在扇形的圆心角为15°C.样本中C等所占百分比是10%D.估计全校学生成绩为A等大约有900人分析:根据条形统计图和扇形统计图提供的数据分别列式计算,再对每一项进行分析即可.解:A、=200(名),则样本容量是200,故本选项正确;B、成绩为A的人数是:200×60%=120(人),成绩为D的人数是200﹣120﹣50﹣20=10(人),D等所在扇形的圆心角为:360°×=18°,故本选项错误;C、样本中C等所占百分比是1﹣60%﹣25%﹣=10%,故本选项正确;D、全校学生成绩为A等大约有1500×60%=900人,故本选项正确;故选:B.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.8.(2017年江苏南充)如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30°B.36°C.40°D.45°分析:求出∠BAD=2∠CAD=2∠B=2∠C的关系,利用三角形的内角和是180°,求∠B,解:∵AB=AC,∴∠B=∠C,∵AB=BD,∴∠BAD=∠BDA,∵CD=AD,∴∠C=∠CAD,∵∠BAD+∠CAD+∠B+∠C=180°,∴5∠B=180°,∴∠B=36°故选:B.点评:本题主要考查等腰三角形的性质,解题的关键是运用等腰三角形的性质得出∠BAD=2∠CAD=2∠B=2∠C关系.9.(2017年江苏南充)如图,矩形ABCD中,AB=5,AD=12,将矩形ABCD按如图所示的方式在直线l上进行两次旋转,则点B在两次旋转过程中经过的路径的长是()A.B.13πC.25πD.25分析:连接BD,B′D,首先根据勾股定理计算出BD长,再根据弧长计算公式计算出,的长,然后再求和计算出点B在两次旋转过程中经过的路径的长即可.解:连接BD,B′D,∵AB=5,AD=12,∴BD==13,∴==,∵==6π,∴点B在两次旋转过程中经过的路径的长是:+6π=,故选:A.点评:此题主要考查了弧长计算,以及勾股定理的应用,关键是掌握弧长计算公式l=.10.(2017年江苏南充)二次函数y=ax2+bx+c(a≠0)图象如图,下列结论:①abc>0;②2a+b=0;③当m≠1时,a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,x1+x2=2.其中正确的有()A.①②③B.②④C.②⑤D.②③⑤分析:根据抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣=1,得到b=﹣2a>0,即2a+b=0,由抛物线与y轴的交点位置得到c>0,所以abc<0;根据二次函数的性质得当x=1时,函数有最大值a+b+c,则当m≠1时,a+b+c>am2+bm+c,即a+b>am2+bm;根据抛物线的对称性得到抛物线与x轴的另一个交点在(﹣1,0)的右侧,则当x=﹣1时,y<0,所以a﹣b+c<0;把ax12+bx1=ax22+bx2先移项,再分解因式得到(x1﹣x2)[a(x1+x2)+b]=0,而x1≠x2,则a(x1+x2)+b]=0,即x1+x2=﹣,然后把b=﹣2a代入计算得到x1+x2=2.解:∵抛物线开口向下,∴a<0,∵抛物线对称轴为性质x=﹣=1,∴b=﹣2a>0,即2a+b=0,所以②正确;∵抛物线与y轴的交点在x 轴上方,∴c>0,∴abc<0,所以①错误;∵抛物线对称轴为性质x=1,∴函数的最大值为a+b+c,∴当m≠1时,a+b+c>am2+bm+c,即a+b>am2+bm,所以③正确;∵抛物线与x轴的一个交点在(3,0)的左侧,而对称轴为性质x=1,∴抛物线与x轴的另一个交点在(﹣1,0)的右侧∴当x=﹣1时,y<0,∴a﹣b+c<0,所以④错误;∵ax12+bx1=ax22+bx2,∴ax12+bx1﹣ax22﹣bx2=0,∴a(x1+x2)(x1﹣x2)+b(x1﹣x2)=0,∴(x1﹣x2)[a(x1+x2)+b]=0,而x1≠x2,∴a(x1+x2)+b]=0,即x1+x2=﹣,∵b=﹣2a,∴x1+x2=2,所以⑤正确.故选D.点评:本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c (a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题(本大题共6个小题,每小题3分,共18分)11.(2017年江苏南充)分式方程=0的解是.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:去分母得:x+1+2=0,解得:x=﹣3经检验x=﹣3是分式方程的解.故答案为:x=﹣3点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.12.(2017年江苏南充)分解因式:x3﹣6x2+9x= .分析:先提取公因式x,再对余下的多项式利用完全平方公式继续分解.解:x3﹣6x2+9x=x(x2﹣6x+9)=x(x﹣3)2.点评:本题考查提公因式法分解因式和利用完全平方公式分解因式,关键在于需要进行二次分解因式.13.(2017年江苏南充)一组数据按从小到大的顺序排列为1,2,3,x,4,5,若这组数据的中位数为3,则这组数据的方差是.分析:先根据中位数的定义求出x的值,再求出这组数据的平均数,最后根据方差公式S2=[(x 1﹣)2+(x2﹣)2+…+(x n﹣)2]进行计算即可.解:∵按从小到大的顺序排列为1,2,3,x,4,5,若这组数据的中位数为3,∴x=3,∴这组数据的平均数是(1+2+3+3+4+5)÷6=3,∴这组数据的方差是:[(1﹣3)2+(2﹣3)2+(3﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=.故答案为:.点评:本题考查了中位数和方差:一般地设n个数据,x1,x2,…x n 的平均数为,则方差S2=[(x 1﹣)2+(x2﹣)2+…+(x n﹣)2];中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).14.(2017年江苏南充)如图,两圆圆心相同,大圆的弦AB与小圆相切,AB=8,则图中阴影部分的面积是.(结果保留π)分析:设AB于小圆切于点C,连接OC,OB,利用垂径定理即可求得BC的长,根据圆环(阴影)的面积=π•OB2﹣π•OC2=π(OB2﹣OC2),以及勾股定理即可求解.解:设AB于小圆切于点C,连接OC,OB.∵AB于小圆切于点C,∴OC⊥AB,∴BC=AC=AB=×8=4cm.∵圆环(阴影)的面积=π•OB2﹣π•OC2=π(OB2﹣OC2)又∵直角△OBC中,OB2=OC2+BC2∴圆环(阴影)的面积=π•OB2﹣π•OC2=π(OB2﹣OC2)=π•BC2=16πcm2.故答案是:16π.点评:此题考查了垂径定理,切线的性质,以及勾股定理,解题的关键是正确作出辅助线,注意到圆环(阴影)的面积=π•OB2﹣π•OC2=π(OB2﹣OC2),利用勾股定理把圆的半径之间的关系转化为直角三角形的边的关系.15.(2017年江苏南充)一列数a1,a2,a3,…a n,其中a1=﹣1,a2=,a3=,…,a n=,则a1+a2+a3+…+a2017= .分析:分别求得a1、a2、a3、…,找出数字循环的规律,进一步利用规律解决问题.解:a1=﹣1,a2==,a3==2,a4==﹣1,…,由此可以看出三个数字一循环,2004÷3=668,则a1+a2+a3+…+a2017=668×(﹣1++2)=1002.故答案为:1002.点评:此题考查了找规律的题目,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,找出规律是解题的关键.16.(2017年江苏南充)如图,有一矩形纸片ABCD,AB=8,AD=17,将此矩形纸片折叠,使顶点A落在BC边的A′处,折痕所在直线同时经过边AB、AD(包括端点),设BA′=x,则x的取值范围是.分析:作出图形,根据矩形的对边相等可得BC=AD,CD=AB,当折痕经过点D时,根据翻折的性质可得A′D=AD,利用勾股定理列式求出A′C,再求出BA′;当折痕经过点B时,根据翻折的性质可得BA′=AB,此两种情况为BA′的最小值与最大值的情况,然后写出x的取值范围即可.解:如图,∵四边形ABCD是矩形,AB=8,AD=17,∴BC=AD=17,CD=AB=8,①当折痕经过点D时,由翻折的性质得,A′D=AD=17,在Rt△A′CD中,A′C===15,∴BA′=BC﹣A′C=17﹣15=2;②当折痕经过点B时,由翻折的性质得,BA′=AB=8,∴x的取值范围是2≤x≤8.故答案为:2≤x≤8.点评:本题考查了翻折变换的性质,勾股定理的应用,难点在于判断出BA′的最小值与最大值时的情况,作出图形更形象直观.三、解答题(本大题共9个小题,共72分)17.(2017年江苏南充)计算:(﹣1)0﹣(﹣2)+3tan30°+()﹣1.分析:本题涉及零指数幂、负整指数幂、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果解:原式=1﹣+2++3=6.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(2017年江苏南充)如图,AD、BC相交于O,OA=OC,∠OBD=∠ODB.求证:AB=CD.分析:根据等角对等边可得OB=OC,再利用“边角边”证明△ABO和△CDO全等,根据全等三角形对应边相等证明即可.证明:∵∠OBD=∠ODB,∴OB=OD,在△ABO和△CDO中,,∴△ABO≌△CDO(SAS),∴AB=CD.点评:本题考查了全等三角形的判定与性质,准确识图确定出全等的三角形并求出OB=OD是解题的关键.19.(2017年江苏南充)在学习“二元一次方程组的解”时,数学张老师设计了一个数学活动.有A、B 两组卡片,每组各3张,A组卡片上分别写有0,2,3;B组卡片上分别写有﹣5,﹣1,1.每张卡片除正面写有不同数字外,其余均相同.甲从A组中随机抽取一张记为x,乙从B组中随机抽取一张记为y.(1)若甲抽出的数字是2,乙抽出的数是﹣1,它们恰好是ax﹣y=5的解,求a的值;(2)求甲、乙随机抽取一次的数恰好是方程ax﹣y=5的解的概率.(请用树形图或列表法求解)分析:(1)将x=2,y=﹣1代入方程计算即可求出a的值;(2)列表得出所有等可能的情况数,找出甲、乙随机抽取一次的数恰好是方程ax﹣y=5的解的情况数,即可求出所求的概率.解:(1)将x=2,y=﹣1代入方程得:2a+1=5,即a=2;(2)列表得:所有等可能的情况有9种,其中(x,y)恰好为方程2x﹣y=5的解的情况有(0,﹣5),(2,﹣1),(3,1),共3种情况,则P==.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.20.(2017年江苏南充)已知关于x的一元二次方程x2﹣2x+m=0,有两个不相等的实数根.(1)求实数m的最大整数值;(2)在(1)的条下,方程的实数根是x1,x2,求代数式x12+x22﹣x1x2的值.分析:(1)若一元二次方程有两不等实数根,则根的判别式△=b2﹣4ac>0,建立关于m的不等式,求出m的取值范围,进而得出m的最大整数值;(2)根据(1)可知:m=1,继而可得一元二次方程为x2﹣2x+1=0,根据根与系数的关系,可得x 1+x2=2,x1x2=1,再将x12+x22﹣x1x2变形为(x1+x2)2﹣3x1x2,则可求得答案.解:∵一元二次方程x2﹣2x+m=0有两个不相等的实数根,∴△=8﹣4m>0,解得m<2,故整数m的最大值为1;(2)∵m=1,∴此一元二次方程为:x2﹣2x+1=0,∴x 1+x2=2,x1x2=1,∴x12+x22﹣x1x2=(x1+x2)2﹣3x1x2=8﹣3=5.点评:此题考查了一元二次方程根与系数的关系与根的判别式.此题难度不大,解题的关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.掌握根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.21.(2017年江苏南充)如图,一次函数y1=kx+b的图象与反比例函数y2=的图象相交于点A(2,5)和点B,与y轴相交于点C(0,7).(1)求这两个函数的解析式;(2)当x取何值时,y1<y2.分析:(1)将点C、点A的坐标代入一次函数解析式可得k、b的值,将点A的坐标代入反比例函数解析式可得m的值,继而可得两函数解析式;(2)寻找满足使一次函数图象在反比例函数图象下面的x的取值范围.解:(1)将点(2,5)、(0,7)代入一次函数解析式可得:,解得:.∴一次函数解析式为:y=﹣x+7;将点(2,5)代入反比例函数解析式:5=,∴m=10,∴反比例函数解析式为:y=.(2)由题意,得:,解得:或,∴点D的坐标为(5,2),当0<x<2或x>5时,y1<y2.点评:本题考查了反比例函数与一次函数的交点问题,解答本题的关键是联立解析式,求出交点坐标.(2017年江苏南充)马航MH370失联后,我国政府积极参与搜救.某22.日,我两艘专业救助船A、B同时收到有关可疑漂浮物的讯息,可疑漂浮物P在救助船A的北偏东53.50°方向上,在救助船B的西北方向上,船B在船A正东方向140海里处.(参考数据:sin36.5°≈0.6,cos36.5°≈0.8,tan36.5°≈0.75).(1)求可疑漂浮物P到A、B两船所在直线的距离;(2)若救助船A、救助船B分别以40海里/时,30海里/时的速度同时出发,匀速直线前往搜救,试通过计算判断哪艘船先到达P处.分析:(1)过点P作PE⊥AB于点E,在Rt△APE中解出PE即可;(2)在Rt△BPF中,求出BP,分别计算出两艘船需要的时间,即可作出判断.解:(1)过点P作PE⊥AB于点E,由题意得,∠PAE=36.5°,∠PBA=45,设PE为x海里,则BE=PE=x海里,∵AB=140海里,∴AE=(140﹣x)海里,在Rt△PAE中,,即:解得:x=60海里,∴可疑漂浮物P到A、B两船所在直线的距离为60海里;(2)在Rt△PBE中,PE=60海里,∠PBE=45°,则BP=PE=60≈84.8海里,B船需要的时间为:≈2.83小时,在Rt△PAE中,=sin∠PAE,∴AP=PE÷sin∠PAE=60÷0.6=100海里,∴A船需要的时间为:100÷40=2.5,∵2.83>2.5,∴A船先到达.点评:本题考查了解直角三角形的应用,解答本题的关键是理解仰角的定义,能利用三角函数值计算有关线段,难度一般.23.(2017年江苏南充)今年我市水果大丰收,A、B两个水果基地分别收获水果380件、320件,现需把这些水果全部运往甲、乙两销售点,从A基地运往甲、乙两销售点的费用分别为每件40元和20元,从B基地运往甲、乙两销售点的费用分别为每件15元和30元,现甲销售点需要水果400件,乙销售点需要水果300件.(1)设从A基地运往甲销售点水果x件,总运费为w元,请用含x 的代数式表示w,并写出x的取值范围;(2)若总运费不超过18300元,且A地运往甲销售点的水果不低于200件,试确定运费最低的运输方案,并求出最低运费.分析:(1)表示出从A基地运往乙销售点的水果件数,从B基地运往甲、乙两个销售点的水果件数,然后根据运费=单价×数量列式整理即可得解,再根据运输水果的数量不小于0列出不等式求解得到x的取值范围;(2)根据一次函数的增减性确定出运费最低时的运输方案,然后求解即可.