数字图像处理几何变换
图像的几何变换的两种实现(旋转、平移、放大、缩小)
![图像的几何变换的两种实现(旋转、平移、放大、缩小)](https://img.taocdn.com/s3/m/9be01fcbfc4ffe473268ab65.png)
面向对象程序设计学号:2学生所在学院:信息工程学院学生姓名:邵丽群任课教师:熊邦书教师所在学院:信息工程学院2013级实现图像的几何变换电子信息工程信息工程学院摘要:几何变换是最常见的图像处理手段,通过对变形的图像进行几何校正,可以得出准确的图像。
常用的几何变换功能包括图像的平移、图像的镜像变换、图像的转置、图像的缩放、图像的旋转等等。
目前数字图像处理的应用越来越广泛,已经渗透到工业、航空航天、军事等各个领域,在国民经济中发挥越来越大的作用。
作为数字图像处理的一个重要部分,本文接受的工作是如何Visual C++编程工具设计一个完整的应用程序,实现经典的图像几何变换功能。
程序大概分为两大部分:读写BMP图像,和数字图像的几何变换。
即首先用Visual C++创建一个单文档应用程序框架,在实现任意BMP图像的读写,打印,以及剪贴板操作的基础上,完成经典的图像几何变换功能。
图像几何变换的Visual C++编程实现,为校内课题的实现提供了一个实例。
关键字:图像处理;几何变换(图像的平移、缩放、转置、旋转和镜像变换);BMP图像;Visual C++一、引言图像几何变换是指用数学建模的方法来描述图像位置、大小、形状等变化的方法。
在实际场景拍摄到的一幅图像,如果画面过大或过小,都需要进行缩小或放大。
如果拍摄时景物与摄像头不成相互平行关系的时候,会发生一些几何畸变,例如会把一个正方形拍摄成一个梯形等。
这就需要进行一定的畸变校正。
在进行目标物的匹配时,需要对图像进行旋转、平移等处理。
在进行三维景物显示时,需要进行三维到二维平面的投影建模。
因此,图像几何变换是图像处理及分析的基础。
图像几何变换是计算机图像处理领域中的一个重要组成部分,也是值得深讨的一个重要课题。
在图像几何变换中主要包括图像的放缩、图像的旋转、图像的移动、图像的镜像、图像的块操作等内容,几何变换不改变图像的像素值,只改变像素所在的几何位置。
从广义上说,图像是自然界景物的客观反映,是人类认识世界和人类本身的重要源泉。
数字图像处理 -习题2增强-噪声-几何变换-频域变换
![数字图像处理 -习题2增强-噪声-几何变换-频域变换](https://img.taocdn.com/s3/m/e5d17695f61fb7360b4c6573.png)
第三章图像增强一.填空题1. 我们将照相机拍摄到的某个瞬间场景中的亮度变化范围,即一幅图像中所描述的从最暗到最亮的变化范围称为____动态范围__。
2.所谓动态范围调整,就是利用动态范围对人类视觉的影响的特性,将动态范围进行__压缩____,将所关心部分的灰度级的变化范围扩大,由此达到改善画面效果的目的。
3. 动态范围调整分为线性动态范围调整和__非线性调整___两种。
4. 直方图均衡化把原始图的直方图变换为分布均匀的形式,这样就增加了象素灰度值的动态范围从而可达到增强图像整体对比度的效果。
基本思想是:对图像中像素个数多的灰度值进行__展宽_____,而对像素个数少的灰度值进行归并,从而达到清晰图像的目的。
5. 数字图像处理包含很多方面的研究内容。
其中,__图像增强_的目的是将一幅图像中有用的信息进行增强,同时将无用的信息进行抑制,提高图像的可观察性。
6. 灰级窗,是只将灰度值落在一定范围内的目标进行__对比度增强___,就好像开窗观察只落在视野内的目标内容一样。
二.选择题1. 下面说法正确的是:(B )A、基于像素的图像增强方法是一种线性灰度变换;B、基于像素的图像增强方法是基于空间域的图像增强方法的一种;C、基于频域的图像增强方法由于常用到傅里叶变换和傅里叶反变换,所以总比基于图像域的方法计算复杂较高;D、基于频域的图像增强方法比基于空域的图像增强方法的增强效果好。
2. 指出下面正确的说法:(D )A、基于像素的图像增强方法是一种非线性灰度变换。
B、基于像素的图像增强方法是基于频域的图像增强方法的一种。
C、基于频域的图像增强方法由于常用到傅里叶变换和傅里叶反变换,所以总比基于图像域的方法计算复杂较高。
D、基于频域的图像增强方法可以获得和基于空域的图像增强方法同样的图像增强效果。
3.指出下面正确的说法:(D )①基于像素的图像增强方法是一种非线性灰度变换。
②基于像素的图像增强方法是基于空域的图像增强方法的一种。
数字图像处理学
![数字图像处理学](https://img.taocdn.com/s3/m/09a7540ebc64783e0912a21614791711cc79797d.png)
数字图像处理学数字图像处理(digital image processing)是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。
数字图像处理的产生和迅速发展主要受三个因素的影响:一是计算机的发展;二就是数学的发展(特别就是离散数学理论的创办和健全);三是广泛的农牧业、林业、环境、军事、工业和医学等方面的应用需求的增长。
一、实验内容:主要是图像的几何变换的编程实现,具体包括图像的读取、改写,图像平移,图像的镜像,图像的转置,比例缩放,旋转变换等,具体要求如下:1、编程同时实现图像位移,建议位移后的图像大小维持不变;2、编程实现图像的镜像;3、编程同时实现图像的单位矩阵;4、编程实现图像的比例缩放,要求分别用双线性插值和最近邻插值两种方法来实现,并比较两种方法的缩放效果;5、编程同时实现以任一角度对图像展开旋转变换,建议分别用双线性插值和最近邻插值两种方法去同时实现,并比较两种方法的转动效果。
二、实验目的和意义:本实验的目的就是并使学生熟识并掌控图像处理编程环境,掌控图像位移、镜像、单位矩阵和转动等几何变换的方法,并能够通过程序设计同时实现图像文件的读、写下操作方式,及图像位移、镜像、单位矩阵和转动等几何变换的程序实现。
三、实验原理与主要框架:3.1实验所用编程环境:visualc++(简称vc)是微软公司提供的基于c/c++的应用程序集成开发工具、vc拥有丰富的功能和大量的扩展库,使用它能有效的创建高性能的windows应用程序和web应用程序。
vc除了提供更多高效率的c/c++编译器外,还提供更多了大量的可以器重类和组件,包含知名的谷歌基础类库(mfc)和活动模板类库(atl),因此它就是软件开发人员不可多得的开发工具。
vc丰富的功能和大量的扩展库,类的重用特性以及它对函数库、dll库的支持能使程序更好的模块化,并且通过向导程序大大简化了库资源的使用和应用程序的开发,正由于vc具有明显的优势,因而我选择了它来作为数字图像几何变换的开发工具。
数字图像处理-图像基本运算
![数字图像处理-图像基本运算](https://img.taocdn.com/s3/m/34e8cdb5cd22bcd126fff705cc17552707225e6d.png)
数字图像处理_图像基本运算图像基本运算1点运算线性点运算是指输⼊图像的灰度级与输出图像呈线性关系。
s=ar+b(r为输⼊灰度值,s为相应点的输出灰度值)。
当a=1,b=0时,新图像与原图像相同;当a=1,b≠0时,新图像是原图像所有像素的灰度值上移或下移,是整个图像在显⽰时更亮或更暗;当a>1时,新图像对⽐度增加;当a<1时,新图像对⽐度降低;当a<0时,暗区域将变亮,亮区域将变暗,点运算完成了图像求补; ⾮线性点运算是指输⼊与输出为⾮线性关系,常见的⾮线性灰度变换为对数变换和幂次变换,对数变换⼀般形式为:s=clog(1+r)其中c为⼀常数,并假设r≥0.此变换使窄带低灰度输⼊图像映射为宽带输出值,相对的是输出灰度的⾼调整。
