信息量及信道容量的计算

合集下载

信息论总结与复习

信息论总结与复习
状态、状态转移、状态转移图、稳定状态、稳态方程
(3)稳态符号概率: (4)稳态信息熵:
结论:N阶马氏信源稳态信息熵(即极限熵)等于N+1阶条件熵。
第一部分、信息论基础
1.1 信源的信息理论
[例1] 已知二阶马尔可夫信源的条件概率:
p(0|00)=p(1|11)=0.8;p(0|01)=p(1|10)=0.6;
(2)联合熵:
H(XY)= -0.21log0.21 –0.14log0.14 –0.35log0.35 –0.12log0.12 –0.09log0.09–0.09log0.09 =2.3924 bit/符号
第一部分、信息论基础
1.2 信道的信息理论
(3)噪声熵:
由 和
H(Y | X)= – 0.21log0.3 –0.14log0.2 –0.35log0.5
(4)无噪有损信道:分组多对一(归并),其传输矩阵应具 有多行一列的分块对角化形式。
(5)对称信道:传输矩阵的各行都是一些相同元素的重排, 各列也是一些相同元素的重排。
第一部分、信息论基础
1.2 信道的信息理论
3、信道有关的信息熵:
(1)信源熵 (先验熵):
(2)噪声熵 (散布度):
(3)联合熵: (4)接收符号熵:
–0.12log0.4 –0.09log0.3–0.09log0.3
==(0.21+0.12,0.14+0.09,0.35+0.09) = (0.33, 0.23, 0.44)
H(Y)= -0.33log0.33 -0.23log0.23 -0.44log0.44
[例3]求对称信道 解:C =log4-H(0.2,0.3,0.2,0.3) =2+(0.2log0.2+0.3log0.3)×2 = 0.03 bit/符号; 的信道容量。

信道容量计算公式

信道容量计算公式

信道容量计算公式信道容量计算公式是通信领域中最为重要的公式之一。

它用于衡量在给定的信道条件下,所能传送的最大数据速率。

通俗地说,信道容量就是一条通信信道所能传输的最大数据量。

在通信领域中,信道容量是评估通信系统性能的重要指标之一。

信道容量通常用C来表示,它的计算公式是C=B*log2(1+S/N),其中B代表信道带宽,S代表信号功率,N代表噪声功率。

这个公式表明,信道容量与信道带宽、信号功率和噪声功率都有关系。

信道带宽越大,信道容量就越大;信号功率越高,信道容量也越大;噪声功率越小,信道容量也越大。

在信道容量计算公式中,信噪比是一个重要的概念。

信噪比是信号功率与噪声功率之比。

当信噪比增大时,信道容量也会随之增大。

这是因为信号的功率增大,噪声对信号的影响就相对减小了,从而提高了信道的传输能力。

信道容量计算公式的应用非常广泛。

在无线通信系统中,信道容量是评估无线信道质量的重要指标之一。

在数字通信系统中,信道容量是评估数字通信系统性能的重要指标之一。

在信息论中,信道容量是研究通信系统极限性能的重要概念之一。

在实际应用中,为了提高通信系统的性能,我们需要尽可能地提高信道容量。

一种常用的方法是通过增加信道带宽来提高信道容量。

另外,也可以通过增加信号功率或减小噪声功率来提高信道容量。

在无线通信系统中,还可以采用编码和调制技术来提高信道容量。

信道容量计算公式是通信领域中最为重要的公式之一。

它不仅能够评估通信系统的性能,还能够指导我们在实际应用中如何提高通信系统的性能。

在未来的发展中,信道容量计算公式将继续发挥着重要的作用,促进通信技术的不断发展。

(最新整理)信道容量的计算

(最新整理)信道容量的计算

(完整)信道容量的计算编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)信道容量的计算)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)信道容量的计算的全部内容。

§4.2信道容量的计算这里,我们介绍一般离散信道的信道容量计算方法,根据信道容量的定义,就是在固定信道的条件下,对所有可能的输入概率分布)(x P 求平均互信息的极大值。

