人教版八年级上册数学三角形的边练习题
人教版八年级上册数学第11章三角形 11.1.1三角形的边 综合练习
人教版八年级上册数学第11章三角形 11.1.1三角形的边综合练习1.三角形的两边长分别为8和6,第三边长是一元一次不等式2x-1<9的正整数解,则三角形的第三边长是 .2. 已知三角形三边长分别为3,1-2a,8,则a的取值范围是( )A. 4<a<10B. 5<a<11C.-5<a<-2D.-2<a<-53. 已知a,b,c为△ABC的边长,b,c满足(b-2)2+c-3=0,且a为方程|a-4|=2的解,求△ABC的周长,并判断△ABC的形状.4. 已知a,b,c是△ABC的三边,a=4,b=6,且三角形的周长是大于14的偶数.(1)求c的值;(2)判断△ABC的形状.5.在△ABC中,AD,CE分别是△ABC的高,且AD=2,CE=4,则AB∶BC=( )A.3∶4B. 2∶1C.1∶2D. 4∶36.如图,在△ABC中,PA,PB,PC是△ABC三个内角的平分线,则∠PBC+∠PCA+∠PAB=度.7.如图,AD是△ABC的中线,DE是△ADC的高,AB=3,AC=5,DE=2,则点D到AB的距离是 .8. 一副三角板按如图所示的方式叠放在一起,则图中∠ABC= .9.如图,在△ABC中,BD是∠ABC的平分线,ED∥BC,且∠C=76°,∠A=60°,则∠BDE的度数为( )A.20°B.22°C.44°D.82°第9题图10. 一个三角形三个内角的度数比为3∶4∶5,则这个三角形一定是( )A.锐角三角形B. 钝角三角形C. 直角三角形D.等腰三角形11.在△ABC中,∠A=60°+∠B+∠C,则∠A等于( )A. 60°B. 30°C.120°D.140°12. 当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“标准三角形”,其中α为“标准角”.如果一个“标准三角形”的“标准角”为100°,那么这个“标准三角形”的最小内角度数为( )A.30°B.45°C.50°D.60°13.如图,BE,CF是△ABC的角平分线,∠ABC=80°,∠ACB=60°,BE,CF相交于D,则∠CDE的度数是( )A.60°B.70°C.80°D.50°14.如图,在△ABC中,D是AB边上一点,E是AC边上一点,BE,CD相交于F,∠A=70°,∠ACD=20°,∠ABE=28°,则∠CFE的度数为( )A.62°B. 90°C.78°D. 68°15. 已知:如图,在△ABC中,∠A=55°,F是高BE,CD的交点,求∠BFC的度数.16. 如图,在△ABC中,AD是∠BAC的平分线,AE是BC边上的高,已知∠BAC=2∠B,∠B=2∠DAE,那么∠ACB= .17. 如图,∠AOB=40°,OC平分∠AOB,直尺与OC垂直,则∠1等于 .18.如图,∠AOB=90°,点C,D分别在射线OA,OB上,CE是∠ACD的平分线,CE的反向延长线与∠CDO 的平分线交于点F.(1)若∠OCD=50°(如图1),试求∠F的度数;(2)当C,D在射线OA,OB上任意移动时(不与点O重合)(如图2),∠F的大小是否变化?若变化,请说明理由;若不变化,求出∠F的度数.19.(1)如图①,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,∠ACD与∠B有什么关系?为什么?(2)如图②,在Rt△ABC中,∠C=90°,D,E分别在AC,AB上,且∠ADE=∠B,判断△ADE的形状,为什么?(3)如图③,在Rt△ABC和Rt△DBE中,∠C=90°,∠E=90°,AB⊥BD,点C,B,E在同一直线上,∠A 与∠D有什么关系?为什么?【答案】1.3或42. C3.解:解:∵(b-2)2+c-3=0,∴b-2=0,c-3=0,∴b=2,c=3.∵|a-4|=2,∴a=6或2.当a=6,b=2,c=3时,不能构成三角形;当a=2,b=2,c=3时,周长为7,是等腰三角形.4, (1)∵6-4<c<6+4,∴2<c<10.又∵三角形的周长是大于14的偶数,∴c>4,且c为偶数,∴c=6或8.(2)当c=6时,b=c=6,a=4,此时△ABC为等腰三角形;当c=8时,b=6,a=4,此时△ABC为不等边三角形.5. C6.907. 103 8.75°9. B 10. A 11. C 12. A 13. B 14. A解析:∵∠A=70°,∠ACD=20°,∴∠ADC=90°,∴∠BDF=180°-∠ADC=90°.在△BDF中,∠BFD=180°-∠BDF-∠DBF=180°-90°-28°=62°,∴∠CFE=∠BFD=62°.15. 解:∵∠A=55°,BE⊥AC,CD⊥AB,∴∠ABE=∠ACD=180°-∠A-90°=35°,∴∠BCF+∠CBF=180°-∠A-∠ABE-∠ACD=180°-55°-35°-35°=55°,∵∠BFC+∠BCF+∠CBF=180°,∴∠BFC=125°.16. 72°17.解:70°18.. (1)∵∠AOB=90°,∠OCD=50°,∴∠CDO=40°,∠ACD=130°.∵CE是∠ACD的平分线,DF是∠CDO的平分线,∴∠ECD=65°,∠CDF=20°.∵∠DCE=180°-∠DCF,∠F+∠CDF=180°-∠DCF,∴∠ECD =∠F +∠CDF , ∴∠F =45°. (2)不变化,∠F =45°.∵∠AOB =90°, ∴∠CDO =90°-∠OCD ,易知∠ACD =180°-∠OCD . ∵CE 是∠ACD 的平分线,DF 是∠CDO 的平分线, ∴∠ECD =90°-12∠OCD ,∠CDF =45°-12∠OCD .∵∠DCE =180°-∠DCF ,∠F +∠CDF =180°-∠DCF , ∴∠ECD =∠F +∠CDF , ∴∠F =45°. 19. 解:(1)∠ACD =∠B .理由如下: ∵在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,∴∠ACD +∠DCB =90°,∠B +∠DCB =90°, ∴∠ACD =∠B . (2)△ADE 是直角三角形.∵在Rt △ABC 中,∠C =90°,D ,E 分别在AC ,AB 上,且∠ADE =∠B ,∠A 为公共角,∴∠AED =∠ACB =90°,∴△ADE 是直角三角形.(3)∠A +∠D =90°.∵在Rt △ABC 和Rt △DBE 中,∠C =90°,∠E =90°,AB ⊥BD , ∴∠ABC +∠A =∠ABC +∠DBE =∠DBE +∠D =90°,∴∠A +∠D =90°.。
11-1-1三角形的边-三角形三边关系 练习题 人教版数学八年级上册
第11章三角形--三角形三边关系精选题一.选择题(共13小题)1.用10根等长的火柴棍首尾连接拼成一个三角形(火柴棍不允许剩余、重叠和折断),这个三角形一定是()A.等边三角形B.等腰三角形C.直角三角形D.不等边三角形2.已知三角形的三边长分别为3、x、14,若x为正整数,则这样的三角形共有()个.A.2个B.3个C.5个D.7个3.下列长度的线段能组成三角形的是()A.4,7,11B.a+2,a+3,a+5(a>0)C.6,6,12D.三条线段长度的比为1:2:44.以下列各组线段为边,可组成三角形的是()A.15厘米,30厘米,45厘B.30厘米,30厘米,45厘米米C.30厘米,45厘米,75厘米D.30厘米,45厘米,90厘米5.一个三角形的三边长分别为11,13,x,那么x的取值范围是()A.2<x<13 B.11<x<13 C.11<x<24 D.2<x<246.下列各组中的三条线段不能组成三角形的是()A.a=b=n,c=2n(n>0)B.a=6,b=3,c=8C.a:b:c=2:3:4D.a=m+1,b=m+2,c=m+3(m>0)7.一个三角形的三边长分别为a,b,c,则a,b,c的值不可能是()A.3,4,5 B.5,7,7 C.10,6,4.5 D.4,5,98.已知三角形两边为3cm和5cm,则使三角形周长为偶数的第三边长可能为()A.2cm B.3cm C.4cm D.5cm9.已知四组线段的长分别如下,以各组线段为边,能组成三角形的是()A.1,2,3 B.2,5,8 C.3,4,5 D.4,5,1010.若三角形两边长分别是6、5,则第三条边c的范围是()A.2<c<9 B.3<c<10 C.10<c<18 D.1<c<1111.已知三角形的两边长分别是3和8,则此三角形的第三边长可能是()A.9 B.4 C.5 D.1312.已知一个三角形三边长为a、b、c,则|a-b-c|-|a+b-c|=()A.-2a+2c B.-2b+2c C.2a D.-2c13.以下各组长度的线段为边,能构成三角形的是()A.8cm、5cm、3cm B.6cm、8cm、15cmC.8cm、4cm、3cm D.4cm、6cm、5cm 二.填空题(共18小题)14.已知△ABC的三边长分别为a、b、c,那么|b-a-c|+|a+b-c|+|b-a+c|=________.15.一个三角形有两条边相等,已知其中一边是3cm,另一边是9cm,则这个三角形的周长是________.16.△ABC中,AB=10,BC=2,周长是偶数,则AC=________.17.设△ABC的三边长分别为a,b,c,其中a,b满足|a+b-4|+(a-b+2)2=0,则第三边的长c的取值范围是________.18.如果一个三角形的两边长分别2、8,它的第三边长为偶数,那么这个三角形的周长等于________.19.已知三角形的三边长为连续整数,且周长为18cm,则它的最短边的为________.20.已知△ABC三边长是a、b、c,化简代数式:|a+b-c|-|c-a+b|-|b-c-a|+|b-a-c|=________连接BD,AD=BD=CD=4,∠BDC=120°,E为AB的中点,则线段CE的最大值为________.22.一个三角形的两边长分别是3和7,最长边a 为偶数,则这个三角形的周长为________.23.等腰三角形一腰上的中线把它的周长分为12:9两部分,等腰三角形的周长为21,则它的腰为________.24.三角形的三边长分别是2,5,m,则|m-3|+|m-7|等于________.25.如果△ABC中,两边a=7cm,b=3cm,则第三边为奇数的所有可能值是________cm.26.若三角形的三边长分别为3,x,5,请写出x可能的整数值________.(只要写一个)27.已知a,b,c是三角形的三条边,则化简|a+b-c|-|c-a-b|=________.AB=4,∠ACB=∠ADC=90°,AD=DC.(1)若∠DAB=75°,则四边形ABCD的面积是________;(2)四边形ABCD对角线BD的最大值是________.29.设三角形的三边为a,b,c化简|a-b-c|+|b+c-a|+|c-a-b|=________.30.一个三角形的两边长为3cm和2cm,第三边长为奇数,则第三边的长为________cm.31.三角形的两条边长分别是4和9,且第三边长是奇数,则第三边长为________.三.解答题(共8小题)32.如图,已知△ABC.(1)若AB=3,AC=4,求BC的取值范围;(2)点D为BC延长线上一点,过点D作DE∥AC,交BA的延长线于点E,若∠E=60°,∠ACD=125°,求∠B的度数.33.已知a、b、c是△ABC的三边,化简:|a+b-c|+|b-a-c|-|c+b-a|=________.34.已知△ABC的三边长分别为3、5、a,化简|a+1|-|a-8|-2|a-2|.35.在△ABC中,AC=12cm,AB=8cm,那么BC的最大长度应小于多少?最小长度应满足什么条件呢?36.已知:a,b,c分别为△ABC的三条边的长度,请用所学知识说明:b2+c2-a2-2bc是正数、负数或零.37.两根木棒分别长5cm、7cm,第三根木棒与这两根木棒首尾依次相接构成三角形,如果第三根木棒的长为偶数(单位:cm),那么一共可以构成多少个不同的三角形?这些三角形的周长分别是多少?38.一个四边形的周长为48cm,已知第一条边长acm,第二条边比第一条边的2倍长3cm,第三条边等于第一,第二两条边的和.(1)求出表示第四条边长的式子;(2)当a=3cm时,还能得到四边形吗?请简要说明理由.39.a、b、c分别为△ABC的三边,且满足a+b-4c+24=0,a-b-2c+10=0.(1)求c的取值范围;(2)若△ABC的周长为21,求a、b、c的值.。
人教版八年级上册《数学》第11章三角形的边练习题(含答案)
三角形的边练习题一、能力提升1.如图,在图形中,三角形有()A.4个B.5个C.6个D.7个2.已知三角形三边长分别为2,x,13,若x为正整数,则这样的三角形个数为()A.2B.3C.5D.133.若一个三角形的两条边长分别为3和8,而第三条边长为奇数,则第三条边长为()A.5或7B.7C.9D.7或94.在△ABC中,若三条边长均为整数,周长为11,且有一条边长为4,则这个三角形最长边可能取值的最大值是()A.7B.6C.5D.45.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有对。
6.若等腰三角形的腰长为6,则它的底边长a的取值范围是。
7.用7根相同的火柴棒首尾顺次连接摆成一个三角形,能摆成的不同的三角形的个数为。
8.已知等腰三角形的两边长分别为3cm和7cm,求这个三角形的周长。
9.已知等腰三角形的周长是16cm。
(1)若其中一边的长为4cm,求另外两边的长。
(2)若其中一边的长为6cm,求另外两边的长。
10.若a,b,c是△ABC的三边长,请化简|a-b-c|+|b-c-a|+|c-a-b|。
11.已知等腰三角形的周长为20cm,设腰长为xcm。
(1)用含x的式子表示底边长。
(2)腰长x能否为5cm,为什么?(3)求x的取值范围。
二、创新应用12.在平面内,分别用3根、5根、6根、…小棒首尾依次相接,能搭成什么形状的三角形?通过尝试,形状如表所示。
……等边三角形等腰三角形等边三角形……(1)4根小棒能搭成三角形吗?(2)8根、12根小棒能搭成几种不同形状的三角形?并画出它们的示意图。
答案:一、能力提升1.B2.B由题意知2+x>13,且x<13+2,解得11<x<15,因为x为正整数,所以x可以是12、13、14.故选B。
3.D由题意知第三条边长大于5小于11.因为第三条边长为奇数,所以它的大小为7或9。
4.C由题意知三角形的三条边长分别为2、4、5或3、4、4,所以最长边可能取值的最大值为5。
11-1-1 三角形的边 随堂练习 人教版数学八年级上册
11.1.1 三角形的边一、单选题1.用集合来表示“按边把三角形分类”,下面集合正确的是()A.B.C.D.2.若长度分别为2,7,x的三条线段能组成一个三角形,则x的值可以是( )A.4B.5C.6D.93.若一个三角形的两边长分别为5和8,则第三边长可能是( )A.14B.10C.3D.24.在△ABC中,三边长分别为a、b、c,且a>b>c,若b=8,c=3,则a的取值范围是( )A.3<a<8B.5<a<11C.6<a<10D.8<a<115.如图,称有一条公共边的两个三角形为一对共边三角形,则图中的共边三角形有()对.A.8B.16C.24D.326.将一个三角形纸片剪开分成两个三角形,这两个三角形不可能()A.都是直角三角形B.都是钝角三角形C.都是锐角三角形D.是一个直角三角形和一个钝角三角形7.如图,与ABC没有公共边的三角形是()A.CDE B.BCE C.ABE D.BCD8.用若干根等长的小木棍搭建等边三角形(三边相等的三角形),搭建1个等边三角形最少需要3根小木棍,搭建2个等边三角形最少需要5根小木棍,搭建4个等边三角形最少需要小木棍的根数是()A.12B.10C.9D.69.若a、b、c是△ABC的三边的长,则化简|a-b-c|-|b-c-a|+|a+b-c|=( )A.a+b+cB.﹣a+3b﹣cC.a+b﹣cD.2b﹣2c10.一个三角形的三边长分别是xcm,(x+1)cm,(x+2)cm,它的周长不超过10cm,则x取值范围是( )A.x≤133B.1<x≤133C.x≤73D.1<x≤73二、填空题11.一个等腰三角形的两边分别为5、2.则它的周长是__________ .12.△ABC中三边长分别为a,b,c,已知a=5,b=8,则第三边c的取值范围是_____.13.现有四根木棒,长度分别为4cm、6cm、8cm、10cm,从中任取三根木棒,能组成三角形的个数为_____个.14.求三边为整数,且最大边小于16的三角形个数为_____个.15.已知△ABC的边长a,b,c满足()2240a b+=--,若c为偶数,则c的值为________.16.根据________可以判断,三条长分别为2cm、3cm、6cm的木棒不能围成一个三角形.三、解答题17.已知a,b,c分别是三角形的三条边长,试化简:|b+c﹣a|+|b﹣c﹣a|+|c﹣a﹣b|.18.在△ABC中,BC=8,AB=1;(1)若AC是整数,求AC的长;(2)已知BD是△ABC的中线,若△ABD的周长为17,求△BCD的周长.19.已知:a、b、c满足2(|0a c+-=求:(1)a、b、c的值;(2)试问以a、b、c为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.20.如果一个三角形的一边长为9cm 、另一边长为1cm ,求:(1)这个三角形的第三边的范围;(2)当第三边长为奇数时,求三角形的周长.21.阅读下列材料:解方程组:()1045x y x y y --=⎧⎪⎨--=⎪⎩①② 解:由△得x ﹣y =1 △,将△代入△,得4×1﹣y =5,解这个一元一次方程,得y =﹣1从而求得01x y =⎧⎨=-⎩. 这种思想被称为“整体思想”.请用“整体思想”解决下面问题:(1)解方程组:2320235297x y x y y --=⎧⎪-+⎨+=⎪⎩; (2)在(1)的条件下,若x ,y 是△ABC 两条边的长,且第三边的长是奇数,求△ABC 的周长.。
初中数学人教版八年级上册三角形的三边关系知识点专项训练习题