1 x=imread('D:/picture/DiaoChan.jpg');2 subplot(2,2,1)3 imshow(x);4 title('原图');5 J=0.3*x+50/255;6 subplot(2,2,2);7 imshow(J);8 title('线性点变换');9 subplot(2,2,3);10 x1=im2double(x);11 H=2*log(1+x1);12 imshow(H)13 title('⾮线性点运算');%对数运算幂次变换⼀般形式:s=cr^γ幂级数γ部分值把窄带暗值映射到宽带输出值下⾯是⾮线性点运算的幂运算1 I=imread('D:/picture/DiaoChan.jpg');2 subplot(2,2,1);3 imshow(I);title('原始图像','fontsize',9);4 subplot(2,2,2);5 imshow(imadjust(I,[],[],0.5));title('Gamma=0.5');7 imshow(imadjust(I,[],[],1));title('Gamma=1');8 subplot(2,2,4);9 imshow(imadjust(I,[],[],1.5));title('Gamma=1.5');2代数运算和逻辑运算加法运算去噪处理1 clear all2 i=imread('lenagray.jpg');3 imshow(i)4 j=imnoise(i,'gaussian',0,0.05);5 [m,n]=size(i);6 k=zeros(m,n);7for l=1:1008 j=imnoise(i,'gaussian',0,0.05);9 j1=im2double(j);10 k=k+j1;11 End12 k=k/100;13 subplot(1,3,1),imshow(i),title('原始图像')14 subplot(1,3,2),imshow(j),title('加噪图像')15 subplot(1,3,3),imshow(k),title(‘求平均后的减法运算提取噪声1 I=imread(‘lena.jpg’);2 J=imnoise (I,‘lena.jpg’,0,0.02);3 K=imsubtract(J,I);4 K1=255-K;5 figure;imshow(I);7 figure;imshow(K1);乘法运算改变图像灰度级1 I=imread('D:/picture/SunShangXiang.jpg')2 I=im2double(I);3 J=immultiply(I,1.2);4 K=immultiply(I,2);5 subplot(1,3,1),imshow(I);subplot(1,3,2),imshow(J);6 subplot(1,3,3);imshow(K);逻辑运算1 A=zeros(128);2 A(40:67,60:100)=1;3 figure(1)4 imshow(A);5 B=zeros(128);6 B(50:80,40:70)=1;7 figure(2)8 imshow(2);9 C=and(A,B);%与10 figure(3);11 imshow(3);12 D=or(A,B);%或13 figure(4);14 imshow(4);15 E=not(A);%⾮16 figure(5);17 imshow(E);3⼏何运算平移运算实现图像的平移1 I=imread('lenagray.jpg');2 subplot(1,2,1);3 imshow(I);4 [M,N]=size(I);g=zeros(M,N);5 a=20;b=20;6for i=1:M7for j=1:N8if((i-a>0)&(i-a<M)&(j-b>0)&(j-b<N)) 9 g(i,j)=I(i-a,j-b);10else11 g(i,j)=0;12 end13 end14 end15 subplot(1,2,2);imshow(uint8(g));⽔平镜像变换1 I=imread('lena.jpg');2 subplot(121);imshow(I);3 [M,N]=size(I);g=zeros(M,N);4for i=1:M5for j=1:N6 g(i,j)=I(i,N-j+1);7 end8 end9 subplot(122);imshow(uint8(g));垂直镜像变换1 I=imread('lena.jpg');2 subplot(121);imshow(I);3 [M,N]=size(I);g=zeros(M,N);4for i=1:M5for j=1:N6 g(i,j)=I(M-i+1,j);7 end8 end9 subplot(122);imshow(uint8(g));图像的旋转1 x=imread('D:/picture/DiaoChan.jpg');2 imshow(x);3 j=imrotate(x,45,'bilinear');4 k=imrotate(x,45,'bilinear','crop');5 subplot(1,3,1),imshow(x);6 title(‘原图')7 subplot(1,3,2),imshow(j);8 title(‘旋转图(显⽰全部)')9 subplot(1,3,3),imshow(k);10 title(‘旋转图(截取局部)')⼏种插值法⽐较1 i=imread('lena.jpg');2 j1=imresize(i,10,'nearest');3 j2=imresize(i,10,'bilinear');4 j3=imresize(i,10,'bicubic');5 subplot(1,4,1),imshow(i);title(‘原始图像')6 subplot(1,4,2),imshow(j1);title(‘最近邻法')7 subplot(1,4,3),imshow(j2);title(‘双线性插值法')8 subplot(1,4,4),imshow(j3);title(‘三次内插法')放缩变换1 x=imread('D:/picture/ZiXia.jpg')2 subplot(2,3,1)3 imshow(x);4 title('原图');5 Large=imresize(x,1.5);6 subplot(2,3,2)7 imshow(Large);8 title('扩⼤为1.5');9 Small=imresize(x,0.1);10 subplot(2,3,3)11 imshow(Small);12 title('缩⼩为0.3');13 subplot(2,3,4)14 df=imresize(x,[600700],'nearest');15 imshow(df)16 title('600*700');17 df1=imresize(x,[300400],'nearest');18 subplot(2,3,5)19 imshow(df1)20 title('300*400');后记:(1)MATLAB基础知识回顾1:crtl+R是对选中的区域注释,ctrl+T是取消注释2:有的代码中点运算如O=a.*I+b/255 ,其中b除以255原因是:灰度数据有两种表式⽅法:⼀种是⽤unit8类型,取值0~255;另⼀种是double类型,取值0~1。
数字图像处理图像变换实验报告
![数字图像处理图像变换实验报告](https://img.taocdn.com/s3/m/3107551fc850ad02de8041fe.png)
实验报告实验名称:图像处理姓名:刘强班级:电信1102学号:1404110128实验一图像变换实验——图像点运算、几何变换及正交变换一、实验条件PC机数字图像处理实验教学软件大量样图二、实验目的1、学习使用“数字图像处理实验教学软件系统”,能够进行图像处理方面的简单操作;2、熟悉图像点运算、几何变换及正交变换的基本原理,了解编程实现的具体步骤;3、观察图像的灰度直方图,明确直方图的作用与意义;4、观察图像点运算与几何变换的结果,比较不同参数条件下的变换效果;5、观察图像正交变换的结果,明确图像的空间频率分布情况。
三、实验原理1、图像灰度直方图、点运算与几何变换的基本原理及编程实现步骤图像灰度直方图就是数字图像处理中一个最简单、最有用的工具,它描述了一幅图像的灰度分布情况,为图像的相关处理操作提供了基本信息。
图像点运算就是一种简单而重要的处理技术,它能让用户改变图像数据占据的灰度范围。
点运算可以瞧作就是“从象素到象素”的复制操作,而这种复制操作就是通过灰度变换函数实现的。
如果输入图像为A(x,y),输出图像为B(x,y),则点运算可以表示为:B(x,y)=f[A(x,y)]其中f(x)被称为灰度变换(Gray Scale Transformation,GST)函数,它描述了输入灰度值与输出灰度值之间的转换关系。
一旦灰度变换函数确定,该点运算就完全确定下来了。
另外,点运算处理将改变图像的灰度直方图分布。
点运算又被称为对比度增强、对比度拉伸或灰度变换。
点运算一般包括灰度的线性变换、阈值变换、窗口变换、灰度拉伸与均衡等。