前面已知()Y X I ;是输入概率分布的上凸函数,所以极大值一定存在。

而);(Y X I 是r 个变量)}(),(),({21r x p x p x p 的多元函数。

并且满足1)(1=∑=ri i x p 。

所以可用拉格朗日乘子法来计算这个条件极值。

引入一个函数:∑-=ii x p Y X I )();(λφ解方程组0)(])();([)(=∑∂-∂∂∂i ii i x p x p Y X I x p λφ1)(=∑iix p (4.2。

1)可以先解出达到极值的概率分布和拉格朗日乘子λ的值,然后在解出信道容量C .因为 )()(log)()();(11i i i i i ri sj i y p x y Q x y Q x p Y X I ∑∑===而)()()(1i i ri i i x y Q x p y p ∑==,所以e e y p y p i i i i i x y Q i x p i x p log log ))(ln ()(log )()()(==∂∂∂∂。

解(4.2。

1)式有0log )()()()()()(log )(111=--∑∑∑===λe y p x y Q x y Q x p y p x y Q x y Q ii i ii r i s j i i i i sj i i (对r i ,,2,1 =都成立) 又因为)()()(1j k k rk k y p x y Q x p =∑=ri x y Q sj i j,,2,1,1)(1==∑=所以(4.2.1)式方程组可以转化为 ),,2,1(log )()(log)(1r i e y p x y Q x y Q j i j sj i j =+=∑=λ1)(1=∑=ri i x p假设使得平均互信息);(Y X I 达到极值的输入概率分布},,{21r p p p 这样有 e y p x y Q x y Q x p j i j i j ri sj i log )()(log)()(11+=∑∑==λ从而上式左边即为信道容量,得 e C log +=λ 现在令)()(log)();(1j i j sj i j i y p x y Q x y Q Y x I ∑==式中,);(Y x I i 是输出端接收到Y 后获得关于i x X =的信息量,即是信源符号i x X =对输出端Y 平均提供的互信息。

信息的计算公式

信息的计算公式

信息的计算公式信息的计算公式是指通过一定的方法和算法,对信息进行量化和计算的公式。

信息的计算公式可以用于衡量信息的含量、传输效率以及信息处理的效果等。

本文将从信息的含量、信息传输效率和信息处理效果三个方面介绍信息的计算公式。

一、信息的含量计算公式信息的含量是指一个事件或一个消息所包含的信息量大小。

香农在信息论中提出了信息熵的概念,用于衡量信息的含量。

信息熵的计算公式如下:H(X) = -ΣP(xi)log2P(xi)其中,H(X)表示随机变量X的信息熵,P(xi)表示事件xi发生的概率。

信息熵的值越大,表示信息的含量越多;信息熵的值越小,表示信息的含量越少。

通过计算信息熵,可以比较多个事件或消息的信息含量大小,从而进行信息的排序和筛选。

二、信息传输效率计算公式信息传输效率是指信息在传输过程中的利用率和传输速度。

信息传输效率可以通过信道容量来进行衡量。

信道容量是指在单位时间内,信道传输的最大信息量。

信道容量的计算公式如下:C = B log2(1 + S/N)其中,C表示信道容量,B表示信号带宽,S表示信号功率,N表示噪声功率。

信道容量的值越大,表示信道的传输效率越高。

通过计算信道容量,可以评估不同信道的传输效果,从而选择合适的信道进行信息传输。

三、信息处理效果计算公式信息处理效果是指信息处理过程中所达到的效果。

信息处理效果可以通过误码率来进行衡量。

误码率是指传输过程中出现错误比特的比率。

误码率的计算公式如下:BER = N / (N + S)其中,BER表示误码率,N表示传输中出现错误的比特数,S表示传输的总比特数。

误码率的值越小,表示信息处理效果越好。

通过计算误码率,可以评估信息处理的准确性和可靠性,从而进行信息处理的优化和改进。

信息的计算公式可以从信息的含量、信息传输效率和信息处理效果三个方面进行衡量。

通过信息的计算公式,我们可以量化和计算信息,从而进行信息的排序、筛选、传输和处理,提高信息的利用效率和质量。

MIMO信道容量计算公式

MIMO信道容量计算公式

MIMO信道容量计算公式
MIMO(Multiple-Input Multiple-Output)是一种通过同时使用多个发射天线和接收天线来增加无线通信系统容量的技术。

