信号与系统 系统函数的零极点分析_图文.ppt
信号与系统系统函数的零极点分析课件
极点的位置也会影响系统的噪声性能,极点靠近虚轴时,系统对噪声的抑制能力较强。
极点对系统稳定性的影响
实数极点影响系统稳定性
实数极点会使得系统函数在某点趋于无穷大,导致系统不稳 定。极点的位置决定了系统稳定的程度和响应速度。
复数极点影响系统稳定性
复数极点会影响系统的频率响应特性,进而影响系统的稳定 性。如果复数极点位于左半平面,则系统稳定;反之,位于 右半平面则不稳定。
零点与系统极点的关系
在复平面内,零点和极点可以影响系统的稳定性,极点的位置更为 关键。
稳定系统中的零点作用
在稳定的系统中,零点可以起到调节系统性能的作用,但不会改变 系统的稳定性。
零点对系统频率响应的影响
零点对低频响应的影响
某些零点的位置会影响系统的低频响应,可能导致低频增益降低 或相位滞后。
零点对高频响应的影响
傅里叶分析
将信号分解为不同频率的正弦波 和余弦波,研究信号的频谱特性 和系统的频率响应。
拉普拉斯变换
将时域函数转换为复平面上的函 数,通过分析系统的传递函数来 研究系统的稳定性、极点和零点 等特性。
Z变换
将离散时间序列转换为复平面上 的函数,通过分析系统的差分方 程来研究离散时间系统的特性。
系统函数与零极点
频率响应分析
零极点分布影响系统的频率响应特性,通过分析零极点 可以预测系统的频率合理设计系统的零极点,可以实现特定的系统性能 指标,如快速响应、低超调量等。
系统函数的零点分析
03
零点对系统性能的影响
零点位置影响系统性能
01
零点位置的不同会导致系统性能的差异,例如系统的幅频特性
极点的定义与性质
定义
极点是系统函数在复平面上具有无穷大 增益的点,即系统函数的分母为零的点。
信号与系统第七章 系统函数
=
K
N1N 2 " N m e j(ψ1+ψ2 +"ψm ) M1 M2 " Mn ej(θ1+θ2 +"θn )
H (jω)
=
K
N1N2 " Nm M1M2 "Mn
ϕ (ω) = (ψ1 +ψ2 + "ψm ) − (θ1 +θ 2 + "θ n )
当ω 沿虚轴移动时,各复数因子(矢量)的模和辐角都
①H(z)在单位圆内的极点所对应的响应序列为衰减的。 即当k→∞时,响应均趋于0。 ②H(z)在单位圆上的一阶极点所对应的响应函数为稳 态响应。
③H(z)在单位圆上的高阶极点或单位圆外的极点,其 所对应的响应序列都是递增的。即当k→∞时,响应 均趋于∞。
第 19 页
三、由系统函数零、极点分布 决定频响特性
v1(t ) −
R
+
C v2(t )
−
写出网络转移函数表达式
H (s)
=
V2 (s) V1 (s )
=
1 RC
⎜⎛ ⋅⎜ ⎜⎜⎝
s
1 +1
RC
⎟⎞ ⎟ ⎟⎟⎠
=
1 RC
1 M1 ejθ1
= V2 ejϕ (ω) V1
M1
θ1
−1 RC
jω
O
σ
第 28 页
频响特性
jω
M1
V2 1 V1 1
2 θ1
−1 RC
O
σ
O1 RC
( ) H
jω
=
1 RC
1 M1 e jθ1
= V2 ejϕ (ω) V1
《郑君里信号与系统》课件
离散时间信号的表示与性质
要点一
离散时间信号的表示
要点二
离散时间信号的性质
离散时间信号可以由离散的数值序列表示,这些数值在时 间上离散分布。常见的离散时间信号有单位阶跃信号、单 位冲激信号、正弦信号等。
离散时间信号具有周期性、稳定性、可重复性等性质。这 些性质对于信号处理和系统分析具有重要的意义。
离散时间系统的表示与性质
离散时间信号通过系统的响应表 示
当一个离散时间信号通过一个离散时间系统时,系统的 输出可以通过将输入信号与系统冲激响应相卷积得到。
离散时间信号通过系统的响应性 质
系统的输出响应具有与输入信号相同的周期性和稳定性 ,但可能发生幅度和相位的变化。此外,系统的输出响 应还受到系统稳定性和因果性的影响。
பைடு நூலகம்
PART 05
信号的变换域表示法
傅立叶变换的定义与性质
傅立叶变换的定义
将时间域信号转换为频率域信号的数学工具,通过将 信号分解为不同频率的正弦波和余弦波来描述信号的 频率特性。
傅立叶变换的性质
线性性、时移性、频移性、对称性、周期性和收敛性等 ,这些性质在信号处理中具有重要应用。
拉普拉斯变换的定义与性质