解:(1)设从A基地运往甲销售点水果x件,则从A基地运往乙销售点的水果(380﹣x)件,从B基地运往甲销售点水果(400﹣x)件,运往乙基地(x﹣80)件,由题意得,W=40x+20(380﹣x)+15(400﹣x)+30(x﹣80),=35x+11000,即W=35x+11000,∵,∴80≤x≤380,即x的取值范围是80≤x≤380;(2)∵A地运往甲销售点的水果不低于200件,∴x≥200,∵35>0,∴运费W随着x的增大而增大,∴当x=200时,运费最低,为35×200+11000=18000元,此时,从A基地运往甲销售点水果200件,从A基地运往乙销售点的水果180件,从B基地运往甲销售点水果200件,运往乙基地120件.点评:本题考查了一次函数的应用,一元一次不等式组的应用,读懂题目信息,准确表示出从A、B两个基地运往甲、乙两个销售点的水果的件数是解题的关键.24.(8分)(2017年江苏南充)如图,已知AB是⊙O的直径,BP是⊙O的弦,弦CD⊥AB于点F,交BP于点G,E在CD的延长线上,EP=EG,(1)求证:直线EP为⊙O的切线;(2)点P在劣弧AC上运动,其他条件不变,若BG2=BF•BO.试证明BG=PG;(3)在满足(2)的条件下,已知⊙O的半径为3,sinB=.求弦CD的长.分析:(1)连接OP,先由EP=EG,证出∠EPG=∠BGF,再由∠BFG=∠BGF+∠OBP=90°,推出∠EPG+∠OPB=90°来求证,(2)连接OG,由BG2=BF•BO,得出△BFG∽△BGO,得出∠BGO=∠BFG=90°得出结论.(3)连接AC、BC、OG,由sinB=,求出r,由(2)得出∠B=∠OGF,求出OF,再求出BF,FA,利用直角三角形来求斜边上的高,再乘以2得出CD长度.(1)证明:连接OP,∵EP=EG,∴∠EPG=∠EGP,又∵∠EPG=∠BGF,∴∠EPG=∠BGF,∵OP=OB,∴∠OPB=∠OBP,∵CD⊥AB,∴∠BFG=∠BGF+∠OBP=90°,∴∠EPG+∠OPB=90°,∴直线EP为⊙O的切线;(2)证明:如图,连接OG,∵BG2=BF•BO,∴=,∴△BFG∽△BGO,∴∠BGO=∠BFG=90°,∴BG=PG;(3)解:如图,连接AC、BC、OG,∵sinB=,∴=,∵OB=r=3,∴OG=,由(2)得∠EPG+∠OPB=90°,∠B+∠BGF=∠OGF+∠BGO=90°,∴∠B=∠OGF,∴sin∠OGF==∴OF=1,∴BF=BO﹣OF=3﹣1=2,FA=OF+OA=1+3=4,在RT△BCA中,CF2=BF•FA,∴CF===2.∴CD=2CF=4.点评:本题主要考查了圆的综合题,解题的关键是通过作辅助线,找准角之间的关系,灵活运用直角三角形中的正弦值.25.(2017年江苏南充)如图,抛物线y=x2+bx+c与直线y=x﹣1交于A、B两点.点A的横坐标为﹣3,点B在y轴上,点P是y轴左侧抛物线上的一动点,横坐标为m,过点P作PC⊥x轴于C,交直线AB 于D.(1)求抛物线的解析式;(2)当m为何值时,S四边形OBDC=2S△BPD;(3)是否存在点P,使△PAD是直角三角形?若存在,求出点P的坐标;若不存在,说明理由.分析(1)由x=0时带入y=x﹣1求出y的值求出B的坐标,当x=﹣3时,代入y=x﹣1求出y的值就可以求出A的坐标,由待定系数法就可以求出抛物线的解析式;(2)连结OP,由P点的横坐标为m可以表示出P、D的坐标,可以表示出S四边形OBDC和2S△BPD建立方程求出其解即可.(3)如图2,当∠APD=90°时,设出P点的坐标,就可以表示出D 的坐标,由△APD∽△FCD就可与求出结论,如图3,当∠PAD=90°时,作AE⊥x轴于E,就有,可以表示出AD,再由△PAD∽△FEA由相似三角形的性质就可以求出结论.解:(1)∵y=x﹣1,∴x=0时,y=﹣1,∴B(0,﹣1).当x=﹣3时,y=﹣4,∴A(﹣3,﹣4).∵y=x2+bx+c与直线y=x﹣1交于A、B两点,∴,∴,∴抛物线的解析式为:y=x2+4x﹣1;(2)∵P点横坐标是m(m<0),∴P(m,m2+4m﹣1),D(m,m﹣1)如图1①,作BE⊥PC于E,∴BE=﹣m.CD=1﹣m,OB=1,OC=﹣m,CP=1﹣4m﹣m2,∴PD=1﹣4m﹣m2﹣1+m=﹣3m﹣m2,∴,解得:m1=0(舍去),m2=﹣2,m3=﹣;如图1②,作BE⊥PC于E,∴BE=﹣m.PD=1﹣4m﹣m2+1﹣m=2﹣4m﹣m2,∴,解得:m=0(舍去)或m=﹣3,∴m=﹣,﹣2或﹣3时S四边形OBDC=2S△BPD;(3))如图2,当∠APD=90°时,设P(a,a2+4a﹣1),则D(a,a ﹣1),∴AP=m+4,CD=1﹣m,OC=﹣m,CP=1﹣4m﹣m2,∴DP=1﹣4m﹣m2﹣1+m=﹣3m﹣m2.在y=x﹣1中,当y=0时,x=1,∴(1,0),∴OF=1,∴CF=1﹣m.AF=4.∵PC⊥x轴,∴∠PCF=90°,∴∠PCF=∠APD,∴CF∥AP,∴△APD∽△FCD,,∴,解得:m=1舍去或m=﹣2,∴P(﹣2,﹣5)如图3,当∠PAD=90°时,作AE⊥x轴于E,∴∠AEF=90°.CE=﹣3﹣m,EF=4,AF=4,PD=1﹣m﹣(1﹣4m﹣m2)=3m+m2.∵PC⊥x轴,∴∠DCF=90°,∴∠DCF=∠AEF,∴AE∥CD.∴,∴AD=(﹣3﹣m).∵△PAD∽△FEA,∴,∴,∴m=﹣2或m=﹣3∴P(﹣2,﹣5)或(﹣3,﹣4)与点A重合,舍去,∴P(﹣2,﹣5).点评:本题考查了待定系数法求二次函数的解析式的运用,四边形的面积公式的运用,三角形的面积公式的运用,相似三角形的判定及性质的运用,解答时函数的解析式是关键,用相似三角形的性质求解是难点.。
中考数学专题12探索性问题(第03期)-2017年中考数学试题分项版解析汇编(原卷版)
一、选择题目1.(2017四川省绵阳市)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a1,第2幅图形中“●”的个数为a2,第3幅图形中“●”的个数为a3,…,以此类推,则1a1+1a2+1a3+⋯+1a19的值为()A.2021B.6184C.589840D.4217602.(2017四川省达州市)如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB=4,AD=3,则顶点A在整个旋转过程中所经过的路径总长为()A.2017πB.2034πC.3024πD.3026π3.(2017江苏省连云港市)如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线A0O方向运动到⊙O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到⊙O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到⊙O上的点A4处;…按此规律运动到点A2017处,则点A2017与点A0间的距离是()A.4B.C.2D.04.(2017重庆市B 卷)下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为( )A .116B .144C .145D .150 二、填空题目 5.(2017山东省济宁市)请写出一个过点(1,1),且与x 轴无交点的函数解析式: .6.(2017山东省济宁市)如图,正六边形A 1B 1C 1D 1E 1F 1的边长为1,它的六条对角线又围成一个正六边形A 2B 2C 2D 2E 2F 2,如此继续下去,则正六边形A 4B 4C 4D 4E 4F 4的面积是 .三、解答题7.(2017四川省南充市)如图,在正方形ABCD 中,点E 、G 分别是边AD 、BC 的中点,AF =14AB .(1)求证:EF ⊥AG ;(2)若点F 、G 分别在射线AB 、BC 上同时向右、向上运动,点G 运动速度是点F 运动速度的2倍,EF ⊥AG 是否成立(只写结果,不需说明理由)?(3)正方形ABCD 的边长为4,P 是正方形ABCD 内一点,当PAB OABS S ∆∆=,求△P AB 周长的最小值.8.(2017四川省达州市)如图,在△ABC中,点O是边AC上一个动点,过点O作直线EF∥BC分别交∠ACB、外角∠ACD的平分线于点E、F.(1)若CE=8,CF=6,求OC的长;(2)连接AE、AF.问:当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.9.(2017四川省达州市)探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P1(x1,y1),P2(x2,y2),可通过构造直角三角形利用图1得到结论:()()22 122121 PP x x y y =-+-他还利用图2证明了线段P1P2的中点P(x,y)P的坐标公式:122x xx+=,122y yy+=.(1)请你帮小明写出中点坐标公式的证明过程;运用:(2)①已知点M(2,﹣1),N(﹣3,5),则线段MN长度为;②直接写出以点A(2,2),B(﹣2,0),C(3,﹣1),D为顶点的平行四边形顶点D的坐标:;拓展:(3)如图3,点P(2,n)在函数43y x=(x≥0)的图象OL与x轴正半轴夹角的平分线上,请在OL、x轴上分别找出点E、F,使△PEF的周长最小,简要叙述作图方法,并求出周长的最小值.10.(2017山东省枣庄市)如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=BF=2,求阴影部分的面积(结果保留π).11.(2017山东省枣庄市)已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F 在线段CB的延长线上,连接EA,EC.(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)如图2,若点P在线段AB的中点,连接AC,判断△ACE的形状,并说明理由;(3)如图3,若点P在线段AB上,连接AC,当EP平分∠AEC时,设AB=a,BP=b,求a:b及∠AEC 的度数.12.(2017山西省)如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C 的⊙O的切线交于点D.(1)若AC=4,BC=2,求OE的长.(2)试判断∠A与∠CDE的数量关系,并说明理由.13.(2017江苏省盐城市)如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.14.(2017江苏省盐城市)如图,在平面直角坐标系中,Rt△ABC的斜边AB在y轴上,边AC与x轴交于点D,AE平分∠BAC交边BC于点E,经过点A、D、E的圆的圆心F恰好在y轴上,⊙F与y轴相交于另一点G.(1)求证:BC是⊙F的切线;(2)若点A、D的坐标分别为A(0,﹣1),D(2,0),求⊙F的半径;(3)试探究线段AG、AD、CD三者之间满足的等量关系,并证明你的结论.15.(2017江苏省盐城市)(探索发现】如图①,是一张直角三角形纸片,∠B=60°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为.【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为.(用含a,h的代数式表示)【灵活应用】如图③,有一块“缺角矩形”ABCDE ,AB =32,BC =40,AE =20,CD =16,小明从中剪出了一个面积最大的矩形(∠B 为所剪出矩形的内角),求该矩形的面积. 【实际应用】如图④,现有一块四边形的木板余料ABCD ,经测量AB =50cm ,BC =108cm ,CD =60cm ,且tan B =tan C =43,木匠徐师傅从这块余料中裁出了顶点M 、N 在边BC 上且面积最大的矩形PQMN ,求该矩形的面积.16.(2017江苏省连云港市)如图,已知等腰三角形ABC 中,AB =AC ,点D 、E 分别在边AB .AC 上,且AD =AE ,连接BE 、CD ,交于点F .(1)判断∠ABE 与∠ACD 的数量关系,并说明理由; (2)求证:过点A 、F 的直线垂直平分线段BC .17.(2017江苏省连云港市)问题呈现:如图1,点E 、F 、G 、H 分别在矩形ABCD 的边AB 、BC 、CD 、DA 上,AE =DG ,求证:2ABCDEFGHS S 矩形四边形.(S 表示面积)实验探究:某数学实验小组发现:若图1中AH ≠BF ,点G 在CD 上移动时,上述结论会发生变化,分别过点E 、G 作BC 边的平行线,再分别过点F 、H 作AB 边的平行线,四条平行线分别相交于点A 1、B 1、C 1、D 1,得到矩形A 1B 1C 1D 1.如图2,当AH >BF 时,若将点G 向点C 靠近(DG >AE ),经过探索,发现:2S四边形EFGH =S矩形ABCD +S.如图3,当AH >BF 时,若将点G 向点D 靠近(DG <AE ),请探索S四边形EFGH 、S矩形ABCD与S之间的数量关系,并说明理由.迁移应用:请直接应用“实验探究”中发现的结论解答下列问题:(1)如图4,点E 、F 、G 、H 分别是面积为25的正方形ABCD 各边上的点,已知AH >BF ,AE >DG ,S四边形EFGH=11,HF,求EG 的长.(2)如图5,在矩形ABCD中,AB=3,AD=5,点E、H分别在边AB、AD上,BE=1,DH=2,点F、G分别是边BC、CD上的动点,且FG=10,连接EF、HG,请直接写出四边形EFGH面积的最大值.18.(2017湖北省襄阳市)如图,在△ABC中,∠ACB=90°,CD是中线,AC=BC,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E,F,DF与AC交于点M,DE与BC交于点N.(1)如图1,若CE=CF,求证:DE=DF;(2)如图2,在∠EDF绕点D旋转的过程中:①探究三条线段AB,CE,CF之间的数量关系,并说明理由;②若CE=4,CF=2,求DN的长.祝你考试成功!祝你考试成功!。
四川省南充市中考数学真题试题(含答案)