MIMO技术可以利用信道的冗余和多路径效应,提高信号的传输速率和可靠性。

1.SISO信道容量计算公式:
SISO信道容量的计算公式使用香农公式,用于计算传输速率。

香农公式如下:
C = B * log2(1 + SNR)
其中,C是信道容量,B是带宽,SNR是信噪比(Signal-to-Noise Ratio)。

SISO信道容量计算公式适用于只有一个天线的系统。

2.MIMO信道容量计算公式:
C = log2(det(I + H*SNR*H^H))
其中,C是信道容量,H是MIMO信道的传输矩阵,SNR是信噪比。

除了以上基本的MIMO信道容量计算公式,还有一些进一步考虑调制方式、信道状态信息等因素的改进公式,如ZF(Zero Forcing)和MMSE (Minimum Mean Square Error)等方法,用于提高MIMO系统的容量。

这些方法考虑了天线之间的干扰和多径效应,可以优化信号的传输和接收性能。

总结起来,MIMO信道容量的计算公式可以通过SISO信道容量公式和MIMO信道容量公式来表示,具体的计算方法需要综合考虑信道状况和系
统参数,并结合数值计算方法进行分析。

通过合理设计和优化,MIMO技术可以显著提高无线通信系统的容量和性能。

信息论与编码第三版 第4章

信息论与编码第三版 第4章
C max H ( X ) log 3
p( x)
信息论与编码
3. 根据平均互信息量I(X; Y)达到信道容量的充要条件式对C进行验证:
p ( y j ) p ( xi ) p ( y j / xi )
i 1 3
1 P 0 0
0 1/ 2 0
0 1/ 2 0
0 0 1/6
x1 x2 x3 x4 x5
1 1 1 1 1
y1 y2 y3 y4 y5
1 0 P 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
【解】 该信道的信道容量为:
C max I ( X ; Y ) max H ( X ) log 5
C max I ( X ; Y ) max H (Y )
p( x) p( x)
由于
p( y ) p( x) p( y / x),由于信道转移概率是确定的,求使H (
X
Y)
达到最大值的p ( x )的最佳分布就转化为求p ( y )的最佳分布。由极大离 散熵定理知,在p ( y )等概率分布时,H ( Y ) 达到最大,则
I ( x2 ; Y ) p ( y j / x2 ) log
j 1 2
p ( y j / x2 ) p( y j ) p ( y j / x3 ) p( y j ) p ( y j / x4 ) p( y j ) p ( y j / x5 ) p( y j )
1 log
1 1/ 2
log 2
I ( x3 ; Y ) p ( y j / x3 ) log
j 1 2
1 log

信息论基础——信道容量的计算

信息论基础——信道容量的计算
离散无记忆信道和信道容量
0
[P]=
0
1-p
1
0
2.2.二进删除
信道—M信道
X={0,1}; Y={0,2,1}
0
1-p p
p
0
2
1 1-p
1
2
1
p 0
p
1-p
C=1-p 最佳入口分布为等概分布
1
离散无记忆信道和信道容量
对称离散信道的信道容量
I(X;Y)=H(Y)-H(Y/X) 而
H (Y
/
X ) P(x) P( y / x) log
p(y) C t
15
信道容量的计算
③常见信道的信道容量C:
——无噪信道
I(X;Y) H(X )
C log || ||
16
11
移动通讯技术的分类 移动通信系统有多种分类方法。例如按信号性质分,可分为模拟、数
字;按调制方式分,可分为调频、调相、调幅;按多址连接方式分, 可分为 频分多址(FDMA)、时分多址(TDMA)、码分多址(CDMA)。 目前中国联通、中国移动所使用的GSM移动电话网采用的便是FDMA 和TDMA两种方式的结合。GSM比模拟移动电话有很大的优势,但是, 在频谱效率上仅是模拟系统的3倍,容量有限;在话音质量上也很难 达到有线电话水平;TDMA终端接入速率最高也只能达到9.6kbit/s; TDMA系统无软切换功能,因而容易掉话,影响服务质量。因此, TDMA并不是现代蜂窝移动通信的最佳无线接入,而CDMA多址技术 完全适合现代移动通信网所要求的大容量、高质量、综合业务、软切 换等,正受到越来越多的运营商和用户的青睐。
C log s H ( p1' , p2' ... ps' ) 3