拉普拉斯变换的定义
极点影响系统的稳定性,决定了系统是否稳定以及系统的响应速度。
通过零极点分析系统稳定性
判断系统是否稳定
如果所有极点都位于复平面的左半部分,则系统是稳 定的。
计算系统的传递函数
通过求解系统函数的零极点,可以得到系统的传递函 数。
分析系统的动态特性
通过分析零极点的分布和位置,可以进一步分析系统 的动态特性和稳定性。
详细描述
信号可以根据其连续性与离散性分为连续时间信号和离散时间信号;根据确定 性可以分为确定信号和随机信号;根据周期性可以分为周期信号和非周期信号 ;根据能量与功率可以分为能量信号和功率信号。
信号、系统分析与控制 第9章 系统函数的零极点
2. 离散系统函数的零极点
M
离散系统函数的多项式形式为:
H (z)
B(z) A(z)
bj z j
j0
N
ai z i
b0 a0
b1z 1 ... bm z m a1z 1 ... an z n
(9.1.2)
将系统函数进行因式分解,可采用根的形式表示多项式,即 i0
M
H (z)
Y (z)
➢ 说明系统正弦稳态特性。
➢ 研究系统的稳定性。从系统函数的极点分布可以了解系统的固有频率,进而了解系统冲激响应的模式,也就 是说可以知道系统的冲激响应是指数型、衰减振荡型、等幅振荡型、还是几者的组合,从而可以了解系统的
响应特性及系统是否稳定。
1. 连续系统的零极点
系统函数一般以多项式形式出现,分子多项式和分母多项式都可以分解成线性因子的乘积,即连续系统函数:
➢ 可预测系统的时域特性。确定系统函数H(s)、H(z)。 ➢ 可以用函数 [r,p,k]=residuez(num,den)完成部分分式展开计算系统函数的留数、极点和增益; ➢ 可以用函数sos=zp2sos(z,p,k)完成将高阶系统分解为2阶系统的串联。
➢ 描述系统的频响特性。从系统的零、极点分布可以求得系统的频率响应特性,从而可以分析系统的正弦稳态 响应特性。 使用h=freqz(num,den,w)函数可求系统的频率响应。
2. 使用多项式的roots()函数分别求出多项式和的根,获得系统函数的极点、零点。
3. 用用zero(sys)和pole(sys)函数直接计算零极点,sys表示系统传递函数。用法如下:
z = zero(sys):返回 LTI模型 sys的零点z 的列向量。
[z,gain] = zero(sys):同时返回增益gain。
信号与系统-第8章
1/T2称为交接频率(断点)。
G2 ( )
40
20 1 -20 -40 10 102 103
1.系统函数的极点与时域特性的关系 (1) 若一阶极点位于s平面的坐标原点
(2) 若一阶极点位于s平面的实轴上 , 且极点为负实数,p=-a<0
(3) 若一阶极点位于s平面的实轴, 且极点为正实数,p1=a>0
(4) 若有一对共轭极点位于虚轴, p1=jω0及p2=-jω0
(5) 若有一对共轭极点位于s左半平 面,即p1=-a+jω0,p2=-a-jω0,-a<0
应用拉普拉斯变换求解微分方程
• 当电路或系统的输入输出微分方程 已知时,可直接对微分方程应用单边拉 普拉斯变换,利用时域微分性质求出s域 输出 Y(s) ,对其取逆变换得到时域解 y(t) 。
从该例可看出,用拉普拉斯变换法求 解微分方程不需要专门求解t=0+时刻的输 出及其导数,并且可直接得到全响应。 通过上例可以看到,利用拉普拉斯变换 可以避开烦琐的求解微分方程的过程。 特别是对于高阶微分方程,拉氏变换法 可以使计算量大大减小。
1 2 2 H ( ) 2 1 T2 j 2T2 T2
1 2 2 H ( ) 2 1 T2 j 2T2 T2
二次因式的幅频特性的对数增益为
1 2 2 2 2 G 20lg 2 20lg 1 T2 2T2 T2
1 1 G 20lg j 20lg 1 2T12 T1 T1
1 2 2 20lg 10lg(1 T1 ) T1
1 G( ) 20 lg 10 lg(1 2T12 ) T1
信号与系统第六章 系统函数与零极点分析PPT课件
信号与线性系统
三、通过系统函数表达式作出系统模拟图
H s Y Fs s b 1 n a b n n 1 1 s s 1 1 a b 1 1 s s n n 1 1 a b 0 0 s s n n
令m=n并不失一般性!