图像几何变换就是图像的一种基本变换,通常包括图像镜像变换、图像转置、图像平移、图像缩放与图像旋转等,其理论基础主要就是一些矩阵运算,详细原理可以参考有关书籍。
实验系统提供了图像灰度直方图、点运算与几何变换相关内容的文字说明,用户在操作过程中可以参考。
下面以图像点运算中的阈值变换为例给出编程实现的程序流程图,如下:2、图像正交变换的基本原理及编程实现步骤数字图像的处理方法主要有空域法与频域法,点运算与几何变换属于空域法。
数字图像处理---图像的几何变换
![数字图像处理---图像的几何变换](https://img.taocdn.com/s3/m/f365df33dc36a32d7375a417866fb84ae45cc3bd.png)
数字图像处理---图像的⼏何变换图像的⼏何变换图像的⼏何变换包括了图像的形状变换和图像的位置变换图像的形状变换图像的形状变换是指图像的放⼤、缩⼩与错切图像缩⼩图像的缩⼩是对原有的数据进⾏挑选或处理,获得期望缩⼩尺⼨的数据,并尽量保持原有的特征不消失分为按⽐例缩⼩和不按⽐例缩⼩两种最简单的⽅法是等间隔地选取数据图像缩⼩实现设原图像⼤⼩为M ∗N ,缩⼩为K 1M ∗K 2N (K 1<1,K 2<1)1. 设原图为F (i ,j ),i =1,2,...,M ,j =1,2,...,N ;压缩后地图像为G (x ,y ),x =1,2,...,k 1M ,y =1,2,...,k 2N2. G (x ,y )=F (c 1∗i ,c 2∗j );其中,c 1=1/k 1,c 2=1/k 2图像放⼤图像放⼤时对多出的空位填⼊适当的值,是信息的估计最简单的思想是将原图像中的每个像素放⼤为k ∗k 的⼦块图像放⼤实现设原图像⼤⼩为M ∗N ,缩⼩为K 1M ∗K 2N (K 1>1,K 2>1)1. 设原图为F (i ,j ),i =1,2,...,M ,j =1,2,...,N ;压缩后地图像为G (x ,y ),x =1,2,...,k 1M ,y =1,2,...,k 2N2. G (x ,y )=F (c 1∗i ,c 2∗j );其中,c 1=1/k 1,c 2=1/k 2图像错切图像错切变换实际上是平⾯景物在投影平⾯上的⾮垂直投影效果图像错切的数学模型x ′=x +d x y y ′=y(x ⽅向的错切,dx =tan θ)x ′=x y ′=y +d y x(y ⽅向的错切,dy =tan θ)图像的位置变换图像的位置变换是指图像的平移、镜像与旋转,即图像的⼤⼩和形状不发⽣变化主要⽤于⽬标识别中的⽬标配准图像平移公式:{{x ′=x +Δx y ′=y +Δy图像镜像图像镜像分为⽔平镜像和垂直镜像,即左右颠倒和上下颠倒公式:图像⼤⼩为M*Nx ′=x y ′=−y (⽔平镜像)x ′=−x y ′=y(垂直镜像)由于不能为负,因此需要再进⾏⼀次平移x ′=x y ′=N +1−y (⽔平镜像)x ′=M +1−xy ′=y(垂直镜像)图像旋转公式:x ′=xcos θ−ysin θy ′=xsin θ+ycos θ由于计算结果值所在范围与原有值不同,因此需要在进⾏扩⼤画布、取整、平移等处理画布扩⼤原则:以最⼩的⾯积承载全部的画⾯信息⽅法:根据公式x ′=xcos θ−ysin θy ′=xsin θ+ycos θ计算x ′min ,x ′max ,y ′min ,y ′max旋转后可能导致像素之间相邻连接不再连续,因此需要通过增加分辨率的⽅式填充空洞插值最简单的⽅式就是⾏插值(列插值)⽅法1. 找出当前⾏的最⼩和最⼤的⾮背景点坐标,记作:(i,k1)、(i,k2)2. 在(k1,k2)范围内进⾏插值,插值⽅法为空点的像素值等于前⼀点的像素值3. 重复上述操作直⾄没有空洞图像的仿射变换图像的仿射变换即通过通⽤的仿射变换公式,表⽰⼏何变换{{{{{{{齐次坐标原坐标为(x,y),定义齐次坐标为(wx,wy,w)实质上是通过增加坐标量来解决问题仿射变换通式通过齐次坐标定义仿射变换通式为x ′=ax +by +Δx y ′=cx +dy +Δy⇒x ′y ′=a b Δx c dΔyx y⼏何变换表⽰1. 平移x ′y ′1=10Δx 01Δy 001x y12. 旋转x ′y ′1=cos θ−sin θ0sin θcos θ0001x y 13. ⽔平镜像x ′y ′1=−10001001x y14. 垂直镜像x ′y ′1=1000−10001x y15. 垂直错切x ′y ′1=1d x 00−10001x y16. ⽔平错切x ′y ′1=100d y −10001x y1图像的⼏何校正由于图像成像系统的问题,导致拍摄的图⽚存在⼀定的⼏何失真⼏何失真分为{[][][][][][][][][][][][][][][][][][][][][]1. 系统失真:有规律的、可预测的2. ⾮系统失真:随机的⼏何校正的基本⽅法是先建⽴⼏何校正的数学模型,其次利⽤已知条件确定模型参数,最后根据模型对图像进⾏⼏何校正步骤:1. 图像空间坐标的变换2. 确定校正空间各像素的灰度值(灰度内插)途径:1. 根据畸变原因,建⽴数学模型2. 参考点校正法,根据⾜够多的参考点推算全图变形函数空间坐标变换实际⼯作中利⽤⼀幅基准图像f(x,y),来校正失真图像g(x′,y′)根据⼀些控制点对,建⽴两幅图像之间的函数关系,通过坐标变换,以实现失真图像的⼏何校正两幅图像上的f(x,y)=g(x′,y′)时,称其为对应像素(同名像素)通过表达式x′=h1(x,y)y′=h2(x,y)表⽰两幅图像之间的函数关系通常⽤多项式x′=n∑i=0n−i∑j=0a ij x i y jy′=n∑i=0n−i∑j=0b ij x i y j来近似h1(x,y)、h2(x,y)当多项式系数n=1时,畸变关系为线性变换x′=a00+a10x+a01yy′=b00+b10x+b01y六个未知数需要⾄少三个已知点来建⽴⽅程式当多项式系数n=2时,畸变关系式为x′=a00+a10x+a01y+a20x2+a11xy+a02y2y′=b00+b10x+b01y+b20x2+b11xy+b02y2 12个未知数需要⾄少6个已知点来建⽴⽅程式当超过已知点数⽬超过要求时,通过最⼩⼆乘法求解n=2时多项式通式为B2∗n=H2∗6A6∗n(n为待求点数)B2∗n=x′1x′2⋯x′n y′1y′2⋯y′n{ []H 2∗6=a 00a 10a 01a 20a 11a 02b 00b 10b 01b 20b 11b 02A 6∗n =11⋯1x 1x 2⋯x n y 1y 2⋯y n x 21x 22⋯x 2n x 1y 1x 2y 2⋯x n y ny 21y 22⋯y 2n同名点对要求1. 数量多且分散2. 优先选择特征点直接法利⽤已知点坐标,根据x ′=h 1(x ,y )y ′=h 2(x ,y )⇒x =h ′1(x ′,y ′)y =h ′2(x ′,y ′)x =n ∑i =0n −i∑j =0a ′ij x ′i y′jy =n ∑i =0n −i∑j =0b ′ijx ′i y ′j解求未知参数;然后从畸变图像出发,根据上述关系依次计算每个像素的校正坐标,同时把像素灰度值赋予对应像素,⽣成校正图像由于像素分布的不规则,导致出现像素挤压、疏密不均等现象,因此最后还需要进⾏灰度内插,⽣成规则图像间接法间接法通过假定⽣成图像的⽹格交叉点,从⽹格交叉点(x,y)出发,借助已知点求取未知参数,根据x ′=n ∑i =0n −i∑j =0a ij x i y jy ′=n ∑i =0n −i∑j =0b ij x i y j推算⽹格交叉点(x,y)对应畸变图像坐标(x',y'),由于对应坐标⼀般不为整数,因此需要通过畸变图像坐标周围点的灰度值内插求解,作为⽹格交叉点(x,y)的灰度值间接法相对直接法内插较为简单,因此常采⽤间接法作为⼏何校正⽅法像素灰度内插最近邻元法最近邻元法即根据四邻域中最近的相邻像素灰度决定待定点灰度值该⽅法效果较佳,算法简单,但是校正后图像存在明显锯齿,即存在灰度不连续性双线性内插法[][]{{双线性内插法是利⽤待求点四个邻像素的灰度在两个⽅向上作线性内插该⽅法相较最近邻元法更复杂,计算量更⼤,但是没有灰度不连续的缺点,且具有低通滤波性质,图像轮廓较为模糊三次内插法三次内插法利⽤三次多项式S(x)来逼近理论最佳插值函数sin(x)/xS(x)=1−2|x|2+|x|30≤|x|<1 4−8|x|+5|x|2−|x|31≤|x|<20|x|≥2该算法计算量最⼤,但是内插效果最好,精度最⾼{Processing math: 100%。
