北师大六年级上册数学知识点汇总

合集下载

北师大版六年级上册知识点归纳总结整理(全)

北师大版六年级上册知识点归纳总结整理(全)

第一单元 圆圆概念总结1.圆的定义:平面上的一种曲线图形。

2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。

圆心一般用字母O 表示。

它到圆上任意一点的距离都相等.3.半径:连接圆心到圆上任意一点的线段叫做半径。

半径一般用字母r 表示。

把圆规两脚分开,两脚之间的距离就是圆的半径。

4.圆心确定圆的位置,半径确定圆的大小。

5.直径:通过圆心并且两端都在圆上的线段叫做直径。

直径一般用字母d 表示。

6.在同一个圆内,所有的半径都相等,所有的直径都相等。

7.在同一个圆内,有无数条半径,有无数条直径。

8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。

用字母表示为:d=2r ; 2r d =用文字表示为:半径=直径÷2 直径=半径×2 9.圆的周长:围成圆的曲线的长度叫做圆的周长。

10.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。

我们把圆的周长和直径的比值叫做圆周率,用字母 π 表示。

圆周率是一个无限不循环小数。

在计算时,取3.14。

世界上第一个把圆周率算出来的人是我国的数学家祖冲之。

11.圆的周长公式:C=d 或C=2r 圆周长=×直径 圆周长=π×半径×212.圆的面积:圆所占面积的大小叫圆的面积。

13.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,用字母(r )表示,宽相当于圆的半径,用字母(r )表示,因为长方形的面积=长×宽,所以圆的面积= πr ×r 。

圆的面积公式:S=πr ²。

14.圆的面积公式:S=πr ² 或者S=(2d )² 或者S=(2÷÷πC )² 15.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。

16.在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。

17.一个环形,外圆的半径是R ,内圆的半径是r ,它的面积是S=πR²-πr²或 S=π(R²-r²)。

(完整版)北师大版六年级数学上册知识点汇总

(完整版)北师大版六年级数学上册知识点汇总

北师大版六年级数学上册知识点汇总第一单元圆1.圆的定义:由曲线围成的封闭图形,且圆上任意一点到中心点(圆心)的距离都相等。

2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。

圆心一般用字母O表示。

它到圆上任意一点的距离都相等.3.半径:连接圆心到圆上任意一点的线段叫做半径。

半径一般用字母r表示。

把圆规两脚分开,两脚之间的距离就是圆的半径。

4.圆心确定圆的位置,半径确定圆的大小。

5.直径:通过圆心并且两端都在圆上的线段叫做直径。

直径一般用字母d表示。

6.在同一个圆内,所有的半径都相等,所有的直径都相等。

7.在同一个圆内,有无数条半径,有无数条直径。

8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。

用字母表示为:d=2rr =1/2d用文字表示为:半径=直径÷2直径=半径×29.圆的周长:围成圆的曲线的长度叫做圆的周长。

10.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。

我们把圆的周长和直径的比值叫做圆周率,用字母表示。

圆周率是一个无限不循环小数。

在计算时,取π≈3.14。

世界上第一个把圆周率算出来的人是我国的数学家祖冲之。

11.圆的周长公式:C=πd或C=2πr圆周长=π×直径或圆周长=π×半径×212、圆的面积:圆所占面积的大小叫圆的面积。

13.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,用字母(πr)表示,宽相当于圆的半径,用字母(r)表示,因为长方形的面积=长×宽,所以圆的面积= πr×r。

圆的面积公式:S=πr²。

14.圆的面积公式:S=πr² 或者S=π(d/2)² 或者15.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。