三角形的三边关系知识点专项训练习题一.选择题(共4小题)1.三角形的两边分别为6,10,则第三边的长可能等于()A.3B.11C.16D.172.给出下列长度的三条线段,能组成三角形的是()A.3cm,4cm,5cm B.8cm,7cm,15cm C.13cm,12cm,25 cm D.5cm,5cm,11cm 3.已知n是正整数,若一个三角形的三边长分别是n+2,n+6,3n,则满足条件的n值有()A.4个B.5个C.6个D.7个4.已知△ABC的三边长分别为a、b、c,且M=(a+b+c)(a+b﹣c)(a﹣b﹣c),那么()A.M>0B.M≥0C.M=0D.M<0二.填空题(共6小题)5.若三角形有两边长分别为2和5,第三边为a,则a的取值范围是.6.△ABC三边的长a、b、c均为整数,a>b>c,a=8,则满足条件的三角形共有个.7.已知三角形三边长为整数,其中两边的差为5,且周长为奇数,则第三边长的最小值为.8.等腰三角形的一边等于3,一边等于6,则它的周长等于.9.a,b,c为△ABC的三边,化简|a﹣b﹣c|﹣|a+b﹣c|+2a结果是.10.若△ABC的三边的长AB=5,BC=2a+1,AC=3a﹣1,则a的取值范围为.三.解答题(共7小题)11.已知a,b,c分别为△ABC的三边,且满足a+b=3c﹣2,a﹣b=2c﹣6.(1)求c的取值范围;(2)若△ABC的周长为12,求c的值.12.在△ABC中,AB=9,BC=2,AC=x.(1)求x的取值范围;(2)若△ABC的周长为偶数,则△ABC的周长为多少?13.已知三角形的两边长为4和6,第三条边长x最小.(1)求x的取值范围;(2)当x为何值时,组成三角形周长最大?最大值是多少?14.已知a,b,c是三角形的三边长.(1)化简:|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a﹣b|;(2)在(1)的条件下,若a=10,b=8,c=6,求这个式子.15.已知△ABC中,三边长a、b、c,且满足a=b+2,b=c+1(1)试说明b一定大于3;(2)若这个三角形周长为22,求a、b、c.16.“五一”黄金周,小梦一家计划从家B出发,到景点C旅游,由于BC之间是条湖,无法通过,如图所示只有B﹣A﹣C和B﹣P﹣C两条路线,哪一条比较近?为什么?(提示:延长BP交AC于点D)17.如图,△ABC中,点D在AC上,点P在BD上,求证:AB+AC>BP+CP.参考答案一.选择题(共4小题)1.解:设第三边的长为x,根据三角形的三边关系得:10﹣6<x<10+6,即4<x<16,则第三边的长可能等于:11.故选:B.2.解:根据三角形任意两边的和大于第三边,得A中,3+4=7>5,能组成三角形;B中,8+7=15,不能组成三角形;C中,13+12=25,不能够组成三角形;D中,5+5=10<11,不能组成三角形.故选:A.3.解:①若n+2<n+6≤3n,则,解得:3≤n<8,∴正整数n有5个:3,4,5,6,7;②若n+2≤3n≤n+6,则,解得:<n≤3,∴正整数n有2个:2和3;综上所述,满足条件的n的值有6个,故选:C.4.解:∵△ABC的三边长分别为a、b、c,且M=(a+b+c)(a+b﹣c)(a﹣b﹣c),∴a+b+c>0,a+b﹣c>0,a﹣b﹣c<0,∴M<0.故选:D.二.填空题(共6小题)5.解:5﹣2<a<5+2,∴3<a<7.故答案为:3<a<7.6.解:根据已知条件和三角形的三边关系,得当a=8,b=7时,则c=6或5或4或3或2;当a=8,b=6时,则c=5或4或3;当a=8,b=5时,则c=4.则满足条件的三角形共有9个.故答案为:9.7.解:∵三角形三边中某两条边长之差为5,∴设其中一边为x,则另一边为x+5,第三边为y,∴此三角形的周长为:x+x+5+y=2x+y+5,∵三角形周长为奇数,∴y是偶数,∵5<y<x+x+5,∴y的最小值为6.故答案为:6.8.解:当3为腰,6为底时,3+3=6,不能构成等腰三角形;当6为腰,3为底时,3+6>6,能构成等腰三角形,周长为3+6+6=15.故答案为:15.9.解:∵a,b,c为△ABC的三边,∴a+b>c,b+c>a,∴原式=c+b﹣a﹣(a+b﹣c)+2a=c+b﹣a﹣a﹣b+c+2a=2c.故答案为:2c.10.解:∵△ABC的三边的长AB=5,BC=2a+1,AC=3a﹣1,∴①,解得1<a<7;②,解得a>1,则2a+1<3a﹣1.∴1<a<7.故答案为:1<a<7.三.解答题(共7小题)11.解:(1)∵a,b,c分别为△ABC的三边,a+b=3c﹣2,a﹣b=2c﹣6,∴,解得:2<c<6.故c的取值范围为2<c<6;(2)∵△ABC的周长为12,a+b=3c﹣2,∴a+b+c=4c﹣2=12,解得c=3.5.故c的值是3.5.12.解:(1)由题意知,9﹣2<x<9+2,即7<x<11;(2)∵7<x<11,∴x的值是8或9或10,∴△ABC的周长为:9+2+8=19(舍去).或9+2+9=20或9+2+10=21(舍去)即该三角形的周长是20.13.解:(1)由三角形的构造条件,得2<x<10,∵x为最小,∴x的取值范围是2<x≤4.(2)当x=4时,三角形的周长最大,且最大值是4+6+4=14.14.解:(1)∵a,b,c是三角形的三边长,∴b+c>a,c+a>b,a+b>c,∴a﹣b﹣c<0,b﹣c﹣a<0,c﹣a﹣b<0,|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a﹣b|=b+c﹣a+c+a﹣b+a+b﹣c=a+b+c,(2)把a=10,b=8,c=6,代入a+b+c=10+8+6=24.15.解:(1)∵a=b+2,b=c+1,∴b=a﹣2,b=c+1,∴a﹣2=c+1,a﹣c=3,∴b一定大于3;(2)∵b=c+1,∴c=b﹣1,∴b+2+b+b﹣1=22,解得b=7,∴a=b+2=9,c=b﹣1=6.16.解:如图,延长BP交AC于点D.∵△ABD中,AB+AD>BD=BP+PD,△CDP中,PD+CD>CP,∴AB+AD+PD+CD>BP+PD+CP,即AB+AD+CD>BP+CP,∴AB+AC>BP+CP,∴B﹣P﹣C路线较近.17.证明:在△ABD中,AB+AD>BD,在△PDC中,CD+PD>PC,∴AB+AD+CD+PD>BD+PC∴AB+AC>BP+CP.1234。
11-1-1 三角形的边同步练习2022-2023学年人教版八年级数学上册
11.1.1 三角形的边班级 姓名一.选择题1.如图,若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC 边为公共边的“共边三角形”有 ( )A.2对 B .3对 C .4对 D.6对2.如图,为估计池塘两岸A ,B 间的距离,数学试验小组在池塘一侧选取了一点P ,测得PA =16 m ,PB =12 m ,则A ,B 间的距离不可能是 ( )A.5 m B .15 m C. 20 m D .28 m3.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为 ( )A. 12 B .15 C .12或15 D .184.如果线段a ,b ,c 能组成三角形,那么它们的长度比可能是 ( )A. 1 : 2 : 4 B .1 : 3 : 4 C .3 : 4 : 7 D .2 : 3: 45.如果三角形的两边长分别是4、5,那么周长c 的范围是 ( )A. 1<c <9 B .9<c <14 C .10<c <18 D .无法确定6.若以4cm 长的线段为底边作一个等腰三角形,则腰长x 的取值范围是 ( )A .x>4 cmB .x>2 cmC .x ≥ 4 cm D. x ≥ 2 cm7.在等腰三角形ABC 中,AB=AC ,其周长为20 cm ,则AB 边的取值范围是 ( )A. 1cm<AB<4 cmB. 5cm<AB<10 cmC. 4cm<AB<8 cmD. 4cm<AB<10 cm8. 长为9,6,5,4的四根木条,选其中三根组成三角形,选法有 ( )A.1种 B .2种 C .3种 D .4种二.填空题9.两根木棒的长分别为7 cm 和10 cm ,要选择第三根木棒,将它们钉成一个三角形的框架,那么第三根木棒的长x (单位:cm)的范围是 。
10.三角形的两边长分别为2和6,且第三边的长是整数,则第三边的长是。
人教版八年级数学上册《三角形边或角关系》专项练习题-附含答案
人教版八年级数学上册《三角形边或角关系》专项练习题-附含答案几何探究类问题一直属于考试压轴题范围 在三角形这一章 压轴题主要考查是证明角的数量关系 或者三角形的三边和差关系等 接来下我们针对这两个版块做出详细分析与梳理。
类型一、燕尾角模型例1.在社会实践手工课上 小茗同学设计了一个形状如图所示的零件 如果52,25A B ︒︒∠=∠= 30,35,72C D E ︒︒︒∠=∠=∠= 那么F ∠的度数是( ).A .72︒B .70︒C .65︒D .60︒【答案】A 【详解】延长BE 交CF 的延长线于O 连接AO 如图∵180,OAB B AOB ∠+∠+∠=︒ ∵180,AOB B OAB ∠=︒-∠-∠同理得180,AOC OAC C ∠=︒-∠-∠∵360,AOB AOC BOC ∠+∠+∠=︒∵360BOC AOB AOC ∠=︒-∠-∠ 360(180)(180)B OAB OAC C =︒-︒-∠-∠-︒-∠-∠107,B C BAC =∠+∠+∠=︒∵72,BED ∠=︒∵180108,DEO BED ∠=︒-∠=︒∵360DFO D DEO EOF ∠=︒-∠-∠-∠ 36035108107110,=︒-︒-︒-︒=︒∵180********DFC DFO ∠=︒-∠=︒-︒=︒ 故选:A .【变式训练1】如图 若115EOC ∠=︒ 则A B C D E F ∠+∠+∠+∠+∠+∠=____________.【答案】230°【详解】解:如图∵∵EOC =∵E +∵2=115° ∵2=∵D +∵C ∵∵E +∵D +∵C =115°∵∵EOC =∵1+∵F =115° ∵1=∵A +∵B ∵∵A +∵B +∵F =115°∵∵A +∵B +∵C +∵D +∵E +∵F =230° 故答案为:230°.【变式训练2】如右图 ∵A +∵B +∵C +∵D +∵E +∵F +∵G +∵H =__.【答案】360°【详解】解:由图形可知:∵BNP =∵A +∵B ∵DPQ =∵C +∵D ∵FQM =∵E +∵F ∵HMN =∵G +∵H ∵∵BNP +∵DPQ +∵FQM +∵HMN =360°∵∵A +∵B +∵C +∵D +∵E +∵F +∵G +∵H =∵BNP +∵DPQ +∵FQM +∵HMN =360°.故答案为:360°.【变式训练3】如图 求∵A +∵B +∵C +∵D +∵E +∵F +∵G +∵H +∵I =__.【答案】900°【详解】解:连EF GI 如图∵6边形ABCDEFK 的内角和=(6-2)×180°=720°∵∵A +∵B +∵C +∵D +∵E +∵F =720°-(∵1+∵2)即∵A +∵B +∵C +∵D +∵E +∵F +(∵1+∵2)=720°∵∵1+∵2=∵3+∵4 ∵5+∵6+∵H =180°∵∵A +∵B +∵C +∵D +∵E +∵F ∵H +(∵3+∵4)=900°∵∵A +∵B +∵C +∵D +∵E +∵F (∵3+∵4)+∵5+∵6+∵H =720°+180°∵∵A +∵B +∵C +∵D +∵E +∵F +∵G +∵H +∵I =900°故答案为:900°.【变式训练4】模型规律:如图1 延长CO 交AB 于点D 则1BOC B A C B ∠=∠+∠=∠+∠+∠.因为凹四边形ABOC 形似箭头 其四角具有“BOC A B C ∠=∠+∠+∠”这个规律 所以我们把这个模型叫做“箭头四角形”.模型应用(1)直接应用:①如图2 60,20,30A B C ∠=︒∠=︒∠=︒ 则BOC ∠=__________︒;②如图3 A B C D E F ∠+∠+∠+∠+∠+∠=__________︒;(2)拓展应用:①如图4 ABO ∠、ACO ∠的2等分线(即角平分线)1BO 、1CO 交于点1O 已知120BOC ∠=︒ 50BAC ∠=︒ 则1BO C ∠=__________︒;②如图5 BO 、CO 分别为ABO ∠、ACO ∠的10等分线1,2,3,,(,)89i =⋯.它们的交点从上到下依次为1O 、2O 、3O 、…、9O .已知120BOC ∠=︒ 50BAC ∠=︒ 则7BO C ∠=__________︒;③如图6 ABO ∠、BAC ∠的角平分线BD 、AD 交于点D 已知120,44BOC C ∠=︒∠=︒ 则ADB =∠__________︒;④如图7 BAC ∠、BOC ∠的角平分线AD 、OD 交于点D 则B 、C ∠、D ∠之同的数量关系为__________.【答案】(1)①110;②260;(2)①85;②110;③142;④∵B -∵C +2∵D =0【详解】解:(1)①∵BOC =∵A +∵B +∵C =60°+20°+30°=110°;②∵A +∵B +∵C +∵D +∵E +∵F =∵BOC +∵DOE =2×130°=260°;(2)①∵BO 1C =∵BOC -∵OBO 1-∵OCO 1=∵BOC -12(∵ABO +∵ACO )=∵BOC -12(∵BOC -∵A )=∵BOC -12(120°-50°)=120°-35°=85°;②∵BO 7C =∵BOC -17(∵BOC -∵A )=120°-17(120°-50°)=120°-10°=110°; ③∵ADB =180°-(∵ABD +∵BAD )=180°-12(∵BOC -∵C )=180°-12(120°-44°)=142°;④∵BOD =12∵BOC =∵B +∵D +12∵BAC∵BOC =∵B +∵C +∵BAC联立得:∵B -∵C +2∵D =0.类型二、折叠模型例1.如图 在ABC 中 46C ∠=︒ 将ABC 沿直线l 折叠 点C 落在点D 的位置 则12∠-∠的度数是( ).A .23︒B .92︒C .46︒D .无法确定【答案】B【详解】解:由折叠的性质得:46D C ∠=∠=︒根据外角性质得:13C ∠=∠+∠ 32D ∠=∠+∠则1222292C D C ∠=∠+∠+∠=∠+∠=∠+︒ 则1292∠-∠=︒.故选:B .【变式训练1】如图 将∵ABC 纸片沿DE 折叠 使点A 落在点A '处 且A 'B 平分∵ABC A 'C 平分∵ACB若∵BA 'C =120° 则∵1+∵2的度数为( )A .90°B .100°C .110°D .120°【答案】D【详解】解:如图 连接AA ' ∵A 'B 平分∵ABC A 'C 平分∵ACB∵∵A'BC=12∵ABC∵A'CB=12∵ACB∵∵BA'C=120° ∵∵A'BC+∵A'CB=180°-120°=60°∵∵ABC+∵ACB=120° ∵∵BAC=180°-120°=60°∵沿DE折叠∵∵DAA'=∵DA'A∵EAA'=∵EA'A∵∵1=∵DAA'+∵DA'A=2∵DAA' ∵2=∵EAA'+∵EA'A=2∵EAA'∵∵1+∵2=2∵DAA'+2∵EAA'=2∵BAC=2×60°=120°故选:D.【变式训练2】如图把∵ABC沿EF对折叠合后的图形如图所示.若∵A=55° ∵1=95° 则∵2的度数为().A.14︒B.15︒C.28︒D.30【答案】B【详解】解:∵∵A=55°∵∵AEF+∵AFE=180°-55°=125°∵∵FEB+∵EFC=360°-125°=235°由折叠可得:∵B′EF+∵EFC′=∵FEB+∵EFC=235° ∵∵1+∵2=235°-125°=110°∵∵1=95°∵∵2=110°-95°=15°故选:B .【变式训练3】如图 将∵ABC 沿着DE 翻折 使B 点与B'点重合 若∵1+∵2=80° 则∵B 的度数为( )A .20°B .30°C .40°D .50°【答案】C【详解】由折叠的性质可知','BED B ED BDE B DE ∠=∠∠=∠∵1'180,2'180BED B ED BDE B DE ∠+∠+∠=︒∠+∠+∠=︒ ∵11(36012)(36080)14022BED BDE ∠+∠=︒-∠-∠=⨯︒-︒=︒∵180()18014040B BED BDE ∠=︒-∠+∠=︒-︒=︒故选C【变式训练4】如图 将矩形纸片ABCD 沿EF 折叠 点C 落在边AB 上的点H 处点D 落在点G 处若111GEF ∠=︒ 则AHG ∠的度数为( ).A .42°B .69°C .44°D .32°【答案】A【详解】由图形翻折的性质可知 111GEF DEF ∠=∠=︒180111AEF ∴∠=︒-︒=69︒1116942AEG GEF AEF ∠=∠-∠=︒-︒=︒90A G ∠=∠=︒ 利用“8”字模型42AHG AEG ∴∠=∠=︒故选:A .类型三、“8”字模型例1.如图 BP 平分ABC ∠ 交CD 于点F DP 平分ADC ∠交AB 于点E AB 与CD 相交于点G 42A ∠=︒.(1)若60ADC ∠=︒ 求AEP ∠的度数;(2)若38C ∠=︒ 求P ∠的度数.【答案】(1)72︒;(2)40︒.【详解】解:(1)∵DP 平分∵ADC ∵∵ADP=∵PDF=12ADC ∠∵60ADC ∠=︒∵30ADP ∠=︒∵304272AEP ADP A ∠=∠+∠=︒+︒=︒;(2)∵BP 平分∵ABC DP 平分∵ADC∵∵ADP=∵PDF ∵CBP=∵PBA∵∵A+∵ADP=∵P+∵ABP∵C+∵CBP=∵P+∵PDF∵∵A+∵C=2∵P∵∵A=42° ∵C=38° ∵∵P=12(38°+42°)=40°.【变式训练1】如图 求∵A +∵B +∵C +∵D +∵E +∵F +∵G +∵H +∵K 的度数.【答案】540°【详解】解:如图所示:由三角形的外角的性质可知:∵A +∵B =∵IJL ∵C +∵D =∵MLJ ∵H +∵K =∵GIJ ∵E +∵F =∵GML ∵∵A +∵B +∵C +∵D +∵E +∵F +∵G +∵H +∵K =∵IJL +∵MLJ +∵GML +∵G +∵GIJ =(5-2)×180°=3×180°=540°.【变式训练2】(1)已知:如图①的图形我们把它称为“8字形” 试说明:A B C D ∠+∠=∠+∠.(2)如图② AP CP 分别平分BAD ∠ BCD ∠ 若36ABC ∠=︒ 16ADC ∠=︒ 求P ∠的度数.(3)如图(3) 直线AP 平分BAD ∠ CP 平分BCD ∠的外角BCE ∠ 猜想P ∠与B 、D ∠的数量关系是__;(4)如图(4) 直线AP 平分BAD ∠的外角FAD ∠ CP 平分BCD ∠的外角BCE ∠ 猜想P ∠与B 、D ∠的数量关系是________.【答案】(1)见解析;(2)26°;(3)()1902P B D ∠=︒+∠+∠;(4)()11802P B D ∠=︒-∠+∠ 【详解】解:(1)A B AOB ∠+∠+∠=180° C D COD ∠+∠+∠=180° A B AOB C D COD ∴∠+∠+∠=∠+∠+∠.AOB COD ∠=∠ A B C D ∴∠+∠=∠+∠;(2)AP CP 分别平分BAD ∠ BCD ∠ 设BAP PAD x ∠=∠= BCP PCD y ∠=∠=则有x ABC y P x P y ADC +∠=+∠⎧⎨+∠=+∠⎩ABC P P ADC ∴∠-∠=∠-∠ ()1122P ABC ADC ∴∠=∠+∠=(36°+16°)=26°(3)直线AP 平分BAD ∠ CP 平分BCD ∠的外角BCE ∠1=2PAB PAD BAD ∴∠=∠∠ 1=2PCB PCE BCE ∠=∠∠ ∵2PAB B ∠+∠=180°-2PCB D ∠+∠ ∵180°()2PAB PCB D B -∠+∠+∠=∠∵∵P +∵P AD =∵PCD +∵D ∵BAD +∵B =∵BCD +∵D ∵=P PAD BAD B PCD BCD ∠+---∠∠∠∠∠ ,P PAB B PCB ∴∠-∠-∠=∠∵P B PAB PCB ∠-=∠+∠∠∵180°()2P B D B -∠-∠+∠=∠即P ∠=90°()12B D +∠+∠.(4)连接PB PD直线AP 平分BAD ∠的外角FAD ∠ CP 平分BCD ∠的外角BCE ∠FAP PAO ∴∠=∠ PCE PCB ∠=∠∵APB PBA PAB +∠+∠=∠180° PCB PBC BPC +∠+∠=∠180°∵APC ABC PCB PAB ∠+∠+∠+=∠360°同理得到:APC ADC PCD PAD ∠+∠+∠+=∠360°∵2APC ABC ADC PCB PAB PCD PAD ∠+∠+∠+∠++∠+=∠∠720°∵2APC ABC ADC PCE PAB PCD PAF ∠+∠+∠+∠++∠+=∠∠720°∵=PCE PCD ∠+∠180° =PAB PAF +∠∠180°∵2APC ABC ADC ∠+∠+∠=360° APC ∴∠=180°-()12ABC ADC ∠+∠。