通信原理知识要点

通信原理知识要点

通信原理知识要点第一章概论1 、通信的目的2 、通信系统的基本构成●模拟信号、模拟通信系统、数字信号、数字通信系统●两类通信系统的特点、区别、基本构成、每个环节的作用3 、通信方式的分类4 、频率和波长的换算5 、通信系统性能的度量6 、传码速率、频带利用率、误码率的计算第二章信息论基础1 、信息的定义2 、离散信源信息量的计算(平均信息量、总信息量)3 、传信率的计算4 、离散信道的信道容量5 、连续信道的信道容量:掌握香农信道容量公式第三章信道与噪声了解信道的一般特性第四章模拟调制技术1 、基带信号、频带信号、调制、解调2 、模拟调制的分类、线性调制的分类3 、 AM 信号的解调方法、每个环节的作用第五章信源编码技术1 、低通、带通信号的采样定理(例 5 - 1 、例 5 -2 )2 、脉冲振幅调制3 、量化:●均匀量化:量化电平数、量化间隔、量化误差、量化信噪比●非均匀量化: 15 折线 u 律、 13 折线 A 律4 、 13 折线 A 律 PCM 编码(过载电压问题- 2048 份)5 、 PCM 一次群帧结构( P106 )6 、 PCM 系统性能分析7 、增量调制 DM 、增量脉码调制 DPCM :概念、特点、与 PCM 的比较第六章数字基带信号传输1 、熟悉数字基带信号的常用波形2 、掌握数字基带信号的常用码型3 、无码间干扰的时域条件、频域条件(奈奎斯特第一准则)4 、怎样求“等效”的理想低通()5 、眼图分析(示波器的扫描周期)6 、均衡滤波器第七章数字调制技术1 、 2ASK 、 2FSK 、 2PSK 、 2DPSK 的典型波形图2 、上述调制技术的性能比较3 、 MASK 、 MFSK 、 MPSK 、 MDPSK 、 QPSK 、 QDPSK 、 MSK ( h=0.5 )、APK 的含义、特点4 、数字调制技术的改进措施第七章复用与多址技术1 、复用与多址技术的基本概念、分类、特点、目的(区别)2 、同步技术的分类、应用第九章差错控制技术1 、常用的差错控制方式( ARQ 、 FEC 、 HEC )、优缺点2 、基本概念3 、最小码距与检错纠错能力的关系4 、常用的简单差错控制编码(概念、特点、编写)5 、线性分组码:基本概念、特点6 、汉明码的特点6 、循环码●概念●码字的多项式描述、模运算、循环多项式的模运算●循环码的生成多项式●根据生成多项式求循环码的:码字、(典型)生成矩阵、监督多项式、(典型)监督矩阵较大题目的范围1 、信息量的度量2 、信道容量的计算3 、 13 折线 A 律 PCM 编码4 、均衡效果的计算5 、数字调制波形的绘制6 、 HDB3 编码、解码7 、循环码重点Part I 基础知识1. 通信系统的组成框图 , 数字 / 模拟通信系统的组成框图。