数字图像的几何运算
![数字图像的几何运算](https://img.taocdn.com/s3/m/693d36c7ed3a87c24028915f804d2b160b4e8622.png)
数字图像的几何运算数字图像的几何运算是指对图像进行平移、旋转、缩放和翻转等几何变换操作的过程。
这些几何运算可以改变图像的位置、方向、大小和形状,是数字图像处理中常用的操作之一。
本文将介绍几何运算的原理和应用,并讨论其在图像处理领域的重要性和作用。
一、几何运算的原理数字图像是由像素组成的二维矩阵,每个像素代表图像的一个点,包含了图像的颜色和位置信息。
几何运算是基于像素的位置信息对图像进行变换和调整的方法,可以通过修改像素的坐标来实现图像的平移、旋转、缩放和翻转等操作。
1. 平移平移是指将图像沿着水平和垂直方向进行移动,使得图像的位置发生变化。
平移操作可以通过修改像素的坐标来实现,将每个像素的坐标按照设定的平移量进行移动,从而改变图像的位置。
平移操作可以用以下公式表示:R’(x, y) = R(x-dx, y-dy)R(x, y)代表原始图像的像素,R’(x, y)代表平移后的图像像素,dx和dy分别代表水平和垂直方向的平移量。
二、几何运算的应用几何运算在数字图像处理中具有重要的应用价值,能够实现图像的位置、方向、大小和形状的调整,为图像处理提供了丰富的操作手段。
以下是几何运算的一些常见应用:1. 图像校正对于拍摄时出现的倾斜、扭曲等问题,可以通过旋转操作对图像进行校正,使得图像恢复到正常的状态。
图像校正能够提高图像的质量和美观度,减少图像处理时的误差和影响。
2. 图像增强通过缩放操作对图像进行放大或缩小,可以改变图像的大小和细节,使得图像更加清晰和细致。
图像增强能够提高图像的清晰度和可视性,使得图像更加逼真和吸引人。
3. 图像合成通过平移操作将多个图像进行位置调整,可以实现多个图像的合成和叠加,融合不同图像的信息和特点,生成新的图像内容。
图像合成能够实现图像的复杂处理和创意设计,为图像处理提供了更多的可能性。
4. 图像镜像通过翻转操作对图像进行镜像处理,可以改变图像的对称性和形状,生成镜像对称的图像。
实验4 图像几何变换—哈哈镜制作
![实验4 图像几何变换—哈哈镜制作](https://img.taocdn.com/s3/m/30e8dfa80029bd64783e2c41.png)
switch(method)
{
//最邻近插值图像缩小
caseDOWNRESIZE:
size = cvSize(q*pImg->width,q*pImg->height);
pImg1 = cvCreateImage(size,pImg->depth,pImg->nChannels);
for(j=0;j<pImg1->width;j++)
{
floatsrcX=(float)(j*((float)pImg->width/(float)pImg1->width));
floatsrcY=(float)(i*((float)pImg->height/(float)pImg1->height));
#defineRANGE 100//水平外凹或外凸的幅度
#definePI 3.1415926
//哈哈镜制作
intmain(intargc,char** argv )
{
IplImage* pImg;//声明IplImage指针
IplImage* pImg1;//声明IplImage指针
inti,j;
caseHORAO:
pImg1 = cvCreateImage(cvGetSize(pImg),pImg->depth,pImg->nChannels);
for(i=0;i<pImg1->height;i++)
{
tmp = RANGE*sin(i*PI/pImg1->height);
数字图像处理课件第6章图像的几何变换
![数字图像处理课件第6章图像的几何变换](https://img.taocdn.com/s3/m/75bfebc477eeaeaad1f34693daef5ef7ba0d1208.png)
x Hx H
y Hy H
第6章 图像的几何变换
齐次坐标的几何意义相当于点(x, y)落在3D空间H=1
的平面上,如图6-2所示。如果将xOy平面内的三角形abc的 各顶点表示成齐次坐标(xi, yi, 1)(i=1, 2, 3)的形式,就变成H =1平面内的三角形a1b1c1的各顶点。
图6-2 齐次坐标的几何意义
第6章 图像的几何变换
齐次坐标在2D图像几何变换中的另一个应用是:如某 点S(60 000,40 000)在16位计算机上表示,由于大于32767 的最大坐标值,需要进行复杂的处理操作。但如果把S的坐 标形式变成(Hx, Hy, H)形式的齐次坐标,则情况就不同了。 在齐次坐标系中,设H=1/2,则S(60 000,40 000)的齐次坐 标为(x/2,y/2,1/2),那么所要表示的点变为(30 000, 20 000,1/2),此点显然在16位计算机上二进制数所能表示 的范围之内。
(图像上各点的新齐次坐标)
(图像上各点的原齐次坐标)
第6章 图像的几何变换 设变换矩阵T为
a b p
T c
d
q
l m s
则上述变换可以用公式表示为
=
T
Hx1' Hy1'
Hx2' Hy2'
Hxn' Hyn'
x1 x2 xn
T
y1
y2
yn
H H H 3n
1 1 1 3n
第6章 图像的几何变换
6.4 图像镜像
6.4.1 图像镜像变换 图像的镜像(Mirror)变换不改变图像的形状。 镜像变换分为两种:一种是水平镜像,另外一种是垂直镜
数字图像实验报告一图像的加噪处理与几何变换
![数字图像实验报告一图像的加噪处理与几何变换](https://img.taocdn.com/s3/m/9a90290352ea551810a6879e.png)
实验一图像的加噪处理与几何变换一、实验目的1.给Lena图像加高斯噪声,椒盐噪声,均匀分布噪声,观察图像;用平滑滤波器(均值滤波器,中值滤波器)分析效果。
2.对lena图像作裁剪、放大、缩小、旋转、平移等几何变换。
二、实验内容1.采用中值滤波、均值滤波对受椒盐噪声干扰的图像滤波;2.采用中值滤波、均值滤波对受高斯噪声干扰的图像滤波;3.采用中值滤波、均值滤波对受均匀噪声干扰的图像滤波;4.将图像lena.bmp裁剪成200X200大小;5.制作动画,将一幅图像逐渐向左上角平移移出图像区域,空白的地方用白色填充;6.利用剪切图像函数制作动画;7.将图像分别放大1.5倍和缩小0.8倍,插值方法使用双线性插值法,分别显示图像;8.将图像水平镜像,再顺时针旋转45度,显示旋转后的图;9.将图像分别进行水平方向30度错切,垂直方向45度错切,分别显示结果。
三、实验步骤(一)采用中值滤波,均值滤波对受椒盐噪声干扰的图像滤波a = imread('E:\实验报告\数字图像处理实验报告\lena.jpg');%读取图像b = rgb2gray(a); %转化为灰度图像%给图像加入噪声I = imnoise(b,'salt & pepper')%椒盐噪声%扩展矩阵,生成待处理矩阵n = 3;%模板阶数m = (n-1)/2;[p,q] = size(I);PI = zeros(p+2*m,q+2*m);%待处理矩阵for i = 1:pfor j = 1:qPI(i+m,j+m) = I(i,j);endendfor i = 1:pfor ii = 1:mPI(i+m,ii) = I(i,1);PI(i+m,q+m+ii) = I(i,q);endendfor j = 1:qfor jj = 1:mPI(jj,j+m) = I(1,j);PI(p+m+jj,j+m) = I(p,j);endendfor ii = 1:mfor jj = 1:mPI(ii,jj) = I(1,1);PI(q+m+ii,jj) = I(p,1);PI(ii,p+m+jj) = I(1,q);PI(q+m+ii,p+m+jj) = I(p,q);endend%中值滤波&均值滤波derta = zeros(n,n);%n阶模板矩阵PImid = PI;PImean = PI;for i = m+1:p+mfor j = m+1:q+mfor k = 1:mfor h = 