人教版数学八年级上册第11章11.1.1三角形的边同步练习(解析版)
人教版数学八年级上册第11章11.1.1三角形的边同步练习一、单选题(共12题;共24分)1、在△ABC中,AB=6,AC=8,则BC边上中线AD的取值范围为()(提示:可以构造平行四边形)A、2<AD<14B、1<AD<7C、6<AD<8D、12<AD<162、已知等腰三角形的腰和底的长分别是一元二次方程x2﹣4x+3=0的根,则该三角形的周长可以是()A、5B、7C、5或7D、103、等腰三角形的底和腰是方程x2﹣6x+8=0的两根,则这个三角形的周长为()A、8B、10C、8或10D、不能确定4、已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A、5B、10C、11D、125、下列各组数据能作为一个等腰三角形各边长的是()A、1,1,2B、4,2,4C、2,3,4D、3,3,76、平行四边形的两条对角线长分别为8cm和10cm,则其边长的范围是()A、2<x<6B、3<x<9C、1<x<9D、2<x<87、平行四边形的对角线长为x、y,一边长为11,则x、y的值可能是()A、8和14B、10和8C、10和32D、12和148、平行四边形的两条对角线长和一条边的长可以依次是()A、4、4、4B、6、4、4C、6、4、6D、3、4、59、平行四边形一边的长是10cm,那么它的两条对角线长可以是()A、4、6cmB、6、8cmC、8、12cmD、20、30cm10、分别以下列各组数一个三角形的三边长,其中能构成直角三角形的是()A、B、C、D、2,3,411、平行四边形ABCD中对角线AC和BD交于点O,AC=6,BD=8,平行四边形ABCD较大的边长是m,则m取值范围是()A、2<m<14B、1<m<7C、5<m<7D、2<m<712、下列叙述中:①任意一个三角形的三条高至少有一条在此三角形内部;②以a,b,c为边(a,b,c都大于0,且a+b>c)可以构成一个三角形;③一个三角形内角之比为3:2:1,此三角形为直角三角形;④有两个角和一条边对应相等的两个三角形全等;正确的有()个.A、1B、2C、3D、4二、填空题(共5题;共6分)13、已知△ABC是等腰三角形,其边长为3和7,△DEF≌△ABC,则△DEF的周长是________.14、在△ABC中,AB=6,AC=2,AD是BC边上的中线,则AD的取值范围是________.15、已知△ABC中,AB=10cm,AC=12cm,AD为边BC上的中线,求中线AD的取值范围________.16、AD是△ABC的边BC上的中线,AB=6,AC=4,则边BC的取值范围是________,中线AD的取值范围是________.17、已知等腰三角形的周长为18,设底边长为x,腰长为y,则y与x之间的函数关系式为:________ (要求写出自变量x的取值范围).三、解答题(共5题;共25分)18、在△ABC中,AB=AC,AC上的中线BD把△ABC的周长分别24和18两部分,求三角形三边的长.19、已知等腰三角形的周长是14cm.若其中一边长为4cm,求另外两边长.20、已知三角形三边长分别为a、b、c,其中a、b满足(a﹣6)2+|b﹣8|=0,求这个三角形最长边c的取值范围.21、在等腰△ABC中,三边分别为a、b、c,其中a=5,若关于x的方程x2+(b+2)x+6﹣b=0有两个相等的实数根,求△ABC的周长.22、如图,线段AB=CD,AB与CD相交于O,且AC与BD不平行,∠AOC=60°,判断AC+BD与AB的大小关系,并说明理由.答案解析部分一、单选题1、【答案】B【考点】三角形三边关系,平行四边形的判定与性质【解析】【解答】解:延长AD至点E,使AD=ED,连接BE、CE.∵点D是BC的中点,∴BD=CD,∴四边形ABEC是平行四边形(对角线互相平分的四边形是平行四边形),∴CE=AB(平行四边形的对边相等),在△ACE中,CE﹣AC<AE<CE+AC,即2<2AD<14,1<AD<7.故选B.【分析】作辅助线(延长AD至点E,使AD=ED)构建平行四边形2、【答案】B【考点】三角形三边关系,等腰三角形的性质【解析】【解答】解:解方程x2﹣4x+3=0,(x﹣1)(x﹣3)=0解得x1=3,x2=1;∵当底为3,腰为1时,由于3>1+1,不符合三角形三边关系,不能构成三角形;∴等腰三角形的底为1,腰为3;∴三角形的周长为1+3+3=7.故选:B.【分析】先通过解方程求出等腰三角形两边的长,然后利用三角形三边关系确定等腰三角形的腰和底的长,进而求出三角形的周长.3、【答案】B【考点】三角形三边关系,等腰三角形的性质【解析】【解答】解:∵方程x2﹣6x+8=0的解是x=2或4,·(1)当2为腰,4为底时,2+2=4不能构成三角形;·(2)当4为腰,2为底时,4,4,2能构成等腰三角形,周长=4+4+2=10.故选:B.【分析】先求出方程的根,再根据三角形三边关系确定是否符合题意,然后求解.4、【答案】B【考点】三角形三边关系【解析】【解答】解:根据三角形的三边关系,得第三边大于:8﹣3=5,而小于:3+8=11.则此三角形的第三边可能是:10.故选:B.【分析】根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值范围,再进一步选择.5、【答案】B【考点】三角形三边关系,等腰三角形的判定【解析】【解答】解:A、因为1+1=2,所以本组数据不可以构成等腰三角形;故本选项错误;B、因为4﹣4<2<4+4,所以本组数据可以构成等腰三角形;故本选项正确;C、因为这个三角形没有一组相等的边,所以构不成等腰三角形;故本选项错误;D、因为3+3<7,所以本组数据不可以构成等腰三角形;故本选项错误;故选B.【分析】根据三角形的三边关系对以下选项进行一一分析、判断.6、【答案】C【考点】三角形三边关系,平行四边形的性质【解析】【解答】解:如图,∵平行四边形的两条对角线长分别为8cm和10cm,∴OA=4cm,OB=5cm,∴1<AB<9,即其边长的取值范围是:1<x<9.故选:C.【分析】首先根据题意画出图形,然后由平行四边形的性质得出OA=4cm,OB=5cm,利用三角形的三边关系,即可求得答案.7、【答案】D【考点】三角形三边关系,平行四边形的性质【解析】【解答】解:因为平行四边形的对角线互相平分,一边与两条对角线的一半构成三角形,所以根据三角形的三边关系进行判断:A、根据三角形的三边关系可知:4+7=11,不能构成三角形,故此选项错误;B、5+4<11,不能构成三角形,故此选项错误;C、5+16>11,11+5=16,不能构成三角形,故此选项错误;D、6+7=13>11,能构成三角形,故此选项正确.故选:D.【分析】根据平行四边形的性质知,平行四边形的对角线互相平分,则对角线的一半和已知的边组成三角形,再利用三角形的三边关系可逐个判断即可.8、【答案】B【考点】三角形三边关系,平行四边形的性质【解析】【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,A、OA=2,OB=2,2、2、4不满足三角形的三边关系,不能组成三角形,故本选项错误;B、OA=3,OB=2,3、2、4满足三角形的三边关系,能组成三角形,故本选项正确;C、OA=3,OB=2,3、2、6不满足三角形的三边关系,不能组成三角形,故本选项错误;D、OA=1.5,OB=2,1.5、2、5不满足三角形的三边关系,不能组成三角形,故本选项错误.故选B.【分析】平行四边形的对边相等,对角线互相平分,平行四边形的一边和两条对角线的一半构成三角形,满足三角形中第三边大于两边之差,小于两边之和,由此结合选项即可作出判断.9、【答案】D【考点】三角形三边关系,平行四边形的性质【解析】【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,A、∵2+3<10,不能够成三角形,故此选项错误;B、4+3<10,不能够成三角形,故此选项错误;C、4+6=10,不能构成三角形,故此选项错误;D、10+10>15,能够成三角形,故此选项正确;故选:D.【分析】平行四边形的这条边和两条对角线的一半构成三角形,应该满足第三边大于两边之差小于两边之和才能构成三角形.10、【答案】B【考点】三角形三边关系【解析】【解答】解:根据勾股定理的立逆定理,∵,∴A不符合;∵,∴B符合;∵,∴C不符合;∵,∴D不符合;故选B.【分析】如果三角形三边符合“ ”,那么这个三角形是直角三角形;则只需要计算每个选项中,较小的两边长的平方的和是否等于第三边长的平方.11、【答案】B【考点】三角形三边关系,平行四边形的性质【解析】【解答】解:如图所示:∵四边形ABCD是平行四边形,∴OA= AC=3,OD= BD=4,在△AOD中,由三角形的三边关系得:4﹣3<AD<4+3,∴1<AD<7.故选:B.【分析】根据平行四边形的对角线互相平分,即可求得OA与OD的值,又由三角形的三边关系,即可求得答案.12、【答案】C【考点】三角形的角平分线、中线和高,三角形三边关系,三角形内角和定理,全等三角形的判定【解析】【解答】解:∵锐角三角形的三条高都在三角形的内部,直角三角形有一条高在三角形的内部,两条在三角形的两边上,钝角三角形的一条高在三角形的内部,两条高在三角形的外部,∴①正确;∵当a=2,b=c=1时,满足a+b>c,但是边长为1、1、2不能组成三角形,∴②错误;∵设三角形的三角为3x°,2x°,x°,∴由三角形的内角和定理得:3x+2x+x=180,∴x=30,3x=90,即三角形是直角三角形,∴③正确;∵有两个角和一条边对应相等的两个三角形全等,∴④正确;故选C.【分析】锐角三角形的三条高都在三角形的内部,直角三角形有一条高在三角形的内部,两条在三角形的两边上,钝角三角形的一条高在三角形的内部,两条高在三角形的外部,根据以上内容即可判断①;举出反例a=2,b=c=1,满足a+b>c,但是边长为1、1、2不能组成三角形,即可判断②;设三角形的三角为3x°,2x°,x°,由三角形的内角和定理得:3x+2x+x=180,求出3x=90,得出三角形是直角三角形,即可判断③;根据有两个角和一条边对应相等的两个三角形全等即可判断④.二、填空题13、【答案】17【考点】三角形三边关系,全等三角形的性质,等腰三角形的性质【解析】【解答】解:当3为腰时,3+3=6,∵6<7,∴3、3、7不能组成三角形;当7为腰时,3+7=10,∵7<10,∴3、7、7能组成三角形.∴△ABC的周长为3+7+7=17.又∵△DEF≌△ABC,∴△DEF的周长是17.故答案为:17.【分析】根据等腰三角形的性质结合三角形三边关系即可得出等腰三角形的三边长为3、7、7,再根据全等三角形的性质结合三角形的周长即可得出结论.14、【答案】2<AD<4【考点】三角形三边关系,全等三角形的判定与性质【解析】【解答】解:延长AD至E,使DE=AD,连接CE.在△ABD和△ECD中,,∴△ABD≌△ECD(SAS),∴CE=AB.在△ACE中,CE﹣AC<AE<CE+AC,即4<2AD<8,2<AD<4.故答案为:2<AD<4.【分析】延长AD至E,使DE=AD,连接CE.根据SAS证明△ABD≌△ECD,得CE=AB,再根据三角形的三边关系即可求解.15、【答案】1cm<AD<11cm【考点】三角形三边关系,全等三角形的判定与性质【解析】【解答】解:过点D作DE∥AB交AC于点E,如图所示.∵AD是BC边上的中线,∴BD=CD.∵DE∥AB,∴DE是△ABC的中位线,∴AE= =6,DE= =5.∵在△ADE中:AE﹣DE<AD<AE+DE,∴6﹣5<AD<6+5,∴1<AD<11.故答案为:1cm<AD<11cm.【分析】过点D作DE∥AB交AC于点E,根据AD是BC边上的中线可得出BD=CD,由平行线的性质可得出DE是△ABC的中位线,进而得出AE、DE的长度,再根据三角形的三边关系即可得出中线AD的取值范围.16、【答案】2<BC<10;1<AD<5【考点】三角形三边关系,全等三角形的判定与性质【解析】【解答】解:∵在△ABC中,AB=6,AC=4,∴6﹣4<BC<6+4,∴2<BC<10;延长AD到E,使AD=DE,连接BE,如图所示:∵AD为中线,∴BD=DC,在△ADC和△EDB中,,∴△ADC≌△EDB(SAS),∴AC=BE=4,在△ABE中,AB=6,BE=4,∴6﹣4<AE<6+4,∴2<2AD<10,∴1<AD<5,故答案为:2<BC<10,1<AD<5.【分析】根据三角形的三边关系定理求出BC的范围即可;延长AD到E,使AD=DE,连接BE,证三角形全等,推出BE=AC=6,在三角形ABE中,根据三角形的三边关系定理求出即可.17、【答案】y=﹣x+9(0<x<9)【考点】函数关系式,函数自变量的取值范围,三角形三边关系,等腰三角形的性质【解析】【解答】解:由已知得:y=﹣x+9,三角形的三边关系式可得:,解得:0<x<9.则y与x之间的函数关系式为y=﹣x+9(0<x<9).故答案为:y=﹣x+9(0<x<9).【分析】根据三角形的周长公式结合等腰三角形的周长为48厘米,即可得出腰长y关于底边长x的函数解析式,再由三角形的三边关系即可得出关于x的一元一次不等式组,解不等式组即可得出x的取值范围.三、解答题18、【答案】解:如图,设AB=AC=a,BC=b,则有a+a=24且a+b=18;或a+a=18且a+b=24,得到a=16,b=10或a=12,b=18,这时三角形的三边长分别为16,16,10和12,12,18.它们都能构成三角形.【考点】三角形三边关系【解析】【分析】结合题意画出图形,利用三角形的中线的定义,以及三角形的周长和三角形的三边关系求三角形三边的长.19、【答案】解:若4cm长的边为底边,设腰长为xcm,则4+2x=14,解得x=5,若4cm长的边为腰,设底边为xcm,则2×4+x=14,解得x=6.两种情况都成立.所以等腰三角形另外两边长分别为5cm、5cm或4cm、6cm【考点】三角形三边关系,等腰三角形的性质【解析】【分析】题中只给出了三角形的周长和一边长,没有指出它是底边还是腰,所以应该分两种情况进行分析.20、【答案】解:∵(a﹣6)2+|b﹣8|=0,∴a﹣6=0,b﹣8=0,∴a=6,b=8,b﹣a<c<a+b,这个三角形的最长边c,c>b=8,8<c<14【考点】三角形三边关系,平方的非负性,绝对值的非负性【解析】【分析】根据算术平方根与绝对值的和为0,可得算术平方根与绝对值同时为0,可得a、b的值,根据三角形两边之和大于第三边,两边之差小于第三边,可得答案.21、【答案】解:∵关于x的方程x2+(b+2)x+6﹣b=0有两个相等的实数根,∴△=(b+2)2﹣4(6﹣b)=0,即b2+8b﹣20=0;解得b=2,b=﹣10(舍去);①当a为底,b为腰时,则2+2<5,构不成三角形,此种情况不成立;②当b为底,a为腰时,则5﹣2<5<5+2,能够构成三角形;此时△ABC的周长为:5+5+2=12;答:△ABC的周长是12【考点】根与系数的关系,三角形三边关系,等腰三角形的性质【解析】【分析】若一元二次方程有两个相等的实数根,则根的判别式△=0,据此可求出b的值;进而可由三角形三边关系定理确定等腰三角形的三边长,即可求得其周长.22、【答案】证明:把CD沿CA方向、距离为AC长度平移到AE,连接BE、DE,如图,则AC=ED,AE∥CD,∵∠AOC=60°,AB=CD,∴∠EAB=60°,CD=AE=AB,∴△ABE为等边三角形,在△DBE中,ED+BD>EB,则有AC+BD>AB【考点】平行线的性质,三角形三边关系,等边三角形的判定与性质【解析】【分析】根据三角形的三边关系:两边之和大于第三边,及平移的基本性质可得.。