第三章 信道和信道容量

第三章  信道和信道容量

I(X;Y):接收到Y前、后关于的平均不确定性 的消除 ;或发送X前、后关于Y的平
均不确定性的消除。
可见:熵只是平均不确定性的描述,而不确定性 的消除(两熵之差)才等于接收端所获得的信息 量。获得的信息量不能和不确定性混为一谈。
第三章 信道和信道容量
关于信道容量: 研究:信道中平均每个符号所能传送的信息量,
有损失,是无噪有损信 道,也称确定信道,即: 损失熵:H(X/Y) ≠ 0; 噪声熵:H(Y/X) = 0, I(X;Y)=H(Y)=H(X)-H(X/Y) <H(X)
第三章 信道和信道容量
信道容量仍是最大熵问题(最大H(Y)):
C=max H(Y)=log s bit/符号
P(X)
(设Y有s个符号)
不相交的子集mk,由mk组成的矩阵[P]k是对称矩阵 (具有可排列的性质),则称此信道为准对称信道, 其信道容量:
r为输入符号集个数 即信道矩阵行数 准对称信道中的 行元素 第k个子矩阵 中行元素之和
第k个子矩阵 中列元素之和
第三章 信道和信道容量
例3-1:二元对称删除 信道如图,计算信道容量。
例3-2:准对称信道的信道矩阵为: P(y/x)= 0.5 0.3 0.2 0.3 0.5 0.2 当输入概率分布为p(x1)=ɑ,p(x2)=1-ɑ
且:p=0时,信道无干扰; P=1/2时,信道干扰最为严重。
第三章 信道和信道容量
二、二元删除信道
难以区分原发送信号时,不硬性
判断0或1,而作删除处理。 删除信道中,p=q时,则为 对称删除信道。 三、Z信道 信道特性:0错成1的概率为0, 1错成0有一定可能。
1
0 1 0
p
1-p
1
第三章 信道和信道容量

《信道容量》PPT课件

《信道容量》PPT课件
n
C log r H ( p1, p2 ps ) Nk log M k
k 1
log 2 H ( 1 , 1 , 1 , 1) ( 3 log 3 1 log 1 ) 2488 4 4 4 4
1 1.75 0.811 0h.06(1 比特 / 信道符号) 35
• 另一种简单的方法: • 1.当输入分布为等概率时:计算出各个输出概率
信道容量的取得的过程亦是信源符号概率分布的自我调整的过程某一个输入信源符号对输入提供的平均信息量大于其他符号则势必更多的使用这个信源符号与此同时信源符号的概率分布也就发生了变化和调整由于输入信源符号分布的调整又减少了这个符号对输出提供的平均信息量增加了其他符号提供的平均信息量
第三章
信道与信道容量
h
1
• 求信道容量,必须求出使互信息量达到 最大的信源概率分布p(x);
• 对于无噪无损信道,当信宿为等概分布 时,信源也为等概分布;
• 问题:对于无噪有损信道,信源的概率 分布是否也为等概分布?
h 18
3.4.2 对称离散信道的信道容量
h 19
对称DMC信道
• 对称离散信道:
• 对称性:
– 每一行都是由同一集{q1, q2,…qs}的诸元素不 同排列组成——输入对称
分布p(bj); • 2.然后计算H(Y); • 3.C=H(Y)max-H(Y/ai);
h 36
• 上题另解:
h 23
• 找一组信源概率分布,使C达到最大。 • 现在P(bj)=1/s,信源的概率分布为: • 假设信源为等概率分布p(ai)=1/r
p(bj ) p(a1) p(bj / a1) p(a2) p(bj / a2) p(am) p(bj / am) 1/ r[ p(bj / a1) p(bj / a2) p(bj / ar )] 1/ r 常数

信道容量的计算公式

信道容量的计算公式

信道容量的计算公式
信道容量,即为一个通信系统情况下,传输单位时间所能发出信号的承载最大
量大小。

它是由通道的有效利用率、带宽以及传输信噪比(SNR)等因素共同影响
的结果,可用下面的公式来表示:
C=B \cdot log_2(1+S/N)
其中C为信道容量,单位为bps,B为信道带宽,单位为Hz,S/N为信号和噪
声之间的功率比,它表示通过此信道可以得到的信噪比,即任何一个噪声功率均等或小于其功率水平的情况都可以忽略不计。