1:mderta(k,h) = PI(i+k-m-1,j+h-m-1);derta(k,m+1) = PI(i+k-m-1,j);derta(k,n-h+1) = PI(i+k-m-1,j+m+1-h); derta(m+1,h) = PI(i,j+h-m-1);derta(m+1,m+1) = PI(i,j);derta(m+1,n-h+1) = PI(i,j+m+1-h);derta(n-k+1,h) = PI(i+m+1-k,j+h-m-1);derta(n-k+1,m+1) = PI(i+m+1-k,j);derta(n-k+1,n-h+1) = PI(i+m+1-k,j+m+1-h);PImid(i,j) = median(median(derta));%中值滤波PImean(i,j) = round(mean(mean(derta)));%均值滤波endendendend%输出结果Imid = zeros(p,q);Imean = zeros(p,q);for i = 1:pfor j = 1:qImid(i,j) = PImid(i+m,j+m);Imean(i,j) = PImean(i+m,j+m);endend%显示结果figure()subplot(2,2,1);imshow(b); title('原图像');subplot(2,2,2);imshow(I);title('加入椒盐噪声的图像');subplot(2,2,3);imshow(Imid,[0,255]);title('中值滤波处理后的图像'); subplot(2,2,4);imshow(Imean,[0,255]);title('均值滤波处理后的图像');生成图像如下:由图可见,对于椒盐噪声,中值滤波效果更好。
数字图像处理讲义
![数字图像处理讲义](https://img.taocdn.com/s3/m/aad823f09e314332396893aa.png)
奇数行、列
偶数行、列
6.1 形状变换
缩小一半实例:
第 六 讲 几 何 运 算
6.1 形状变换
1. 缩小 一般形式:图像按任意比例缩小。
第 原图像及大小: 六 缩小后的图像及大小: 讲 几 何 1 运 cx 算 采样间隔:
f x, y
gx, y
1 cy ky
6.1 形状变换
缩小;
放大;
第 六 讲 几 何 运 算
6.1 形状变换
1. 缩小 一般分为按比例缩小和不按比例缩小两种。
第 六 讲 几 何 运 算
图像缩小之后,因为承载的信息量小了,所 以图像大小应相应缩小。
按比例缩小
不按比例缩小
6.1 形状变换
1. 缩小 最简单的缩小是减小一半,运算时只需取原图 的偶(奇)数行和偶(奇)数列构成新的图像。
第 六 讲 几 何 运 算
图像的放大操作中,则需对尺寸放大后所多 出来的空格填入适当的值,原有信息不足,这是 信息的估计问题,所以较图像的缩小要难一些。 分为成比例放大及按任意比例放大。
6.1 形状变换
2. 放大 成比例放大:如果需要将原图像放大k倍,则 将一个像素值添在新图像的k*k的子块中。
第 六 讲 几 何 运 算
y
x ' , y '
r
x, y
旋转一定角度。
x r cos y r sin
r
x
x' r cos r cos cos r sin sin y ' r sin r sin cos r cos sin x' x cos y sin y ' x sin y cos
数字图像处理实验06图像的几何变换
![数字图像处理实验06图像的几何变换](https://img.taocdn.com/s3/m/80aaa9360b4c2e3f572763b0.png)
一、数字图像处理实验实验六 图像的几何变换一、实验目的学习和掌握图像几何空间变换和灰度插值的基本方法,对图像进行相应的几何变换操作。
二、实验内容1.编程实现图像的比例缩放。
2. 编程实现图像任意角度的旋转变换。
3. 分别用MATLAB 函数提供的三种插值方法实现图像的缩放和旋转。
三、实验原理图像的几何变换可以看成是像素在图像内的移动过程,该移动过程可以改变图像中物体对象(像素)之间的空间关系。
完整的几何运算需要由两个算法来实现:空间变换算法和灰度插值算法。
空间变换主要用来保持图像中曲线的连续性和物体的连通性,一般都采用数学函数形式来描述输入、输出图像相应像素间的空间关系。
空间变换一般定义为)],(),,([),(),(y x b y x a f y x f y x g =′′= (6.1)其中,f 表示输入图像,g 表示输出图像,坐标),(y x ′′指的是空间变换后的坐标,要注意这时的坐标已经不是原来的坐标),(y x 了,),(y x a 和),(y x b 分别是图像的x 和y 坐标的空间变换函数。
灰度级插值主要是对空间变换后的像素赋予灰度值,使之恢复原位置处的灰度值,在几何运算中,灰度级插值是必不可少的组成部分。
因为图像一般用整数位置处的像素来定义。
而在几何变换中,),(y x g 的灰度值一般由处在非整数坐标上的),(y x f 的值来确定,即g 中的一个像素一般对应于f 中的几个像素之间的位置,反过来看也是一样,即f 中的一个像素往往被映射到g 中的几个像素之间的位置。
下面介绍图像几何变换常用的方法。
1. 图像的缩放假设图像x 轴方向缩放比例fx ,y 轴方向缩放比例是fy ,那么原图中点),(00y x 对应于新图中的点),(11y x 的转换矩阵为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1100000010011y x f f y x y x (6.2) 其逆运算如下: ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1100010********y x f f y x y x (6.3) 即: ⎩⎨⎧+=+=]5.0[]5.0[1010y x f y y f x x (6.4) 中括号表示对表达式取整。
图像处理技术的发展:从几何变换到深度学习
![图像处理技术的发展:从几何变换到深度学习](https://img.taocdn.com/s3/m/bbff78b3cd22bcd126fff705cc17552707225e00.png)
图像处理技术的发展:从几何变换到深度学习图像处理技术的发展:从几何变换到深度学习随着计算机技术的不断发展,图像处理技术也随之不断更新。
从早期的几何变换到如今的深度学习,这些技术的发展和进步,为我们带来了越来越多的便利和能力。
本文将从技术发展趋势、技术演进历程以及技术应用场景等角度,深入解析图像处理技术的演化历程和未来的发展方向。
一、技术发展趋势在过去的几十年中,随着计算机的不断进步和发展,图像处理技术也经历了几个不同的发展阶段。
早期的图像处理技术采用的是几何变换的方法,通过改变图像的形状、大小、旋转或者倾斜等方式,来达到图像的处理和变换。
然而,这种基于几何变换处理的方式只能对图像进行低级别的处理,对于图像的高级别处理则无能为力。
此后,大量的研究和实践证明了图像处理技术需要更加高效且全面的方法来进行处理,于是出现了数字信号处理和模式识别等技术,为图像处理的规模和深度提供了更强有力的支持。
而近些年来,随着计算机算力和深度学习技术的发展,深度学习技术被广泛应用于图像处理领域。
深度学习技术不仅具备高效、准确、快速的特点,而且具有良好的可扩展性和泛化性能,极大地推动了图像处理技术水平的提高。
二、技术演进历程1、几何变换早期的图像处理技术使用的是基于几何变换(如旋转、平移、缩放、映射等)的处理方式,通过手动/自动的方式来改变图像的形状、大小、方向等信息。
这种处理方式虽然简单,但可操作性很强,可以实现很多基本的图片处理功能,如图像的旋转、放缩、平移等等。
但同时,这种处理方式也存在很多的局限性,无法处理像素级别的信息,对于高级别的图像处理效果有一定的局限性。
2、数字信号处理随着计算机处理速度和存储能力的逐步提高,人们逐渐开始将推进到了数字图像处理领域。
数字图像处理可以使用数字信号处理方法来直接处理图像信息,这种处理方式可以更加直接地对像素进行操作和处理,对于高级别的图像处理效果更加优秀。
数字信号处理还包括了多种基础处理方法,如灰度变换、傅里叶变换、边缘检测、滤波等方法。
简述图像几何变换的类型与方法
![简述图像几何变换的类型与方法](https://img.taocdn.com/s3/m/b63057f15901020206409cc3.png)