16.在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。

17.一个环形(圆环),外圆的半径是R,内圆的半径是r,它的面积是S=πR²-πr² 或 S=π(R²-r²)。

北师大版六年级上册数学知识点归纳总结

北师大版六年级上册数学知识点归纳总结

北师大版六年级上册数学知识点归纳总结一、分数乘法1. 分数乘法的意义:乘法的意义:求几个相同加数的和的简便运算。

分数乘法的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

2. 分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

但分数的分子和分母都不能为0。

3. 分数与整数相乘的计算方法:分数与整数相乘就是分数的分子和整数相乘,用分数的分母不变。

计算时能约分的要先约分再计算。

4. 分数与小数相乘的计算方法:一个数与小数相乘时,可以把小数看成是分数(不含小数位)与纯小数相乘,然后再约分。

如:可以看成是15/100,然后再约分。

二、分数除法1. 分数除法的意义:分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。

2. 分数除法的计算方法:除以一个数(0除外),等于乘这个数的倒数。

被除数不变,除数扩大(或缩小)几倍(0除外),商就缩小(或扩大)相同的倍数;被除数和除数同时扩大或者缩小相同的倍数(0除外),商不变。

三、分数四则混合运算1. 分数四则混合运算的运算顺序与整数四则混合运算的运算顺序相同。

2. 运算定律在分数四则混合运算同样适用。

加法结合律、加法交换律、乘法交换律、乘法结合律、乘法分配律。

四、百分数1. 百分数的意义:表示一个数是另一个数的百分之几的数叫做百分数。

百分数也叫做百分率或百分比。

2. 百分数与分数的互化:把百分数化成分数,先把百分数改写成分母是100的分数,能约分的要约成最简分数。

如:%=375/1000=75/200=3/8;百分数的小数点向右移动两位就是分数,向右移动两位小数点就是除以100。

如:=375/1000=3/8。

北师大版六年级数学上册知识要点汇总提前预习

北师大版六年级数学上册知识要点汇总提前预习

北师大版六年级数学上册知识要点汇总,提前预习!六年级上册数学北师版知识要点01第一单元圆1、圆的定义:平面上的一种曲线图形。

2、将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。

圆心一般用字母O表示。

它到圆上任意一点的距离都相等。

3、半径:连接圆心到圆上任意一点的线段叫做半径。

半径一般用字母r表示。

把圆规两脚分开,两脚之间的距离就是圆的半径。

4、圆心确定圆的位置,半径确定圆的大小。

5、直径:通过圆心并且两端都在圆上的线段叫做直径。

直径一般用字母d表示。

6、在同一个圆内,所有的半径都相等,所有的直径都相等。

7、在同一个圆内,有无数条半径,有无数条直径。

8、在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。

用字母表示为:d=2rr =1/2d用文字表示为:半径=直径÷2直径=半径×29、圆的周长:围成圆的曲线的长度叫做圆的周长。

10、圆的周长总是直径的3倍多一些,这个比值是一个固定的数。

我们把圆的周长和直径的比值叫做圆周率,用字母表示。

圆周率是一个无限不循环小数。

在计算时,取π≈3.14。

世界上第一个把圆周率算出来的人是我国的数学家祖冲之。

11、圆的周长公式:C=πd 或C=2πr圆周长=π×直径圆周长=π×半径×212、圆的面积:圆所占面积的大小叫圆的面积。

13、把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,用字母(πr)表示,宽相当于圆的半径,用字母(r)表示,因为长方形的面积=长×宽,所以圆的面积= πr×r。

圆的面积公式:S=πr²。

14、圆的面积公式:S=πr²或者S=π(d/2)²或者15、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。

16、在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。

17、一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=πR²-πr²或S=π(R²-r²)。

北师大六年级上册数学笔记汇总

北师大六年级上册数学笔记汇总

1、解方程的依据:
加数+加数=和
一个加数= 和-另一个加数
被减数-减数=差 被减数= 差+减数 减数= 被减数-差 因数×因数=积
一个因数 = 积 ÷ 另一个因数
被除数÷除数=商 被除数=商×除数 除数 = 被除数÷商
2、分数和小数互化常用的数: =0.5 =0.25 =0.75 =0.2 =0.4 =0.6 =0.8 =0.125 =0.375 =0.625 =0.875 =0.05 =0.04 ≈0.333 ≈0.667 ≈ 0.167
12、凡是打折的商品,表示现价是原价的百分之几,原价是单位“1” 现价 = 原价 × 折数(折数通常写成百分数形式) 原价 = 现价÷折数 当知道便宜的钱时,原价 =便宜的钱÷(1-折数 ) 便宜的钱 =原价-现价 或者是:便宜的钱 =原价×(1-折数 )
把一个百分数的%去掉,这个数就 扩大到原来的100倍。 一个不为0的数后面添上%,这个数就 缩小到原来的 。
计算比赛场次的方法: 如果有5 人进行比赛,每两人进行一场比赛,一共有多少场? 方法一;1+2+3+4=10 字母公式:1+2+3+……+(n-1) 方法二;5×4÷2=10 字母公式:n×(n-1) ÷2
第四单元 认识比
两个数的比表示两个数相除,比的后项不能为0 。(球赛中的“比”只是一种记录方式,这种比是差比,不是我们说的倍比) 比的组成部分有:前项、比号、后项 最简整数比:前项与后项是互质的两个整数,这样的比叫做最简整数比 。 比的基本性质:比的前项和后项同时乘或除以相同的数(0 除外),比值不变,这叫做比的基本性质。
2
d
圆的周长÷直径=圆周率π ,圆的周长是直径的π倍,圆的周长是半径的2π倍。