YsHsFsNsD Fss
设一个中间变量
X
s
p2
j
p4 j0
Tel:22896276
返回
广东医学院生物医学工程教研室
信号与线性系统
三、零点、极点与频域特性的关系 如果系统函数在s平面右半面没有极点,那么,系统的频 率特性就可以由下式确定:
HjHssj
m
m
szi
jzi
HsH0
i1 n
HjH0
i1 n
spj
jpj
j1
j1
E-mail:lynwindsent@
L-1
httet tsin0ttet sin0tt
系统函数极点为 p 1 0
p2
p 3 j 0
p 4 j 0
返回
E-mail:lynwindsent@
Tel:22896276
广东医学院生物医学工程教研室
j
信号与线性系统
j
p1 0
j
p3 j0
E-mail:lynwindsent@
系统函数也是系统冲击响应的象函数:
Hs htestdt
0
E-mail:lynwindsent@
Tel:22896276
返回
广东医学院生物医学工程教研室
信号与线性系统
如果激励信号是指数信号est,则系统响应为:
yt h e st d e sth e s d H se st
信号与系统第四章(2)
二. 零极点分布与h(t)的关系
∑ ∑ h(t)
=
L−1[H (s)] =
n
L−1 [
i =1
ki s− p
i
]=
n i=0
ki e pit
2 k1 eαt cos(ωt + θ )
jω
正弦振荡 (等幅)
h(t) 减幅的自由振荡
h(t)
2 k1 eαt cos(ωt + θ )
0
t
p 位于左半平面
+
R1
+
R2
H (s)与U s (s)无关, 由网络结构和参数决定
∴H (s) = I2(s) =
R1CS
U (s) s
R1LCS 2 + (R1R2C + L)S + R1 + R2
转移导纳函数
3、H (s)的一般性质。
(1 ) h ( t ) = L − 1 [ H ( s )]
证 : Q H (s) = Rzs (s) E(s)
当e(t) = δ (t)时E(s) = 1,
故rzs (t) = h(t) = L−1[H (s)]
此时Rzs (s) = H (s)
例3、试求图示电路的冲激 响应u1(t)。
2Ω
L
R1
SL
+ R1
2H
+ 1
is (t ) u1(t ) 1F
C
2Ω R2
Is (s) U1(s)
CS
R2
−
−
解:H (s) = R(s) = U1(s) — —策动点阻抗 E(s) Is (s)
+
Us (s) −
第5章 系统函数与零、极点分析改
解 研究表明,该系统的微分方程为 即 从而得系统函数
由上式可得该系统的模拟框图,如图 (b)所示。
电子与信息工程学院
k b
电子与信息工程学院
§5.2 系统函数的零、极点
5.2.1零、极点的概念
零点: H(s)分子多项式N(s)=0的根,z1,z2, zm 极点: H(s)分母多项式D(s)=0的根,p1,p2, pn
H (s) I2 (s) 转移电流比 I1(s)
H (s) U2 (s) 转移阻抗 I1(s)
H (s) I2 (s) 转移导纳 U1(s)
双口传递函数 (转移函数)
电子与信息工程学院
H(s)的特性: H(s)是联系输入和响应的纽带和桥梁,是系
统频率特性H(j)的S域表示;
H(s)取决于系统的结构和元件参数,与系统 的起始状态、激励和相应无关;
锁相环是一个相位负反馈控制系统,应用很广。当 输入相位与输出相位的瞬时相位差恒定时,称为系 统锁定。
电子与信息工程学院
例 锁相环及其阶跃响应:
三阶琐相环系统
电子与信息工程学院
该系统函数
显然
a1a2 > a0a3
故系统稳定,且阶跃响应
电子与信息工程学院
复习
一、系统函数的一般概念
即有如下关系:
电子与信息工程学院
H(s)的特性: H(s)是联系输入和响应的纽带和桥梁,是系
统频率特性H(j)的S域表示;
H(s)取决于系统的结构和元件参数,与系统 的起始状态、激励和相应无关;
H(s)是一个实系数有理分式,它决定了系统 的特征根(固有频率);
H(s)为系统冲激响应的拉氏变换。
电子与信息工程学院
§5.8 系统函数的零极点与时域特性和频域特性的关系
有实际物理意义的物理系统都是因果系统,即随 t , h t 0 ,这表明H ( s ) 的极点位于左半平面。
X
1.2 由H(s) 的零、极点确定系统的时域响应
激励: e( t ) u E ( s )
E (s)
l 1 v
( s zl )
H ( s) 系统函数: h( t ) m H (s)