南充市二〇一七年初中学业水平考试数学试题第Ⅰ卷(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果30a +=,那么a 的值为( ) A .3B .3-C .13D .13-2.如图是由7个小正方体组合而成的几何体,它的主视图是( )3.据统计,参加南充市2016年高中阶段学校招生考试的人数为55354人.这个数用科学计数法表示为( ) A .50.5535410⨯人B .55.535410⨯人C .45.535410⨯人D .455.35410⨯4.如图,直线//a b ,将一个直角三角尺按如图所示的位置摆放,若158∠=︒,则2∠的度数为( )A .30︒B .32︒C .42︒D .58︒5.下列计算正确的是( ) A .842a a a ÷=B .236(2)6a a =C .3232a a a -= D .23(1)33a a a a -=-6.某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如表所示:下列说法正确的是( )A .这10名同学体育成绩的中位数为38分B .这10名同学体育成绩的平均分为38分C .这10名同学体育成绩的众数为39分D .这10名同学体育成绩的方差为27.如图,等边OAB ∆的边长为2,则点B 的坐标为( )A .(1,1)B .C .D .8.如图,在Rt ABC ∆中,5AC cm =,12BC cm =,90ACB ∠=︒.把Rt ABC ∆绕BC 所在的直线旋转一周得到一个几何体,则这个几何体侧面积为( )A .260cm πB .265cm πC .2120cm πD .2130cm π9.已知菱形的周长为6,则菱形的面积为( )A .2B C .3D .410.二次函数2y ax bx c =++(a ,b ,c 是常数,且0a ≠)的图象如图所示,下列结论错误的是( )A .24ac b <B .0abc <C .3b c a +>D .a b <第Ⅱ卷(共90分)二、填空题(本大题共6个小题,每题3分,满分18分,将答案填在答题纸上) 11.如果111m =-,那么m = .12.计算:0|1(π+= .13.经过某十字路口的汽车,可直行,也可左转或右转,如果这三种可能性大小相同,则两辆汽车经过该十字路口时都直行的概率是 .14.如图,在ABCD 中,过对角线BD 上一点P 作//EF BC ,//GH AB ,且2CG B G =,1BPG S ∆=,则AEPHS= .15.小明从家到图书馆看报然后返回,他离家的距离y 与离家时间x 之间的对应关系如图所示,如果小明在图书馆看报30分钟,那么他离家50分钟时离家的距离为 km .16.如图,正方形ABCD 和正方形CEFG 边长分别为a 和b ,正方形CEFG 绕点C 旋转.给出下列结论:①BE DG =;②BE DG ⊥;③222222DE BG a b +=+.其中正确结论是(填写序号).三、解答题 (本大题共9小题,共72分.解答应写出文字说明、证明过程或演算步骤.) 17.化简21(1)1x x x x x --÷++,再任取一个你喜欢的数代入求值. 18.在“弘扬传统文化,打造书香校园”的活动中,学校计划开展四项活动:“A -国学诵读”,“B -演讲”,“C -课本剧”,“D -书法”,要求每位同学必须且只能参加其中一项活动.学校为了了解学生的意愿,随机调查了部分学生,结果统计如图:(1)如图,希望参加活动C 占20%,希望参加活动B 占15%,则被调查的总人数为 人;扇形统计图中,希望参加活动D 所占圆心角为 度;根据题中信息补全条形统计图.(2)学校现有800名学生,请根据图中信息,估算全校学生希望参加活动A 有多少人? 19.如图,DE AB ⊥,CF AB ⊥,垂足分别是点E ,F ,DE CF =,AE BF =.求证://AC BD .20.已知关于x 的一元二次方程2(3)0x m x m ---=. (1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值. 21.如图,直线y kx =(k 为常数,0k ≠)与双曲线my x=(m 为常数,0m >)的交点为A ,B ,AC x ⊥轴于点C ,30AOC ∠=︒,2OA =.(1)求m 的值;(2)点P 在y 轴上,如果3ABP S k ∆=,求P 点的坐标.22.如图,在Rt ACB ∆中,90ACB ∠=︒,以AC 为直径作O 交AB 于点D ,E 为BC 的中点,连接DE 并延长交AC 的延长线于点F .(1)求证:DE 是O 的切线;(2)若2CF =,4DF =,求O 直径的长.23.学校准备租用一批汽车,现有甲、乙两种大客车,甲种客车每辆载客量45人,乙种客车每辆载客量30人.已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车共8辆,送330名师生集体外出活动,最节省的租车费用是多少?24.如图,在正方形ABCD 中,点E ,G 分别是边AD ,BC 的中点,14AF AB =.(1)求证:EF AG ⊥;(2)若点F ,G 分别在射线AB ,BC 上同时向右、向上运动,点G 运动速度是点F 运动速度的2倍,EF AG ⊥是否成立(只写结果,不需说明理由)?(3)正方形ABCD 的边长为4,P 是正方形ABCD 内一点,当PAB OAB S S ∆∆=时,求PAB ∆周长的最小值.25.如图1,已知二次函数2y ax bx c =++(a ,b ,c 为常数,0a ≠)的图象过点(0,0)O 和点(4,0)A ,函数图象最低点M 的纵坐标为38-,直线l 的解析式为y x =.(1)求二次函数的解析式;(2)直线l 沿x 轴向右平移,得直线'l ,'l 与线段OA 相交于点B ,与x 轴下方的抛物线相交于点C ,过点C 作CE x ⊥轴于点E ,把BCE ∆沿直线'l 折叠,当点E 恰好落在抛物线上点'E 时(图2),求直线'l 的解析式;(3)在(2)的条件下,'l 与y 轴交于点N ,把BON ∆绕点O 逆时针旋转135︒得到''B ON ∆.P 为'l 上的动点,当''PB N ∆为等腰三角形时,求符合条件的点P 的坐标.。
2017年四川省南充市中考数学试题(解析版)
【考点】等边三角形、点的坐标、勾股定理. 【分析】根据点的坐标的定义,只需求出点 B 到两坐标轴的距离即可,为此过 B 作 BC⊥ OA 于 C,再计算出 OC、BC 的长度. 【解答】过 B 作 BC⊥OA 于 C(图 7-a), ∵等边△ABO,
∴ OC = OA = 1, ∴BC = OB2 - OA 2 = 3. 2
C: 3a3与a2 不是同类型,无法合并,再者合并同类项是系数相加减、相同字母的指数不 变,因此 3a3 - 2a2 = a 错误;
· 1+ 3a · (-a) = 3a - 3a2 , 因此 3a(1- a) = 3a - 3a2 正确. D: 3a(1- a) = 3a
故选择 D 答案. 【点评】关键是分清问题类型,然后“照方抓药”,逐一比对.
2
【考点】幂的运算法则、合并同类项、单项式与多项式相乘(分配律). 【分析】根据幂的运算、合并同类项、单项式与多项式相乘等法则逐一计算即可. 【解答】A: a8 ÷ a2 = a8-2 = a6 , 因此 a8 ÷ a2 = a4 错误;
(a2 )3 = 8a6 , 因此 (2a2 )3 = 6a6 错误; B: (2a2 )3 = 23·
本题属基础题,难度较小,主要是考查应试者对法则的熟悉程度、细心.
【考点】数据的分析—中位数、平均数、众数、方差. 【分析】根据中位数、平均数、众数、方差等概念的定义逐一判断即可. 【解答】把这 10 个数据按照从小到大排列后取最中间的两个数据的平均数即为中位数, 而这组数据中第 5、6 个数据分别是 39 分、39 分,因此中位数也是 39 分,因此 A 答案错误;
2 a c b 图4-a
∵a∥b,
∴c∥b, ∴∠1+∠2=90º,
2017年各地中考试卷2017年四川省南充市中考数学试卷
2017年四川省南充市中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)如果a+3=0,那么a的值是()A.3 B.﹣3 C.D.﹣2.(3分)如图由7个小正方体组合而成的几何体,它的主视图是()A.B.C.D.3.(3分)据统计,参加南充市2016年高中阶段学校招生考试的人数为55354人,这个数用科学记数法表示为()A.0.55354×105人B.5.5354×105人C.5.5354×104人D.55.354×103人4.(3分)如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为()A.30°B.32°C.42°D.58°5.(3分)下列计算正确的是()A.a8÷a4=a2B.(2a2)3=6a6C.3a3﹣2a2=a D.3a(1﹣a)=3a﹣3a26.(3分)某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:下列说法正确的是()A.这10名同学体育成绩的中位数为38分B.这10名同学体育成绩的平均数为38分C.这10名同学体育成绩的众数为39分D.这10名同学体育成绩的方差为27.(3分)如图,等边△OAB的边长为2,则点B的坐标为()A.(1,1) B.(,1)C.(,)D.(1,)8.(3分)如图,在Rt△ABC中,AC=5cm,BC=12cm,∠ACB=90°,把Rt△ABC 所在的直线旋转一周得到一个几何体,则这个几何体的侧面积为()A.60πcm2B.65πcm2C.120πcm2D.130πcm29.(3分)已知菱形的周长为4,两条对角线的和为6,则菱形的面积为()A.2 B.C.3 D.410.(3分)二次函数y=ax2+bx+c(a、b、c是常数,且a≠0)的图象如图所示,下列结论错误的是()A.4ac<b2B.abc<0 C.b+c>3a D.a<b二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)如果=1,那么m=.12.(3分)计算:|1﹣|+(π﹣)0=.13.(3分)经过某十字路口的汽车,可直行,也可向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过该十字路口时都直行的概率是.14.(3分)如图,在▱ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,且CG=2BG,S△BPG=1,则S▱AEPH=.15.(3分)小明从家到图书馆看报然后返回,他离家的距离y与离家的时间x 之间的对应关系如图所示,如果小明在图书馆看报30分钟,那么他离家50分钟时离家的距离为km.16.(3分)如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG 绕点C旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2,其中正确结论是(填序号)三、解答题(共9个小题,满分72分)解答应写出必要的文字说明,证明过程或验算步骤17.(6分)化简(1﹣)÷,再任取一个你喜欢的数代入求值.18.(6分)在“宏扬传统文化,打造书香校园”活动中,学校计划开展四项活动:“A﹣国学诵读”、“B﹣演讲”、“C﹣课本剧”、“D﹣书法”,要求每位同学必须且只能参加其中一项活动,学校为了了解学生的意愿,随机调查了部分学生,结果统计如下:(1)如图,希望参加活动C占20%,希望参加活动B占15%,则被调查的总人数为人,扇形统计图中,希望参加活动D所占圆心角为度,根据题中信息补全条形统计图.(2)学校现有800名学生,请根据图中信息,估算全校学生希望参加活动A有多少人?19.(8分)如图,DE⊥AB,CF⊥AB,垂足分别是点E、F,DE=CF,AE=BF,求证:AC∥BD.20.(8分)已知关于x的一元二次方程x2﹣(m﹣3)x﹣m=0(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为x1、x2,且x12+x22﹣x1x2=7,求m的值.21.(8分)如图,直线y=kx(k为常数,k≠0)与双曲线y=(m为常数,m>0)的交点为A、B,AC⊥x轴于点C,∠AOC=30°,OA=2(1)求m的值;=3k,求P点的坐标.(2)点P在y轴上,如果S△ABP22.(8分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D,E为BC的中点,连接DE并延长交AC的延长线于点F.(1)求证:DE是⊙O的切线;(2)若CF=2,DF=4,求⊙O直径的长.23.(8分)学校准备租用一批汽车,现有甲、乙两种大客车,甲种客车每辆载客量45人,乙种客车每辆载客量30人,已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车共8辆,送330名师生集体外出活动,最节省的租车费用是多少?24.(10分)如图,在正方形ABCD中,点E、G分别是边AD、BC的中点,AF=AB.(1)求证:EF⊥AG;(2)若点F、G分别在射线AB、BC上同时向右、向上运动,点G运动速度是点F运动速度的2倍,EF⊥AG是否成立(只写结果,不需说明理由)?(3)正方形ABCD的边长为4,P是正方形ABCD内一点,当S=S△OAB,求△△PABPAB周长的最小值.25.(10分)如图1,已知二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象过点O(0,0)和点A(4,0),函数图象最低点M的纵坐标为﹣,直线l的解析式为y=x.(1)求二次函数的解析式;(2)直线l沿x轴向右平移,得直线l′,l′与线段OA相交于点B,与x轴下方的抛物线相交于点C,过点C作CE⊥x轴于点E,把△BCE沿直线l′折叠,当点E 恰好落在抛物线上点E′时(图2),求直线l′的解析式;(3)在(2)的条件下,l′与y轴交于点N,把△BON绕点O逆时针旋转135°得到△B′ON′,P为l′上的动点,当△PB′N′为等腰三角形时,求符合条件的点P的坐标.2017年四川省南充市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)(2017•南充)如果a+3=0,那么a的值是()A.3 B.﹣3 C.D.﹣【分析】直接移项可求出a的值.【解答】解:移项可得:a=﹣3.故选B.【点评】本题考查解一元一次方程的解法.解一元一次方程常见的思路有通分,移项,左右同乘除等.2.(3分)(2017•南充)如图由7个小正方体组合而成的几何体,它的主视图是()A.B.C.D.【分析】根据主视图是从物体正面看所得到的图形解答即可.【解答】解:根据主视图的定义可知,此几何体的主视图是A中的图形,故选:A.【点评】本题考查的是简单几何体的三视图的作图,主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形.3.(3分)(2017•南充)据统计,参加南充市2016年高中阶段学校招生考试的人数为55354人,这个数用科学记数法表示为()A.0.55354×105人B.5.5354×105人C.5.5354×104人D.55.354×103人【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:55354=5.5354×104,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•南充)如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为()A.30°B.32°C.42°D.58°【分析】先利用平行线的性质得出∠3,进而利用三角板的特征求出∠4,最后利用平行线的性质即可;【解答】解:如图,过点A作AB∥b,∴∠3=∠1=58°,∵∠3+∠4=90°,∴∠4=90°﹣∠3=32°,∵a∥b,AB∥B,∴AB∥b,∴∠2=∠4=32°,故选B.【点评】此题主要考查了平行线的性质,三角板的特征,角度的计算,解本题的关键是作出辅助线,是一道基础题目.5.(3分)(2017•南充)下列计算正确的是()A.a8÷a4=a2B.(2a2)3=6a6C.3a3﹣2a2=a D.3a(1﹣a)=3a﹣3a2【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a4,不符合题意;B、原式=8a4,不符合题意;C、原式不能合并,不符合题意;D、原式=3a﹣3a2,符合题意,故选D【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.6.(3分)(2017•南充)某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:下列说法正确的是()A.这10名同学体育成绩的中位数为38分B.这10名同学体育成绩的平均数为38分C.这10名同学体育成绩的众数为39分D.