六年级上册数学知识点北师大版

六年级上册数学知识点北师大版

六年级上册数学知识点北师大版一、圆。

1. 圆的认识。

- 圆是由一条曲线围成的封闭图形。

圆心用字母O表示,半径用字母r表示,直径用字母d表示。

- 在同圆或等圆中,d = 2r,r=(d)/(2)。

2. 圆的周长。

- 圆的周长C = 2π r或C=π d(π是圆周率,通常取3.14)。

- 半圆的周长C=π r + 2r=( π + 2)r。

3. 圆的面积。

- 圆的面积S=π r^2。

- 圆环的面积S = π R^2-π r^2=π(R^2-r^2)(R为外圆半径,r为内圆半径)。

二、分数混合运算。

1. 分数混合运算顺序。

- 与整数混合运算顺序相同,先算乘除,后算加减,有括号的先算括号里面的。

2. 解决问题。

- 连续求一个数的几分之几是多少,用乘法计算。

例如:求a的(b)/(c)的(d)/(e)是多少,列式为a×(b)/(c)×(d)/(e)。

- 已知一个数比另一个数多(少)几分之几,求这个数。

- 单位“1”已知,用乘法。

如:已知a,比a多(b)/(c)的数是a×(1+(b)/(c));比a少(b)/(c)的数是a×(1-(b)/(c))。

- 单位“1”未知,用除法或列方程。

设单位“1”为x,若已知数比单位“1”多(b)/(c),则x×(1+(b)/(c))=已知数;若已知数比单位“1”少(b)/(c),则x×(1 -(b)/(c))=已知数。

三、观察物体。

1. 观察的范围。

- 观察点的位置越低,观察到的范围越小;观察点的位置越高,观察到的范围越大。

- 观察点离障碍物越近,观察到的范围越小;观察点离障碍物越远,观察到的范围越大。

2. 天安门广场。

- 根据照片或画面判断拍摄的位置与画面的相互关系。

四、百分数。

1. 百分数的认识。

- 百分数表示一个数是另一个数的百分之几。

百分数也叫百分率或百分比。

百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”。

北师大版六年级上册数学知识点总结(分单元)

北师大版六年级上册数学知识点总结(分单元)

第一单元圆1 .圆的定义:平面上的一种曲线图形。

2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。

圆心一般用字母 O表示。

它到圆上任意一点的距离都相等.3 .半径:连接圆心到圆上任意一点的线段叫做半径。

半径一般用字母r 表示。

把圆规两脚分开,两脚之间的距离就是圆的半径。

4.圆心确定圆的位置,半径确定圆的大小。

5 .直径:通过圆心并且两端都在圆上的线段叫做直径。

直径一般用字母 d 表示。

6.在同一个圆内,所有的半径都相等,所有的直径都相等。

7.在同一个圆内,有无数条半径,有无数条直径。

8.在同一个圆内,直径的长度是半径的 2 倍,半径的长度是直径的一半。

用字母表示为:d=2 r r =1/2d用文字表示为:半径 =直径÷2 直径 =半径×29.圆的周长:围成圆的曲线的长度叫做圆的周长。

10.圆的周长总是直径的 3 倍多一些,这个比值是一个固定的数。

我们把圆的周长和直径的比值叫做圆周率,用字母表示。

圆周率是一个无限不循环小数。

在计算时,取π≈3.14 。

世界上第一个把圆周率算出来的人是我国的数学家祖冲之。

11 .圆的周长公式: C=πd或 C=2 π r圆周长 =π×直径圆周长 =π×半径×212、圆的面积:圆所占面积的大小叫圆的面积。

13.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,用字母(πr)表示,宽相当于圆的半径,用字母( r )表示,因为长方形的面积 = 长×宽,所以圆的面积 = πr ×r 。

圆的面积公式:S=πr2。

14.圆的面积公式:S=πr2 或者 S= π( d/2 )2 或者 S= π(C÷(2π)) 2 ≈15.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。