人教版八年级上册数学:《11.1.1三角形的边》同步练习及答案
清大教育三角形的边试题一、选择题1.三角形是( )A .连接任意三角形组成的图形B .由不在同一条直线上的三条线段首尾顺次相接所组成的的图形C .由三条线段组成的图形D .以上说法均不对2.若△ABC 三条边的长度分别为m,n,p,且()02=-+-p n n m ,则这个三角形为( )A .等腰三角形 B.等边三角形C .直角三角形 D.等腰直角三角形3.试用学过的知识判断,下列说法正确的是( )A .一个直角三角形一定不是等腰三角形B .一个等腰三角形一定不是锐角三角形C .一个等腰三角形一定不是等腰三角形D .一个等腰三角形一定不是钝角三角形4.下列长度的三条线段能组成三角形的是( )A .1,2,3 B.2,2,4 C.3,4,5 D.3,4,85.一个三角形的两边长分别为3cm 和7cm,则此三角形第三边长可能是( )A .3cm B.4 cm C. 7 cm D.11cm6.一个三角形的两边长分别为3和5,第三边长是偶数,则第三边长可以是( )A .2 B.3 C.4D.87.)如图1,M 是铁丝AD 的中点,将该铁丝首尾相接折成△ABC ,且∠B=30°,∠C=100°,如图2.则下列说法正确的是( )A .点M 在AB 上B .点M 在BC 的中点处C .点M 在BC 上,且距点B 较近,距点C 较远D .点M 在BC 上,且距点C 较近,距点B 较远8.)如图1为图2中三角柱ABCEFG 的展开图,其中AE 、BF 、CG 、DH 是三角柱的边.若图1中,AD=10,CD=2,则下列何者可为AB 长度?( )A .2B .3C .4D .5 (第7题) (第8题) (第9题)二、填空题9.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC 为公共边的“共边三角形”有________对10.已知△ABC 的一个外角为50°,则△ABC 一定是________三角形11.若等腰三角形两边长分别为3和5,则它的周长是_______________.12.如图,C 在三角形中所对的边是________________.13.用7根火柴首尾顺次相接摆成一个三角形,能摆成_______个不同的三角形.14.如图,在图1中互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10个……则在第n 个图形中,互不重叠的三角形共有__________个(用含n 的代数式表示).15.用12根火柴棒(等长)拼成一个三角形,火柴棒不允许剩余,重叠和折断,则能摆出不同的三角形的个数有__________ .16.如图,图1中共有3个三角形,图2中共有6个三角形,图3中共有10个三角形,…,以此类推,则图6中共有 __________ 个三角形.17.如图,直角ABC 的周长为2008,在其内部有五个小直角三角形,则这五个小直角三角形的周长为 __________.18.平面上有5个点,其中任意三点都不在同一条直线上,则这些点共可组成__________个不同的三角形.三、解答题19.如图,△ABC 是某村一遍若干亩土地的示意图,在党的“十六大”精神的指导下,为进一步加大农村经济结构调整的力度,某村决定把这块土地平均分给四位“花农”种植,请你帮他们分一分,提供两种分法.要求:画出图形,并简要说明分法.。
人教版八年级数学上册《三角形的三边、高线、中线及角平分线》专项练习题-附含答案
人教版八年级数学上册《三角形的三边、高线、中线及角平分线》专项练习题-附含答案考点一三角形的稳定性考点二三角形的三边关系考点三三角形的高线考点四三角形的中线考点五三角形的角平分线考点一三角形的稳定性例题:(2021·广西·南宁十四中七年级期末)下列图形中没有运用三角形稳定性的是()A.B.C.D.【答案】B【解析】【分析】利用三角形的稳定性解答即可.【详解】解:对于A、C、D选项都含有三角形故利用了三角形的稳定性;而B选项中用到了四边形的不稳定性.故选B.【点睛】本题主要考查了三角形的稳定性需理解稳定性在实际生活中的应用;明确能体现出三角形的稳定性则说明物体中必然存在三角形是解题关键.【变式训练】1.(2022·吉林吉林·二模)如图人字梯中间设计一“拉杆” 在使用梯子时固定拉杆会增加安全性.这样做蕴含的数学道理是()A.三角形具有稳定性B.两点之间线段最短C.经过两点有且只有一条直线D.垂线段最短【答案】A【解析】【分析】人字梯中间设计一“拉杆”后变成一个三角形稳定性提高.【详解】三角形的稳定性如果三角形的三条边固定那么三角形的形状和大小就完全确定了三角形的这个特征叫做三角形的稳定性.故选A【点睛】本题考查三角形的稳定性理解这一点是本题的关键.2.(2022·广东·佛山市惠景中学七年级期中)如图所示的自行车架设计成三角形这样做的依据是三角形具有___.【答案】稳定性【解析】【分析】根据是三角形的稳定性即可求解.【详解】解:自行车的主框架采用了三角形结构这样设计的依据是三角形具有稳定性故答案为:稳定性.【点睛】本题考查的是三角形的性质掌握三角形具有稳定性是解题的关键.考点二三角形的三边关系例题:(2022·黑龙江·哈尔滨市风华中学校七年级期中)下列各组长度的线段为边能构成三角形的是().A.123B.345C.4511D.633【答案】B【解析】【分析】比较三边中两较小边之和与较大边的大小即可得到解答.【详解】解:A、1+2=3不符合题意;B、3+4>5符合题意;C、4+5<11不符合题意;D、3+3=6不符合题意;故选B.【点睛】本题考查构成三角形的条件熟练掌握三角形的三边关系是解题关键.【变式训练】1.(2022·黑龙江·哈尔滨市第六十九中学校七年级期中)下列各组长度的三条线段能够组成三角形的是()A.348B.5611C.5610D.1073【答案】C【解析】【分析】根据三角形三边关系可直接进行排除选项.解:A、3+4<8不符合三角形三边关系故不能构成三角形;B、5+6=11不符合三角形三边关系故不能构成三角形;C、5+6>10符合三角形三边关系故能构成三角形;D、3+7=10不符合三角形三边关系故不能构成三角形;故选C.【点睛】本题主要考查三角形三边关系熟练掌握三角形三边关系是解题的关键.2.(2022·海南·海口市第十四中学七年级阶段练习)在△ABC中三条边长分别为3和6第三边长为奇数那么第三边的长是()A.5或7B.7或9C.3或5D.9【答案】A【解析】【分析】先求出第三边长的取值范围再根据条件具体确定符合条件的值即可.【详解】解:因为三条边长分别为3和6所以6-3<第三边<6+3所以3<第三边<9因为第三边长为奇数∴第三边的长为5或7故选:A.【点睛】本题考查了三角形的三边关系掌握三角形任意两边之和大于第三边任意两边之差小于第三边是解题的关键.3.(2022·江苏·南师附中新城初中七年级期中)已知三角形三边长分别为3x14若x为正整数则这样的三角形个数为()A.4B.5C.6D.7【解析】【分析】直接根据三角形的三边关系求出x的取值范围进而可得出结论.【详解】解:三角形三边长分别为3x14x<<.x143143∴-<<+即1117x为正整数12x=13141516即这样的三角形有5个.故选:B.【点睛】本题考查的是三角形的三边关系熟知三角形两边之和大于第三边两边之差小于第三边是解答此题的关键.考点三三角形的高线例题:(2022·重庆市育才中学七年级阶段练习)下列各组图形中BD是ABC的高的图形是()A.B.C.D.【答案】B【解析】【分析】三角形的高即从三角形的顶点向对边引垂线顶点和垂足间的线段.根据概念即可得到答案.【详解】解:根据三角形高的定义可知只有选项B中的线段BD是∴ABC的高故选:B.【点睛】考查了三角形的高的概念掌握高的作法是解题的关键.【变式训练】1.(2022·浙江杭州·中考真题)如图 CD ∴AB 于点D 已知∴ABC 是钝角 则( )A .线段CD 是ABC 的AC 边上的高线B .线段CD 是ABC 的AB 边上的高线C .线段AD 是ABC 的BC 边上的高线 D .线段AD 是ABC 的AC 边上的高线【答案】B【解析】【分析】根据高线的定义注意判断即可.【详解】∴ 线段CD 是ABC 的AB 边上的高线∴A 错误 不符合题意;∴ 线段CD 是ABC 的AB 边上的高线∴B 正确 符合题意;∴ 线段AD 是ACD 的CD 边上的高线∴C 错误 不符合题意;∴线段AD 是ACD 的CD 边上的高线∴D 错误 不符合题意;故选B .【点睛】本题考查了三角形高线的理解 熟练掌握三角形高线的相关知识是解题的关键.2.(2022·湖南怀化·七年级期末)如图 在直角三角形ABC 中 90ACB ∠=︒ AC =3BC =4 AB =5则点C 到AB 的距离为______.【答案】125【解析】【分析】根据面积相等即可求出点C 到AB 的距离.【详解】解:∴在直角三角形ABC 中 90ACB ∠=︒ ∴1122AC BC AB CD ⨯=⨯ ∴AC =3 BC =4 AB =5 ∴1134522CD ⨯⨯=⨯⨯ ∴CD =125故答案为:125. 【点睛】本题考查求直角三角形斜边上的高 用面积法列出关系式是解题关键.3.(2022·重庆·七年级期中)如图 点A 、点B 是直线l 上两点 10AB = 点M 在直线l 外 6MB = 8MA = 90AMB ∠=︒ 若点P 为直线l 上一动点 连接MP 则线段MP 的最小值是______.【答案】4.8【解析】【分析】根据垂线段最短可知:当MP AB ⊥时 MP 有最小值 再利用三角形的面积可列式计算求解MP 的最小值.【详解】解:当MP AB ⊥时 MP 有最小值10AB = 6MB = 8MA = 90AMB ∠=︒AB MP AM BM ∴⋅=⋅即1068MP =⨯解得 4.8MP =.故答案为:4.8.【点睛】本题主要考查垂线段最短 三角形的面积 找到MP 最小时的P 点位置是解题的关键.考点四 三角形的中线例题:(2021·广西·靖西市教学研究室八年级期中)如图 已知BD 是∴ABC 的中线 AB =5 BC =3 且∴ABD 的周长为12 则∴BCD 的周长是_____.【答案】10【解析】【分析】先根据三角形的中线、线段中点的定义可得AD CD = 再根据三角形的周长公式即可求出结果.【详解】 解:BD 是ABC 的中线 即点D 是线段AC 的中点AD CD ∴=5AB = ABD △的周长为1212AB BD AD ∴++= 即512BD AD ++=解得:7BD AD +=7BD CD ∴+=则BCD △的周长是3710BC BD CD ++=+=.故答案为:10.【点睛】本题主要考查了三角形的中线、线段中点的定义等知识点 掌握线段中点的定义是解题关键.【变式训练】1.(2022·陕西·西安市曲江第一中学七年级期中)在ABC 中 BC 边上的中线AD 将ABC 分成的两个新三角形的周长差为5cm AB 与AC 的和为11cm 则AC 的长为________.【答案】3cm 或8cm【解析】【分析】根据三角形的中线的定义可得BD CD = 然后求出ABD △与ADC 的周长差是AB 与AC 的差或AC 与AB 的差 然后代入数据计算即可得解.【详解】如图1 图2∴AD 是BC 边上的中线∴BD CD =∴中线AD 将ABC 分成的两个新三角形的周长差为5cm∴()()5AB BD AD AC CD AD ++-++=或()()5AC CD AD AB BD AD ++-++=∴5AB AC -=或者5AC AB -=∴AB 与AC 的和为11cm∴11AB AC +=∴83AB AC =⎧⎨=⎩或38AB AC =⎧⎨=⎩故答案为:3cm 或8cm .【点睛】本题考查了三角形的中线熟记概念并求出两个三角形的周长的差等于两边长的差是解题的关键.2.(2022·江苏·泰州市第二中学附属初中七年级阶段练习)如图D E分别是∴ABC边AB BC上的点AD=2BD BE=CE设∴ADF的面积为S1∴FCE的面积为S2若S△ABC=16则S1-S2的值为_________.【答案】8 3【解析】【分析】S△ADF−S△CEF=S△ABE−S△BCD所以求出三角形ABE的面积和三角形BCD的面积即可因为AD=2BD BE=CE且S△ABC=16就可以求出三角形ABE的面积和三角形BCD的面积.【详解】解:∴BE=CE∴BE=12BC∴S△ABC=16∴S△ABE=12S△ABC=8.∴AD=2BD S△ABC=16∴S△BCD=13S△ABC=163∴S△ABE−S△BCD=(S1+S四边形BEFD)−(S2+S四边形BEFD)=S1−S2=8 3故答案为83.【点睛】本题考查三角形的面积关键知道当高相等时面积等于底边的比据此可求出三角形的面积然后求出差.3.(2022·江苏·苏州市相城实验中学七年级期中)如图AD 是∴ABC 的中线BE 是∴ABD 的中线EF ⊥BC 于点F.若24ABCS=BD =4则EF 长为___________.【答案】3【解析】【分析】因为S △ABD =12S △ABC S △BDE =12S △ABD ;所以S △BDE =14S △ABC 再根据三角形的面积公式求得即可. 【详解】解:∴AD 是∴ABC 的中线 S △ABC =24∴S △ABD =12S △ABC =12同理 BE 是∴ABD 的中线 612BDE ABD SS ==∴S △BDE =12BD •EF∴12BD •EF =6 即1462EF ⨯⨯= ∴EF =3.故答案为:3.【点睛】此题考查了三角形的面积 三角形的中线特点 理解三角形高的定义 根据三角形的面积公式求解 是解题的关键.考点五 三角形的角平分线例题:(2022·全国·八年级)如图 在ABC 中 90CAB ∠=︒ AD 是高 CF 是中线 BE 是角平分线 BE 交AD 于G 交CF 于H 下列说法正确的是( )①AEG AGE ∠=∠;②BH CH =;③2EAG EBC ∠=∠;④ACF BCF S S =A.①③B.①②③C.①③④D.②③④【答案】C【解析】【分析】①根据∴CAB=90° AD是高可得∴AEG=90°−∴ABE∴DGB=90°−∴DBG又因为BE是角平分线可得∴ABE=∴DBE故能得到∴AEG=∴DGB再根据对顶角相等即可求证该说法正确;②因为CF是中线BE是角平分线得不到∴HCB=∴HBC故该说法错误;③∴EAG+∴DAB=90° ∴DBA+∴DAB=90° 可得∴EAG=∴DBA因为∴DBA=2∴EBC故能得到该说法正确;④根据中线平分面积可得该说法正确.【详解】解:①∴∴CAB=90° AD是高∴∴AEG=90°−∴ABE∴DGB=90°−∴DBG∴BE是角平分线∴∴ABE=∴DBE∴∴AEG=∴DGB∴∴DGB=∴AGE∴∴AEG=∴AGE故该说法正确;②因为CF是中线BE是角平分线得不到∴HCB=∴HBC故该说法错误;③∴∴EAG+∴DAB=90° ∴DBA+∴DAB=90°∴∴EAG=∴DBA∴∴DBA=2∴EBC∴∴EAG=2∴EBC故该说法正确;④根据中线平分面积可得S△ACF=S△BCF故该说法正确.故选:C.【点睛】本题考查了三角形的高中线角平分线的性质解题的关键是熟练掌握各线的特点和性质.【变式训练】1.(2022·全国·八年级)如图在∴ABC中∴C=90° D E是AC上两点且AE=DE BD平分∴EBC那么下列说法中不正确的是()A.BE是∴ABD的中线B.BD是∴BCE的角平分线C.∴1=∴2=∴3D.S△AEB=S△EDB【答案】C【解析】【分析】根据三角形中线、角平分线的定义逐项判断即可求解.【详解】解:A、∴AE=DE∴BE是∴ABD的中线故本选项不符合题意;B、∴BD平分∴EBC∴BD是∴BCE的角平分线故本选项不符合题意;C、∴BD平分∴EBC∴∴2=∴3但不能推出∴2、∴3和∴1相等故本选项符合题意;D、∴S△AEB=12×AE×BC S△EDB=12×DE×BC AE=DE∴S△AEB=S△EDB故本选项不符合题意;故选:C【点睛】本题主要考查了三角形中线、角平分线的定义熟练掌握三角形中连接一个顶点和它的对边的中点的线段叫做三角形的中线;三角形的一个角的平分线与这个角的对边相交连接这个角的顶点和交点的线段叫三角形的角平分线是解题的关键.2.(2022·全国·八年级)如图AD BE CF依次是ABC的高、中线和角平分线下列表达式中错误的是( )A .AE =CEB .∴ADC =90° C .∴CAD =∴CBE D .∴ACB =2∴ACF【答案】C【解析】【分析】 根据三角形的高、中线和角平分线的定义(1)三角形的角平分线定义:三角形的一个角的平分线与这个角的对边相交 连接这个角的顶点和交点的线段叫做三角形的角平分线;(2)三角形的中线定义:在三角形中 连接一个顶点和它所对边的中点的连线段叫做三角形的中线;(3)三角形的高定义:从三角形一个顶点向它的对边(或对边所在的直线)作垂线 顶点和垂足间的线段叫做三角形的高线 简称为高.求解即可.【详解】解:A 、BE 是△ABC 的中线 所以AE =CE 故本表达式正确;B 、AD 是△ABC 的高 所以∴ADC =90 故本表达式正确;C 、由三角形的高、中线和角平分线的定义无法得出∴CAD =∴CBE 故本表达式错误;D 、CF 是△ABC 的角平分线 所以∴ACB =2∴ACF 故本表达式正确.故选:C .【点睛】本题考查了三角形的高、中线和角平分线的定义 是基础题 熟记定义是解题的关键.3.(2021·全国·八年级课时练习)填空:(1)如图(1),,AD BE CF 是ABC 的三条中线 则2AB =______ BD =______ 12AE =______. (2)如图(2),,AD BE CF 是ABC 的三条角平分线 则1∠=______ 132∠=______ 2ACB ∠=______.【答案】 AF 或BF CD AC 2∠ ABC ∠ 4∠【解析】【分析】(1)根据三角形的中线定义:三角形一边的中点与此边所对顶点的连线叫做三角形的中线可得E 、F 、D 分别是AC 、AB 、BC 上的中点 进而得到答案.(2)根据角平分线定义 从一个角的顶点出发 把这个角分成两个相等的角的射线 叫做这个角的平分线即可解答.