这10名同学体育成绩的方差为2【分析】结合表格根据众数、平均数、中位数的概念求解即可【解答】解:10名学生的体育成绩中39分出现的次数最多,众数为39;第5和第6名同学的成绩的平均值为中位数,中位数为:=39;平均数==38.4方差=[(36﹣38.4)2+2×(37﹣38.4)2+(38﹣38.4)2+4×(39﹣38.4)2+2×(40﹣38.4)2]=1.64;∴选项A,B、D错误;故选C.【点评】本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.7.(3分)(2017•南充)如图,等边△OAB的边长为2,则点B的坐标为()A.(1,1) B.(,1)C.(,)D.(1,)【分析】先过B作BC⊥AO于C,则根据等边三角形的性质,即可得到OC以及BC的长,进而得出点B的坐标.【解答】解:如图所示,过B作BC⊥AO于C,则∵△AOB是等边三角形,∴OC=AO=1,∴Rt△BOC中,BC==,∴B(1,),故选:D.【点评】本题主要考查了等边三角形的性质以及勾股定理的运用,解题的关键是作辅助线构造直角三角形.8.(3分)(2017•南充)如图,在Rt△ABC中,AC=5cm,BC=12cm,∠ACB=90°,把Rt△ABC所在的直线旋转一周得到一个几何体,则这个几何体的侧面积为()A.60πcm2B.65πcm2C.120πcm2D.130πcm2【分析】易利用勾股定理求得母线长,那么圆锥的侧面积=底面周长×母线长÷2.【解答】解:∵在Rt△ABC中,AC=5cm,BC=12cm,∠ACB=90°,∴由勾股定理得AB=13,∴圆锥的底面周长=10π,∴旋转体的侧面积=×10π×13=65π,故选B.【点评】本题利用了勾股定理,圆的周长公式和扇形面积公式求解.9.(3分)(2017•南充)已知菱形的周长为4,两条对角线的和为6,则菱形的面积为()A.2 B.C.3 D.4【分析】由菱形的性质和勾股定理得出AO+BO=3,AO2+BO2=AB2,(AO+BO)2=9,求出2AO•BO=4,即可得出答案.【解答】解:如图四边形ABCD是菱形,AC+BD=6,∴AB=,AC⊥BD,AO=AC,BO=BD,∴AO+BO=3,∴AO2+BO2=AB2,(AO+BO)2=9,即AO2+BO2=5,AO2+2AO•BO+BO2=9,∴2AO•BO=4,∴菱形的面积=AC•BD=2AO•BO=4;故选:D.【点评】本题考查菱形的性质、勾股定理;解题的关键是记住菱形的面积公式,记住菱形的对角线互相垂直,属于中考常考题型.10.(3分)(2017•南充)二次函数y=ax2+bx+c(a、b、c是常数,且a≠0)的图象如图所示,下列结论错误的是()A.4ac<b2B.abc<0 C.b+c>3a D.a<b【分析】根据二次函数的图象与性质即可求出答案.【解答】解:(A)由图象可知:△>0,∴b2﹣4ac>0,∴b2>4ac,故A正确;∵抛物线开口向下,∴a<0,∵抛物线与y轴的负半轴,∴c<0,∵抛物线对称轴为x=﹣<0,∴b<0,∴abc<0,故B正确;∵当x=﹣1时,y=a﹣b+c>0,∴a+c>b,∵b>2a∴a+b+c>2b>4a,b+c>3a故C正确;∵当x=﹣1时y=a﹣b+c>0,∴a﹣b+c>c,∴a﹣b>0,∴a>b,故D错误;故选(D)【点评】本题考查二次函数图象与性质,解题的关键是熟练运用二次函数的性质,本题属于中等题型,二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)(2017•南充)如果=1,那么m=2.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到m的值,经检验即可得到分式方程的解.【解答】解:去分母得:1=m﹣1,解得:m=2,经检验m=2是分式方程的解,故答案为:2【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.12.(3分)(2017•南充)计算:|1﹣|+(π﹣)0=.【分析】直接利用绝对值的性质以及零指数幂的性质分别化简求出答案.【解答】解:|1﹣|+(π﹣)0=﹣1+1=.故答案为:.【点评】此题主要考查了实数运算,正确化简各式是解题关键.13.(3分)(2017•南充)经过某十字路口的汽车,可直行,也可向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过该十字路口时都直行的概率是.【分析】画树状图展示所有9种等可能的结果数,再找出两辆汽车经过该十字路口都直行的结果数.然后根据概率公式求解.【解答】解:画树状图为:共有9种等可能的结果数,其中两辆汽车都直行的结果数为1,所以则两辆汽车都直行的概率为,故答案为:.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.14.(3分)(2017•南充)如图,在▱ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,且CG=2BG,S△BPG=1,则S▱AEPH=4.=S四【分析】由条件可证明四边形HPFD、BEPG为平行四边形,可证明S四边形AEPH.,再利用面积的和差可得出四边形AEPH和四边形PFCG的面积相等,由边形PFCG已知条件即可得出答案.【解答】解:∵EF∥BC,GH∥AB,∴四边形HPFD、BEPG、AEPH、CFPG为平行四边形,∴S=S△BGP,△PEB同理可得S △PHD =S △DFP ,S △ABD =S △CDB ,∴S △ABD ﹣S △PEB ﹣S △PHD =S △CDB ﹣S △BGP ﹣S △DFP ,即S 四边形AEPH =S 四边形PFCG .∵CG=2BG ,S △BPG =1,∴S 四边形AEPH =S 四边形PFCG =4×1=4;故答案为:4.【点评】本题主要考查平行四边形的判定和性质,掌握平行四边形的判定和性质是解题的关键,即①两组对边分别平行⇔四边形为平行四边形,②两组对边分别相等⇔四边形为平行四边形,③一组对边平行且相等⇔四边形为平行四边形,④两组对角分别相等⇔四边形为平行四边形,⑤对角线互相平分⇔四边形为平行四边形.15.(3分)(2017•南充)小明从家到图书馆看报然后返回,他离家的距离y 与离家的时间x 之间的对应关系如图所示,如果小明在图书馆看报30分钟,那么他离家50分钟时离家的距离为 0.3 km .【分析】根据题意和函数图象可以求得小明从图书馆回家的速度以及对应的时间,从而可以求得他离家50分钟时离家的距离或者根据题意求出相应的函数解析式,求出当x=50时,对应的y 的值即可解答本题.【解答】解:方法一:由题意可得,小明从图书馆回家用的时间是:55﹣(10+30)=15分钟,则小明回家的速度为:0.9÷15=0.06km/min ,故他离家50分钟时离家的距离为:0.9﹣0.06×[50﹣(10+30)]=0.3km , 故答案为:0.3;方法二:设小明从图书馆回家对应的函数解析式为y=kx +b ,则该函数过点(40,0.9),(55,0),,解得,,即小明从图书馆回家对应的函数解析式为y=﹣0.06x+3.3,当x=50时,y=﹣0.06×50+3.3=0.3,故答案为:0.3.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.16.(3分)(2017•南充)如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2,其中正确结论是①②③(填序号)【分析】由四边形ABCD与四边形EFGC都为正方形,得到四条边相等,四个角为直角,利用SAS得到三角形BCE与三角形DCG全等,利用全等三角形对应边相等即可得到BE=DG,利用全等三角形对应角相等得到∠1=∠2,利用等角的余角相等及直角的定义得到∠BOD为直角,利用勾股定理求出所求式子的值即可.【解答】解:设BE,DG交于O,∵四边形ABCD和EFGC都为正方形,∴BC=CD,CE=CG,∠BCD=∠ECG=90°,∴∠BCE+∠DCE=∠ECG+∠DCE=90°+∠DCE,即∠BCE=∠DCG,在△BCE和△DCG中,,∴△BCE≌△DCG(SAS),∴BE=DG,∴∠1=∠2,∵∠1+∠4=∠3+∠1=90°,∴∠2+∠3=90°,∴∠BOC=90°,∴BE⊥DG;故①②正确;连接BD,EG,如图所示,∴DO2+BO2=BD2=BC2+CD2=2a2,EO2+OG2=EG2=CG2+CE2=2b2,则BG2+DE2=DO2+BO2+EO2+OG2=2a2+2b2,故③正确.故答案为:①②③.【点评】此题考查了全等三角形的判定与性质,正方形的性质,勾股定理,熟练掌握性质与定理是解本题的关键.三、解答题(共9个小题,满分72分)解答应写出必要的文字说明,证明过程或验算步骤17.(6分)(2017•南充)化简(1﹣)÷,再任取一个你喜欢的数代入求值.【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.【解答】解:(1﹣)÷,=(﹣),=,=,∵x﹣1≠0,x(x+1)≠0,∴x≠±1,x≠0,当x=5时,原式==.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键,注意代入的数值必须保证分式有意义.18.(6分)(2017•南充)在“宏扬传统文化,打造书香校园”活动中,学校计划开展四项活动:“A﹣国学诵读”、“B﹣演讲”、“C﹣课本剧”、“D﹣书法”,要求每位同学必须且只能参加其中一项活动,学校为了了解学生的意愿,随机调查了部分学生,结果统计如下:(1)如图,希望参加活动C占20%,希望参加活动B占15%,则被调查的总人数为60人,扇形统计图中,希望参加活动D所占圆心角为72度,根据题中信息补全条形统计图.(2)学校现有800名学生,请根据图中信息,估算全校学生希望参加活动A有多少人?【分析】(1)根据统计图中希望参加C的人数和所占的百分比可以求得被调查的总人数,进而可以求得参加活动B和D的人数,计算出希望参加活动D所占圆心角的度数,将条形统计图补充完整;(2)根据统计图中的数据可以估算全校学生希望参加活动A有多少人.【解答】解:(1)由题意可得,被调查的总人数是:12÷20%=60,希望参加活动B的人数为:60×15%=9,希望参加活动D的人数为:60﹣27﹣9﹣12=12,扇形统计图中,希望参加活动D所占圆心角为:360°×(1﹣﹣15%﹣20%)=360°×20%=72°,故答案为:60,72,补全的条形统计图如右图所示;(2)由题意可得,800×=360,答:全校学生希望参加活动A有360人.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.19.(8分)(2017•南充)如图,DE⊥AB,CF⊥AB,垂足分别是点E、F,DE=CF,AE=BF,求证:AC∥BD.【分析】欲证明AC∥BD,只要证明∠A=∠B,只要证明△DEB≌△CFA即可.【解答】证明:∵DE⊥AB,CF⊥AB,∴∠DEB=∠AFC=90°,∵AE=BF,∴AF=BE,在△DEB和△CFA中,,△DEB≌△CFA,∴∠A=∠B,∴AC∥DB.【点评】本题考查全等三角形的判定和性质、平行线的性质和判定等知识,解题的关键是熟练掌握全等三角形的判定方法,属于中考常考题型.20.(8分)(2017•南充)已知关于x的一元二次方程x2﹣(m﹣3)x﹣m=0(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为x1、x2,且x12+x22﹣x1x2=7,求m的值.【分析】(1)要证明方程有两个不相等的实数根,只要证明原来的一元二次方程的△的值大于0即可;(2)根据根与系数的关系可以得到关于m的方程,从而可以求得m的值.【解答】(1)证明:∵x2﹣(m﹣3)x﹣m=0,∴△=[﹣(m﹣3)]2﹣4×1×(﹣m)=m2﹣2m+9=(m﹣1)2+8>0,∴方程有两个不相等的实数根;(2)∵x2﹣(m﹣3)x﹣m=0,方程的两实根为x1、x2,且x12+x22﹣x1x2=7,∴,∴(m﹣3)2﹣3×(﹣m)=7,解得,m1=1,m2=2,即m的值是1或2.【点评】本题考查根与系数的关系、根的判别式,解答本题的关键是明确题意,找出所求问题需要的条件,利用方程的思想解答.21.(8分)(2017•南充)如图,直线y=kx(k为常数,k≠0)与双曲线y=(m 为常数,m>0)的交点为A、B,AC⊥x轴于点C,∠AOC=30°,OA=2(1)求m的值;=3k,求P点的坐标.(2)点P在y轴上,如果S△ABP【分析】(1)求出点A坐标利用待定系数法即可解决问题;(2)设P(0,n),由A(,1),B(﹣,﹣1),可得•|n|•+•|n|•=3×,解方程即可;【解答】解:(1)在Rt△AOC中,∵∠ACO=90°,∠AOC=30°,OA=2,∴AC=1,OC=,∴A(,1),∵反比例函数y=经过点A(,1),∴m=,∵y=kx经过点A(,1),∴k=.(2)设P(0,n),∵A(,1),B(﹣,﹣1),∴•|n|•+•|n|•=3×,∴n=±1,∴P(0,1)或(0,﹣1).【点评】本题考查反比例函数与一次函数的交点问题、待定系数法,三角形的面积等知识,解题的关键是灵活应用待定系数法确定函数的解析式,学会构建方程解决问题,属于中考常考题型.22.(8分)(2017•南充)如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O 交AB于点D,E为BC的中点,连接DE并延长交AC的延长线于点F.(1)求证:DE是⊙O的切线;(2)若CF=2,DF=4,求⊙O直径的长.【分析】(1)连接OD、CD,由AC为⊙O的直径知△BCD是直角三角形,结合E 为BC的中点知∠CDE=∠DCE,由∠ODC=∠OCD且∠OCD+∠DCE=90°可得答案;(2)设⊙O的半径为r,由OD2+DF2=OF2,即r2+42=(r+2)2可得r=3,即可得出答案.【解答】解:(1)如图,连接OD、CD,∵AC为⊙O的直径,∴△BCD是直角三角形,∵E为BC的中点,∴BE=CE=DE,∴∠CDE=∠DCE,∵OD=OC,∴∠ODC=∠OCD,∵∠ACB=90°,∴∠OCD+∠DCE=90°,∴∠ODC+∠CDE=90°,即OD⊥DE,∴DE是⊙O的切线;(2)设⊙O的半径为r,∵∠ODF=90°,∴OD2+DF2=OF2,即r2+42=(r+2)2,解得:r=3,∴⊙O的直径为6.【点评】本题主要考查切线的判定与圆周角定理、直角三角形的性质及勾股定理,熟练掌握切线的判定与圆周角定理是解题的关键.23.(8分)(2017•南充)学校准备租用一批汽车,现有甲、乙两种大客车,甲种客车每辆载客量45人,乙种客车每辆载客量30人,已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车共8辆,送330名师生集体外出活动,最节省的租车费用是多少?【分析】(1)可设1辆甲种客车的租金是x元,1辆乙种客车的租金是y元,根据等量关系:①1辆甲种客车和3辆乙种客车共需租金1240元,②3辆甲种客车和2辆乙种客车共需租金1760元,列出方程组求解即可;(2)由于求最节省的租车费用,可知租用甲种客车6辆,租用乙客车2辆,进而求解即可.【解答】解:(1)设1辆甲种客车的租金是x元,1辆乙种客车的租金是y元,依题意有,解得.故1辆甲种客车的租金是400元,1辆乙种客车的租金是280元;(2)方法1:租用甲种客车6辆,租用乙客车2辆是最节省的租车费用,400×6+280×2=2400+560=2960(元).