16.在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。

17.一个环形,外圆的半径是 R,内圆的半径是 r ,它的面积是S= πR2 -πr2 或S= π(R2 -r 2 )。

北师大版六年级数学(上册)知识点汇总

北师大版六年级数学(上册)知识点汇总

北师大版六年级数学上册知识点汇总第一单元圆1.圆的定义:由曲线围成的封闭图形,且圆上任意一点到中心点(圆心)的距离都相等。

2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。

圆心一般用字母O表示。

它到圆上任意一点的距离都相等.3.半径:连接圆心到圆上任意一点的线段叫做半径。

半径一般用字母r表示。

把圆规两脚分开,两脚之间的距离就是圆的半径。

4.圆心确定圆的位置,半径确定圆的大小。

5.直径:通过圆心并且两端都在圆上的线段叫做直径。

直径一般用字母d表示。

6.在同一个圆内,所有的半径都相等,所有的直径都相等。

7.在同一个圆内,有无数条半径,有无数条直径。

8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。

用字母表示为:d=2rr =1/2d用文字表示为:半径=直径÷2直径=半径×29.圆的周长:围成圆的曲线的长度叫做圆的周长。

10.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。

我们把圆的周长和直径的比值叫做圆周率,用字母表示。

圆周率是一个无限不循环小数。

在计算时,取π≈3.14。

世界上第一个把圆周率算出来的人是我国的数学家祖冲之。

11.圆的周长公式:C=πd 或C=2πr圆周长=π×直径或圆周长=π×半径×212、圆的面积:圆所占面积的大小叫圆的面积。

13.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,用字母(πr)表示,宽相当于圆的半径,用字母(r)表示,因为长方形的面积=长×宽,所以圆的面积= πr×r。

圆的面积公式:S=πr²。

14.圆的面积公式:S=πr²或者S=π(d/2)² 或者15.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。

16.在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。

17.一个环形(圆环),外圆的半径是R,内圆的半径是r,它的面积是S=πR²-πr²或S=π(R²-r²)。

北师大版六年级数学上册知识点汇总

北师大版六年级数学上册知识点汇总

北师大版六年级数学上册知识点汇总第一单元圆1.圆的定义:由曲线围成的封闭图形,且圆上任意一点到中心点(圆心)的距离都相等。

2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。

圆心一般用字母O表示。

它到圆上任意一点的距离都相等.3.半径:连接圆心到圆上任意一点的线段叫做半径。

半径一般用字母r表示。

把圆规两脚分开,两脚之间的距离就就是圆的半径。

4.圆心确定圆的位置,半径确定圆的大小。

5.直径:通过圆心并且两端都在圆上的线段叫做直径。

直径一般用字母d表示。

6.在同一个圆内,所有的半径都相等,所有的直径都相等。

7.在同一个圆内,有无数条半径,有无数条直径。

8.在同一个圆内,直径的长度就是半径的2倍,半径的长度就是直径的一半。

用字母表示为:d=2rr =1/2d用文字表示为:半径=直径÷2直径=半径×29.圆的周长:围成圆的曲线的长度叫做圆的周长。

10、圆的周长总就是直径的3倍多一些,这个比值就是一个固定的数。

我们把圆的周长与直径的比值叫做圆周率,用字母表示。

圆周率就是一个无限不循环小数。

在计算时,取π≈3、14。

世界上第一个把圆周率算出来的人就是我国的数学家祖冲之。

11.圆的周长公式:C=πd 或C=2πr圆周长=π×直径或圆周长=π×半径×212、圆的面积:圆所占面积的大小叫圆的面积。

13.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,用字母(πr)表示,宽相当于圆的半径,用字母(r)表示,因为长方形的面积=长×宽,所以圆的面积= πr×r。

圆的面积公式:S=πr²。

14.圆的面积公式:S=πr²或者S=π(d/2)² 或者15.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。