【详解】解:(1)∴CF 是AB 边上的中线∴AB =2AF =2BF ;∴AD 是BC 边上的中线∴BD =CD∴BE 是AC 边上的中线∴AE =12AC(2)∴AD 是BAC ∠的角平分线∴12∠=∠∴BE 是ABC ∠的角平分线 ∴132∠=ABC ∠ ∴CF 是ACB ∠的角平分线∴2ACB ∠=4∠.故答案为:AF 或BF ;CD ;AC ;2∠;ABC ∠;4∠【点睛】此题主要考查了三角形的中线、角平分线解题的关键是掌握三角形的中线及角平分线的定义.一、选择题1.(2022·黑龙江·哈尔滨市风华中学校七年级期中)画ABC的BC边上的高正确的是()A.B.C.D.【答案】A【解析】【分析】利用三角形的高线的定义判断即可.【详解】解:画△ABC的BC边上的高即过点A作BC边的垂线.∴只有选项A符合题意故选:A.【点睛】本题考查了三角形高线的画法从三角形的一个顶点向对边作垂线顶点与垂足间的线段叫做三角形的高线锐角三角形的三条高线都在三角形的内部钝角三角形的高有两条在三角形的外部.直角三角形的高线有两条是三角形的直角边.2.(2022·山东潍坊·七年级期末)在数学实践课上小亮经研究发现:在如图所示的ABC中连接点A和BC上的一点D线段AD等分ABC的面积则AD是ABC的().A.高线B.中线C.角平分线D.对角线【答案】B【解析】【分析】直接利用三角形中线的性质即可得出结果.【详解】解:∴线段AD等分∴ABC的面积∴∴ABD的面积等于∴ACD的面积∴两个三角形的高为同一条高∴BD=CD∴AD为∴ABC的中线故选:B.【点睛】题目主要考查三角形中线的性质理解三角形中线将三角形分成两个面积相同的三角形是解题关键.3.(2022·河北保定外国语学校一模)能用三角形的稳定性解释的生活现象是()A.B.C.D.【答案】C【解析】【分析】根据各图所用到的直线、线段有关知识即可一一判定【详解】解:A、利用的是“两点确定一条直线” 故该选项不符合题意;B、利用的是“两点之间线段最短” 故该选项不符合题意;C、窗户的支架是三角形利用的是“三角形的稳定性” 故该选项符合题意;D、利用的是“垂线段最短” 故该选项不符合题意;故选:C【点睛】本题考查了两点确定一条直线、两点之间线段最短、三角形的稳定性、垂线段最短的应用结合题意和图形准确确定所用到的知识是解决本题的关键.4.(2022·山东青岛·七年级期末)如图BD是ABC的边AC上的中线AE是ABD△的边BD上的中线BF是ABE△的边AE上的中线若ABC的面积是32则阴影部分的面积是()A.9B.12C.18D.20【答案】B【解析】【分析】利用中线等分三角形的面积进行求解即可.【详解】∴BD是ABC的边AC上的中线∴11321622ABD BCD ABCS S S===⨯=△△∴AE是ABD△的边BD上的中线∴1116822ABE ADE ABDS S S===⨯=又∴BF 是ABE △的边AE 上的中线 则CF 是ACE 的边AE 上的中线 ∴118422BEF ABF ABE S S S ===⨯= 182CEF ACF ADE CED ACE S S S S S =====则4812BEF CEF S SS =+=+=阴影故选:B .【点睛】 本题考查了中线的性质 清晰明确三角形之间的等量关系 进行等量代换是解题的关键.5.(2021·江苏·无锡市侨谊实验中学三模)如图为一张锐角三角形纸片ABC 小明想要通过折纸的方式折出如下线段:①BC 边上的中线AD ②BC 边上的角平分线AE ③BC 边上的高AF .根据所学知识与相关活动经验可知:上述三条线中 所有能够通过折纸折出的有( )A .①②B .①③C .②③D .①②③【答案】D【解析】【分析】 根据三角形中线 角平分线和高的定义即可判断.【详解】沿着A 点和BC 中点的连线折叠 其折痕即为BC 边上的中线 故①符合题意;折叠后使B 点在AC 边上 且折痕通过A 点 则其折痕即为BC 边上的角平分线 故②符合题意; 折叠后使B 点在BC 边上 且折痕通过A 点 则其折痕即为BC 边上的高 故③符合题意;故选D . 【点睛】本题考查三角形中线 角平分线和高的定义.掌握各定义是解题关键.二、填空题6.(2022·湖南邵阳·八年级期末)若ABC 的三条边长分别为3cm xcm 4cm 则x 的取值范围______.【答案】17x <<##71x >>【解析】【分析】根据三角形的三边关系进行求解即可.【详解】解:根据“三角形任意两边之和大于第三边 任意两边之差小于第三边”可得到4343x -<<+∴17x <<.故答案为:17x <<.【点睛】本题主要考查三角形三边关系 熟记“三角形任意两边之和大于第三边 任意两边之差小于第三边”是解答此类题目的关键.7.(2022·云南红河·八年级期末)已知a b c 、、是ABC ∆的三边长 a b 、满足()2610a b -+-= c 为偶数则c =_______.【答案】6【解析】【分析】根据非负数的性质列式求出a 、b 的值 再根据三角形的任意两边之和大于第三边 两边之差小于第三边求出c 的取值范围 再根据c 是偶数求出c 的值.【详解】解:∴a b 满足()2610a b -+-=∴a -6=0 b -1=0解得a =6 b =1∴6-1=5 6+1=7∴5<c <7又∴c 为偶数∴c =6故答案为:6【点睛】本题考查非负数的性质:偶次方 解题的关键是明确题意 明确三角形三边的关系.8.(2021·北京市陈经纶中学分校八年级期中)随着人们物质生活的提高手机成为一种生活中不可缺少的东西手机很方便携带但唯一的缺点就是没有固定的支点.为了解决这一问题某工厂研制生产了一种如图所示的手机支架.把手机放在上面就可以方便地使用手机这是利用了三角形的______.【答案】三角形的稳定性【解析】【分析】利用三角形的稳定性的性质直接回答即可.【详解】解:把手机放在上面就可以方便地使用手机这是利用了三角形的稳定性故答案为:三角形的稳定性.【点睛】本题考查了三角形的稳定性解题的关键是掌握三角形具有稳定性.9.(2022·北京市师达中学七年级阶段练习)如图AB∴BD 于点B AC∴CD 于点C且AC 与BD 交于点E已知AE=10DE=5CD=4则AB 的长为_________.【答案】8【解析】【分析】根据三角形高的定义可判断出边上的高然后利用三角形面积求解即可.【详解】解:∴AB∴BD AC∴CD∴AB 是∴ADE 的边DE 上的高 CD 是边AE 上的高∴S △AED =1122DE AB AE CD ⋅=⋅ ∴10485AE CD AB DE ⋅⨯=== 故答案为:8.【点睛】本题考查三角形高的定义 三角形的面积等知识 掌握基本概念是解题关键 学会用面积法求线段的长. 10.(2022·全国·八年级专题练习)如图 在ABC 中 2AB AC == P 是BC 边上的任意一点 PE AB ⊥于点E PF AC ⊥于点F .若ABC S = 则PE PF +=______.【解析】【分析】 根据1122ABC ABP APC S S S AB PE AC PF =+=⋅+⋅ 结合已知条件 即可求得PE PF +的值. 【详解】解:如图 连接APPE AB ⊥于点E PF AC ⊥于点F1122ABC ABP APC S S S AB PE AC PF ∴=+=⋅+⋅2AB AC == ABC S =∴1122AB PE AC PF ⋅+⋅PE PF =+=【点睛】本题考查了三角形的高掌握三角形的高的定义是解题的关键.三、解答题11.(2022·全国·八年级)在∴ABC中BC=8AB=1;(1)若AC是整数求AC的长;(2)已知BD是∴ABC的中线若∴ABD的周长为17求∴BCD的周长.【答案】(1)8(2)24【解析】【分析】(1)根据三角形三边关系“两边之和大于第三边两边之差小于第三边”得7<AC<9根据AC是整数得AC=8;(2)根据BD是∴ABC的中线得AD=CD根据∴ABD的周长为17和AB=1得AD+BD=16即可得.(1)解:由题意得:BC﹣AB<AC<BC+AB∴7<AC<9∴AC是整数∴AC=8.(2)解:如图所示∴BD是∴ABC的中线∴AD=CD∴∴ABD的周长为17∴AB +AD +BD =17∴AB =1∴AD +BD =16∴∴BCD 的周长=BC +BD +CD =BC +AD +CD =8+16=24.【点睛】本题考查了三角形 解题的关键是掌握三角形三边的关系和三角形的中线.12.(2022·全国·八年级专题练习)已知:a 、b 、c 满足2(|0a c -=求:(1)a 、b 、c 的值;(2)试问以a 、b 、c 为边能否构成三角形?若能构成三角形 求出三角形的周长;若不能构成三角形 请说明理由.【答案】(1)a = 5b = c =(2)能构成三角形 周长为(51【解析】【分析】(1)根据非负数之和等于零 则每个非负数等于零 分别建立方程求解即可;(2)先比较长三边的大小 再用较小两边之和与最大边比较即可判断能够构成三角形;然后计算三角形的周长即可.(1)解:∴(20a ≥ 0 0c -≥a 、b 、c 满足(20a c -=∴0a = 50b -= 0c -解得a = 5b = c =(2)解:∴81825<<∴5即a c b <<∴5=>∴能构成三角形三角形的周长)5551a b c =++===. 【点睛】本题考查了非负数的性质 二次根式有意义的条件和构成三角形的条件 解题的关键是根据非负数之和等于零的条件分别建立方程和如何判定三边能否构成三角形.13.(2022·四川·威远中学校七年级期中)(1)已知一个三角形的两边长分别是4cm 、7cm 则这个三角形的周长的取值范围是什么?(2)在等腰三角形ABC 中 AB =AC 周长为14cm BD 是AC 边上的中线 △ABD 比△BCD 周长长4cm 求△ABC 各边长.【答案】(1)14<c <22;(2)AB =6 AC =6 BC =2.【解析】【分析】(1)根据三角形三边关系 先求出三角形第三边长的范围 即可求出周长范围.(2)根据三角形中线的定义可得,AD CD = 从而可得4,AB BC -=再根据ABC 的周长是14 以及,AB AC = 可得214AB BC +=进行计算即可解答. 【详解】解:(1)设第三边长为x 根据三角形的三边关系得7474,x ∴-<<+3,x ∴<<11∴三角形的周长C 的取值范围为:1422.c <<(2)如图所示:∴BD是AC边上的中线,AD CD∴=∴△ABD比△BCD周长长4cm()()4,AB AD BD BC CD BD∴++-++=4,AB BC∴-=4,BC AB∴=-ABC的周长是1414,AB AC BC∴++=,AB AC=214,AB BC∴+=2414,AB AB∴+-=6,AB∴=6,AB AC∴==2.BC∴=【点睛】本题主要考查了三角形三边关系等腰三角形的性质熟练掌握等腰三角形的性质是解题的关键.14.(2022·河北邯郸·七年级阶段练习)如图在直角三角形ABC中∴BAC=90° AD是BC边上的高CE 是AB边上的中线AB=12cm BC=20cm AC=16cm求:(1)AD的长;(2)∴BCE的面积.【答案】(1)485;(2)48.【解析】【分析】(1)利用面积法得到12AD•BC=12AB•AC然后把AB=12cm BC=20cm AC=16cm代入可求出AD的长;(2)由于三角形的中线将三角形分成面积相等的两部分 所以S △BCE =12S △ABC .【详解】解:(1)∴∴BAC =90° AD 是BC 边上的高 ∴12AD •BC =12AB •AC∴AD =121620⨯=485(cm );(2)∴CE 是AB 边上的中线∴S △BCE =12S △ABC =12×12×12×16=48(cm 2).【点睛】本题考查三角形中线的性质 涉及等积法 是重要考点 掌握相关知识是解题关键.15.(2022·黑龙江·哈尔滨市风华中学校七年级期中)如图 在6×10的网格中 每一小格均为正方形且边长是1 已知∴ABC 的每个顶点都在格点上.(1)画出∴ABC 中BC 边上的高线AE ;(2)在∴ABC 中AB 边上取点D 连接CD 使3BCD ACD S S =△△;(3)直接写出∴BCD 的面积是__________.【答案】(1)画图见解析(2)画图见解析(3)7.5【解析】【分析】(1)利用网格线过A 作BC 的垂线即可;(2)利用网格线的特点 取格点D 满足3BD AD = 则D 即为所求作的点;(3)利用三角形的面积公式直接计算即可.(1)解:如图 AE 即为BC 上的高.(2)如图 利用网格特点 可得3BD AD =∴D 即为所求作的点 满足3BCD ACD S S =△△.(3)1537.52BCD S =⨯⨯=. 【点睛】本题考查的是画三角形的高 三角形的面积的计算 熟悉等高的两个三角形的面积之间的关系是解本题的关键.16.(2022·江苏·沭阳县怀文中学七年级阶段练习)如图 在ABC 中 CD 、CE 分别是ABC 的高和角平分线 ,()BAC B ∠α∠βαβ==>.(1)若70,40αβ=︒=︒ 求DCE ∠的度数;(2)试用α、β的代数式表示DCE ∠的度数_________.【答案】(1)15DCE ∠=︒(2)2αβ-【解析】【分析】(1)根据三角形的内角和定理求出∴ACB 的值 再由角平分线的性质以及直角三角形的性质求出∴DCE . (2)由(1)的解题思路即可得正确结果.(1) 解:70BAC ∠=︒ 40B ∠=︒∴()180()180704070ACB BAC B ∠=︒-∠+∠=︒-︒+︒=︒CE 是ACB ∠的平分线∴1352ACE ACB ∠=∠=︒.CD 是高线∴90ADC ∠=︒∴9020ACD BAC ∠=︒-∠=︒∴352015DCE ACE ACD ∠=∠-∠=︒-=︒︒.(2) 解:BAC α∠= B β∠=∴()180()180ACB BAC B αβ∠=︒-∠+∠=︒-+CE 是ACB ∠的平分线∴()1118090222ACE ACB αβαβ+∠=∠=⨯︒-+=︒-⎡⎤⎣⎦.CD 是高线∴90ADC ∠=︒∴9090ACD BAC α∠=︒-∠=︒- ∴909022DCE ACE ACD αβαβα+-∠=∠-∠=︒--︒+=.【点睛】本题主要考查角平分线 高线以及角的转换 掌握角平分线 高线的性质是解题的关键.17.(2022·上海·八年级专题练习)如图 ∴ABC 中 ∴BAC =60º AD 平分∴BAC 点E 在AB 上 EG ∴ADEF ∴AD 垂足为F .(1)求∴1和∴2的度数.(2)联结DE 若S △ADE =S 梯形EFDG 猜想线段EG 的长和AF 的长有什么关系?说明理由.【答案】(1)30º;60º(2)相等 理由见解析【解析】【分析】(1)利用角平分线的定义求得BAD ∠ 然后在直角三角形中利用两锐角互余即可求得∴2 再利用平行线的性质即可求得∴1的度数.(2)根据S △ADE =S 梯形EFDG 可得AD =DF +EG 结合图形即可求解.(1)∴∴BAC =60º AD 平分∴BAC ∴1302BAD BAC ∠=∠=︒ 又∴EF ∴AD∴29060BAD ∠=︒-∠=︒ ∴EG ∴AD∴130BAD ∠=∠=︒.(2)相等. 理由如下: ∴EF ∴AD∴S △ADE =12AD EF ⋅ S 梯形EFDG =1()2DE EG EF +⋅ ∴S △ADE = S 梯形EFDG ∴12AD EF ⋅=1()2DE EG EF +⋅∴AD =DF +EG∴AD =AF +DF∴DF +EG =AF +DF即AF =EG .【点睛】本题考查了平行线的性质 角平分线的定义以及三角形和梯形的面积公式 熟练掌握平行线的性质和角平分线的定义是解题的关键.18.(2021·安徽省六安皋城中学八年级期中)如图 AD 是∴ABC 的边BC 上的中线 已知AB =5 AC =3. (1)边BC 的取值范围是 ;(2)∴ABD 与∴ACD 的周长之差为 ;(3)在∴ABC 中 若AB 边上的高为2 求AC 边上的高.【答案】(1)28BC <<;(2)2;(3)103h =. 【解析】【分析】 (1)直接根据三角形三边关系进行解答即可;(2)根据三角形中线将∴ABD 与∴ACD 的周长之差转换为AB 和AC 的差即可得出答案;(3)设AC 边上的高为h 根据三角形面积公式列出方程求解即可.【详解】解:(1)∴∴ABC 中AB =5 AC =3∴5353BC -<<+即28BC <<故答案为:28BC <<;(2)∴∴ABD 的周长为AB AD BD ++∴ACD 的周长为AC AD CD ++∴AD 是∴ABC 的边BC 上的中线∴BD CD =∴AB AD BD ++-(AC AD CD ++)=532AB AC -=-=故答案为:2;(3)设AC 边上的高为h 根据题意得:11222AB AC h ⨯=⨯ 即1152322h ⨯⨯=⨯⨯ 解得103h =.【点睛】本题考查了三角形三边关系 三角形的中线 三角形的高等知识点 熟练掌握基础知识是解本题的关键.。
(完整)人教版八年级上册数学三角形练习题
人教版八年级上册数学三角形练习题一.选择题1.以下列各组线段为边,能组成三角形的是 A.3cm,4cm,5cm B.4cm,6cm,10cm C.1cm,1cm,3cm D.3cm,4cm,9cm2.等腰三角形的一边长等于4,一边长等于9,则它的周长是 A.1 B.1C.17或2 D.22图6、一个三角形的两边分别为3和8,第三边长是一个偶数,则第三边的长不能为456789123、如图3,∠1,∠2,∠3是△ABC的三个外角,则∠1+∠2+∠34.要使五边形木架不变形,至少要再钉根木条。
、一个多边形的内角和的度数是外角和的2倍,这个多边形是。