方法2:设租用甲种客车x辆,依题意有45x+30(8﹣x)≥330,解得x≥6,租用甲种客车6辆,租用乙客车2辆的租车费用为:400×6+280×2=2400+560=2960(元);租用甲种客车7辆,租用乙客车1辆的租车费用为:400×7+280=2800+280=3080(元);2960≤3080,故最节省的租车费用是2960元.【点评】本题考查一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.24.(10分)(2017•南充)如图,在正方形ABCD中,点E、G分别是边AD、BC的中点,AF=AB.(1)求证:EF⊥AG;(2)若点F、G分别在射线AB、BC上同时向右、向上运动,点G运动速度是点F运动速度的2倍,EF⊥AG是否成立(只写结果,不需说明理由)?=S△OAB,求△(3)正方形ABCD的边长为4,P是正方形ABCD内一点,当S△PABPAB周长的最小值.【分析】(1)由正方形的性质得出AD=AB,∠EAF=∠ABG=90°,证出,得出△AEF∽△BAG,由相似三角形的性质得出∠AEF=∠BAG,再由角的互余关系和三角形内角和定理证出∠AOE=90°即可;(2)证明△AEF∽△BAG,得出∠AEF=∠BAG,再由角的互余关系和三角形内角和定理即可得出结论;(3)过O作MN∥AB,交AD于M,BC于N,则MN⊥AD,MN=AB=4,由三角形面积关系得出点P在线段MN上,当P为MN的中点时,△PAB的周长最小,此时PA=PB,PM=MN=2,连接EG,则EG∥AB,EG=AB=4,证明△AOF∽△GOE,得出=,证出=,得出AM=AE=,由勾股定理求出PA,即可得出答案.【解答】(1)证明:∵四边形ABCD是正方形,∴AD=AB,∠EAF=∠ABG=90°,∵点E、G分别是边AD、BC的中点,AF=AB.∴=,=,∴,∴△AEF∽△BAG,∴∠AEF=∠BAG,∵∠BAG+∠EAO=90°,∴∠AEF+∠EAO=90°,∴∠AOE=90°,∴EF⊥AG;(2)解:成立;理由如下:根据题意得:=,∵=,∴,又∵∠EAF=∠ABG,∴△AEF∽△BAG,∴∠AEF=∠BAG,∵∠BAG+∠EAO=90°,∴∠AEF+∠EAO=90°,∴∠AOE=90°,∴EF⊥AG;(3)解:过O作MN∥AB,交AD于M,BC于N,如图所示:则MN⊥AD,MN=AB=4,=S△OAB,∵P是正方形ABCD内一点,当S△PAB作点A关于MN的对称点A′,连接BA′,与MN交于点P,此时△PAB的周长最小,∵PA=PA′,易证PA=PB,PM=PN,此时PA=PB,PM=MN=2,连接EG、PA、PB,则EG∥AB,EG=AB=4,∴△AOF∽△GOE,∴=,∵MN∥AB,∴=,∴AM=AE=×2=,由勾股定理得:PA==,∴△PAB周长的最小值=2PA+AB=+4.【点评】本题是四边形综合题目,考查了正方形的性质、相似三角形的判定与性质、勾股定理、三角形内角和定理、直角三角形的性质等知识;本题综合性强,有一定难度,证明三角形相似是解决问题的关键.25.(10分)(2017•南充)如图1,已知二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象过点O(0,0)和点A(4,0),函数图象最低点M的纵坐标为﹣,直线l的解析式为y=x.(1)求二次函数的解析式;(2)直线l沿x轴向右平移,得直线l′,l′与线段OA相交于点B,与x轴下方的抛物线相交于点C,过点C作CE⊥x轴于点E,把△BCE沿直线l′折叠,当点E恰好落在抛物线上点E′时(图2),求直线l′的解析式;(3)在(2)的条件下,l′与y轴交于点N,把△BON绕点O逆时针旋转135°得到△B′ON′,P为l′上的动点,当△PB′N′为等腰三角形时,求符合条件的点P的坐标.【分析】(1)由题意抛物线的顶点坐标为(2,﹣),设抛物线的解析式为y=a(x﹣2)2﹣,把(0,0)代入得到a=,即可解决问题;(2)如图1中,设E(m,0),则C(m,m2﹣m),B(﹣m2+m,0),由E、B关于对称轴对称,可得=2,由此即可解决问题;(3)分两种情形求解即可①当P1与N重合时,△P1B′N′是等腰三角形,此时P1(0,﹣3).②当N′=N′B′时,设P(m,m﹣3),列出方程解方程即可;【解答】解:(1)由题意抛物线的顶点坐标为(2,﹣),设抛物线的解析式为y=a(x﹣2)2﹣,把(0,0)代入得到a=,∴抛物线的解析式为y=(x﹣2)2﹣,即y=x2﹣x.(2)如图1中,设E(m,0),则C(m,m2﹣m),B(﹣m2+m,0),∵E′在抛物线上,易知四边形EBE′C是正方形,抛物线的对称轴也是正方形的对称轴,∴E、B关于对称轴对称,∴=2,解得m=1或6(舍弃),∴B(3,0),C(1,﹣2),∴直线l′的解析式为y=x﹣3.(3)如图2中,①当P1与N重合时,△P1B′N′是等腰三角形,此时P1(0,﹣3).②当N′=N′B′时,设P(m,m﹣3),则有(m﹣)2+(m﹣3﹣)2=(3)2,解得m=或,∴P2(,),P3(,).综上所述,满足条件的点P坐标为(0,﹣3)或(,)或(,).【点评】本题考查二次函数综合题、待定系数法、等腰三角形的判定和性质、两点间距离公式等知识,解题的关键是学会用分类讨论的思想思考问题,学会根据方程,属于中考压轴题.。
中考数学专题11圆(第03期)-2017年中考数学试题分项版解析汇编(解析版)
一、选择题目1.(2017四川省南充市)如图,在Rt △ABC 中,AC =5cm ,BC =12cm ,∠ACB =90°,把Rt △ABC 所在的直线旋转一周得到一个几何体,则这个几何体的侧面积为( )A .60πcm 2B .65πcm 2C .120πcm 2D .130πcm 2 【答案】B .考点:1.圆锥的计算;2.点、线、面、体.2.(2017四川省广安市)如图,AB 是⊙O 的直径,且经过弦CD 的中点H ,已知cos ∠CDB =45,BD =5,则OH 的长度为( )A .32B .65C .1D .67【答案】D . 【解析】试题分析:连接OD ,如图所示:∵AB 是⊙O 的直径,且经过弦CD 的中点H ,∴AB ⊥CD ,∴∠OHD =∠BHD =90°,∵cos ∠CDB =DHBD=45,BD =5,∴DH =4,∴BH3,设OH =x ,则OD =OB =x +3,在Rt △ODH 中,由勾股定理得:x 2+42=(x +3)2,解得:x =67,∴OH =67;故选D .考点:1.圆周角定理;2.解直角三角形.3.(2017四川省眉山市)如图,在△ABC 中,∠A =66°,点I 是内心,则∠BIC 的大小为( )A .114°B .122°C .123°D .132° 【答案】C . 【解析】试题分析:∵∠A =66°,∴∠ABC +∠ACB =114°,∵点I 是内心,∴∠IBC =12∠ABC ,∠ICB =12∠ACB ,∴∠IBC +∠ICB =57°,∴∠BIC =180°﹣57°=123°,故选C .学*科网 考点:三角形的内切圆与内心.4.(2017四川省绵阳市)“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径AB =8cm ,圆柱体部分的高BC =6cm ,圆锥体部分的高CD =3cm ,则这个陀螺的表面积是( )A .68πcm 2B .74πcm 2C .84πcm 2D .100πcm 2【答案】C.【解析】试题分析:∵底面圆的直径为8cm,高为3cm,∴母线长为5cm,∴其表面积=π×4×5+42π+8π×6=84πcm2,故选C.考点:1.圆锥的计算;2.几何体的表面积.5.(2017四川省达州市)以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A B C.D【答案】A.考点:正多边形和圆.6.(2017山东省枣庄市)如图,在网格(每个小正方形的边长均为1)中选取9个格点(格线的交点称为格点),如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为()A.r << Br << C5r << D.5r <<【答案】B . 【解析】试题分析:给各点标上字母,如图所示. AB==,AC =AD==,AE==,AF==,AG =AM =AN5r <<A 为圆心,r 为半径画圆,选取的格点中除点A 外恰好有3个在圆内.故选B .考点:1.点与圆的位置关系;2.勾股定理;3.推理填空题目.7.(2017山东省济宁市)如图,在Rt △ABC 中,∠ACB =90°,AC =BC =1,将Rt △ABC 绕点A 逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为,则图中阴影部分的面积是( )A . 6πB . 3πC .122π-D . 12【答案】A.【解析】试题分析:∵∠ACB=90°,AC=BC=1,∴AB,∴S扇形ABD=6π.又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD=6π.故选A.考点:1.扇形面积的计算;2.等腰直角三角形;3.旋转的性质.学科*网8.(2017广东省)如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130°B.100°C.65°D.50°【答案】C.考点:圆内接四边形的性质.9.(2017广西四市)如图,⊙O是△ABC的外接圆,BC=2,∠BAC=30°,则劣弧BC的长等于()A.2π3B.π3C.2√3π3D.√3π3【答案】A.【解析】试题分析:如图,连接OB 、OC ,∵∠BAC =30°,∴∠BOC =2∠BAC =60°,又OB =OC ,∴△OBC 是等边三角形,∴BC =OB =OC =2,∴劣弧BC 的长为:602180π⨯ =2π3.故选A .考点:1.弧长的计算;2.圆周角定理. 二、填空题目10.(2017四川省眉山市)如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,且AB =8cm ,DC =2cm ,则OC = cm .【答案】5. 【解析】试题分析:连接OA ,∵OC ⊥AB ,∴AD =12AB =4cm ,设⊙O 的半径为R ,由勾股定理得,OA 2=AD 2+OD 2,∴R 2=42+(R ﹣2)2,解得R =5,∴OC =5cm .故答案为:5.考点:1.垂径定理;2.勾股定理.11.(2017四川省达州市)如图,矩形ABCD 中,E 是BC 上一点,连接AE ,将矩形沿AE 翻折,使点B 落在CD 边F 处,连接AF ,在AF 上取点O ,以O 为圆心,OF 长为半径作⊙O 与AD 相切于点P.若AB =6,BC=F 是CD 的中点;②⊙O 的半径是2;③AE =92CE;④S =阴影.其中正确结论的序号是 .【答案】. 【解析】试题分析:①∵AF 是AB 翻折而来,∴AF =AB =6,∵AD =BC=DF=3,∴F 是CD中点;∴①正确;②连接OP ,∵⊙O 与AD 相切于点P ,∴OP ⊥AD ,∵AD ⊥DC ,∴OP ∥CD ,∴AO OP AF DF =,设OP =OF =x ,则636x x -=,解得:x =2,∴②正确;③∵RT △ADF 中,AF =6,DF =3,∴∠DAF =30°,∠AFD =60°,∴∠EAF =∠EAB =30°,∴AE =2EF ; ∵∠AFE =90°,∴∠EFC =90°﹣∠AFD =30°,∴EF =2EC ,∴AE =4CE ,∴③错误;④连接OG ,作OH ⊥FG ,∵∠AFD =60°,OF =OG ,∴△OFG 为等边△;同理△OPG 为等边△;∴∠POG =∠FOG =60°,OHOG,S 扇形OPG =S 扇形OGF ,∴S 阴影=(S 矩形OPDH ﹣S 扇形OPG ﹣S △OGH )+(S 扇形OGF ﹣S △OFG )=S 矩形OPDH ﹣32S △OFG=312(222-⨯⨯.∴④正确;故答案为:①②④.考点:1.切线的性质;2.矩形的性质;3.扇形面积的计算;4.翻折变换(折叠问题);5.综合题.12.(2017山东省枣庄市)如图,在▱ABCD中,AB为⊙O的直径,⊙O与DC相切于点E,与AD相交于点F,已知AB=12,∠C=60°,则FE的长为.【答案】π.考点:1.切线的性质;2.平行四边形的性质;3.弧长的计算.学&科网13.(2017山东省济宁市)如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是.考点:1.正多边形和圆;2.规律型;3.综合题.14.(2017四川省南充市)如图,在Rt △ABC 中,∠ACB =90°,以AC 为直径作⊙O 交AB 于点D ,E 为BC 的中点,连接DE 并延长交AC 的延长线于点F . (1)求证:DE 是⊙O 的切线;(2)若CF =2,DF =4,求⊙O 直径的长.【答案】(1)证明见解析;(2)6. 【解析】试题分析:(1)连接OD 、CD ,由AC 为⊙O 的直径知△BCD 是直角三角形,结合E 为BC的中点知∠CDE=∠DCE,由∠ODC=∠OCD且∠OCD+∠DCE=90°可得答案;(2)设⊙O的半径为r,由OD2+DF2=OF2,即r2+42=(r+2)2可得r=3,即可得出答案.试题解析:(1)如图,连接OD、CD.∵AC为⊙O的直径,∴△BCD是直角三角形,∵E为BC的中点,∴BE=CE=DE,∴∠CDE=∠DCE,∵OD=OC,∴∠ODC=∠OCD,∵∠ACB=90°,∴∠OCD+∠DCE=90°,∴∠ODC+∠CDE=90°,即OD⊥DE,∴DE是⊙O的切线;(2)设⊙O的半径为r,∵∠ODF=90°,∴OD2+DF2=OF2,即r2+42=(r+2)2,解得:r=3,∴⊙O的直径为6.考点:切线的判定与性质.15.(2017四川省广安市)如图,已知AB是⊙O的直径,弦CD与直径AB相交于点F.点E在⊙O外,做直线AE,且∠EAC=∠D.(1)求证:直线AE是⊙O的切线.(2)若∠BAC=30°,BC=4,cos∠BAD=34,CF=103,求BF的长.【答案】(1)证明见解析;(2【解析】试题分析:(1)由直径所对的圆周角是直角得:∠ADB=90°,则∠ADC+∠CDB=90°,所以∠EAC+∠BAC=90°,则直线AE是⊙O的切线;(2)分别计算AC和BD的长,证明△DFB∽△AFC,列比例式得:BF BDFC AC,得出结论.试题解析:(1)连接BD,∵AB是⊙O的直径,∴∠ADB=90°,即∠ADC+∠CDB=90°,∵∠EAC=∠ADC,∠CDB=∠BAC,∴∠EAC+∠BAC=90°,即∠BAE=90°,∴直线AE是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ACB=90°,Rt△ACB中,∠BAC=30°,∴AB=2BC=2×4=8,由勾股定理得:AC=,Rt△ADB中,cos∠BAD=34=ADAB,∴34=8AD,∴AD=6,∴BD=,∵∠BDC=∠BAC,∠DFB=∠AFC,∴△DFB∽△AFC,∴BF BDFC AC=,∴103BF=,∴BF=考点:1.切线的判定与性质;2.解直角三角形.16.(2017四川省绵阳市)如图,已知AB是圆O的直径,弦CD⊥AB,垂足为H,与AC平行的圆O的一条切线交CD的延长线于点M,交AB的延长线于点E,切点为F,连接AF交CD于点N.(1)求证:CA=CN;(2)连接DF,若cos∠DF A=45,AN=,求圆O的直径的长度.【答案】(1)证明见解析;(2)503.