16.在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。

17.一个环形(圆环),外圆的半径就是R,内圆的半径就是r,它的面积就是S=πR²-πr²或S=π(R²-r²)。

北师大版六年级上册数学知识点整理

北师大版六年级上册数学知识点整理

第一单元圆1.圆的定义:平面上的一种曲线图形。

2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。

圆心一般用字母O表示。

它到圆上任意一点的距离都相等。

3.半径:连接圆心到圆上任意一点的线段叫做半径。

半径一般用字母r表示。

把圆规两脚分开,两脚之间的距离就是圆的半径。

4.圆心确定圆的位置,半径确定圆的大小。

5.直径:通过圆心并且两端都在圆上的线段叫做直径。

直径一般用字母d表示。

6.在同一个圆内,所有的半径都相等,所有的直径都相等。

7.在同一个圆内,有无数条半径,有无数条直径。

8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。

用字母表示为:d=2rr=1/2d用文字表示为:半径=直径÷2直径=半径×29.圆的周长:围成圆的曲线的长度叫做圆的周长。

10.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。

我们把圆的周长和直径的比值叫做圆周率,用字母表示。

圆周率是一个无限不循环小数。

在计算时,取π≈3.14。

世界上第一个把圆周率算出来的人是我国的数学家祖冲之。

11.圆的周长公式:C=πd或C=2πr圆周长=π×直径圆周长=π×半径×212、圆的面积:圆所占面积的大小叫圆的面积。

13.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,用字母(πr)表示,宽相当于圆的半径,用字母(r)表示,因为长方形的面积=长×宽,所以圆的面积=πr×r。

圆的面积公式:S=πr²。

14.圆的面积公式:S=πr²或者S=π(d/2)²15.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。

16.在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。

17.一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=πR²-πr²或S=π(R²-r²)。

北师大版六年级数学上册知识点汇总

北师大版六年级数学上册知识点汇总

北师大版六年级数学上册知识点汇总第一单元圆1.圆的定义:平面上的一种曲线图形。

2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。

圆心一般用字母O表示。

它到圆上任意一点的距离都相等.3.半径:连接圆心到圆上任意一点的线段叫做半径。

半径一般用字母r表示。

把圆规两脚分开,两脚之间的距离就是圆的半径。

4.圆心确定圆的位置,半径确定圆的大小。

5.直径:通过圆心并且两端都在圆上的线段叫做直径。

直径一般用字母d表示。

6.在同一个圆内,所有的半径都相等,所有的直径都相等。

7.在同一个圆内,有无数条半径,有无数条直径。

8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。

用字母表示为:d=2rr =1/2d用文字表示为:半径=直径÷2直径=半径×29.圆的周长:围成圆的曲线的长度叫做圆的周长。

10.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。

我们把圆的周长和直径的比值叫做圆周率,用字母表示。

圆周率是一个无限不循环小数。

在计算时,取π≈3.14。

世界上第一个把圆周率算出来的人是我国的数学家祖冲之。

11.圆的周长公式:C=πd 或C=2πr圆周长=π×直径圆周长=π×半径×212、圆的面积:圆所占面积的大小叫圆的面积。

13.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,用字母(πr)表示,宽相当于圆的半径,用字母(r)表示,因为长方形的面积=长×宽,所以圆的面积= πr×r。

圆的面积公式:S=πr²。

14.圆的面积公式:S=πr²或者S=π(d/2)² 或者15.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。

16.在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。

17.一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=πR²-πr²或S=π(R²-r²)。

六年级上册数学北师大版知识点归纳总结

六年级上册数学北师大版知识点归纳总结

一、圆1. 圆的认识圆是由曲线围成的封闭图形。

圆中心的一点叫做圆心,一般用字母 O 表示。

连接圆心和圆上任意一点的线段叫做半径,一般用字母 r 表示。

通过圆心并且两端都在圆上的线段叫做直径,一般用字母 d 表示。

2. 圆的特征在同一个圆中,有无数条半径,所有半径的长度都相等;有无数条直径,所有直径的长度都相等。

直径的长度是半径的 2 倍,用字母表示为:d = 2r 或 r = d÷23. 圆的周长围成圆的曲线的长度叫做圆的周长。

圆的周长计算公式:C = πd 或C = 2πr (其中 C 表示圆的周长,π是圆周率,通常取值 3.14,d 表示圆的直径,r 表示圆的半径)4. 圆的面积圆所占平面的大小叫做圆的面积。

圆的面积计算公式:S = πr² (其中 S 表示圆的面积)二、分数混合运算1. 分数混合运算的顺序与整数混合运算的顺序相同。

先算乘除法,后算加减法;有括号的,先算括号里面的,再算括号外面的。

2. 分数乘法的运算定律乘法交换律:a×b = b×a乘法结合律:(a×b)×c = a×(b×c)乘法分配律:(a + b)×c = a×c + b×c3. 分数除法除以一个数(0 除外),等于乘这个数的倒数。