程序开始⎩简述图像几何变换的类型和方法数字图像处理,就是利用数字计算机或则其他数字硬件,对从图像信息转换而得到的电信号进行某些数学运算,以提高图像的实用性。
例如从卫星图片中提取目标物的特征参数, 三维立体断层图像的重建等。
总的来说,数字图像处理包括点运算、几何处理、图像增强、图像复原、图像形态学处理、图像编码、图像重建、模式识别等。
目前数字图像处理的应用越来越广泛,已经渗透到工业、医疗保健、航空航天、军事等各个领域,在国民经济中发挥越来越大的作用。
图像的几何变换,通常包括图像的平移、图像的镜像变换、图像的转置、图像的缩放和图像的旋转等。
程序基本框架如下:图 图 图 图 图 像 像 像 像 像 的 的 的 的 的 平 移镜 像 转 置 缩 放旋 转1 图像的平移图像的平移是几何变换中最简单的变换之一。
1.1 理论基础图像平移就是将图像中所有的点都按照指定的平移量水平、垂直移动。
设(x0,y0)为原图像上的一点,图像水平平移量为 tx ,垂直平移量为 ty , 则平移后点(x0,y0)坐标将变为(x1,y1)。
显然(x0,y0)和(x1,y1)的关系如下:⎧ x 1 = ⎨y 1 = x 0 + txy 0 + ty1程序结束读写 BMP 图像用矩阵表示如下:⎡x1⎤⎡1 0 tx⎤⎡x0⎤⎢y1⎥=⎢0 1 ty⎥⎢y0⎥⎢⎥⎢⎥⎢⎥⎢⎣1⎥⎦⎢⎣001⎥⎦⎢⎣1⎥⎦对该矩阵求逆,可以得到逆变换:⎡x0⎤⎡1 0-tx⎤⎡x1⎤⎢y0⎥=⎢0 1-ty⎥⎢y1⎥即⎧x0 = x1 -tx⎢⎥⎢ ⎥⎢⎥⎨y0 = y1 -ty ⎢⎣1 ⎥⎦⎢⎣00 1⎥⎦⎢⎣1⎥⎦⎩这样,平移后的图像上的每一点都可以在原图像中找到对应的点。
例如,对于新图中的(0,0)像素,代入上面的方程组,可以求出对应原图中的像素(-tx,-ty)。
如果tx 或ty 大于0,则(- tx,- ty)不在原图中。
对于不在原图中的点,可以直接将它的像素值统一设置为0 或则255(对于灰度图就是黑色或白色)。
数字图像处理实验报告图像增强处理与几何变换
![数字图像处理实验报告图像增强处理与几何变换](https://img.taocdn.com/s3/m/6b79c4f759f5f61fb7360b4c2e3f5727a5e92492.png)
实验图像增强处理与几何变换一、实验目的利用Matlab图像处理工具箱中的函数实现图像点处理、空间域平滑和锐化处理、彩色图像处理、几何处理,巩固其原理与计算方法学习,深化课程理论认知。
二、实验内容1、图像点处理:灰度变换、直方图均衡化和直方图规定处理;2、图像均值滤波和中值滤波、图像锐化处理;3、图像几何变换处理;4、图像彩色合成和彩色变换处理;三、实验步骤1、图像点处理:灰度变换、直方图均衡化和直方图规定处理;1.1图像的灰度变换启用MATLAB,输入以下代码运行I= imread('cameraman-8.bmp','bmp');figure; subplot(2,2,1), imshow(I);%获取图像直方图subplot(2,2,2),imhist(I);[counts1,x1] = imhist(I);%观察Counts,x的值subplot(2,2,3),stem(x1,counts1);%图像灰度变换J=imadjust(I,[0.1 0.7],[0.0 0.9]);subplot(2,2,4), imshow (J);%对比灰度变换前后的图像及其直方图figure;subplot(2,3,1),imshow(I);subplot(2,3,2),imshow(J);subplot(2,3,4),imhist(I);subplot(2,3,5),imhist(J);[counts2,x2] = imhist(J);subplot(2,3,6), stem(x2,counts2);图 1.1.1图 1.1.21.2图像直方图均衡化启用MATLAB,输入以下代码运行I=imread('cameraman-8.bmp','bmp') ;%直方图均衡化处理J=histeq(I) ;%对比均衡化处理前后的图像及其直方图figure(1),subplot(2,2,1),imshow(I),subplot(2,2,2),imshow(J); figure(1),subplot(2,2,3),imhist(I),subplot(2,2,4),imhist(J);图 1.2 1.3直方图规定化启用MATLAB,输入以下代码运行I1=imread('TM5.bmp','bmp');I2=imread('TM3.bmp','bmp');%直方图规定化处理K1=histeq(I1,imhist(I2));%对比规定化处理前后的图像及其直方图figure;subplot(3,2,1),imshow(I1);subplot(3,2,2), imhist(I1);subplot(3,2,3),imshow(I2);subplot(3,2,4), imhist(I2);subplot(3,2,5),imshow(K1);subplot(3,2,6), imhist(K1);图 1.32、图像空间域平滑2.1 用均值滤波器实现图像空间域的平滑启用MATLAB,输入以下代码运行I=imread('cameraman-8.bmp','bmp');J=imnoise(I,'gaussian'); %添加高斯噪声K=imnoise(I,'salt & pepper'); %添加椒盐噪声M=imnoise(I,'speckle'); %添加乘性噪声H=ones(3,3)/9; %3*3的均值去噪模板%滤波去噪处理I1=imfilter(I,H);J1=imfilter(J,H);K1=imfilter(K,H);M1=imfilter(M,H) ;%对比线性滤波去噪处理前后的图像figure;subplot(2,4,1),imshow(I);title('原图');subplot(2,4,2),imshow(J); title('高斯噪声图像'); subplot(2,4,3),imshow(K); title('椒盐噪声图像'); subplot(2,4,4),imshow(M); title('乘性噪声图像'); subplot(2,4,6),imshow(J1); title('高斯噪声滤波图像'); subplot(2,4,7),imshow(K1); title('椒盐噪声滤波图像'); subplot(2,4,8),imshow(M1) ; title('乘性噪声滤波图像') ; 输出图像如下图 2.12.2 用中值滤波器实现图像空间域的平滑启用MATLAB,输入以下代码运行I=imread('cameraman-8.bmp');I1=imnoise(I,'gaussian');I2=imnoise(I,'salt & pepper',0.02);I3=imnoise(I,'speckle');%3×3中值滤波模板J=medfilt2(I,[3,3]);J1=medfilt2(I1,[3,3]);J2=medfilt2(I2,[3,3]);J3=medfilt2(I3,[3,3]);figure,subplot(2,4,1),imshow(I) ; title('原图') ;subplot(2,4,2),imshow(I1) ; title('添加高斯噪声') ;subplot(2,4,3),imshow(I2) ; title('添加椒盐噪声') ;subplot(2,4,4),imshow(I3) ; title('添加乘性噪声') ;subplot(2,4,6),imshow(J1) ;title('高斯噪声3*3中值滤波') ; subplot(2,4,7),imshow(J2) ;title('椒盐噪声3*3中值滤波') ; subplot(2,4,8),imshow(J3) ;title('乘性噪声3*3中值滤波') ;K=medfilt2(I, [5,5]); %5×5中值滤波模板K1=medfilt2(I1,[5,5]);K2=medfilt2(I2,[5,5]);K3=medfilt2(I3,[5,5]);figure;subplot(2,2,1),imshow(K); title('原图5*5中值滤波'); subplot(2,2,2),imshow(K1) ; title('高斯噪声5*5中值滤波') ; subplot(2,2,3),imshow(K2); title('椒盐噪声5*5中值滤波'); subplot(2,2,4),imshow(K3) ; title('乘性噪声5*5中值滤波'); 