X
第 15 页
2.1 H(s)和频响特性的关系
设系统函数为 H s ,激励源 e t Em sinω0 t 系统的稳态响应 rss t E m H 0 sin ω0 t 0 其中H s s j ω0 H j ω0 H 0 e j0
平面内。
j ω pi M i e j θi
将 j ω z j、 j ω pi 都看作两矢量之差,将矢量图画于复
X
第 18 页
画零极点图
零点 : jω N j e
jψ j
zj
极点 : j ω M i e jθi pi
θi
jω
Mi pi
Nj
ψj
jω
Nj
zj
j
zj
O
σ
jω 是滑动矢量, jω 矢量变 , 则 N j、 ψ j 和 M i、 θ i 都 发生变化。
当α 0 ,极点在左半平面,衰减振荡 当 α 0 ,极点在右半平面,增幅振荡
X
第 7页
二阶极点
1 H ( s ) 2 , 极点在原点, h( t ) tu( t ), t , h( t ) s 1 H ( s) , 极点在实轴上, 2 (s a) h( t ) t e t u( t ),α 0, t , h( t ) 0 2s H (s) 2 , 在虚轴上, 2 2 (s ω ) h( t ) t sin tu( t ), t , h( t ) 增幅振荡
信号与系统 第六章
ω ω (1 ω ) = +j 2 2 2 (1 ω ) + ω (1 ω 2 ) 2 + ω 2
2
V 1
ω =0
H ( jω )
1 2
U
= U (ω ) + jV (ω )
ωห้องสมุดไป่ตู้
3.极点,零点图(Pole-Zero Plot ) 极点, 极点 系统函数可以表示成有理函数的形式, 系统函数可以表示成有理函数的形式,即
M e , M r 为有限值
∵ r (t ) = e (t ) h (t )
∴ r (t ) = e(t ) h(t ) =
+∞
∫
+∞
∞
e(t τ )h(τ )dτ
+∞ ∞
≤ ∫ e(t τ ) h(τ ) dτ ≤ ∫ h(τ ) dτ M e = M r ∞
∴ 要求
结论: 结论:
除个别孤立的冲激函数外,单位冲激响应都应是有限的 有限的, ∫ 除个别孤立的冲激函数外,单位冲激响应都应是有限的,即
bm s m + bm1s m1 + + b1s + b0 H (S ) = an s n + an1s n1 + a1s + a0 极点——使 H (s ) 为无穷大的 使 极点 零点——使 零点——使 H (s ) 为 0 的 (1)
s 值,即分母多项式等于 的根; 即分母多项式等于0的根 的根;
表示系统函数的方法常用三种方法:频率特性曲线, 表示系统函数的方法常用三种方法:频率特性曲线, 复轨迹和极点零点分布图. 复轨迹和极点零点分布图. 1.频率特性(即系统的频率响应特性) 频率特性(即系统的频率响应特性) 频率特性
信号与系统 系统函数的零极点分析ppt课件
(e)
(f)
信号与系统
五.零极点与系统频率响应的关系
解:对应系统的幅频特性为
j
H ( )
0
0
H ( )
j
0
0
信号与系统
五.零极点与系统频率响应的关系
j
H ( )
0
j
0
H ( )
0
0
信号与系统
五.零极点与系统频率响应的关系
j
H ( )
0
0
j
H ( )
0
sj r 1 n r
m
m
k 1
k
j p
k 1
r1 n
r
k
系统的相频特性为
( ) arg j z arg j p
r 1 r k 1 k
m
n
令 有
j r j z N e r r
j k j p M e k k
信号与系统
5.7.2 系统零极点与冲激响应模式的关系
j
几种典型情况
jω 0
α
O
α
jω0
信号与系统
5.7.2 系统零极点与冲激响应模式的关系
p j 对时域响应特性关系如下
s) 总体来说,系统函数 H (极点
(1)极点的实部 决定了时域响应指数衰减或增长的快慢, 离虚轴越远,指数衰减或增长越快,所以称为衰减因子, ,响应为衰减形式,若 0 响应振幅为常数。 0 若 (2)极点的虚部 ,响应为增长形式,若 0 ,
m
将
j z r j pk 都看作是两矢量之差,
《信号与系统》课程讲义4-4
j 2
j1
j
0
1
复数极点 复数零点
j1
成对出现
j 2
§4.4 系统函数零极点∽时域特 性和稳定性
s( s 2)(s 3) [例1]: ② H ( s) ( s 1) 2
解: ② 极点: s = -1 (二阶) s = ∞ (一阶) 零点: s = 0 (一阶) s = -2(一阶) s = -3(一阶)