三、观察物体1. 从不同方向观察物体,看到的形状可能不同。

2. 观察多个立体图形组成的组合体,要根据所给的平面图形,想象从不同方向看到的形状,然后进行判断。

四、百分数1. 百分数的意义表示一个数是另一个数的百分之几的数叫做百分数,也叫百分比或百分率。

百分数通常不写成分数形式,而在原来的分子后面加上“%”来表示。

2. 百分数与分数、小数的互化小数化成百分数:把小数点向右移动两位,同时在后面添上百分号。

百分数化成小数:把百分号去掉,同时把小数点向左移动两位。

分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

北师大版小学数学六年级上册全册知识点归纳

北师大版小学数学六年级上册全册知识点归纳

第一单元圆的认识(1) Π=3.14 2Π=6.28 3π=9.42 4Π=12.56 5Π=15.76Π=18.84 7Π=21.98 8Π=25.12 9Π=28.26 10Π=31.4(3)长方形的周长=(长+宽)×2 长方形的面积=长×宽正方形的周长=边长×4 正方形的面积=边长×边长三角形的面积=底×高÷2 平行四边形的面积=底×高 梯形的面积=(上底+下底)×高÷2(4)圆是由一条曲线封闭围成的图形,在同一个圆里有无数条直径,所有直径的长度都相等,在同一个圆里有无数条半径,所有的半径的长度都相等(5)圆心决定圆的位置,半径决定圆的大小。

(6)在同一个圆里,直径的长度是半径的2倍,或者半径的长度是直径的21。

即d=2r 或r=21d (7)圆正中心的一点叫作圆心,用字母O 表示,它到圆上任意一点的距离都相等,圆只有一个圆心,要找出一个圆的圆心,至少要对折两次(8)连接圆心何圆上任意一点的线段叫作半径,半径用字母r 表示(9)通过圆心,并且两端都在圆上的线段叫作直径,直径用字母d 表示(10)圆在滚动时,圆心在一条直线上运动。

(11)圆是轴对称图形,圆有无数条对称轴,直径所在的直线是圆的对称轴。

(12)等边三角形有3条对称轴,等腰三角形有1条对称轴,长方形有2条对称轴,正方形有4条对称轴,等腰梯形有1条对称轴,圆有无数条对称轴,半圆只有一条对称轴。

(13)画圆的方法:(1)定半径(圆规两脚之间的距离就是圆的半径)(2)定圆心(圆规针尖所在的位置是圆的圆心)(3)旋转画圆(14)圆的周长就是围成这个圆曲线的长度,在测量圆的周长,可将曲线转化为直线。

(15)测量圆的周长的方法:(1)滚动法:圆滚动一周所走的路程等于圆的周长(2)绕线法:绳子绕圆一周的长度等于圆的周长(16)圆的周长总是直径长度的3倍多一些。

北师大版小学数学六年级上册知识点整理

北师大版小学数学六年级上册知识点整理

第一单元圆1.圆的定义:平面上的一种曲线图形。

2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心(O)。

它到圆上任意一点的距离都相等.3.半径:连接圆心到圆上任意一点的线段叫做半径。

半径一般用字母r表示。

把圆规两脚分开,两脚之间的距离就是圆的半径。

4.圆心确定圆的位置,半径确定圆的大小。

5.直径:通过圆心并且两端都在圆上的线段叫做直径。

直径一般用字母d表示。

6.在同一个圆内,所有的半径都相等,所有的直径都相等。

7.在同一个圆内,有无数条半径,有无数条直径。

8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。

用字母表示为:d=2r r =12d用文字表示为:半径=直径÷2 直径=半径×29.圆的周长:围成圆的曲线的长度叫做圆的周长。

10.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。

我们把圆的周长和直径的比值叫做圆周率,用字母π表示。

圆周率是一个无限不循环小数。

在计算时,取π≈3.14。

世界上第一个把圆周率算出来的人是我国的数学家祖冲之。

11.圆的周长公式:C=πd 或C=2πr圆周长=π×直径圆周长=π×半径×212、圆的面积:圆所占面积的大小叫圆的面积。

13.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,用字母(πr)表示,宽相当于圆的半径,用字母(r)表示,因为长方形的面积=长×宽,所以圆的面积= πr×r。

圆的面积公式:S=πr²。

14.圆的面积公式:S=πr²或者S=π(d÷2)² 或者S=π(C÷π÷2)²15.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。

16.在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。

17.一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=πR²-πr²或S=π(R²-r²)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一单元圆1.圆的定义:平面上的一种曲线图形。