信道容量是在可接受的噪声环境下,最大化信号的传输率的一项指标。

它的确
定性取决于信道在被激发的情况下具有的带宽和信噪比,因此,原则上讲,若把带宽B和S/N调大,信道容量也会有所增加,而若把带宽B和S/N调小,则信道容量会减少,即信道容量与带宽B、S/N成正比。

信道容量可用来衡量音频、视频等数据流在某特定带宽限制和噪声环境下传输
的能力,从而能够定制合适的通信系统结构。

因此,若想要得到高质量的通信体验,就必须了解其信道容量的大小以及构建可靠、高效的通信系统。

信息论基础——信道容量的计算

信息论基础——信道容量的计算
p
p p1 p 1
将p=3/5代入(2),得到信道容为:C=0.32bit/sym.
20
信道容量的计算
2 达到信道容量输入分布的充要条件

I (xi ;Y )
s j 1
p( y j
|
xi ) log
p( y j | xi ) p( yj )
def
D(Q( y |
x) ||
p( y))
定理4.2.2 一般离散信道的互信息I(X;Y)达到极大值
1 信道容量的计算原理
C是选择不同的输入概率分布p(x),在满足
∑p(x)=1条件下,求互信息的极大值:
I(X ;Y )
r i 1
s j 1
p(xi ) p( y j | xi ) log
p( y j | xi ) p(yj )
Lagrange乘子

17
信道容量的计算
例1、设某二进制数字传输系统接收判决器
6
数据可靠传输和信道编码
4.1 离散无记忆信道和信道容量 4.2 信道容量的计算
4.3 信道编码理论 4.4 带反馈的信道模型 4.5 联合信源-信道编码定理 4.6 线性分组码 习题四
7
8
接入信道容量的分析与寻呼信道不一样,寻呼信道用于前 向链路,容量的分析主要在于对寻呼信道占用率的计算, 而接入信道用于反向链路,对 CDMA 系统来说,反向链 路容量主要用于干扰的分析。即使采用时隙化的随机接入 协议,接入信道也可能有较高的通过量,大量的接入业务 会在反向链路中产生无法接受的干扰。如前所述,第一个 接入试探失败后,下一个接入试探将增加一定量的功率, 最终的结果将导致小区接收功率的增加以及反向链路容量 的减少。

4-第四讲-信道容量及其计算

4-第四讲-信道容量及其计算

Байду номын сангаас
0
1
q
1-p
1-q
p
1
2
0
删除信道的必要性
2、 信道容量定义
信息传输率:信道中平均每个符号所能传送的信息量。 R = I(X;Y) = H(X)-H(X|Y) (bit/符号)
有时我们需要关心单位时间内(一般为秒为单位)平均传输的信息量,若平均传输一个符号需要 t 秒,则信道每秒平均传输的信息量为(速率)
例:
( P 95-例3. 5 )
输出符号集个数
(2)、准对称信道的容量
准对称信道:信道矩阵(列)的子阵是对称矩阵。
定理:达到准对称离散信道信道容量的输入分布为 等概分布。
r是输入个数,n是不相交子集数,Nk是行之和,Mk是列之和
解:达到信道容量的输入分布为等概分布。
此时输出分布为:
I(X;Y)是输入随机变量的概率分布的上凸函数,所以对于固定的信道,总存在一种信源分布,使传输每个符号平均获得的信息量最大,也就是说,每一个固定信道都有一个最大的信息传输率。 信道容量定义为信道中每个符号所能传递的最大信息量,也就是最大 I (X;Y)值。
此时输入的概率分布称为最佳输入分布。
感谢阅读
感谢阅读
第四讲
4-1 信道容量 4-2 信道容量的计算方法
信道容量及其计算
do
something
1、常见的简单DMC离散信道:
二元对称信道 (DSC):输入符号X取值于{0,1}, 输出符号取值于{0,1},传递概率为
4-1 信道容量
二元删除信道 (BEC):输入符号X取值于{ 0, 1}, 输出符号取值于{ 0, 2, 1},传递概率为