16、如图6,△ABC中,∠A=36°,BE平分∠ABC, CE 平分∠ACD,∠E=________.、在△ABC 中,∠A=100°,∠B=3∠C,则∠B=________.、如图8,△ABC 中,∠A=35°,∠C=60°,BD平分∠ABC,DE∥BC交AB 于E,则∠BDE=______.9、一个多边形截去一个角后,所形成的一个新多边形的内角和为2520°,则原多边形边数是图8CADCFA2005.如图,在△ABC中,AD⊥BC于D,AE平分∠DAC,∠BAC=80,∠B=60;求∠AEC的度数.D E6BE和CF7、101112.A.3B.C.5D..下面四个图形中,线段BE是⊿ABC 的高的图是3.已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是 A.13cmB.6cmC.5cmD.4cm4.三角形一个外角小于与它相邻的内角,这个三角形是 A.直角三角形 B.锐角三角形 C.钝角三角形 D.属于哪一类不能确定.如图,在直角三角形ABC中,AC≠AB,AD是斜边上的高,DE⊥AC,DF⊥AB,垂足分别为E、F,则图中与∠C 相等的角的个数是A、3个 B、4个 C、5个 D、6个6.如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB=A、90B、120C、160D、180第5题图第6题图7.以长为13cm、10cm、5cm、7cm的四条线段中的三条线段为边,可以画出三角形的个数是1个2个3个4个8.给出下列命题:①三条线段组成的图形叫三角形②三角形相邻两边组成的角叫三角形的内角③三角形的角平分线是射线④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外⑤任何一个三角形都有三条高、三条中线、三条角平分线⑥三角形的三条角平分线交于一点,且这点在三角形内。
11.1.1三角形的边课后练习-2021-2022学年人教版数学八年级上册
三角形的边课后练习一、单选题1.以下列各组线段为边,能组成三角形的是()A.2cm,5cm,8cm B.25cm,24cm,7cmC.3cm,3cm,6cm D.1cm,2cm,3cm2.三根木棒围成一个三角形,已知其中两根木棒长分别为5和2,第三根木棒长是偶数,则第三根木棒的长度可能有()种A.1B.2C.3D.43.若线段4、4、m能构成三角形,且m是整数,则m的最大值为()A.10B.8C.7D.44.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1,2,1B.1,2,3C.1,2,2D.1,2,45.如果一个三角形的两边长分别是2和5,则这个三角形的周长可能是()A.3B.7C.9D.126.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依次为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任意两个螺丝间的距离的最大值为()A.6B.7C.8D.107.已知,关于x的不等式组20217x ax-<⎧⎨-⎩至少有三个整数解,且存在以3,,5a为边的三角形,则a的整数解有()A.3个B.4个C.5个D.6个8.已知等腰△ABC,AB=AC,点D是BC上一点,若AB=10,BC=12,则△ABD的周长可能是()A.15B.20C.28D.369.三角形的两边长分别是4和11,第三边长为34m+,则m的取值范围在数轴上表示正确的是()A .B .C .D .10.如图,为估计池塘岸边A 、B 的距离,小方在池塘的一侧选取一点O ,测得OA =19米,OB =10米,A 、B 间的距离不可能是( )A .26米B .12米C .9米D .15米二、填空题 11.已知ABC 的三边长为2,7,x ,请写出一个符合条件的x 的整数值,这个值可以是______.12.若a b c ,,是△ABC 的三边长,则化简a b c b c a +-+--的结果是________. 13.在△ABC 中,AB=5,BC=2,若AC 的长是偶数,则△ABC 的周长为________. 14.在ABC 中,已知3AB =,BC a =,a 的取值范围在数轴上表示如图所示,则AC 的长为______15.已知三角形三边长分别为m ,n ,k ,且m 、n 满足2|9|(5)0n m -+-=,则这个三角形最长边k 的取值范围是________.16.三角形三边的比为3:4:5,周长为48,则三角形三边的长分别为________.三、解答题17.若一个三角形的三边长分别是a ,b ,c ,其中a 和b 满足方程组2922a b a b +=⎧⎨-=⎩,若这个三角形的周长为整数,求这个三角形的周长.18.已知a b c ,,满足()2240a c -+-=.(1)求a b c ,,的值.(2)以a b c ,,为边能否构成三角形,如果能,求出三角形的周长;如果不能,请说明理由.19.已知a ,b 是某一等腰三角形的底边长与腰长,且23a b +=. (1)求a 的取值范围;(2)设32ca b +=,求c 的取值范围20.已知22a m n =+,2b m =,c mn =,且m >n >0.(1)比较a ,b ,c 的大小;(2)请说明以a ,b ,c 为边长的三角形一定存在.21.如图,点P 为△ABC 内任意一点,连接PB ,PC ,请说明不等式PB + PC <AB + AC 的理由.参考答案1.B解:根据三角形的三边关系,知A、2+5<8,不能组成三角形;B、7+24>25,能够组成三角形;C、3+3=6,不能组成三角形;D、1+2=3,不能组成三角形.故选:B.2.B解:设第三根木棒的长度为xcm,由三角形三边关系可得5-2<x<5+2,即3<x<7,又x为偶数,△x的值为4,6共2种,故选:B.3.C解:△0<m<8,且m是整数,△m=7,故答案为:C.4.C解:A、1+1=2,不能组成三角形,故A选项不符合;B、1+2=3,不能组成三角形,故B选项不符合;C、1+2>2,能组成三角形,故C选项符合;D、1+2<4,不能组成三角形,故D选项不符合;故选:C.5.D解:由题意得:第三边的取值范围是大于3而小于7,△三角形的周长大于10而小于14,故选D.6.B解:已知4条木棍的四边长为2、3、4、6;△选2+3、4、6作为三角形,则三边长为5、4、6;5-4<6<5+4,能构成三角形,此时两个螺丝间的最长距离为6;△选3+4、6、2作为三角形,则三边长为2、7、6;6-2<7<6+2,能构成三角形,此时两个螺丝间的最大距离为7;△选4+6、2、3作为三角形,则三边长为10、2、3;2+3<10,不能构成三角形,此种情况不成立;△选6+2、3、4作为三角形,则三边长为8、3、4;而3+4<8,不能构成三角形,此种情况不成立;综上所述,任两螺丝的距离之最大值为7.故选:B.7.B解:20 217x ax-<⎧⎨-⎩①②解不等式△,可得x<2a,解不等式△,可得x≥4,△不等式组至少有三个整数解,△a>3,又△存在以3,a,5为边的三角形,△2<a<8,△a的取值范围是3<a<8,△a的整数解有4、5、6、7共4个,故选:B.8.C解:如图,△两边之和大于第三边,△AD+DB>AB,△AD+DB+AB>2AB,即△ABD的周长>20,当D与C重合时,△ABD周长最长,为AB+AC+BC=32,△20<△ABD周长<32,故选:C.9.A解:根据三角形的三边关系,得11-4<3+4m<11+4,解得1<m<3.故选:A.10.C解:△OA=19米,OB=10米,△19-10<AB<19+10,即:9<AB<29,故选:C.11.6或7或8解:△三角形的三边长分别为2,7,x,△7-2<x<7+2,即5<x<9,故答案为:6或7或8.12.2a解:△a,b,c为三角形三边上,△a+b-c>0,b-c-a<0,则原式=a+b-c-b+a+c=2a,故答案为:2a.13.11或13解:因为5-2<AC<5+2,所以3<AC<7,因为AC 长是偶数,所以AC 为4或6,所以△ABC 的周长为:11或13.故答案为:11或13.14.2解:在ABC 中,设AC=x3AB =,BC a =若03x <<时33x a x ∴-<<+由题意得15a <<3=1x ∴-,3=5x +解得,=2x=2AC ∴若3x >时,33x a x ∴-<<+由题意得15a <<3=1x ∴-,3=5x +(不符合题意,舍去)2,=2x AC ∴=∴故答案为:2.15.914k ≤<解:由题意得n -9=0,m -5=0,解得 m=5,n=9,△m ,n ,k ,为三角形的三边长,△414k ≤<,△k 为三角形的最长边,△914k ≤<.故答案为:914k ≤<16.12、16、20解:△三角形三边的比为3:4:5,△可设三角形的三边分别为3x ,4x 和5x , 由题意可知34548x x x ++=,解得4x =, △三角形三边的长分别为12、16、20,故答案为:12、16、20.17.9.解:由2922a b a b +=⎧⎨-=⎩,解得:41a b =⎧⎨=⎩△3<c <5,△周长为整数,△c =4,△周长=4+4+1=9.18.(1)a =2,b =3,c =4;(2)能,9解:(1)根据题意得:a -2=0,b -3=0,c -4=0, 解得:a =2,b =3,c =4;(2)△2+3>4,即a +b >c ,△能构成三角形,△C △ABC =2+3+4=9.19.(1)0 1.5a <<;(2)36c <<解:(1)△23a b+=, △23ba -=, △a ,b 是某一等腰三角形的底边长与腰长, △b+b=2b >a >0△3a a ->>0,解得:0 1.5a <<;(2)△32ca b +=,23a b +=, △32ca b +==3323a a a +-=+ △0 1.5a <<,△3236a <+<,即36c <<.20.(1)a >b >c ;(2)见解析(1)△a -b =m 2+n 2-m 2=n 2>0;a -c =m 2+n 2-mn =(m -n )2+mn >0;b -c = m 2-mn =m (m -n )>0△a >b >c ;(2)由(1)a >b >c 可得,a +b >c△a -b = m 2+n 2-m 2=n 2<mn△a -b <c△以a 、b 、c 为边长的三角形一定存在.21.见解析解:延长BP 交AC 于点D根据三角形的三边关系可得AB +AD >BD ,PD +DC >PC △AB +AD +PD +DC >BD +PC即AB +AC +PD >BP+PD +PC△AB +AC >BP +PC .即PB +PC < AB +AC .。
人教版2022-2023学年数学八年级上学期三角形的三边关系练习题含答案
人教版2022-2023学年数学八年级上学期三角形的三边关系练习题学校:___________姓名:___________班级:___________一、单选题1.如图所示,工人师傅在砌门时,通常用木条BD固定长方形门框ABCD,使其不变形,这样做的数学根据是()A.两点确定一条直线B.两点之间,线段最短C.同角的余角相等D.三角形具有稳定性2.下图所示的五角星是用螺栓将两端打有孔的5根木条连接构成的图形,它的形状不稳定,如果在木条交叉点打孔加装螺栓的办法使其形状稳定,那么至少需要添加()个螺栓A.1B.2C.3D.43.已知三角形的两边长分别为5cm和8cm,则第三边的长可以是()A.2cm B.3cm C.6cm D.13cm4.平行四边形的一边长为10,那么它的两条对角线的长可以是()A.4和6B.6和8C.8和12D.20和30 5.如果三角形的两边长分别为4和7,则周长L的取值范围是()A.3<L<11B.6<L<16C.14<L<22D.10<L<216.一个等腰三角形的底边长是6,腰长是一元二次方程x2−7x+12=0的一根,则此三角形的周长是()A.12B.13C.14D.12或14二、填空题7.若长度分别为3,5,a的三条线段能组成一个三角形,则整数a的最大值为________.8.已知a,b,c是ABC的三边长,则b c a a b c a b c--+-+---=______.9.安排学生住宿,若每间住3人,则还有13人无房可住;若每间住6人,则还有一间不空也不满,则宿舍的房间数量可能为_____.三、解答题10的小数部分为a,8b,求a+b的平方根.11.(1)计算:232cos45°;(2)解不等式组:() 31225233x xx x⎧+>-⎪⎨+≤-⎪⎩.12.请补全证明过程及推理依据.已知:如图,BC//ED,BD平分∠ABC,EF平分∠AED.求证:BD∠EF.证明:∠BD平分∠ABC,EF平分∠AED,∠∠1=12∠AED,∠2=12∠ABC(______________)∠BC∠ED(________)∠∠AED=________(________________)∠12∠AED=12∠ABC∠∠1=________∠BD∠EF(________________).参考答案:1.D【分析】根据三角形具有稳定性解答即可.【详解】解:常用木条固定长方形门框ABCD,使其不变形,这种做法的根据是三角形具有稳定性.故选:D.【点睛】本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,通常会把图形变成分成三角形,熟记三角形具有稳定性是解题的关键.2.A【分析】用木条交叉点打孔加装螺栓的办法去达到使其形状稳定的目的,可用三角形的稳定性解释.【详解】如图,A点加上螺栓后,根据三角形的稳定性,原不稳定的五角星中具有了稳定的各边故答案为:A.【点睛】本题考查了三角形的稳定性的问题,掌握三角形的稳定性是解题的关键.3.C【分析】先确定第三边的取值范围,后根据选项计算选择.【详解】设第三边的长为x,∠ 角形的两边长分别为5cm和8cm,∠3cm<x<13cm,故选C.【点睛】本题考查了三角形三边关系定理,熟练确定第三边的范围是解题的关键.4.D【分析】根据平行四边形对角线互相平分和三角形两边之和大于第三边逐项判断即可.【详解】解:如图,设AB=10,对角线相交于点E,它的两条对角线的长为4和6时,465102AE BE++==<,不符合题意;它的两条对角线的长为6和8时,687102AE BE++==<,不符合题意;它的两条对角线的长为8和12时,812102AE BE++==,不符合题意;它的两条对角线的长为20和30时,设AE=15,BE=10,AB BE AE+>,符合题意;故选:D.【点睛】本题考查了平行四边形的性质和三角形的三边关系,解题关键是明确两条较短边的和大于最长边可构成三角形.5.C【分析】根据三角形的三边关系,可得3<第三边<11,即可求解.【详解】解:∠4+7=11,7﹣4=3,∠3<第三边<11,∠4+7+3<L<11+4+7,即14<L<22.故选:C.【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.6.C【分析】通过解一元二次方程x2-7x+12=0求得等腰三角形的两个腰长,然后求该等腰三角形的周长.【详解】解:由一元二次方程x2-7x+12=0,得(x-3)(x-4)=0,∠x-3=0或x-4=0,解得x=3,或x=4;∠等腰三角形的两腰长是3或4;∠当等腰三角形的腰长是3时,3+3=6,构不成三角形,所以不合题意,舍去;∠当等腰三角形的腰长是4时,0<6<8,所以能构成三角形,所以该等腰三角形的周长=6+4+4=14;故选:C .【点睛】本题综合考查了一元二次方程-因式分解法、三角形的三边关系、等腰三角形的性质.解答该题时,采用了“分类讨论”的数学思想.7.7【分析】根据三角形三边关系定理得出5-3<a <5+3,求出即可.【详解】解:由三角形三边关系定理得:5-3<a <5+3,即2<a <8,即符合的最大整数a 的值是7,故答案为:7.【点睛】本题考查了三角形三边关系定理,能根据定理得出2<a <8是解此题的关键,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.8.33a b c -+【分析】根据三角形三边关系定理,确定绝对值中式子的符号后化简即可.【详解】∠a ,b ,c 是ABC 的三边长,∠a +c >b ,b +c >a , ∠b c a a b c a b c --+-+---=a c b a b c a b c +-+-++--=33a b c -+,故答案为:33a b c -+.【点睛】本题考查了三角形三边关系定理,绝对值的化简,熟练掌握三角形三边关系定理是解题的关键.9.5或6【分析】设共有x 间宿舍,则共有(313)x +个学生,然后根据每间住6人,则还有一间不空也不满,列出不等式组进行求解即可.【详解】解:设共有x 间宿舍,则共有(313)x +个学生,依题意得:3136(1)3136x x x x +>-⎧⎨+<⎩,解得:1319 33x<<.又x为正整数,5x∴=或6.故答案为:5或6.【点睛】本题主要考查了一元一次不等式组的应用,解题的关键在于能够准确根据题意列出不等式组进行求解.10.a+b的平方根为±1;34<,43-<-,由不等式的性质求得a、b 的值,再计算求值即可;【详解】解:∠34<,∠526<<,∠43-<-,∠485<<,∠253a=-=,844b==∠a+b=1,∠a+b的平方根为±1;【点睛】本题考查了无理数的估算,不等式的性质,平方根的计算;掌握无理数的估算方法是解题关键.11.(1)82;(2)﹣5<x≤﹣1【分析】(1)根据有理数乘方,最简二次根式,特殊角的三角函数值,二次根式的加减法计算求解;(2)根据一元一次不等式组的解法,先分别求出两个不等式的解集,再确定不等式组的解集.【详解】解:(1)232cos45°=2==82;(2)() 31225233x xx x⎧+>-⎪⎨+≤-⎪⎩①②,不等式∠的解集是:x>﹣5,不等式∠的解集是:x≤﹣1,∠原不等式组的解集是:﹣5<x≤﹣1.【点睛】本主要考查了实数的运算,一元一次不等式组的解法,理解有理数乘方,最简二次根式,特殊角的三角函数值,二次根式的加减法,一元一次不等式组的解法是解答关键.12.角平分线的定义;已知;∠ABC;两直线平行,同位角相等;∠2;同位角相等,两直线平行【分析】根据角平分线的定义得出∠1=12∠AED,∠2=12∠ABC,根据平行线的性质定理得出∠AED=∠ABC,求出∠1=∠2,再根据平行线的判定定理推出即可.【详解】证明:∠BD平分∠ABC,EF平分∠AED,∠∠1=12∠AED,∠2=12∠ABC(角平分线的定义)∠BC∠ED(已知)∠∠AED=∠ABC(两直线平行,同位角相等)∠12∠AED=12∠ABC∠∠1=∠2∠BD∠EF(同位角相等,两直线平行).故答案为:角平分线的定义;已知;∠ABC;两直线平行,同位角相等;∠2;同位角相等,两直线平行.【点睛】本题考查了角平分线的定义,平行线的性质定理和判定定理等知识点,能熟记平行线的性质定理和判定定理是解此题的关键.。
人教版_部编版八年级数学上册第十一章第一节三角形的边三角形的高、中线与角平分线习题(含答案) (50)