2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。

圆心一般用字母O表示。

它到圆上任意一点的距离都相等.3.半径:连接圆心到圆上任意一点的线段叫做半径。

半径一般用字母r表示。

把圆规两脚分开,两脚之间的距离就是圆的半径。

4.圆心确定圆的位置,半径确定圆的大小。

5.直径:通过圆心并且两端都在圆上的线段叫做直径。

直径一般用字母d表示。

6.在同一个圆内,所有的半径都相等,所有的直径都相等。

7.在同一个圆内,有无数条半径,有无数条直径。

8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。

用字母表示为:d=2rr =1/2d用文字表示为:半径=直径÷2直径=半径×29.圆的周长:围成圆的曲线的长度叫做圆的周长。

10.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。

我们把圆的周长和直径的比值叫做圆周率,用字母表示。

圆周率是一个无限不循环小数。

在计算时,取π≈3.14。

世界上第一个把圆周率算出来的人是我国的数学家祖冲之。

11.圆的周长公式:C=πd 或C=2πr圆周长=π×直径圆周长=π×半径×212、圆的面积:圆所占面积的大小叫圆的面积。

13.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,用字母(πr)表示,宽相当于圆的半径,用字母(r)表示,因为长方形的面积=长×宽,所以圆的面积= πr×r。

圆的面积公式:S=πr²。

14.圆的面积公式:S=πr²或者S=π(d/2)²或者15.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。

16.在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。

17.一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=πR²-πr²或S=π(R²-r²)。

(其中R=r+环的宽度.)19.半圆的周长等于圆的周长的一半加直径。

半圆的周长与圆周长的一半的区别在于,半圆有直径,而圆周长的一半没有直径。

半圆的周长公式:C=πd/2+d或C=πr+2r圆周长的一半=πr20.半圆面积=圆的面积÷2公式为:S=πr²/221.在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。

而面积扩大或缩小以上倍数的平方倍。

例如:在同一个圆里,半径扩大4倍,那么直径和周长就都扩大4倍,而面积扩大16倍。

22.两个圆的半径比等于直径比等于周长比,而面积比等于以上比的平方。

例如:两个圆的半径比是2:3,那么这两个圆的直径比和周长比都是2:3,而面积比是4:9。

圆周长和直径的比是π:1,比值是π圆周长和半径的比是2π:1,比值是2π23.当一个圆的半径增加a厘米时,它的周长就增加2πa厘米;当一个圆的直径增加a厘米时,它的周长就增加πa厘米。

24.在同一圆中,圆心角占圆周角的几分之几,它所在扇形面积就占圆面积的几分之几;所对的弧就占圆周长的几分之几.25.当长方形,正方形,圆的周长相等时,圆的面积最大,长方形的面积最小26.扇形弧长公式:扇形的面积公式:S=nπr²/360(n为扇形的圆心角度数,r为扇形所在圆的半径)27.轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。

折痕所在的这条直线叫做对称轴。

28.有一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。

有2条对称轴的图形是:长方形有3条对称轴的图形是:等边三角形有4条对称轴的图形是:正方形有无数条对称轴的图形是:圆、圆环。

29.直径所在的直线是圆的对称轴。

30、永远记住要带单位,周长是(例如:cm),面积是平方(例如:cm2),体积是立方(例如:cm3)。

31、圆的周长:3.14×1=3.14 3.14×2=6.283.14×3=9.42 3.14×4=12.563.14×5=15.7 3.14×6=18.843.14×7=21.98 3.14×8=25.123.14×9=28.26 3.14×10=31.432、圆的面积:3.14×12=3.14 3.14×22=12.563.14×32=28.26 3.14×42=50.243.14×52=78.5 3.14×62=113.043.14×72=153.86 3.14×82=200.963.14×92=254.34 3.14×102=314第二单元分数混合运算1、分数混合运算的运算顺序与整数混合运算的运算顺序完全相同,都是先算乘除,再算加减,有括号的先算括号里的。

①如果是同一级运算,按照从左到右的顺序依次计算。

②如果是分数连乘,可先进行约分,再进行计算;③如果是分数乘除混合运算时,要先把除法转换成乘法,然后按乘法运算。

2、解决问题(1)用分数运算解决“求比已知量多(或少)几分之几的量是多少”的实际问题,方法是:第①种方法:可以先求出多或少的具体量,再用单位“1”的量加或减去多或少的部分,求出要求的问题。