学&科网【解析】试题分析:(1)连接OF,根据切线的性质结合四边形内角和为360°,即可得出∠M+∠FOH=180°,由三角形外角结合平行线的性质即可得出∠M=∠C=2∠OAF,再通过互余利用角的计算即可得出∠CAN=90°﹣∠OAF=∠ANC,由此即可证出CA=CN;(2)连接OC,如图2所示.∵cos∠DF A=45,∠DF A=∠ACH,∴CHAC=45.设CH=4a,则AC=5a,AH=3a,∵CA=CN,∴NH=a,∴AN=a=,∴a=2,AH=3a=6,CH=4a=8.设圆的半径为r,则OH=r﹣6,在Rt△OCH中,OC=r,CH=8,OH=r﹣6,∴OC2=CH2+OH2,r2=82+(r﹣6)2,解得:r=253,∴圆O的直径的长度为2r=503.考点:1.切线的性质;2.勾股定理;3.圆周角定理;4.解直角三角形.17.(2017四川省达州市)如图,△ABC内接于⊙O,CD平分∠ACB交⊙O于D,过点D作PQ∥AB分别交CA、CB延长线于P、Q,连接BD.(1)求证:PQ是⊙O的切线;(2)求证:BD2=AC•BQ;(3)若AC、BQ的长是关于x的方程4x mx+=的两实根,且tan∠PCD=13,求⊙O的半径.【答案】(1)证明见解析;(2)证明见解析;(3).【解析】试题分析:(1)根据平行线的性质和圆周角定理得到∠ABD=∠BDQ=∠ACD,连接OB,OD,交AB于E,根据圆周角定理得到∠OBD=∠ODB,∠O=2∠DCB=2∠BDQ,根据三角形的内角和得到2∠ODB+2∠O=180°,于是得到∠ODB+∠O=90°,根据切线的判定定理即可得到结论;(2)证明:连接AD,根据等腰三角形的判定得到AD=BD,根据相似三角形的性质即可得到结论;试题解析:(1)证明:∵PQ∥AB,∴∠ABD=∠BDQ=∠ACD,∵∠ACD=∠BCD,∴∠BDQ=∠ACD,如图1,连接OB,OD,交AB于E,则∠OBD=∠ODB,∠O=2∠DCB=2∠BDQ,在△OBD中,∠OBD+∠ODB+∠O=180°,∴2∠ODB+2∠O=180°,∴∠ODB+∠O=90°,∴PQ是⊙O的切线;(2)证明:如图2,连接AD,由(1)知PQ是⊙O的切线,∴∠BDQ=∠DCB=∠ACD=∠BCD=∠BAD,∴AD=BD,∵∠DBQ=∠ACD,∴△BDQ∽△ACD,∴AD ACBQ BD=,∴BD2=AC•BQ;(3)解:方程4x mx+=可化为x2﹣mx+4=0,∵AC、BQ的长是关于x的方程4x mx+=的两实根,∴AC•BQ=4,由(2)得BD2=AC•BQ,∴BD2=4,∴BD=2,由(1)知PQ是⊙O的切线,∴OD⊥PQ,∵PQ∥AB,∴OD⊥AB,由(1)得∠PCD=∠ABD,∵tan∠PCD=13,∴tan∠ABD=13,∴BE=3DE,∴DE 2+(3DE )2=BD 2=4,∴DE=,∴BE=,设OB =OD =R ,∴OE =R﹣,∵OB 2=OE 2+BE 2,∴R 2=(R)2+2,解得:R=,∴⊙O的半径为.考点:1.相似三角形的判定与性质;2.分式方程的解;3.圆周角定理;4.切线的判定与性质;5.解直角三角形;6.压轴题.18.(2017山东省枣庄市)如图,在△ABC 中,∠C =90°,∠BAC 的平分线交BC 于点D ,点O 在AB 上,以点O 为圆心,OA 为半径的圆恰好经过点D ,分别交AC ,AB 于点E ,F . (1)试判断直线BC 与⊙O 的位置关系,并说明理由; (2)若BD=BF =2,求阴影部分的面积(结果保留π).【答案】(1)BC 与⊙O 相切;(2)23π.【解析】试题分析:(1)连接OD ,证明OD ∥AC ,即可证得∠ODB =90°,从而证得BC 是圆的切线;(2)设OF =OD =x ,则OB =OF +BF =x +2,由勾股定理得:OB 2=OD 2+BD 2,即(x +2)2=x 2+12,解得:x =2,即OD =OF =2,∴OB =2+2=4,∵Rt △ODB 中,OD =12OB ,∴∠B =30°,∴∠DOB =60°,∴S扇形AOB =604360π⨯ =23π,则阴影部分的面积为S △ODB ﹣S 扇形DOF =12×2×﹣23π=23π-.故阴影部分的面积为23π.考点:1.直线与圆的位置关系;2.扇形面积的计算;3.探究型.19.(2017山东省济宁市)如图,已知⊙O 的直径AB =12,弦AC =10,D 是BC 的中点,过点D 作DE ⊥AC ,交AC 的延长线于点E . (1)求证:DE 是⊙O 的切线; (2)求AE 的长.【答案】(1)证明见解析;(2)11. 【解析】试题分析:(1)连接OD ,由D 为弧BC 的中点,得到两条弧相等,进而得到两个同位角相等,确定出OD与AE 平行,利用两直线平行同旁内角互补得到OD 与DE 垂直,即可得证;(2)解:过点O 作OF ⊥AC ,∵AC =10,∴AF =CF=12AC =5,∵∠OFE =∠DEF =∠ODE =90°,∴四边形OFED 为矩形,∴FE =OD =12AB ,∵AB =12,∴FE =6,则AE =AF +FE =5+6=11.考点:1.切线的判定与性质;2.勾股定理;3.垂径定理.20.(2017广东省)如图,AB 是⊙O 的直径,AB =E 为线段OB 上一点(不与O ,B 重合),作CE ⊥OB ,交⊙O 于点C ,垂足为点E ,作直径CD ,过点C 的切线交DB 的延长线于点P ,AF ⊥PC 于点F ,连接CB .(1)求证:CB 是∠ECP 的平分线; (2)求证:CF =CE ;(3)当34CF CP =时,求劣弧BC 的长度(结果保留π)【答案】(1)证明见解析;(2)证明见解析;(3.【解析】试题分析:(1)根据等角的余角相等证明即可; (2)欲证明CF =CE ,只要证明△ACF ≌△ACE 即可;(3)作BM ⊥PF 于M .则CE =CM =CF ,设CE =CM =CF =4a ,PC =4a ,PM =a ,利用相似三角形的性质求出BM ,求出tan ∠BCM 的值即可解决问题;试题解析:(1)证明:∵OC =OB ,∴∠OCB =∠OBC ,∵PF 是⊙O 的切线,CE ⊥AB ,∴∠OCP =∠CEB =90°,∴∠PCB +∠OCB =90°,∠BCE +∠OBC =90°,∴∠BCE =∠BCP ,∴BC 平分∠PCE .(2)证明:连接AC .∵AB 是直径,∴∠ACB =90°,∴∠BCP +∠ACF =90°,∠ACE +∠BCE =90°,∵∠BCP =∠BCE ,∴∠ACF =∠ACE ,∵∠F =∠AEC =90°,AC =AC ,∴△ACF ≌△ACE ,∴CF =CE .(3)解:作BM ⊥PF 于M .则CE =CM =CF ,设CE =CM =CF =4a ,PC =4a ,PM =a ,∵△BMC ∽△PMB ,∴BM CMPM BM =,∴BM 2=CM •PM =3a 2,∴BM=a ,∴tan ∠BCM=BM CM =,∴∠BCM =30°,∴∠OCB =∠OBC =∠BOC =60°,∴BC 的长.考点:1.相似三角形的判定与性质;2.垂径定理;3.切线的性质;4.弧长的计算.21.(2017江苏省盐城市)如图,△ABC 是一块直角三角板,且∠C =90°,∠A =30°,现将圆心为点O 的圆形纸片放置在三角板内部.(1)如图①,当圆形纸片与两直角边AC 、BC 都相切时,试用直尺与圆规作出射线CO ;(不写作法与证明,保留作图痕迹)(2)如图②,将圆形纸片沿着三角板的内部边缘滚动1周,回到起点位置时停止,若BC =9,圆形纸片的半径为2,求圆心O 运动的路径长.【答案】(1)作图见解析;(2)15+ 【解析】试题分析:(1)作∠ACB 的平分线得出圆的一条弦,再作此弦的中垂线可得圆心O ,作射线CO 即可; (2)添加如图所示辅助线,圆心O 的运动路径长为12OO O C ∆,先求出△ABC 的三边长度,得出其周长,证四边形OEDO 1、四边形O 1O 2HG 、四边形OO 2IF 均为矩形、四边形OECF 为正方形,得出∠OO 1O 2=60°=∠ABC 、∠O 1OO 2=90°,从而知△OO 1O 2∽△CBA ,利用相似三角形的性质即可得出答案. 试题解析:(1)如图①所示,射线OC 即为所求;(2)如图2,圆心O 的运动路径长为12OO O C ∆,过点O 1作O 1D ⊥BC 、O 1F ⊥AC 、O 1G ⊥AB ,垂足分别为点D 、F 、G ,过点O 作OE ⊥BC ,垂足为点E ,连接O 2B ,过点O 2作O 2H ⊥AB ,O 2I ⊥AC ,垂足分别为点H 、I ,在Rt △ABC 中,∠ACB =90°、∠A =30°,∴AC =tan 30BC==,AB =2BC =18,∠ABC =60°,∴C △ABC =9++18=27+,∵O 1D ⊥BC 、O 1G ⊥AB ,∴D 、G 为切点,∴BD =BG ,在Rt △O 1BD 和Rt △O 1BG 中,∵BD =BG ,O 1B =O 1B ,∴△O 1BD ≌△O 1BG (HL ),∴∠O 1BG =∠O 1BD=30°,在Rt△O1BD中,∠O1DB=90°,∠O1BD=30°,∴BD=1tan 30O D==,∴OO1=9﹣2﹣=7﹣O1D=OE=2,O1D⊥BC,OE⊥BC,∴O1D∥OE,且O1D=OE,∴四边形OEDO1为平行四边形,∵∠OED=90°,∴四边形OEDO1为矩形,同理四边形O1O2HG、四边形OO2IF、四边形OECF为矩形,又OE=OF,∴四边形OECF为正方形,∵∠O1GH=∠CDO1=90°,∠ABC=60°,∴∠GO1D=120°,又∵∠FO1D=∠O2O1G=90°,∴∠OO1O2=360°﹣90°﹣90°=60°=∠ABC,同理,∠O1OO2=90°,∴△OO1O2∽△CBA,∴1212OO OABCC O OC BC∆∆==,∴12OO OC∆=15+,即圆心O运动的路径长为15+考点:1.轨迹;2.切线的性质;3.作图—复杂作图;4.综合题.学科*网22.(2017江苏省连云港市)如图,在平面直角坐标系xOy中,过点A(﹣2,0)的直线交y轴正半轴于点B,将直线AB绕着点顺时针旋转90°后,分别与x轴、y轴交于点D.C.(1)若OB=4,求直线AB的函数关系式;(2)连接BD,若△ABD的面积是5,求点B的运动路径长.【答案】(1)y=2x+4;(21112.【解析】试题分析:(1)依题意求出点B坐标,然后用待定系数法求解析式;(2)设OB=m,则AD=m+2,根据三角形面积公式得到关于m的方程,解方程求得m的值,然后根据弧长公式即可求得.试题解析:(1)∵OB=4,∴B(0,4).∵A(﹣2,0),设直线AB的解析式为y=kx+b,则420bk b,解得24kb,∴直线AB的解析式为y=2x+4;(2)设OB=m,则AD=m+2,∵△ABD的面积是5,∴12AD•OB=5,∴12(m+2)•m=5,即22100m m+-=,解得111m 或111m(舍去),∵∠BOD=90°,∴点B 的运动路径长为:1111211142.考点:1.一次函数图象与几何变换;2.轨迹;3.弧长的计算.学#科网23.(2017河北省)如图,AB=16,O为AB中点,点C在线段OB上(不与点O,B重合),将OC绕点O 逆时针旋转270°后得到扇形COD,AP,BQ分别切优弧CD于点P,Q,且点P,Q在AB异侧,连接OP.(1)求证:AP=BQ;(2)当BQ=QD的长(结果保留π);(3)若△APO的外心在扇形COD的内部,求OC的取值范围.【答案】(1)见解析;(2)143π;(3)4<OC<8.(2)∵Rt △APO ≌Rt △BQO ,∴∠AOP =∠BOQ ,∴P 、O 、Q 三点共线,∵在Rt △BOQ 中,cos B =43382QB OB==,∴∠B =30°,∠BOQ =60°,∴OQ =12OB =4,∵∠COD =90°,∴∠QOD =90°+60°=150°,∴优弧QD 的长=2104180π⨯=143π;(3)∵△APO 的外心是OA 的中点,OA =8,∴△APO 的外心在扇形COD 的内部时,OC 的取值范围为4<OC <8.考点:1.切线的性质;2.弧长的计算;3.旋转的性质.24.(2017河北省)平面内,如图,在ABCD 中,AB =10,AD =15,tan A =43.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90°得到线段PQ .(1)当∠DPQ =10°时,求∠APB 的大小;(2)当tan∠A tan A=3:2时,求点Q与点B间的距离(结果保留根号);(3)若点Q恰好落在ABCD的边所在的直线上,直接写出PB旋转到PQ所扫过的面积(结果保留π).【答案】(1)100°或80°;(2)(3)16π或20π或32π.【解析】试题分析:(1)根据点Q与点B和PD的位置关系分类讨论;(2)因为△PBQ是等腰直角三角形,所以求BQ的长,只需求PB,过点P作PH⊥AB于点H,确定BH,求得AH和BH,解直角△APH求PH,由勾股定理求PB;(2)如图2,过点P作PH⊥AB于点H,连接BQ.∵tan∠A tan A=:3:2PH PHHB AH=,∴HB=3:2.而AB=10,∴AH=6,HB=4.在Rt△PHA中,PH=AH·tan A=8,∴PQ=PB==Rt△PQB中,QBPB=(3)①点Q在AD上时,如图3,由tan A=43得,PB=AB·sin A=8,∴扇形面积为16π.②点A 在CD 上时,如图4,过点P 作PH ⊥AB 于点H ,交CD 延长线于点K ,由题意∠K =90°,∠KDP =∠A .设AH =x ,则PH =AH ·tan A =43x .∵∠BPH =∠KQP =90°-∠KPQ ,PB =QP ,∴Rt △HPB ≌Rt △KQP .∴KP =HB =10-x ,∴AP =53x,PD =()5104x -,AD =15=()551034x x +-,解得x =6.∵22280PB PH HB =+=,∴扇形的面积为20π.③点Q 在BC 延长线上时,如图5,过点B 作BM ⊥AD 于点M ,由①得BM =8.又∠MPB =∠PBQ =45°,∴PB =,∴扇形面积为32π. 所以扇形的面积为16π或20π或32π.考点:1.解直角三角形;2.勾股定理;3.扇形面积的计算;4.分类讨论;5.压轴题.25.(2017浙江省丽水市)如图,在Rt △ABC 中,∠C =Rt ∠,以BC 为直径的⊙O 交AB 于点D ,切线DE 交AC 于点E .(1)求证:∠A =∠ADE ;(2)若AD =16,DE =10,求BC 的长.【答案】(1)证明见解析;(2)15. 【解析】试题分析:(1)只要证明∠A +∠B =90°,∠ADE +∠B =90°即可解决问题;(2)连接CD .∵∠ADE =∠A ,∴AE =DE ,∵BC 是⊙O 的直径,∠ACB =90°,∴EC 是⊙O 的切线,∴ED =EC ,∴AE =EC ,∵DE =10,∴AC =2DE =20,在Rt △ADC 中,DC 12,设BD =x ,在Rt △BDC 中,BC 2=x 2+122,在Rt △ABC 中,BC 2=(x +16)2﹣202,∴x 2+122=(x +16)2﹣202,解得x =9,∴BC 15.考点:1.切线的性质;2.勾股定理.26.(2017浙江省台州市)如图,已知等腰直角三角形ABC ,点P 是斜边BC 上一点(不与B ,C 重合),PE 是△ABP 的外接圆⊙O 的直径. (1)求证:△APE 是等腰直角三角形; (2)若⊙O 的直径为2,求22PC PB +的值.【答案】(1)证明见解析;(2)4. 