§4.4 系统函数零极点∽时域特 性和稳定性
s[( s 1)2 1] [例1]: ① H ( s) ( s 1)2 ( s 2 4)
解:
极点:s = -1 (二阶) s = j2 (一阶) s = -j2(一阶) 零点:s = 0 (一阶) s = 1+j1(一阶) s = 1-j1 (一阶) s = ∞ (一阶)
r (0 ) 1 ,r(0 ) 1 ,e(t ) u(t )
解:
s 1 1 H ( s) 2 s 3s 2 s 2 全部
固有频率
零、极点相消 丢失固有频率
1 1 1 1 1 1 Rzs ( s ) ( ) rzs (t ) (1 e 2t )u (t ) s2 s 2 s s2 2
10 40 10 t 10 t 10 v2 (t ) [ cos 4t sin 4t e ]u (t ) [ e cos(4t 76 )]u (t ) 17 17 17 17 17
自由响应 强迫响应
§4.4 系统函数零极点∽时域特 性和稳定性
三、H(s)极点与系统稳定性关系
n
pi t
K e
k 1 k
v
pk t
自由响应 强迫响应 (系统函数极点形成) (激励函数极点形成)
信号与系统——系统函数
36
对于非最小相移函数
(s s2 )(s s ) H b ( s) (s s1 )(s s ) * (s s2 )(s s ) (s s2 )(s s2 ) * (s s1 )(s s ) (s s2 )(s s2 )
* 2 * 1 * 2 * 1
st s j
e
jT
因果离散系统,若极点均在单位圆内,则在单位 圆上(|z|=1)也收敛
bm e
j 1
jT
z j
H (e jT )
e
n i 1
jT
pi
j
bm B1B2 ...Bme j 1 2 ...m A1 A2 ...An e j 1 2 ... n
1 极点:p1 , R1C1 1 p2 R2C 2 零点: z1 0 2/7/2019
-π/2
33
最小相移函数
零、极点均位于s平面左半开平面
* (s s2 )(s s2 ) H a ( s) * (s s1 )(s s1 )
极点位于s平面左半开平面,零点位于s平 面右半开平面
2/7/2019
11
几种典型情况
jω0
j
α
O
α
jω0
2/7/2019
12
2.离散系统:
Z平面:
单位圆内:p=-1/3,h(k)= (-1/3)k (k)
单位圆上:p=1,h(k)= (1)k(k),有限值. 单位圆外:p=2,h(k)= (2)k (k) →∞
Im[z] Z平面
→0
增幅
θ0 z 1 单位圆内
单位圆外
47系统函数零、极点分布决定时域特性
1.可以预言系统的时域特性; 2.便于划分系统的各个分量 (自由/强迫,瞬态/稳态); 3.可以用来说明系统的正弦稳态特性。
X
第
二. H(s)零、极点与h(t)波形特征的对应
1. 系统零极点的概念
对系统函数分子分母多项式进行因式分解得
3 页
K ( s z1 )( s z2 ) ( s zm ) H ( s) ( s p1 )( s p2 ) ( s pn ) K
1 H ( s) , s
H (s)
单 极 点
4 页
p1 0 在原点
h(t ) L1[ H (s)] u(t )
a0 a0
在左实轴上, h(t ) e 在右实轴上,h(t ) e
1 , sa
p1 a
at at
u (t ) ,指数衰减 u (t ), a 0
•自由响应的极点只由系统本身的特性所决定,与激励 函数的形式无关,然而系数 Ai , Ak与H s , E s 都有关。
X
暂态响应和稳态响应
第 12 页
瞬态响应是指激励信号接入以后,完全响应中瞬时出现 的有关成分,随着t增大,将消失。 稳态响应=完全响应-瞬态响应 左半平面的极点产生的函数项和瞬态响应对应。
X
第
3.系统函数的极点分布与冲激响应
8 页
有实际物理意义的物理系统都是因果系统,即随 t , ht 0 这表明H (s )的极点位于左半平面,由此可知,收 敛域包括虚轴, F s 和F (j )均存在,两者可通用,只需 将 s j 即可。 极点pi决定系统自由响应(固有响应)的变化的规律。 取决于系统的结构与元件的参数,且量纲为1/s,故pi称 为系统的自然频率或固有频率。
清华大学信号与系统课件第五章S域分析、极点与零点
2019/11/15
课件
22
本节作业
• 5-1,5-3,5-8,5-10, • 5-6*,5-9*,5-11* , • 5-13,
2019/11/15