第②种方法:也可以用单位“1”加或减去多或少的几分之几,求出未知数占单位“1”的几分之几,再用单位“1”的量乘这个分数。

(2)“已知甲与乙的和,其中甲占和的几分之几,求乙数是多少?”第①种方法:首先明确谁占单位“1”的几分之几,求出甲数,再用单位“1”减去甲数,求出乙数。

第②种方法:先用单位“1”减去已知甲数所占和的几分之几,即得未知乙数所占和的几分之几,再求出乙数。

(3)用方程解决稍复杂的分数应用题的步骤:①要找准单位“1”。

②确定好其他量和单位“1”的量有什么关系,画出关系图,写出等量关系式。

③设未知量为X,根据等量关系式,列出方程。

④解答方程。

(4)要记住以下几种算术解法解应用题:①对应数量÷对应分率=单位“1”的量②求一个数的几分之几是多少,用乘法计算。

③已知一个数的几分之几是多少,求这个数,用除法计算,还可以用列方程解答。

3、要记住以下的解方程定律:加数+加数= 和;加数= 和–另一个加数。

被减数–减数= 差;被减数=差+减数;减数=被减数–差。

因数×因数= 积;因数= 积÷另一个因数。

被除数÷除数= 商;被除数=商×除数;除数=被除数÷商。

4、绘制简单线段图的方法:分数应用题,分两种类型,一种是知道单位“1”的量用乘法,另一种是求单位“1”的量,用除法。

这两种类型应用题的数量关系可以分成三种:(一)一种量是另一种量的几分之几。

(二)一种量比另一种量多几分之几。

(三)一种量比另一种量少几分之几。

绘制时关键处理好量与量之间的关系,在审题确定单位“1”的量。

绘制步骤:①首先用线段表示出这个单位“1”的量,画在最上面,用直尺画。

②分率的分母是几就把单位“1”的量平均分成几份,用直尺画出平均的等分。

标出相关的量。

③再绘制与单位“1”有关的量,根据实际是上面的三种关系中的哪一种再画。

标出相关的量。

④问题所求要标出“?”号和单位。

5、补充知识点分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。

分数乘法的计算法则分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

但分子分母不能为零.。

分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

一个数与分数相乘,可以看作是求这个数的几分之几是多少。

分数乘整数:数形结合、转化化归倒数:乘积是1的两个数叫做互为倒数。

分数的倒数找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是4/3。

3/4是4/3的倒数,也可以说4/3是3/4的倒数。

整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是1/12 ,12是1/12的倒数。

小数的倒数普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是4/1 用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4 ,所以0.25的倒数4 ,因为乘积是1的两个数互为倒数。

分数、整数也都使用这种规律。

分数除法:分数除法是分数乘法的逆运算。

分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。

分数除法应用题:先找单位1。

单位1已知,求部分量或对应分率用乘法,求单位1用除法。

第三单元观察物体1、观察物体一般从正面、上面、左面或右面来观察。

2、同样高度的物体,在同一光源的照射下,离光源越近,这个物体的影子就越短;离光源越远,这个物体的影子就越长。

3、站得高,才能望得远。

4、确定观察的范围:1)先找到观察点、障碍点;2)连接观察点和障碍点后确定观察的范围。

5、看不到的地方称作盲区。

第四单元百分数的认识1、百分数的意义像84%,28%,2.5%……这样的数叫作百分数,表示一个数是另一个数的百分之几。

百分数也叫百分比、百分率。

百分数只表示两个数之间的关系,不能带单位名称,它表示的是一个比值。

2、百分数的读法和写法①百分数的读法:百分数的读法与分数的读法相同,但百分数读作“百分之几”,不读作“一百分之几”。

②百分数的写法:百分数相当于分母是100的分数,但百分数不能写成分数的形式,而是在分子的后面加上百分号(%)来表示。

3、百分数和分数的区别①意义不同百分数只表示一个数是另一个数的百分之几。

它只能表示两个数之间的倍数关系,并不是表示某一个具体数量,所以百分数不能带单位。

分数不仅可以表示两个数之间的倍数关系,还可以表示一定的数量,所以分数表示数量时可以带单位。

②写法不同百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。

分数的最后结果中的分子只能是整数,计算结果不是最简分数的要化成最简分数。

百分数的最后结果中的分子可以是整数,也可以是小数。

如:18%,16.7%,180%4、小数、分数、百分数的互化①把小数化成百分数的方法:先把小数点向右移动两位,再在数的后面直接添上“%”,如0.25=25%②把分数化成百分数的方法:可以先把分数化成分母是100的分数,再改写成百分数,如3/5=0.6=60%(除不尽的保留三位小数)。

相关文档
最新文档