【解析】试题分析:(1)只要证明∠AEP =∠ABP =45°,∠P AB =90°即可解决问题;(2)作PM⊥AC于M,PN⊥AB于N,则四边形PMAN是矩形,∴PM=AN,∵△PCM,△PNB都是等腰直角三角形,∴PC=2PM,PB=2PN,∴22PC PB+=222()PM PN+ =222()AN PN+=22PA =2PE =22 =4.考点:1.三角形的外接圆与外心;2.等腰直角三角形.27.(2017湖北省襄阳市)如图,AB为⊙O的直径,C、D为⊙O上的两点,∠BAC=∠DAC,过点C做直线EF⊥AD,交AD的延长线于点E,连接BC.(1)求证:EF是⊙O的切线;(2)若DE=1,BC=2,求劣弧BC的长l.【答案】(1)证明见解析;(2)23π.【解析】试题分析:(1)连接OC,根据等腰三角形的性质得到∠OAC=∠DAC,求得∠DAC=∠OCA,推出AD∥OC,得到∠OCF=∠AEC=90°,于是得到结论;(2)连接OD,DC,∵∠DAC=12∠DOC ,∠OAC=12∠BOC,∴∠DAC=∠OAC,∵ED=1,DC=2,∴sin∠ECD=12DEDC=,∴∠ECD=30°,∴∠OCD=60°,∵OC=OD,∴△DOC是等边三角形,∴∠BOC=∠COD=60°,OC=2,∴l=602180π⨯=23π.考点:1.切线的判定与性质;2.弧长的计算.祝你考试成功!祝你考试成功!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年四川省南充市中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)如果a+3=0,那么a的值是()A.3 B.﹣3 C.D.﹣2.(3分)如图由7个小正方体组合而成的几何体,它的主视图是()A.B.C.D.3.(3分)据统计,参加南充市2016年高中阶段学校招生考试的人数为55354人,这个数用科学记数法表示为()A.0.55354×105人B.5.5354×105人C.5.5354×104人D.55.354×103人4.(3分)如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为()A.30°B.32°C.42°D.58°5.(3分)下列计算正确的是()A.a8÷a4=a2B.(2a2)3=6a6C.3a3﹣2a2=a D.3a(1﹣a)=3a﹣3a26.(3分)某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:下列说法正确的是()A.这10名同学体育成绩的中位数为38分B.这10名同学体育成绩的平均数为38分C.这10名同学体育成绩的众数为39分D.这10名同学体育成绩的方差为27.(3分)如图,等边△OAB的边长为2,则点B的坐标为()A.(1,1) B.(,1)C.(,)D.(1,)8.(3分)如图,在Rt△ABC中,AC=5cm,BC=12cm,∠ACB=90°,把Rt△ABC所在的直线旋转一周得到一个几何体,则这个几何体的侧面积为()A.60πcm2B.65πcm2C.120πcm2D.130πcm29.(3分)已知菱形的周长为4,两条对角线的和为6,则菱形的面积为()A.2 B.C.3 D.410.(3分)二次函数y=ax2+bx+c(a、b、c是常数,且a≠0)的图象如图所示,下列结论错误的是()A.4ac<b2B.abc<0 C.b+c>3a D.a<b二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)如果=1,那么m=.12.(3分)计算:|1﹣|+(π﹣)0=.13.(3分)经过某十字路口的汽车,可直行,也可向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过该十字路口时都直行的概率是.14.(3分)如图,在▱ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,且CG=2BG,S△=1,则S▱AEPH=.BPG15.(3分)小明从家到图书馆看报然后返回,他离家的距离y与离家的时间x之间的对应关系如图所示,如果小明在图书馆看报30分钟,那么他离家50分钟时离家的距离为km.16.(3分)如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2,其中正确结论是(填序号)三、解答题(共9个小题,满分72分)解答应写出必要的文字说明,证明过程或验算步骤17.(6分)化简(1﹣)÷,再任取一个你喜欢的数代入求值.18.(6分)在“宏扬传统文化,打造书香校园”活动中,学校计划开展四项活动:“A﹣国学诵读”、“B﹣演讲”、“C﹣课本剧”、“D﹣书法”,要求每位同学必须且只能参加其中一项活动,学校为了了解学生的意愿,随机调查了部分学生,结果统计如下:(1)如图,希望参加活动C占20%,希望参加活动B占15%,则被调查的总人数为人,扇形统计图中,希望参加活动D所占圆心角为度,根据题中信息补全条形统计图.(2)学校现有800名学生,请根据图中信息,估算全校学生希望参加活动A有多少人?19.(8分)如图,DE⊥AB,CF⊥AB,垂足分别是点E、F,DE=CF,AE=BF,求证:AC∥BD.20.(8分)已知关于x的一元二次方程x2﹣(m﹣3)x﹣m=0(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为x1、x2,且x12+x22﹣x1x2=7,求m的值.21.(8分)如图,直线y=kx(k为常数,k≠0)与双曲线y=(m为常数,m>0)的交点为A、B,AC⊥x轴于点C,∠AOC=30°,OA=2(1)求m的值;(2)点P在y轴上,如果S=3k,求P点的坐标.△ABP22.(8分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D,E为BC的中点,连接DE并延长交AC的延长线于点F.(1)求证:DE是⊙O的切线;(2)若CF=2,DF=4,求⊙O直径的长.23.(8分)学校准备租用一批汽车,现有甲、乙两种大客车,甲种客车每辆载客量45人,乙种客车每辆载客量30人,已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车共8辆,送330名师生集体外出活动,最节省的租车费用是多少?24.(10分)如图,在正方形ABCD中,点E、G分别是边AD、BC的中点,AF=AB.(1)求证:EF⊥AG;(2)若点F、G分别在射线AB、BC上同时向右、向上运动,点G运动速度是点F运动速度的2倍,EF⊥AG是否成立(只写结果,不需说明理由)?=S△OAB,求△PAB周长的最(3)正方形ABCD的边长为4,P是正方形ABCD内一点,当S△PAB小值.25.(10分)如图1,已知二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象过点O(0,0)和点A(4,0),函数图象最低点M的纵坐标为﹣,直线l的解析式为y=x.(1)求二次函数的解析式;(2)直线l沿x轴向右平移,得直线l′,l′与线段OA相交于点B,与x轴下方的抛物线相交于点C,过点C作CE⊥x轴于点E,把△BCE沿直线l′折叠,当点E恰好落在抛物线上点E′时(图2),求直线l′的解析式;(3)在(2)的条件下,l′与y轴交于点N,把△BON绕点O逆时针旋转135°得到△B′ON′,P 为l′上的动点,当△PB′N′为等腰三角形时,求符合条件的点P的坐标.2017年四川省南充市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)(2017•南充)如果a+3=0,那么a的值是()A.3 B.﹣3 C.D.﹣【分析】直接移项可求出a的值.【解答】解:移项可得:a=﹣3.故选B.【点评】本题考查解一元一次方程的解法.解一元一次方程常见的思路有通分,移项,左右同乘除等.2.(3分)(2017•南充)如图由7个小正方体组合而成的几何体,它的主视图是()A.B.C.D.【分析】根据主视图是从物体正面看所得到的图形解答即可.【解答】解:根据主视图的定义可知,此几何体的主视图是A中的图形,故选:A.【点评】本题考查的是简单几何体的三视图的作图,主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形.3.(3分)(2017•南充)据统计,参加南充市2016年高中阶段学校招生考试的人数为55354人,这个数用科学记数法表示为()A.0.55354×105人B.5.5354×105人C.5.5354×104人D.55.354×103人【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:55354=5.5354×104,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•南充)如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为()A.30°B.32°C.42°D.58°【分析】先利用平行线的性质得出∠3,进而利用三角板的特征求出∠4,最后利用平行线的性质即可;【解答】解:如图,过点A作AB∥b,∴∠3=∠1=58°,∵∠3+∠4=90°,∴∠4=90°﹣∠3=32°,∵a∥b,AB∥B,∴AB∥b,∴∠2=∠4=32°,故选B.【点评】此题主要考查了平行线的性质,三角板的特征,角度的计算,解本题的关键是作出辅助线,是一道基础题目.5.(3分)(2017•南充)下列计算正确的是()A.a8÷a4=a2B.(2a2)3=6a6C.3a3﹣2a2=a D.3a(1﹣a)=3a﹣3a2【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a4,不符合题意;B、原式=8a4,不符合题意;C、原式不能合并,不符合题意;D、原式=3a﹣3a2,符合题意,故选D【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.6.(3分)(2017•南充)某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:下列说法正确的是()A.这10名同学体育成绩的中位数为38分B.这10名同学体育成绩的平均数为38分C.这10名同学体育成绩的众数为39分D.这10名同学体育成绩的方差为2【分析】结合表格根据众数、平均数、中位数的概念求解即可【解答】解:10名学生的体育成绩中39分出现的次数最多,众数为39;第5和第6名同学的成绩的平均值为中位数,中位数为:=39;平均数==38.4方差=[(36﹣38.4)2+2×(37﹣38.4)2+(38﹣38.4)2+4×(39﹣38.4)2+2×(40﹣38.4)2]=1.64;∴选项A,B、D错误;故选C.【点评】本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.7.(3分)(2017•南充)如图,等边△OAB的边长为2,则点B的坐标为()A.(1,1) B.(,1)C.(,)D.(1,)【分析】先过B作BC⊥AO于C,则根据等边三角形的性质,即可得到OC以及BC的长,进而得出点B的坐标.【解答】解:如图所示,过B作BC⊥AO于C,则∵△AOB是等边三角形,∴OC=AO=1,∴Rt△BOC中,BC==,∴B(1,),故选:D.【点评】本题主要考查了等边三角形的性质以及勾股定理的运用,解题的关键是作辅助线构造直角三角形.8.(3分)(2017•南充)如图,在Rt△ABC中,AC=5cm,BC=12cm,∠ACB=90°,把Rt△ABC 所在的直线旋转一周得到一个几何体,则这个几何体的侧面积为()A.60πcm2B.65πcm2C.120πcm2D.130πcm2【分析】易利用勾股定理求得母线长,那么圆锥的侧面积=底面周长×母线长÷2.【解答】解:∵在Rt△ABC中,AC=5cm,BC=12cm,∠ACB=90°,∴由勾股定理得AB=13,∴圆锥的底面周长=10π,∴旋转体的侧面积=×10π×13=65π,故选B.【点评】本题利用了勾股定理,圆的周长公式和扇形面积公式求解.9.(3分)(2017•南充)已知菱形的周长为4,两条对角线的和为6,则菱形的面积为()A.2 B.C.3 D.4【分析】由菱形的性质和勾股定理得出AO+BO=3,AO2+BO2=AB2,(AO+BO)2=9,求出2AO•BO=4,即可得出答案.【解答】解:如图四边形ABCD是菱形,AC+BD=6,∴AB=,AC⊥BD,AO=AC,BO=BD,∴AO+BO=3,∴AO2+BO2=AB2,(AO+BO)2=9,即AO2+BO2=5,AO2+2AO•BO+BO2=9,∴2AO•BO=4,∴菱形的面积=AC•BD=2AO•BO=4;故选:D.【点评】本题考查菱形的性质、勾股定理;解题的关键是记住菱形的面积公式,记住菱形的对角线互相垂直,属于中考常考题型.10.(3分)(2017•南充)二次函数y=ax2+bx+c(a、b、c是常数,且a≠0)的图象如图所示,下列结论错误的是()A.4ac<b2B.abc<0 C.b+c>3a D.a<b【分析】根据二次函数的图象与性质即可求出答案.【解答】解:(A)由图象可知:△>0,∴b2﹣4ac>0,∴b2>4ac,故A正确;∵抛物线开口向下,∴a<0,∵抛物线与y轴的负半轴,∴c<0,∵抛物线对称轴为x=﹣<0,∴b<0,∴abc<0,故B正确;∵当x=﹣1时,y=a﹣b+c>0,∴a+c>b,∵b>2a∴a+b+c>2b>4a,b+c>3a故C正确;∵当x=﹣1时y=a﹣b+c>0,∴a﹣b+c>c,∴a﹣b>0,∴a>b,故D错误;故选(D)【点评】本题考查二次函数图象与性质,解题的关键是熟练运用二次函数的性质,本题属于中等题型,二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)(2017•南充)如果=1,那么m=2.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到m的值,经检验即可得到分式方程的解.【解答】解:去分母得:1=m﹣1,解得:m=2,经检验m=2是分式方程的解,故答案为:2【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.12.(3分)(2017•南充)计算:|1﹣|+(π﹣)0=.【分析】直接利用绝对值的性质以及零指数幂的性质分别化简求出答案.【解答】解:|1﹣|+(π﹣)0=﹣1+1=.故答案为:. 【点评】此题主要考查了实数运算,正确化简各式是解题关键.13.(3分)(2017•南充)经过某十字路口的汽车,可直行,也可向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过该十字路口时都直行的概率是 .【分析】画树状图展示所有9种等可能的结果数,再找出两辆汽车经过该十字路口都直行的结果数.然后根据概率公式求解.【解答】解:画树状图为:共有9种等可能的结果数,其中两辆汽车都直行的结果数为1,所以则两辆汽车都直行的概率为,故答案为:.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.14.(3分)(2017•南充)如图,在▱ABCD 中,过对角线BD 上一点P 作EF ∥BC ,GH ∥AB ,且CG=2BG ,S △BPG =1,则S ▱AEPH = 4 .【分析】由条件可证明四边形HPFD 、BEPG 为平行四边形,可证明S 四边形AEPH =S 四边形PFCG .,再利用面积的和差可得出四边形AEPH 和四边形PFCG 的面积相等,由已知条件即可得出答案.