人教版_部编版八年级数学上册第十一章第一节三角形的边/三角形的高、中线与角平分线试题(含答案)一个三角形的三边长分别为a、b、c=________.【答案】﹣a+b+c【解析】【分析】根据三角形的三边关系可得三角形两边之和大于第三边可得a-b-c<0,然后再根据二次根式的性质进行化简即可.【详解】∵三角形的三边长分别为a、b、c,∴c+b>a,∴a-b-c<0,=|a-b-c|=-a+b+c.故答案为-a+b+c.【点睛】此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边.92.已知等腰三角形的两边长分别为5和9,则它的周长是________.【答案】19或23【解析】分析:根据已知条件:分等腰三角形的底边分别为5和9两种情况,结合三角形三边间的关系进行分析解答即可.详解:(1)当长为5的边是等腰三角形的底边时,其三边长分别为:5、9、9,此时三条线段能围成等腰三角形,其周长为:5+9+9=23;(2)当长为9的边为等腰三角形的底边时,其三边长分别为:9、5、5,此时三条线段能围成等腰三角形,其周长为:9+5+5=19;综上所述,两条边长分别为5和9的等腰三角形的周长为19或23.故答案为:19或23.点睛:已知等腰三角形的两边长分别为a和b,求其周长时,需分底边为a 和底边为b两种情况进行计算,同时需看两种情况下的三条线段是否能围成三角形.93.如图,胶州湾大桥是一座斜拉式大桥,斜拉式大桥多采用三角形结构,使其不易变形,这种做法的依据是__.【答案】三角形的稳定性【解析】分析:利用三角形具有稳定性,而其它多边形不具有这一特性求解即可.详解:胶州湾大桥是一座斜拉式大桥,斜拉式大桥多采用三角形结构,使其不易变形,这种做法的依据是:三角形的稳定性.故答案为:三角形的稳定性.点睛:本题主要考查了三角形的稳定性,解题的关键是熟记三角形的稳定性.三、解答题94.若a ,b ,c 分别为△ABC 的三边,化简:|a ﹣b ﹣c | + |b ﹣c ﹣a | + |c ﹣a +b |.【答案】-a +b +3c .【解析】试题分析:先判断绝对值内式子的正负,然后去掉绝对值符号再合并同类项即可.试题解析:因为三角形的两边之和大于第三边,两边之差小于第三边,所以0a b c --<,0b c a --< ,0c a b -+> ,则原式去掉绝对值符号得3b c a a c b c a b a b c +-++-+-+=-++ .95.已知a 、b 、c 为△ABC 的三边长,且a 2+b 2=6a+10b ﹣34,其中c 是△ABC 中最长的边长,且c 为整数,求c 的值.【答案】c=5.6.7【解析】分析:由a 2+b 2=6a+10b ﹣34,通过配方法求得a ,b 的值,然后利用三角形的三边关系求得c 的取值范围即可.详解:∵a 2+b 2=6a+10b ﹣34∵a 2﹣6a+9+b 2﹣10b+25=0∵(a ﹣3)2+(b ﹣5)2=0∵a=3,b=5∵5﹣3<c <5+3即 2<c <8. 又∵c 是△ABC 中最长的边长∵c=5.6.7点睛:此题主要考查了配方法的应用、非负数的性质及三角形的三边关系,解题的关键是对方程的左边进行配方,难度不大.96.如图这是一个由七根长度相等木条钉成的七边形木框.为使其稳定,请用四根木条(长短不限)将这个木框固定不变形,请你设计出三种方案.【答案】见解析【解析】三种方案如图所示:97.已知a 、b 、c 为三角形三边的长,化简:|a ﹣b ﹣c |+|b ﹣c ﹣a |+|c ﹣a ﹣b |.【答案】a+b+c .【解析】【分析】根据三角形的三边关系得出a b c a c b b c a +>+>+>,,,再去绝对值符号,合并同类项即可.【详解】解:∵a、b、c为三角形三边的长,∴a+b>c,a+c>b,b+c>a,∴原式=|a−(b+c)|+|b−(c+a)|+|c−(a+b)|=b+c−a+a+c−b+a+b−c=a+b+c.98.已知等腰三角形的两边长分别为a,b,且a,b满足|2a-3b+5|+(2a+3b-13)2=0,求此等腰三角形的周长.【答案】7或8.【解析】分析:由已知条件|2a-3b+5|+(2a+3b-13)2=0,可得2a-3b+5=0且2a+3b-13=0,由此即可解得a和b的值,再分a为等腰三角形底和b为等腰三角形的底两种情况分别计算出等腰三角形的周长即可.详解:∵|2a-3b+5|+(2a+3b-13)2=0,∵2a-3b+5=0∵,且2a+3b-13=0∵,由∵+∵可得:4a-8=0,解得:a=2,将a=2代入∵得:4+3b-13=0,解得:b=3,(1)当a为等腰三角形的底边时,等腰三角形的三边长为2,3,3,此时能围成三角形,其周长为8;(2)当b为等腰三角形的底边时,等腰三角形的三边长为2,2,3,此时能围成三角形,其周长为7.故此等腰三角形的周长为7或8.点睛:(1)两个非负数的和为0,则这两个非负数都为0;(2)求得a、b的值后要分a为等腰三角形的底边和b为等腰三角形的底边两种情况讨论.99.已知a,b,c是三角形的三边长.(1)化简:|a-b-c|+|b-c-a|+|c-a-b|;(2)在(1)的条件下,若a=5,b=4,c=3,求这个式子的值.【答案】(1)a+b+c;(2)12.【解析】【分析】(1)三角形的两边之和大于第三边,故a-b-c=a-(b+c)<0,同理b-c-a <0,c-a-b<0;根据绝对值的性质去绝对值符号,然后合并同类项,(2)将a,b,c的值代入(1)中化简的结果求值即可.【详解】(1)∵a、b、c是三角形的三边长,∴a﹣b﹣c<0,b﹣c﹣a<0,c﹣a﹣b<0,∴原式=﹣a+b+c﹣b+a+c﹣c+a+b=a+b+c;(2)当a=5,b=4,c=3时,原式=5+4+3=12.【点睛】本题结合绝对值的性质考查了三角形的三边关系,解题的关键是熟练掌握三角形的三边关系并灵活运用.100.有四根长度分别为9、12、16、25的木条,从中取三根搭三角形,有几种选法?为什么?【答案】有2种选法.【解析】【分析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边解答即可.【详解】根据三角形的三边关系,满足的条件选法:9、12、16;12、16、25;故有2种选法.【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系式解答本题的关键.。
人教版八年级数学上册全等三角形的判定角边角判定三角形全等专项小练习(附答案)
人教版八年级数学上册全等三角形的判定角边角判定三角形全等专项小练习(附答案)1.如图,已知∠CAB=∠DAB,则下列:①∠C=∠D;②AC=AD;③∠CBA=∠DBA;④BC=BD条件中,不能判定△ABC≌△ABD的是()A.①B.②C.③D.④2.如图,AB=AC,E,F分别是AB,AC的中点,BF,CE交于点D,连接AD.则此图中全等三角形有( )A.2对B.3对C.4对D.5对3.如图,已知在△ABD和△ABC中,∠DAB=∠CAB,点A,B,E在同一条直线上,若使△ABD≌△ABC,则还需添加的一个条件是.(只填一个即可)4.如图,已知∠ABC=∠DCB,增加下列条件:①AB=CD;②AC=DB;③∠A=∠D;④∠ABO=∠DCO.能判定△ABC≌△DCB的是.(填正确答案的序号)5.(易错警示题)如图,在平面直角坐标系xOy中,点A的坐标是(2,0),点B 的坐标是(0,4),点C在x轴上运动(不与点A重合),点D在y轴上运动(不与点B重合),当点C的坐标为时,以点C,O,D为顶点的三角形与△AOB 全等.6.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.(1)求证:AB=CD;(2)若AB=CF,∠B=40°,求∠D的度数.7.(素养提升题)如图所示,已知DE=AE,点E在BC上,AE⊥DE,AB⊥BC,DC ⊥BC,请问,线段AB,DC和线段BC有何大小关系.并说明理由解题模型 发散思维模型 利用“ASA”或“AAS”证明三角形全等的书写模式如图:点A ,B ,C ,D 在一条直线上,AB =CD ,AE ∥BF ,CE ∥DF .求证:△AEC ≌△BFD .【证明】∵AB =CD ,∴AB +BC =CD +BC ,即AC =BD ,∵AE ∥BF ,CE ∥DF ,∴∠A =∠FBC ,∠D =∠ECA .在△AEC 和△BFD 中,A FBC AC BD ECA D ∠=∠⎧⎪=⎨⎪∠=∠⎩,,,∴△AEC ≌△BFD (ASA ).1.角边角(ASA )书写模式:如图,在△ABC 与△'''A B C 中,''''A A AB A B B B ∠=∠⎧⎪=⎨⎪∠=∠⎩,,,∴△ABC ≌△A'B'C'(ASA ).2.角角边(AAS )书写模式:如图,在△ABC 与△'''A B C 中,'''A A B B BC B C ∠=∠⎧⎪∠=∠⎨⎪='⎩,,,∴△ABC ≌△A'B'C'(AAS )参考答案1.答案:D2.答案:C3.答案:AD=AC(∠D=∠C或∠ABD=∠ABC等)4.答案:①③④5.答案:(-4,0),(-2,0),(4,0)6.答案:见解析解析:(1)∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,A DB C AE DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,,,∴△ABE≌△DCF(AAS),∴AB=CD;(2)∵△ABE≌△DCF∴AB=CD,BE=CF,∠B=∠C,∵∠B=40°,∴∠C=40°,∵AB=CF,∴CF=CD,∴∠D=∠CFD=1(18040)70 2︒︒︒⨯-=.7.答案:见解析解析:线段AB,DC和线段BC的关系是:BC=AB+DC.理由如下:∵AB⊥BC,DC⊥BC,∴∠ABE=∠ECD=90°,∵AE⊥DE,∴∠AED=90°,在△ABE中,∠BAE+∠AEB=90°,在△DCE中,∠EDC+∠DEC=90°. ∵∠BEA+∠DEC=90°,∴∠BEA=∠EDC,在△ABE和△ECD中,BEA CDEABE ECD DE AE∠=∠⎧⎪∠=∠⎨⎪=⎩,,,∴△ABE≌△ECD(AAS),∴AB=EC,BE=CD,∴BC=BE+EC=DC+AB.。
人教版八年级数学上册《三角形的边》基础练习
《三角形的边》基础练习一、选择题(本大题共5小题,共25.0分)1.(5分)下列各组数可做为一个三角形三边长的是()A.4,6,8B.4,5,9C.1,2,4D.5,5,112.(5分)下列长度的三条线段(单位:cm)能组成三角形的是()A.1,2,1B.4,5,9C.6,8,13D.2,2,43.(5分)下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1,2,3B.1,2,4C.2,3,4D.2,2,44.(5分)以下列各组线段长为边,不能组成三角形的是()A.8cm,7cm,13cm B.6cm,6cm,12cmC.5cm,5cm,2cm D.10cm,15cm,17cm5.(5分)三角形按边分类可以用集合来表示,如图所示,图中小椭圆圈里的A表示()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形二、填空题(本大题共5小题,共25.0分)6.(5分)已知三角形三边分别为1,x,5,则整数x=.7.(5分)三角形三边长为7cm、12cm、acm,则a的取值范围是.8.(5分)三角形有两条边的长度分别是5和7,则最长边a的取值范围是.9.(5分)若一个三角形两边长分别为5和8,则第三边长的取值范围为.10.(5分)已知a、b、c为一个三角形的三条边长,则代数式(a﹣b)2﹣c2的值一定为(选填“正数”、“负数”、“零”).三、解答题(本大题共5小题,共50.0分)11.(10分)如图,P是△ABC内任意一点,求证:AB+AC>PB+PC[提示:延长BPO交AC 于点D,分别在△ABP,△CDP中运用三角形三边关系].12.(10分)在△ABC中,D、E、F分别为边BC、CA、AB边上的点,求证:2(AD+BE+CF)<3(AB+BC+CA).13.(10分)一根长1m的木尺,共有9个等分点,每个分点处有折痕,可将木尺折断,现欲将木尺折成3节,并使3节能组成三角形,若要组成形状不同的三角形,共有多少种不同的折法?14.(10分)若a、b、c是△ABC的三边,化简:|a﹣b+c|﹣|c﹣a﹣b|+|a+b+c|.15.(10分)两条铁丝长为6cm和10cm,要想与第三条铁丝构成一个三角形,则第三条铁丝的取值范围是怎样的?《三角形的边》基础练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)下列各组数可做为一个三角形三边长的是()A.4,6,8B.4,5,9C.1,2,4D.5,5,11【分析】在三角形中任意两边之和大于第三边,任意两边之差小于第三边,据此可得答案.【解答】解:A、4+6>8,能组成三角形;B、4+5=9,不能组成三角形;C、1+2<4,不能组成三角形;D、5+5<11,不能组成三角形.故选:A.【点评】本题考查了三角形三边关系,在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.2.(5分)下列长度的三条线段(单位:cm)能组成三角形的是()A.1,2,1B.4,5,9C.6,8,13D.2,2,4【分析】三角形的任意两边的和大于第三边,根据三角形的三边关系就可以求解.【解答】解:根据三角形的三边关系,知A、1+1=2,不能够组成三角形,故本选项错误;B、4+5=9,不能够组成三角形,故本选项错误;C、6+8>13,能够组成三角形,故本选项正确;D、2+2=4,不能够组成三角形,故本选项错误.故选:C.【点评】本题考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.3.(5分)下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1,2,3B.1,2,4C.2,3,4D.2,2,4【分析】根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可.【解答】解:A、1+2=3,不能组成三角形,故A选项错误;B、1+2<4,不能组成三角形,故B选项错误;C、2+3>5,能组成三角形,故C选项正确;D、2+2=4,不能组成三角形,故D选项错误;故选:C.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形的三边关系定理.4.(5分)以下列各组线段长为边,不能组成三角形的是()A.8cm,7cm,13cm B.6cm,6cm,12cmC.5cm,5cm,2cm D.10cm,15cm,17cm【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:根据三角形的三边关系,得A、8+7>13,能组成三角形;B、6+6=12,不能组成三角形;C、2+5>5,能组成三角形;D、10+15>17,能组成三角形.故选:B.【点评】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.5.(5分)三角形按边分类可以用集合来表示,如图所示,图中小椭圆圈里的A表示()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形【分析】根据三角形的分类可直接得到答案.【解答】解:三角形根据边分类,∴图中小椭圆圈里的A表示等边三角形.故选:D.【点评】此题主要考查了三角形的分类,关键是掌握分类方法.按边的相等关系分类:不等边三角形和等腰三角形(底和腰不等的等腰三角形、底和腰相等的等腰三角形即等边三角形).二、填空题(本大题共5小题,共25.0分)6.(5分)已知三角形三边分别为1,x,5,则整数x=5.【分析】根据三角形的三边关系定理三角形两边之和大于第三边;三角形的两边差小于第三边可确定x的取值范围,再找出符合条件的整数即可.【解答】解:根据三角形的三边关系定理可得:5﹣1<x<5+1,解得:4<x<6,∵x为整数,∴x=5,故答案为:5.【点评】此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.7.(5分)三角形三边长为7cm、12cm、acm,则a的取值范围是5<a<19.【分析】根据三角形中:任意两边之和>第三边,任意两边之差<第三边,即可求解.【解答】解:a的范围是:12﹣7<a<12+7,即5<a<19.故答案是:5<a<19.【点评】本题考查了三角形的三边关系,已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.8.(5分)三角形有两条边的长度分别是5和7,则最长边a的取值范围是7<a<12.【分析】已知三角形两边的长,根据三角形三边关系定理知:第三边的取值范围应该是大于已知两边的差而小于已知两边的和.【解答】解:根据三角形三边关系定理知:最长边a的取值范围是:7<a<(7+5),即7<a<12.故答案为:7<a<12.【点评】此题主要考查的是三角形的三边关系,即:两边之和大于第三边,两边之差小于第三边.9.(5分)若一个三角形两边长分别为5和8,则第三边长的取值范围为3<第三边<13.【分析】根据三角形两边之和大于第三边,三角形的两边差小于第三边列出不等式,计算即可.【解答】解:设第三边长为x,则8﹣5<x<8+5,即3<x<13,故答案为:3<第三边<13.【点评】本题考查的是三角形的三边关系,三角形三边关系定理:三角形两边之和大于第三边.10.(5分)已知a、b、c为一个三角形的三条边长,则代数式(a﹣b)2﹣c2的值一定为负数(选填“正数”、“负数”、“零”).【分析】根据三角形三边关系得到a﹣b+c>0,a﹣b﹣c<0,把(a﹣b)2﹣c2因式分解,根据有理数乘法法则判断即可.【解答】解:∵a、b、c为一个三角形的三条边长,∴a+c>b,b+c>a,∴a﹣b+c>0,a﹣b﹣c<0,∴(a﹣b)2﹣c2=(a﹣b+c)(a﹣b﹣c)<0,故答案为:负数.【点评】本题考查的是三角形三边关系和因式分解,掌握三角形两边之和大于第三边是解题的关键.