输出结果如下图 2.2.1图 2.2.22.3 图像空间域锐化启用MATLAB,输入以下代码运行I=imread('cameraman-8.bmp','bmp')H=fspecial('sobel')%用sobel算子做模板%锐化处理J=imfilter(I,H)%锐化处理前后图像对比figure,subplot(1,2,1),imshow(I),subplot(1,2,2),imshow(J); 输出图像如下图 2.33、图像几何变换3.1 缩放启用MATLAB,输入以下代码运行I=imread('cameraman-8.bmp', 'bmp') ;%放大图像J=imresize(I,2) ;%缩小图像K=imresize(I,0.5) ;%图像对比figure(1),subplot(),imshow(I),title('原图'),figure(2),subplot(),imshow(J),title('放大两倍的图'),figure(3),subplot(),imshow(K),title('缩小0.5倍的图') ;输出图像如下图 3.1.1 图3.1.2图 3.1.33.2旋转启用MATLAB,输入以下代码运行I=imread('cameraman-8.bmp', 'bmp') ;%旋转图像M=imrotate(I,45) ;%图像对比figure;subplot(1,2,1),imshow(I),subplot(1,2,2),imshow(M) ;输出图像如下图 3.24、彩色图像处理4.1彩色合成启用MATLAB,输入以下代码运行I=imread('peppers.bmp','bmp');J1=I; J2=I;J3=I; J4=I;J5=I;%改变J1、J2、J3、J4、J5中的波段次序,组合成新的波段合成J1(:,:,1)=I(:,:,2); J1(:,:,2)=I(:,:,3); J1(:,:,3)=I(:,:,1) ;J2(:,:,1)=I(:,:,1); J2(:,:,2)=I(:,:,3); J2(:,:,3)=I(:,:,2) ;J3(:,:,1)=I(:,:,2); J3(:,:,2)=I(:,:,1); J3(:,:,3)=I(:,:,3) ;J4(:,:,1)=I(:,:,3); J4(:,:,2)=I(:,:,2); J4(:,:,3)=I(:,:,1) ;J5(:,:,1)=I(:,:,3); J5(:,:,2)=I(:,:,1); J5(:,:,3)=I(:,:,2) ;%对比原图像I与新图像J1、J2、J3、J4、J5的彩色差异,理解假彩色合成figure,subplot(2,3,1),imshow(I),title('原图');subplot(2,3,2),imshow(J1),title('变换一') ;subplot(2,3,3),imshow(J2),title('变换二') ;subplot(2,3,4),imshow(J3),title('变换三') ;subplot(2,3,5),imshow(J4),title('变换四') ;subplot(2,3,6),imshow(J5),title('变换五');输出图像如下图4.1 4.2彩色变换启用MATLAB,输入以下代码运行I=imread('peppers.bmp','bmp');HSV=rgb2hsv(I) ;RGB=hsv2rgb(HSV) ;%对比彩色变换前后的图像figure;subplot(1,3,1),imshow(I),title('原图'),subplot(1,3,2),imshow(HSV),title('HSV图像'); subplot(1,3,3),imshow(RGB),title('RGB图像') ;输出结果如下图 4.2四、实验算法要点总结1、图像点处理直方图修正法通常分为直方图均衡化和直方图规定化两类2、图像均值滤波和中值滤波、图像锐化处理3、图像几何变换处理4、图像彩色合成和彩色变换处理通过映射函数将彩色图像或多光谱图像变换成新的三基色分量线性假彩色映射表示为:。
(完整版)数字图像处理简答题及答案
![(完整版)数字图像处理简答题及答案](https://img.taocdn.com/s3/m/1fa1d447a9956bec0975f46527d3240c8447a10f.png)
1、数字图像处理的主要研究内容包含很多方面,请列出并简述其中的4种。
①图像数字化:将一幅图像以数字的形式表示。
主要包括采样和量化两个过程。
②图像增强:将一幅图像中的有用信息进行增强,同时对其无用信息进行抑制,提高图像的可观察性。
③图像的几何变换:改变图像的大小或形状。
④图像变换:通过数学映射的方法,将空域的图像信息转换到频域、时频域等空间上进行分析。
⑤图像识别与理解:通过对图像中各种不同的物体特征进行定量化描述后,将其所期望获得的目标物进行提取,并且对所提取的目标物进行一定的定量分析。
如要从一幅照片上确定是否包含某个犯罪分子的人脸信息,就需要先将照片上的人脸检测出来,进而将检测出来的人脸区域进行分析,确定其是否是该犯罪分子。
4、简述数字图像处理的至少4种应用。
①在遥感中,比如土地测绘、气象监测、资源调查、环境污染监测等方面。
②在医学中,比如B超、CT 机等方面。
③在通信中,比如可视电话、会议电视、传真等方面。
④在工业生产的质量检测中,比如对食品包装出厂前的质量检查、对机械制品质量的监控和筛选等方面。
⑤在安全保障、公安方面,比如出入口控制、指纹档案、交通管理等。
5、简述图像几何变换与图像变换的区别。
①图像的几何变换:改变图像的大小或形状。
比如图像的平移、旋转、放大、缩小等,这些方法在图像配准中使用较多。
②图像变换:通过数学映射的方法,将空域的图像信息转换到频域、时频域等空间上进行分析。
比如傅里叶变换、小波变换等。
6、图像的数字化包含哪些步骤?简述这些步骤。
图像的数字化主要包含采样、量化两个过程。
采样是将空域上连续的图像变换成离散采样点集合,是对空间的离散化。
经过采样之后得到的二维离散信号的最小单位是像素。
量化就是把采样点上表示亮暗信息的连续量离散化后,用数值表示出来,是对亮度大小的离散化。
经过采样和量化后,数字图像可以用整数阵列的形式来描述。
7、图像量化时,如果量化级比较小会出现什么现象?为什么?如果量化级数过小,会出现伪轮廓现象。
图像处理运算方法
![图像处理运算方法](https://img.taocdn.com/s3/m/ab56615782c4bb4cf7ec4afe04a1b0717ed5b30c.png)
01
几何变换可能改变图像中各物体之间的空间位置关系。
01
几何变换不改变像素值,而可能改变像素所在的位置。
01
1.概念
空间变换
A
灰度插值
B
2.几何运算类型
02
01
空间变换
为了能够用统一的矩阵线性变换形式,表示和实现这些常见的图像几何变换,就需要引入一种新的坐标,即齐次坐标。采用齐次坐标可以实现上述各种几何变换的统一表示。 如图所示,则新位置A1(x1,y1) 的坐标为:
本章重点
01
加运算
02
减运算
03
乘运算
04
除运算
运算类型及应用
C(x,y) = A(x,y) + B(x,y)
主要应用举例 去除“叠加性”随机噪音 生成图像叠加效果
加运算
去除“叠加性”噪音 对于原图象f(x,y),有一个噪音图像集 { g i (x ,y) } i =1,2,...M 其中:g i (x ,y) = f(x,y) + h(x,y)i M个图像的均值定义为: g(x,y) = 1/M (g0(x,y)+g1(x,y)+…+ g M (x ,y)) 当:噪音h(x,y)i为互不相关,且均值为0时,上述图象均值将降低噪音的影响。
=
-
T1(x,y)
T2(x,y)
g(x,y)
图像的减法运算也可应用于求图像梯度函数
梯度定义形式:
梯度幅度
③求梯度幅度
梯度幅度的近似计算:
梯度幅度的应用
梯度幅度图像 梯度幅度在边缘处很高; 在均匀的肌肉纤维的内部,梯度幅度很低。
C(x,y) = A(x,y) * B(x,y)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上面的公式中,坐标系I是以图象的中心为原点,向 右为x轴正方向,向上为y轴正方向。它和以图象左 上角点,向右为x轴正方向,向下为y轴正方向的坐 标系II之间的转换关系如何呢?