【解答】解:∵EF ∥BC ,GH ∥AB ,∴四边形HPFD 、BEPG 、AEPH 、CFPG 为平行四边形,∴S △PEB =S △BGP ,同理可得S △PHD =S △DFP ,S △ABD =S △CDB ,∴S △ABD ﹣S △PEB ﹣S △PHD =S △CDB ﹣S △BGP ﹣S △DFP ,即S 四边形AEPH =S 四边形PFCG .∵CG=2BG ,S △BPG =1,∴S=S四边形PFCG=4×1=4;四边形AEPH故答案为:4.【点评】本题主要考查平行四边形的判定和性质,掌握平行四边形的判定和性质是解题的关键,即①两组对边分别平行⇔四边形为平行四边形,②两组对边分别相等⇔四边形为平行四边形,③一组对边平行且相等⇔四边形为平行四边形,④两组对角分别相等⇔四边形为平行四边形,⑤对角线互相平分⇔四边形为平行四边形.15.(3分)(2017•南充)小明从家到图书馆看报然后返回,他离家的距离y与离家的时间x 之间的对应关系如图所示,如果小明在图书馆看报30分钟,那么他离家50分钟时离家的距离为0.3km.【分析】根据题意和函数图象可以求得小明从图书馆回家的速度以及对应的时间,从而可以求得他离家50分钟时离家的距离或者根据题意求出相应的函数解析式,求出当x=50时,对应的y的值即可解答本题.【解答】解:方法一:由题意可得,小明从图书馆回家用的时间是:55﹣(10+30)=15分钟,则小明回家的速度为:0.9÷15=0.06km/min,故他离家50分钟时离家的距离为:0.9﹣0.06×[50﹣(10+30)]=0.3km,故答案为:0.3;方法二:设小明从图书馆回家对应的函数解析式为y=kx+b,则该函数过点(40,0.9),(55,0),,解得,,即小明从图书馆回家对应的函数解析式为y=﹣0.06x+3.3,当x=50时,y=﹣0.06×50+3.3=0.3,故答案为:0.3.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.16.(3分)(2017•南充)如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2,其中正确结论是①②③(填序号)【分析】由四边形ABCD与四边形EFGC都为正方形,得到四条边相等,四个角为直角,利用SAS得到三角形BCE与三角形DCG全等,利用全等三角形对应边相等即可得到BE=DG,利用全等三角形对应角相等得到∠1=∠2,利用等角的余角相等及直角的定义得到∠BOD为直角,利用勾股定理求出所求式子的值即可.【解答】解:设BE,DG交于O,∵四边形ABCD和EFGC都为正方形,∴BC=CD,CE=CG,∠BCD=∠ECG=90°,∴∠BCE+∠DCE=∠ECG+∠DCE=90°+∠DCE,即∠BCE=∠DCG,在△BCE和△DCG中,,∴△BCE≌△DCG(SAS),∴BE=DG,∴∠1=∠2,∵∠1+∠4=∠3+∠1=90°,∴∠2+∠3=90°,∴∠BOC=90°,∴BE⊥DG;故①②正确;连接BD,EG,如图所示,∴DO2+BO2=BD2=BC2+CD2=2a2,EO2+OG2=EG2=CG2+CE2=2b2,则BG2+DE2=DO2+BO2+EO2+OG2=2a2+2b2,故③正确.故答案为:①②③.【点评】此题考查了全等三角形的判定与性质,正方形的性质,勾股定理,熟练掌握性质与定理是解本题的关键.三、解答题(共9个小题,满分72分)解答应写出必要的文字说明,证明过程或验算步骤17.(6分)(2017•南充)化简(1﹣)÷,再任取一个你喜欢的数代入求值.【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.【解答】解:(1﹣)÷,=(﹣),=,=,∵x﹣1≠0,x(x+1)≠0,∴x≠±1,x≠0,当x=5时,原式==.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键,注意代入的数值必须保证分式有意义.18.(6分)(2017•南充)在“宏扬传统文化,打造书香校园”活动中,学校计划开展四项活动:“A﹣国学诵读”、“B﹣演讲”、“C﹣课本剧”、“D﹣书法”,要求每位同学必须且只能参加其中一项活动,学校为了了解学生的意愿,随机调查了部分学生,结果统计如下:(1)如图,希望参加活动C占20%,希望参加活动B占15%,则被调查的总人数为60人,扇形统计图中,希望参加活动D所占圆心角为72度,根据题中信息补全条形统计图.(2)学校现有800名学生,请根据图中信息,估算全校学生希望参加活动A有多少人?【分析】(1)根据统计图中希望参加C的人数和所占的百分比可以求得被调查的总人数,进而可以求得参加活动B和D的人数,计算出希望参加活动D所占圆心角的度数,将条形统计图补充完整;(2)根据统计图中的数据可以估算全校学生希望参加活动A有多少人.【解答】解:(1)由题意可得,被调查的总人数是:12÷20%=60,希望参加活动B的人数为:60×15%=9,希望参加活动D 的人数为:60﹣27﹣9﹣12=12,扇形统计图中,希望参加活动D所占圆心角为:360°×(1﹣﹣15%﹣20%)=360°×20%=72°,故答案为:60,72,补全的条形统计图如右图所示;(2)由题意可得,800×=360,答:全校学生希望参加活动A有360人.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.19.(8分)(2017•南充)如图,DE⊥AB,CF⊥AB,垂足分别是点E、F,DE=CF,AE=BF,求证:AC∥BD.【分析】欲证明AC∥BD,只要证明∠A=∠B,只要证明△DEB≌△CFA即可.【解答】证明:∵DE⊥AB,CF⊥AB,∴∠DEB=∠AFC=90°,∵AE=BF,∴AF=BE,在△DEB和△CFA中,,△DEB≌△CFA,∴∠A=∠B,∴AC∥DB.【点评】本题考查全等三角形的判定和性质、平行线的性质和判定等知识,解题的关键是熟练掌握全等三角形的判定方法,属于中考常考题型.20.(8分)(2017•南充)已知关于x的一元二次方程x2﹣(m﹣3)x﹣m=0(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为x1、x2,且x12+x22﹣x1x2=7,求m的值.【分析】(1)要证明方程有两个不相等的实数根,只要证明原来的一元二次方程的△的值大于0即可;(2)根据根与系数的关系可以得到关于m的方程,从而可以求得m的值.【解答】(1)证明:∵x2﹣(m﹣3)x﹣m=0,∴△=[﹣(m﹣3)]2﹣4×1×(﹣m)=m2﹣2m+9=(m﹣1)2+8>0,∴方程有两个不相等的实数根;(2)∵x2﹣(m﹣3)x﹣m=0,方程的两实根为x1、x2,且x12+x22﹣x1x2=7,∴,∴(m﹣3)2﹣3×(﹣m)=7,解得,m1=1,m2=2,即m的值是1或2.【点评】本题考查根与系数的关系、根的判别式,解答本题的关键是明确题意,找出所求问题需要的条件,利用方程的思想解答.21.(8分)(2017•南充)如图,直线y=kx(k为常数,k≠0)与双曲线y=(m为常数,m >0)的交点为A、B,AC⊥x轴于点C,∠AOC=30°,OA=2(1)求m的值;=3k,求P点的坐标.(2)点P在y轴上,如果S△ABP【分析】(1)求出点A坐标利用待定系数法即可解决问题;(2)设P(0,n),由A(,1),B(﹣,﹣1),可得•|n|•+•|n|•=3×,解方程即可;【解答】解:(1)在Rt△AOC中,∵∠ACO=90°,∠AOC=30°,OA=2,∴AC=1,OC=,∴A(,1),∵反比例函数y=经过点A(,1),∴m=,∵y=kx经过点A(,1),∴k=.(2)设P(0,n),∵A(,1),B(﹣,﹣1),∴•|n|•+•|n|•=3×,∴n=±1,∴P(0,1)或(0,﹣1).【点评】本题考查反比例函数与一次函数的交点问题、待定系数法,三角形的面积等知识,解题的关键是灵活应用待定系数法确定函数的解析式,学会构建方程解决问题,属于中考常考题型.22.(8分)(2017•南充)如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D,E为BC的中点,连接DE并延长交AC的延长线于点F.(1)求证:DE是⊙O的切线;(2)若CF=2,DF=4,求⊙O直径的长.【分析】(1)连接OD、CD,由AC为⊙O的直径知△BCD是直角三角形,结合E为BC的中点知∠CDE=∠DCE,由∠ODC=∠OCD且∠OCD+∠DCE=90°可得答案;(2)设⊙O的半径为r,由OD2+DF2=OF2,即r2+42=(r+2)2可得r=3,即可得出答案.【解答】解:(1)如图,连接OD、CD,∵AC为⊙O的直径,∴△BCD是直角三角形,∵E为BC的中点,∴BE=CE=DE,∴∠CDE=∠DCE,∵OD=OC,∴∠ODC=∠OCD,∵∠ACB=90°,∴∠OCD+∠DCE=90°,∴∠ODC+∠CDE=90°,即OD⊥DE,∴DE是⊙O的切线;(2)设⊙O的半径为r,∵∠ODF=90°,∴OD2+DF2=OF2,即r2+42=(r+2)2,解得:r=3,∴⊙O的直径为6.【点评】本题主要考查切线的判定与圆周角定理、直角三角形的性质及勾股定理,熟练掌握切线的判定与圆周角定理是解题的关键.23.(8分)(2017•南充)学校准备租用一批汽车,现有甲、乙两种大客车,甲种客车每辆载客量45人,乙种客车每辆载客量30人,已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车共8辆,送330名师生集体外出活动,最节省的租车费用是多少?【分析】(1)可设1辆甲种客车的租金是x元,1辆乙种客车的租金是y元,根据等量关系:①1辆甲种客车和3辆乙种客车共需租金1240元,②3辆甲种客车和2辆乙种客车共需租金1760元,列出方程组求解即可;(2)由于求最节省的租车费用,可知租用甲种客车6辆,租用乙客车2辆,进而求解即可.【解答】解:(1)设1辆甲种客车的租金是x元,1辆乙种客车的租金是y元,依题意有,解得.故1辆甲种客车的租金是400元,1辆乙种客车的租金是280元;(2)方法1:租用甲种客车6辆,租用乙客车2辆是最节省的租车费用,400×6+280×2=2400+560=2960(元).方法2:设租用甲种客车x辆,依题意有45x+30(8﹣x)≥330,解得x≥6,租用甲种客车6辆,租用乙客车2辆的租车费用为:400×6+280×2=2400+560=2960(元);租用甲种客车7辆,租用乙客车1辆的租车费用为:400×7+280=2800+280=3080(元);2960≤3080,故最节省的租车费用是2960元.【点评】本题考查一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.24.(10分)(2017•南充)如图,在正方形ABCD中,点E、G分别是边AD、BC的中点,AF=AB.(1)求证:EF⊥AG;(2)若点F、G分别在射线AB、BC上同时向右、向上运动,点G运动速度是点F运动速度的2倍,EF⊥AG是否成立(只写结果,不需说明理由)?=S△OAB,求△PAB周长的最(3)正方形ABCD的边长为4,P是正方形ABCD内一点,当S△PAB小值.【分析】(1)由正方形的性质得出AD=AB,∠EAF=∠ABG=90°,证出,得出△AEF∽△BAG,由相似三角形的性质得出∠AEF=∠BAG,再由角的互余关系和三角形内角和定理证出∠AOE=90°即可;(2)证明△AEF∽△BAG,得出∠AEF=∠BAG,再由角的互余关系和三角形内角和定理即可得出结论;(3)过O作MN∥AB,交AD于M,BC于N,则MN⊥AD,MN=AB=4,由三角形面积关系得出点P在线段MN上,当P为MN的中点时,△PAB的周长最小,此时PA=PB,PM=MN=2,连接EG,则EG∥AB,EG=AB=4,证明△AOF∽△GOE,得出=,证出=,得出AM=AE=,由勾股定理求出PA,即可得出答案.【解答】(1)证明:∵四边形ABCD是正方形,∴AD=AB,∠EAF=∠ABG=90°,∵点E、G分别是边AD、BC的中点,AF=AB.∴=,=,∴,∴△AEF∽△BAG,∴∠AEF=∠BAG,∵∠BAG+∠EAO=90°,∴∠AEF+∠EAO=90°,∴∠AOE=90°,∴EF⊥AG;(2)解:成立;理由如下:根据题意得:=,∵=,∴,又∵∠EAF=∠ABG,∴△AEF∽△BAG,∴∠AEF=∠BAG,∵∠BAG+∠EAO=90°,∴∠AEF+∠EAO=90°,∴∠AOE=90°,∴EF⊥AG;(3)解:过O作MN∥AB,交AD于M,BC于N,如图所示:则MN⊥AD,MN=AB=4,∵P是正方形ABCD内一点,当S=S△OAB,△PAB作点A关于MN的对称点A′,连接BA′,与MN交于点P,此时△PAB的周长最小,∵PA=PA′,易证PA=PB,PM=PN,此时PA=PB,PM=MN=2,连接EG、PA、PB,则EG∥AB,EG=AB=4,∴△AOF∽△GOE,∴=,∵MN∥AB,∴=,∴AM=AE=×2=,由勾股定理得:PA==,∴△PAB周长的最小值=2PA+AB=+4.【点评】本题是四边形综合题目,考查了正方形的性质、相似三角形的判定与性质、勾股定理、三角形内角和定理、直角三角形的性质等知识;本题综合性强,有一定难度,证明三角形相似是解决问题的关键.25.(10分)(2017•南充)如图1,已知二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象过点O(0,0)和点A(4,0),函数图象最低点M的纵坐标为﹣,直线l的解析式为y=x.(1)求二次函数的解析式;(2)直线l沿x轴向右平移,得直线l′,l′与线段OA相交于点B,与x轴下方的抛物线相交于点C,过点C作CE⊥x轴于点E,把△BCE沿直线l′折叠,当点E恰好落在抛物线上点E′时(图2),求直线l′的解析式;(3)在(2)的条件下,l′与y轴交于点N,把△BON绕点O逆时针旋转135°得到△B′ON′,P 为l′上的动点,当△PB′N′为等腰三角形时,求符合条件的点P的坐标.【分析】(1)由题意抛物线的顶点坐标为(2,﹣),设抛物线的解析式为y=a(x﹣2)2﹣,把(0,0)代入得到a=,即可解决问题;(2)如图1中,设E(m,0),则C(m,m2﹣m),B(﹣m2+m,0),由E、B关于对称轴对称,可得=2,由此即可解决问题;(3)分两种情形求解即可①当P1与N重合时,△P1B′N′是等腰三角形,此时P1(0,﹣3).②当N′=N′B′时,设P(m,m﹣3),列出方程解方程即可;【解答】解:(1)由题意抛物线的顶点坐标为(2,﹣),设抛物线的解析式为y=a(x﹣2)2﹣,把(0,0)代入得到a=,∴抛物线的解析式为y=(x﹣2)2﹣,即y=x2﹣x.(2)如图1中,设E(m,0),则C(m,m2﹣m),B(﹣m2+m,0),∵E′在抛物线上,易知四边形EBE′C是正方形,抛物线的对称轴也是正方形的对称轴,∴E、B关于对称轴对称,∴=2,解得m=1或6(舍弃),∴B(3,0),C(1,﹣2),∴直线l′的解析式为y=x﹣3.(3)如图2中,①当P1与N重合时,△P1B′N′是等腰三角形,此时P1(0,﹣3).②当N′=N′B′时,设P(m,m﹣3),则有(m﹣)2+(m﹣3﹣)2=(3)2,解得m=或,∴P2(,),P3(,).综上所述,满足条件的点P坐标为(0,﹣3)或(,)或(,).【点评】本题考查二次函数综合题、待定系数法、等腰三角形的判定和性质、两点间距离公式等知识,解题的关键是学会用分类讨论的思想思考问题,学会根据方程,属于中考压轴题.。