信道容量的计算

信道容量的计算
可见,此假设分布满足定理,因此,信道容量
(bit/符号)
最佳分布是
若设输入分布为 。同理可得 ,根据定理有
从而,输入分布 也是最佳分布,可见,信道最佳输入分布不是唯一的。
对于一般的离散信道,我们很难利用特殊计算方法,因此只能采用解方程组式()的方法。
我们将()式的前r个方程组改写成
移项后得
令 ,代入上式得
化为矩阵形式为
这是含有 个未知数 个方程的非齐次线性方程组。
如果设 ,信道矩阵 为非奇异矩阵,则此方程组有解,并且可以求出 的数值,然后根据 求得信道容量
(bit/符号)
由这个 值可解得对应的输出概论分布 。
再根据 即可解出达到信道容量的最佳输入分布 。
下面给出一例。
例设离散无记忆信道输入 的符号集为 ,输出 的符号集为 ,如图所示。其信道矩阵为
上式只与対称信道矩阵中行矢量 和输出符号集的个数s有关。
证明

由于信道的对称性,所以 与 无关,为一常熟,即
接着举一个例子加以说明。
例某对称离散信倒的信道矩阵为
用公式计算信道容量
(bit/符号)
定义若信道矩阵Q的列可以划分成若干互不相交的子集矩阵 ,即 且 。由 为列组成的矩阵 是对称矩阵,则称信道矩阵Q所对应的信道为准对称信道。
如果信道的噪声熵 ,则此信道容量为
(bit/符号)
这里输出信源符Y的符号个数为s.
定义一个信道Q称为对称离散信道,如果它满足下面的性质:
(1)信道Q矩阵中每一行是另一行的置换;
(2)每一列式另一列的置称离散信道。
定义对称离散信道的信道容量为
(bit/符号)
只有当输入符号 互相独立,且输入符号 的概率分布达到各子信道容量的概率分布时,独立并联信道的信道容量才等于各信道容量之和,即

第三章信道及信道容量

第三章信道及信道容量

2但为有限值,即
p11
P
p2
1
p12 p22
,
p1m
p2m
pn1
pn2
pn
m
②二进制对称信道(BSC):输入和输出信号的符号数都 是2,即X∈A={0,1}和Y∈B={0,1}的对称信道。
1-p
0 p
0
1p p
p
P
p
1p
1
1
1-p
16
《信息论与编码》
3)有干扰有记忆信道:每个信道输出不但与当前输入信号 之间有转移概率关系,而且与其它时刻的输入输出信号也 有关。
27
《信息论与编码》
2)信道容量的定义 对于某特定信道,可找到某种信源的概率分布p(ai),使
得 I(X;Y)达到最大。
C m ax { I(X ;Y )} (b it/符 号 ) p(x)
注:对于特定的信道,信道容量是个定值,但是在传输信 息时信道能否提供其最大传输能力,则取决于输入端的概 率分布。一般相应的输入概率分布称为最佳输入分布。
28
若平均传输一个符号需要t秒钟,则信道单位时间内 平均传输的最大信息量为:
C T1 tm p(axx ){I(X;Y)}(bit/秒 )
即信道传输速率。
信道容量C已与输入信源的概率分布无关,它只是 信道传输概率的函数,只与信道的统计特性有关。 所以,信道容量是完全描述信道特性的参量,是信 道能够传输的最大信息量。
这样,波形信道化为多维连续信道,信道转移概率密度 函数为
其中:
19
《信息论与编码》
如果多维连续信道的转移概率密度函数满足
这样的信道称为连续无记忆信道即在任一时刻输出变 量只与对应时刻的输入变量有关,与以前时刻的输入输出 都无关。

信道容量计算(包含子信道)

信道容量计算(包含子信道)
������−1 +∞
������ =0 −∞
������ =0 −∞
������ ������ ������������ ∙ log 2
������−1 ������ =0 ������
������ ������ ������������ ������������ ������ ������������

������ =0
������ ������ ∙
−∞ +∞ ������−1
������ ������ a������ ∙ log 2
������������
=
Q 0 ⋯������ ������−1
max
−∞ ������ =0 ������−1
������ ������ ∙ ������ ������ a������ ∙ log 2
������ =0 ������ =0
exp −
������ − ������������
− ������ − ������������ 2������ 2
2
(10)
子信道信道容量的计算
1、MLC-MSD 子信道信道容量的理论推导。 依据互信息链式法则: I X;Y = I b1 ,b2 ,…,bM ;Y =I b1 ;Y +I b2 ;Y b1 +…+I bM ;Y b1 ,b2 ,…,bM-1 (1) 可得第 i 级子信道的信道容量: Ci = I bi ;Y b1 ,b2 ,…,bi-1 (2)
(6) 由于 ������ ������������ ������������ = 1,则:
������−1 +∞
1 ������ = log 2 ������ + ������
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

#include <iostream>
#include <cmath>
#include <string>
using namespace std;
int main()
{
int i,j,k,m,n;
char r;
char A='Y',B='N';
double x[20],p[12][12],q[12][12],y[20];
cout<<"输入信源x的个数N=";
cin>>n;
cout<<"输入所需信源概率:"<<endl;
for(i=1;i<=n;i++)
{
cout<<"x("<<i<<")=";
cin>>x[i-1];
}
cout<<"输入信道矩阵:"<<endl;
for(i=1;i<=n;i++)
{
for(k=1;k<=n;k++)
{
cout<<"请输入P(y"<<k<<"/x"<<i<<")=";
cin>>p[i-1][k-1];
}
}
//for(;;);
// {
cout<<"1信源熵2条件熵3联合熵4交互熵"<<endl;
cout<<"选择所要计算的熵值:"<<endl;
cin>>m;
if(m==1)
{
double H=0,h;
for(int j=1;j<=n;j++)
{
h=-x[j-1]*log10(x[j-1])/log10(2);
H=H+h;
}
cout<<"信源熵为:"<<H<<endl;
}
else if(m==2)
{
double H1=0,h1=0 ,H2=0,h2=0;
for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
{
q[i-1][j-1]=p[i-1][j-1]*x[i-1];
//cout<<"联合概率"<<"y"<<i<<"x"<<j<<q[i-1][j-1]<<" "<<endl;
h1=-q[i-1][j-1]*log10(p[i-1][j-1])/log10(2);
H1=H1+h1;
}
}
y[j-1]=y[j-1]+q[i-1][j-1];
cout<<"信源y"<<i<<y[j-1]<<" "<<endl;
h2=-q[i-1][j-1]*log10(q[i-1][j-1]/y[j-1])/log10(2);
H2=H2+h2;
}
cout<<"条件熵H(Y/X)为:"<<H1<<endl;
cout<<"条件熵H(x/y)为:"<<H2<<endl;
}
else if(m==3)
{
double H3=0,h3=0;
for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
{
q[i-1][j-1]=p[i-1][j-1]*x[i-1];
H3=-q[i-1][j-1]*log10(q[i-1][j-1])/log10(2);
H3=h3+H3;
}
}
cout<<"联合熵H(xy)为:"<<H3<<endl;
}
else if(m==4)
{
double H4=0,h4=0;
for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
{
q[i-1][j-1]=p[i-1][j-1]*x[i-1];
H4=-q[i-1][j-1]*log10(q[i-1][j-1]/x[i-1])/log10(2);
H4=h4+H4;
}
}
cout<<"交互熵I(x;y)=I(y;x)为:"<<H4<<endl;
}
// cout<<"是否继续计算,继续请输入Y,退出请输入N!"<<endl; // cout<<"请输入Y或者N,进行选择: ";
// cin>>r;
// if (r==A)
// {continue;}
// if (r==B)
// {break;}
//}
return 0;
}。

相关文档
最新文档