两种坐 标系间 的转换 关系
逆变换为 :
按照上面的公式,我们可以把变换分成 3步:
第一: 将坐标系II变成I ; 第二: 将该点顺时针旋转a角; 第三: 将坐标系I变回II ,这样,我们 就得到了变换矩阵,是上面三个矩阵的 级联。
第五章数字图像处理中的 基本运算
本章主要内容和基本要求
• 数字图像的基本代数运算 • 数字图像的几何运算
5.1 数字图像处理基本运算的分类
一、图像处理算法的分类: 单幅图像————单幅图像 多幅图像————单幅图像 多幅图像或单幅图像————数值/符号(图像分析) 二、根据基本运算分类 点运算 邻域运算
6×6的原图f
3×3的新图g
图像缩小,可以在原图像中挑选信息,缩小之后的图 与原图像比较丢失了很多信息。
图像放大处理中,需要对放大后多出来的空格填入适 当的象素值,采用最临近插值法举例如下:
4×4的以原图f
长和宽各放大2倍,利用公式得到8×8的新 图像。新图像中各象素位置 X0=0 X2=1 X4=2 X6=3 Y0=0 Y2=1 Y4=2 Y6=3 X1=0.5 X3=1.5 X5=2.5 X7=3.5 Y1=0.5 Y3=1.5 Y5=2.5 Y7=3.5
• 图像旋转是指图像以某一点作为轴转过一定的 角度。通常的做法是以图象的中心为圆心旋转。 • 例如:图7旋转30度(顺时针方向)后的图象 如图8所示. 可以看出,旋转后图象变大了。
图-7原图
图-8旋转后的图
若要使旋转后保持原尺寸图像就要进行裁切
有些内容就会损失。我们采用第一种做法
图像旋转变换矩阵
在新图的坐标系中
中的象素
g (0,0)
是左上角的象素,原图
f(-tx,-ty),新的坐标系中g(0,0)=f(-tx,-ty)。
例如:
f ( x0 , y0 )
在新坐标系中的位置变成了
平移后出现的问题
• 1、如果新图中有一点(x1,y1),按照公式(2)得到的 (x0,y0)不在原图中该怎么办? 通常的做法是,把该点的RGB值统一设成(0,0,0)或者 (255,255,255)。 • 2、平移后的图象是否要放大? • 一种做法是不放大,移出的部分被截断,如下图所示, 图2为原图,图3为移动后的图。这种处理,文件大小 不会改变。 •
五、缩放(zoom)
• 图像比例缩放是指将给定的图像在x轴方向按比 例缩放fx倍,沿y轴方向比例缩放fy。当fx= fy 时,称为图像的全比例缩放。当fx ‡fy时,图像 象素间的相对位置会发生畸变。 • 设原图像中的点P(x0,,y0),比例缩放后在新的图 像中对应点P(x,y), P(x0,,y0)和 P(x,y)之间的 对应关系如图所示:
双线形插值(Bilinear Intrepolation) 曲线插值(Curvilinear Interpolation)
(1)最临近插值
• 图像变换后找不到相应的象素点时,直接赋值 为和它最相近的的象素值的插值算法。 • 例如:在图像的缩放中,将一幅6×6的图像 按比例缩小,fx=fy=1/2,图像的长和宽均缩 小到原来的一半,成为一幅3×3的图像。 原图像的象素从(0,0)到(5,5),新图 像的象素从(0,0)到(2,2)。如下图:
平移前的图
平移后的图像
还有一种做法是:将图象放大,使得能够显示下所有部分
移动后被放大图像
• 这种处理,文件大小要改变。设原图的宽和高 分别是w1,h1则新图的宽和高变为w1+|tx|和 h1+|ty|,加绝对值符号是因为tx,ty有可能为 负. 下面给出Translation的源代码。算法的思想是 先将所有区域填成白色,然后找平移后显示区 域的左上角点(x0,y0)和右下角点(x1,y1)。 分几种情况:
f11 c f12 c f13 c J f c f 21 c f 22 c f 23 c f c f c f c 32 33 31
给整幅图像增加灰度级会使图像亮度得到提 高整体偏亮,给个别象素加灰度值可以使目 标景物突出,例如:
三、镜象(mirror)
• 镜象分水平镜象和垂直镜象两种
原图
水平镜像
垂直镜像
镜象的变换矩阵很简单,设原图宽为w,高为h, 变换后,图的宽和高不变. 水平镜象为:
垂直镜象为
四、转置(transpose)
• 转置是指将x,y坐标 对换
原图
转制后的图
要注意的是,转置和旋转90度是有区别的,不信你 可以试试,你怎么转,也转不出图15度来。另外, 转置后图的宽高对换了。 转置的变换矩阵很简单:
bg11 bg12 K bg bg 21 bg 22 bg 31 bg 32
bg13 bg 23 bg 33
af11 af af 21 af 31
af12 af 22 af 32
af13 af 23 af 33
先看x方向(width指图象的宽度)
1.tx≤-width 很显然,图象完全移出了屏幕,不用做任何处 理 2.-width<tx≤0,如图5所示图像向左上方移 动 图象区域的x范围从0到width-|tx|,对应原图 的范围从|tx|到width
图5
3.0<tx<width , 如图6所示 , 图像向右下方平移 0<tx<width,0<ty<height的情况图象区域的x范围 从tx到width,对应原图的范围从0到width-tx
5.2 点运算
• 一、数字图像的代数运算 • 1、基本代数运算基础: 设图像
I f ( x, y)
J g ( x, y)
其运算可以分为图像自身的运算和图像间的运算, 从根本上而言可以看成对图像位置的运算或对该位 置上灰度级的运算。
基本代数运算:图像象素几何位置不变图 像灰度级的加、减、 乘、 除等运算。 几何运算:图像象素位置变换后,经过计 算,确定该象素灰度的运算。
这种做法利用了位图存储的连续性, 即同一行的像素在内存中是相邻的。 利用memcpy函数,从(x0,y0)点开始, 一次可以拷贝一整行(宽度为x1-x0), 然后将内存指针移到(x0,y0+1)处,拷贝 下一行,这样拷贝(y1-y0)行就完成了 全部操作,避免了一个一个像素的计 算,提高了效率。
二、旋转(rotation)
给一幅图像乘以一个系数,可以改变图像的灰 度级范围如:
af11 J af af 21 af 31
af12 af 22 af 32
af13 af 23 af 33
原来是20-200的灰度级范围,乘以2则 有40-400的灰度级范围
两幅连续的图像运算可以有基本运算组合而成 如:K=af+bg:
图6
4.tx≥width,图象完全移出了屏幕,不用做任 何处理 。
y方向是对应的(height表示图象的高度
1.ty≤-height,图象完全移出了屏幕,不用做任 何处理 2.-height<ty≤0,图象区域的y范围从0到 height-|ty|,对应原图的范围从|ty|到height 3.0<ty<height ,图象区域的y范围从ty到 height,对应原图的范围从0到height-ty 4.ty≥height,图象完全移出了屏幕,不用做任 何处理 )
比例缩放前后两点之间的关系用矩阵表示为:
0
0 x0 fy 0 y0 1 0 1 0
y1 f y y0
其逆矩阵为:
x0 y 0 1
• 先来看一下,将一 个点顺时针旋转a 角后的坐标变换公 式,如图10所示, r为该点到原点的 距离,在旋转过程 中,r保持不变。b 为r与x轴之间的角 度。
图10
x0=r*cos(b); y0=r*sin(b)
旋转前:x0=r*cos(b); y0=r*sin(b) 旋转a角度后 :
x1 r *cos(b a)
r *cos(b) cos(a) r *sin(b)sin(a) x0 cos(a) y0 sin(a)
y1 r *sin(b a) r *sin(b) cos(a) r *cos(b)sin(a) y0 cos(a) x0 sin(a)
以矩阵的形式表示
其逆矩阵的形式表示为
1 fx 0 0
0 1 fy 0
0 x 0 y 1 1
x x0 fx
y y0 fy
插值算法(Interpolation)
• 比例缩放所产生的图像中有可能在原图中找不到相应 的象素点,我们采用的做法是找与之最临近的点,我们 采用的做法是找与之最临近的点 。即利用邻域的像素 来估计新的像素值 的处理方法就是插值算法。 • 常用的插值算法有: 最邻近插值(Nearest Neighbour Interpolation)。 线形插值(Linear Interpolation)。
6×6的原图f
新图中的灰度值利用缩放公式
x x0 fx
计算得到
y y0 fy
X0=0/0.5=0
X1=1/0.5= 2 X2=2/0.5=4 g(0,0)=f(0,0) , g(1,0)=f(2,0), g(2,0)=f(4,0),
y0 =0
y1=2 y2=4 g(0,1)=f(0,2) , g(0,2)=f(0,4), g(1,1)=f(2,2), g(1,2)=f(2,4) g(2,1)=f(4,2) ,g(2,2)=f4,4)