三、解答题(本大题共5小题,共50.0分)11.(10分)如图,P是△ABC内任意一点,求证:AB+AC>PB+PC[提示:延长BPO交AC 于点D,分别在△ABP,△CDP中运用三角形三边关系].【分析】首先延长BP交AC于点D,再在△ABD中可得PB+PD<AB+AD,在△PCD中,PC<PD+CD然后把两个不等式相加整理后可得结论.【解答】证明:延长BP交AC于点D,在△ABD中,PB+PD<AB+AD①在△PCD中,PC<PD+CD②①+②得PB+PD+PC<AB+AD+PD+CD,即PB+PC<AB+AC,即:AB+AC>PB+PC.【点评】此题主要考查了三角形的三边关系,关键是熟练掌握三角形的三边关系定理:两边之和大于第三边.12.(10分)在△ABC中,D、E、F分别为边BC、CA、AB边上的点,求证:2(AD+BE+CF)<3(AB+BC+CA).【分析】根据三角形的三边关系得到不等式,化简即可得到结论.【解答】证明:如图,∵AD+BD>AB,①BE+AE>AB,②BE+CE>BC,③CF+BF>BC,④CF+AF>AC,⑤CD+AD>AC⑥,①+②+③+④+⑤+⑥得,2(AD+BD+BE+AE+BE+CE+CF+BF+CF+AF+CD+AD)=2(AD+BE+CF)+(AB+BC+AC)>2(AB+BC+AC),∴2(AD+BE+CF)<3(AB+BC+CA).【点评】本题考查了三角形的三边关系,熟记三角形的三边关系是解题的关键.13.(10分)一根长1m的木尺,共有9个等分点,每个分点处有折痕,可将木尺折断,现欲将木尺折成3节,并使3节能组成三角形,若要组成形状不同的三角形,共有多少种不同的折法?【分析】根据三角形的三边关系即可得到结论.【解答】解:共有2、4、4;3,3,4;2种不同的折法,【点评】本题考查了三角形的三边关系,正确的理解题意是解题的关键.14.(10分)若a、b、c是△ABC的三边,化简:|a﹣b+c|﹣|c﹣a﹣b|+|a+b+c|.【分析】先根据三角形的三边关系判断出a﹣b+c,c﹣a﹣b及a+b+c的符号,再去绝对值符号,合并同类项即可.【解答】解:∵a、b、c是△ABC的三边,∴a﹣b+c>0,c﹣a﹣b<0,a+b+c>0,∴原式=a﹣b+c+c﹣a﹣b+a+b+c=a﹣b+3c.【点评】本题考查的是三角形的三边关系,熟知三角形两边之和大于第三边,两边之差小于第三边是解答此题的关键.15.(10分)两条铁丝长为6cm和10cm,要想与第三条铁丝构成一个三角形,则第三条铁丝的取值范围是怎样的?【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边长的范围.【解答】解:设第三根小木棒长度为x厘米.根据三角形的三边关系,得10﹣6<x<10+6,即4<x<16.∴第三根木棒长的取值范围为4<x<16.【点评】此题考查了三角形的三边关系.注意任意两边之和大于第三边,任意两边之差小于第三边.。
人教版八年级数学上册三角形边角边判定三角形全等专项小练习(附答案)
《12.2 三角形全等的判定课时2》基础练易错诊断(打“√”或“×”)1.两边和任一角分别相等的两个三角形全等.()2.有两边及其一边的对角分别相等的两个三角形全等.()3.在△ABC和△DEF中,若AB=DE,∠B=∠E,BC=EF,则△ABC≌△DEF.()对点达标知识点一用“SAS”证明三角形全等1.(2021·昆明质检)如图,AB平分∠DAC,要用SAS条件确定△ABC≌△ABD,还需要有条件()A.DB=CBB.AB=ABC.AD=ACD.∠D=∠C2.根据如图所给信息,可得x的长是()A.16B.18C.20D.16或183.(2021·宿州质检)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加一个条件是()A.∠A=∠CB.∠D=∠BC.AD∥BCD.DF∥BE4.(2020·柳州中考)如图,已知OC平分∠MON,点A,B分别在射线OM,ON上,且OA=OB.求证:△AOC≌△BOC.5.(2020·兰州中考)如图,在△ABC中,AB=AC,点D,E分别是AC和AB的中点求证:BD=CE.知识点二“SAS”的实际应用6.(2021·武汉期中)如图,将两根钢条AA',BB的中点O连在一起,使AA',BB'可以绕着点O自由旋转,就做成了一个测量工件,则A'B′的长等于内槽宽AB,那么判定△OAB≌△OA'B′的理由是.7.如图,一块三角形玻璃碎成了Ⅰ,Ⅱ两块,现需购买同样大小的一块三角形玻璃,为方便起见,只需带上第块玻璃碎片.8.(2021·济南期中)如图,AD,BC表示两根长度相同的木条,若O是AD,BC的中点,经测量AB=9cm,则容器的内径CD为cm.参考答案易错诊断1.×2.×3.√对点达标1.C2.C3.B4.答案:见解析解析:∵OC平分∠MON,∴∠AOC=∠BOC,在△AOC和△BOC中,OA OBAOC BOC OC OC=⎧⎪∠=∠⎨⎪=⎩,,,∴△AOC≌△BOC(SAS).5. 答案:见解析解析:∵AB=AC,D,E分别为AC,AB的中点,∴AD=AE,在△ABD和△ACE中,AB ACA A AD AE=⎧⎪∠=∠⎨⎪=⎩,,,∴△ABD≌△ACE(SAS),∴BD=CE.6.SAS7.I8.9。
2020-2021学年度人教版八年级数学上册11.1.1三角形的边课时练习(含答案解析)
2020-2021学年度人教版八年级数学上册11.1.1三角形的边课时练习一、选择题1.三角形的两边长分别为3和5,则周长C 的范围是( )A .615C <<B .616C << C .1113C <<D .1016C << 2.已知三角形的两边长分别是2cm 、3cm ,则该三角形的周长l 的取值范围是( ). A .15cm l cm <<B .26cm l cm <<C .59cm l cm <<D .610cm l cm << 3.下列数据能够组成三角形的是( )A .1,2,3B .3,4,5C .4,4,8D .4,5,10 4.已知a ,b ,c 是ABC 的三条边长,化简a b c b a c +----的结果为( ). A .22a c - B .2a C .22b c - D .05.下列各组数分别是三根小木棒的长度,将它们首尾相连能摆成三角形的是( ) A .3cm ,4cm ,8cmB .4cm ,4cm ,8cmC .5cm ,6cm ,8cmD .5cm ,5cm ,12cm6.下列四根木棒中,能与5cm ,8cm 长的两根木棒钉成一个三角形的是( ) A .3cm B .8cm C .13cm D .15cm 7.现有四根木棒,长度分别为6cm ,9cm ,10cm ,15cm ,从中任取三根木棒,能组成三角形的个数为( )A .1B .2C .3D .48.已知三角形的三边长分别为2,5,m ,则m 的值可以是( )A .6B .7C .8D .99. 下面各组中的三条线段能组成三角形的是( )A .3cm ,4cm ,5cmB .8cm ,6cm ,15cmC .2cm ,6cm ,8cmD .6cm ,6cm ,13cm 10.下列各组线段的长为边,能组成三角形的是( )A .2,5,10B .2,3,4C .2,3,5D .8,4,4二、填空题11.已知a ,b ,c 为ABC 的三边长.b ,c 满足2(2)30b c -+-=,且a 为方程|4|2x -=的解,则ABC 的形状为________三角形.12.若三角形的三边长是三个连续自然数,其周长m 满足10<m <22,则这样的三角形有________个.13.已知三角形的两边3a =,5b =,第三边是c ,则c 的取值范围是__________. 14.已知,三角形的三边长为3,5,m ,则m 的取值范围是________.15.已知三角形三边分别为1,x ,5,则整数x =_____.16.己知三角形的三边长分别为2,x ﹣1,3,则三角形周长y 的取值范围是__. 17.如图,共有______个三角形.18.三角形的三边长为3、7、x ,则x 的取值范围是______19.在△ABC 中,有两边为2cm 、5cm ,当第三边为整数时,△ABC 周长的最大值为_______. 20.如果三角形的两边长分别为3和5,第三边长是偶数,则第三边长可以是____________三、解答题21.已知一个等腰三角形的周长是18cm ,其中一边长是4cm ,求这个三角形的边长. 22.如图,点P 为△ABC 内任意一点,连接PB ,PC ,请说明不等式PB + PC <AB + AC 的理由.23.若a ,b ,c 是△ABC 三边的长,化简:|a+b-c|+|b-a-c|-|c-a-b|.24.已知三角形的三边长分别为2,a-1,4,则化简|a-3|+|a-7|.25.已知三角形△ABC ,AB=3,AC=8,BC 长为奇数,求BC 的长.26.已知三角形三边的长分别为:5、10、a -2,求a 的取值范围.27.装修店的王师傅将一根长为l 的钢筋条刚好切成三段,然后制作模具ABC ,且ABC 的三边长为整数,周长l 为奇数(不考虑其他因素).(1)若8AC =,2BC =,求l 的值.(2)若5AC BC -=,求l 的最小值.28.如图所示,OB 是某楼房的高度,小明站在距楼房底部O 点30米的点A 处,测得60∠=︒.用1厘米代表10米,画出这个三角形AOB,量出OB的高度,并换BAO算出OB的实际高度.(结果为整数)29.已知a、b、c是三角形三边长,试化简:|b+c﹣a|+|b﹣c﹣a|+|c﹣a﹣b|﹣|a﹣b+c|.⨯的正方形网格,每个小正方形的边长为1,每个小正方30.图①、图②、图③均是33形的顶点称为格点,线段AB的端点均在格点上,只用无刻度的直尺,在给定的网格中,按下列要求以AB为边画ABC.要求:(1)在图①中画一个钝角三角形,在图②中画一个直角三角形,在图③中画一个锐角三角形;(2)三个图中所画的三角形的面积均不相等;(3)点C在格点上.。
人教版数学八年级上册【三角形的边】真题训练+答案
人教版数学八年级上册【三角形的边】真题检测卷1.(2014秋•惠城区校级月考)下列说法中正确的是()A.三角形的内角中至少有两个锐角B.三角形的内角中至少有两个钝角C.三角形的内角中至少有一个直角D.三角形的内角中至少有一个钝角选A2.(2014春•泗县校级期中)图中三角形的个数是()A.8个B.9个C.10个D.11个【考点】三角形.【分析】根据三角形的定义,找出图中所有的三角形即可.【解答】解:∵图中的三角形有:△AGD,△ADF,△AEF,△AEC,△ABC,△DGF,△DEF,△CEF,△CEB,∴共9个三角形.故选B.【点评】此题考查了三角形,注意要不重不漏地找到所有三角形,一般从一边开始,依次进行.3.(2015•泉州)已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值()A.11 B.5 C.2 D.1【考点】三角形三边关系.【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边列出不等式即可.【解答】解:根据三角形的三边关系,6﹣4<AC<6+4,即2<AC<10,符合条件的只有5,故选:B.【点评】本题考查的是三角形的三边关系,掌握三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.4.(2015•海安县校级二模)若三角形的三边长分别为3,4,x,则x的值可能是()A.1B.6C.7D.10【考点】三角形三边关系【分析】根据三角形两边之和大于第三边,三角形的两边差小于第三边,分别求出x的最小值、最大值,进而判断出x的值可能是哪个即可.【解答】解:∵4﹣3=1,4+3=7,∴1<x<7,∴x的值可能是6.故选:B.【点评】此题主要考查了三角形的三边的关系,要熟练掌握,解答此题的关键是要明确:(1)三角形三边关系定理:三角形两边之和大于第三边.(2)三角形的两边差小于第三边.5.(2015•集美区一模)在同一平面内,线段AB=7,BC=3,则AC长为()A.AC=10B.AC=10或4C.4<AC<10D.4≤AC≤10【考点】三角形三边关系;两点间的距离.【分析】此题要分三点共线和不共线两种情况.三点共线时,根据线段的和、差进行计算;三点不共线时,根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行计算.【解答】解:若点A,B,C三点共线,则AC=4或10;若三点不共线,则根据三角形的三边关系,应满足大于4而小于10.所以4≤AC≤10.故选:D.【点评】此题主要考查了线段的和与差以及三角形的三边关系,关键是要考虑全面,此题有两种情况,不要漏解.6.(2015•南通)下列长度的三条线段能组成三角形的是()A.5,6,10B.5,6,11C.3,4,8D.4a,4a,8a(a>0)【考点】三角形三边关系.【分析】根据三角形的三边关系对各选项进行逐一分析即可.【解答】解:A、∵10﹣5<6<10+5,∴三条线段能构成三角形,故本选项正确;B、∵11﹣5=6,∴三条线段不能构成三角形,故本选项错误;C、∵3+4=7<8,∴三条线段不能构成三角形,故本选项错误;D、∵4a+4a=8a,∴三条线段不能构成三角形,故本选项错误.故选A.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边差小于第三边是解答此题的关键.7.(2015春•泰兴市期末)已知△ABC的三边a,b,c的长度都是整数,且a≤b<c,如果b=5,则这样的三角形共有()A.8个B.9个C.10个D.11个【考点】三角形三边关系.【分析】由三角形的三边关系与a≤b<c,即可得a+b>c,继而可得b<c<a+b,又由c﹣b<a≤b,三角形的三边a,b,c的长都是整数,即可得1<a≤5,然后分别从a=2,3,4,5去分析求解即可求得答案.【解答】解:若三边能构成三角形则必有两小边之和大于第三边,即a+b>c.∵b<c,∴b<c<a+b,又∵c﹣b<a≤b,三角形的三边a,b,c的长都是整数,∴1<a≤5,∴a=2,3,4,5.当a=2时,5<c<7,此时,c=6;当a=3时,5<c<8,此时,c=6,7;当a=4时,5<c<9,此时,c=6,7,8;当a=5时,5<c<10,此时,c=6,7,8,9;∴一共有1+2+3+4=10个.故选:C.【点评】此题考查了三角形的三边关系.此题难度较大,解题的关键是根据三角形的三边关系与a,b,c的长都是整数,且a≤b<c,b=5去分析求解,得到a=2,3,4,5.二.填空题(共7小题)8.(2013秋•温岭市校级期中)三角形按边分类可分为:三边都不相等的三角形和等腰三角形两类.【考点】三角形.【分析】三角形按边分,可分为两类:不等边三角形和等腰三角形;进而解答即可.【解答】解:三角形按边分类可以分为不等边三角形和等腰三角形;故答案为:等腰.【点评】此题考查了三角形的分类.按边的相等关系分类:不等边三角形和等腰三角形(底和腰不等的等腰三角形、底和腰相等的等腰三角形即等边三角形).9.(2012春•南安市校级月考)平面上有四个点A、B、C、D,其中任意三个点都不在一条直线上,用它们作顶点可以组成三角形的个数是4个.【考点】三角形.【分析】根据三角形的定义(由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形)填空.【解答】解:∵平面上有四个点A、B、C、D,其中任意三个点都不在一条直线上,∴用它们作顶点可以组成三角形有:△ABC、△ABD、△ACD和△BCD,共4个.故填:4.【点评】本题考查了三角形的定义.注意,是不在同一直线上的三个点才可以连接成为三角形.10.(2015•丹东一模)已知三角形的三边的长分别是5、x、9,则x的取值范围是4<x<14.【考点】三角形三边关系.【分析】由三角形的两边的长分别为9和5,根据已知三角形两边,则第三边的长度应是大于两边的差而小于两边的和,即可求得答案.【解答】解:根据三角形的三边关系,得:9﹣5<x<9+5,即:4<x<14.故答案为:4<x<14.【点评】此题考查了三角形的三边关系.此题比较简单,注意掌握已知三角形两边,则第三边的长度应是大于两边的差而小于两边的和.11.(2015春•衡阳县期末)一个三角形的两边长分别为2cm和9cm,若三角形的周长为奇数,则第三边长为8或10cm.【考点】三角形三边关系.【点评】考查了三角形的三边关系,关键是结合已知的两边和周长,分析出第三边应满足的条件.12.(2015春•鄄城县期末)若一个三角形的两条边相等,一边长为4cm,另一边长为7cm,则这个三角形的周长为15cm或18cm.【考点】三角形三边关系.【分析】分情况考虑:当相等的两边是4cm时或当相等的两边是7cm时,然后求出三角形的周长.【解答】解:当相等的两边是4cm时,另一边长为7cm,则三角形的周长是4×2+7=15cm,当相等的两边是7cm时,则三角形的周长是4+7×2=18cm.故答案为:15cm或18cm.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级上册数学
三角形的边练习题 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】
11.1.1 三角形的边
1、如图,图中三角形个数为6,并写出各个三角形名称
B)
、5、6
C. 5、6、11
D. 4、7、12
3、若等腰三角形其中两边长分别为3和7,则它的周长为17
4、若一个三角形的两边长为4和9,则下列长度的四条线段中能作为第三条边的是(B)
A. 13
B. 6
C. 5
D. 4
5、一个三角形周长为12cm,三条边长为整数,则它的最短边长为
2 cm
6、三角形的两条边长分别为8和5,那么第三条边x的取值范围为
3 < x < 13
7、四根木条,长度分别为10、7、5、3,选其中三根组成三角形,
有2种选法。
8、如果三角形的两边长分别为3和5,则周长L的取值范围是
10 < L < 16
9、一个三角形的三边长分别为5、10、a – 2,a的取值范围是
7 < a < 17
10、一个等腰三角形的周长是22cm,其中一条边长是另一条边长的2倍,求这个三角形的各边长。