课件
23
§5.2- 暂态响应与稳态响应
• 系统H(s)的极点一般是复数,讨论它们 实部和虚部对研究系统的稳定性很重要
• 不稳定系统 Repi0增幅
j
0
p1
h(t)
0
et t
H(s) 1
S
h(t) et
2019/11/15
课件
7
(2) 几种典型的极点分布——
(d)一阶共轭极点在虚轴上
j
p1 j1
h(t)
0
0
t
p 2 j1
H(s) 1
h(t)sin 1t.u(t)
2019/11/15
S 2
2
0 p1 t
H (s) 1 S
2019/11/15
h(t)u(t)
课件
5
(2) 几种典型的极点分布—— (b)一阶极点在负实轴
j
0
p1
h(t)
e t
t
H(s) 1
S
h(t) et
2019/11/15
课件
6
(2) 几种典型的极点分布—— (c)一阶极点在正实轴
幅度该变
相位偏移
2019/11/15
课件
34
H(j0)H0ej0
H(j)H(j)ej(j)
若 0 换成 变量
系统频率
特性
幅频特性 相位特性
2019/11/15
《信号与系统》课程讲义4-5
§4.5系统函数零极点∽频响特性一、频响特性1.概念①系统在正弦信号激励下稳态响应随信号频率的变化情况②H (s )稳定系统0sin()m E t ω0()lim ()~ss t r t r t ω→∞=③包括:幅频特性、相频特性§4.5系统函数零极点∽频响特性00120012...j j n nK K K K K s j s j s p s p s p ωωωω−=++++++−−−−j e H E j j H E s R j s K j m m j s zs j 22)(|)()(00000000−=−−⋅=⋅+=−−=−ϕωωωωωωje H E j j H E s R j s K j m m j s zs j 22)(|)()(00000000ϕωωωωωω=⋅=⋅−==2.稳定系统的频响特性)()(220s H s E s R m zs ωω+=①系统响应:000()j H j H e ϕω=000()j H j H e ϕω−−=令则§4.5系统函数零极点∽频响特性0000()lim ()j t j tss zs j j t r t r t K e K e ωωωω−−→∞==+)sin()(2000)()(00000ϕωωωϕωϕ+=+−=++−t H E e e jE m t j j t j m 0000sin()sin()m ss m E t r E H t ωφωφϕ+→=++②0000cos()cos()m ss m E t r E H t ωφωφϕ+→=++§4.5系统函数零极点∽频响特性③ωω()H s 当正弦激励信号频率改变时,将代入得到频率响应()()()|()j s j H j H s H j e ϕωωωω===幅频特性相频特性§4.5系统函数零极点∽频响特性[例1]求系统的稳态响应22()3()2()2()3()d d dr t r t r t e t e t dt dt dt ++=+()sin cos 2e t t t=+解:222323()()3232s j H s H j s s j ωωωω++=→=+++−2(arctan arctan3)33213(1)1310j j H j ej −+==+4(arctan arctan3)32345(2)26210j j H j ej π−−+==−+()ss r t 13251()sin(arctan arctan 3)cos(2arctan arctan 3)10332210ss r t t t π=+−++−−§4.5系统函数零极点∽频响特性c ωω()H j ωc c ωωωω<⎫⎬>⎭时,网络允许信号通过低通特性时,网络不允许信号通过cωω()H j ωc c ωωωω<⎫⎬>⎭时,网络不允许信号通过高通特性时,网络允许信号通过1c ω2c ωω()H j ω带阻特性3.滤波网络分类:幅频特性1c ω2c ωω()H j ω带通特性1c ω§4.5系统函数零极点∽频响特性1111()()()()()()mmj j j j nniii i K s z K j z H s H j s p j p ωωω====−−=→=→−−∏∏∏∏Oσ⋅×ip jz iθj ψj ωi M jN ,j i z p 频率特性取决于零、极点的分布4.频响特性的S 平面几何分析法()H j ωjj j j j z N eψω−=ij i i j p M eθω−=→令§4.5系统函数零极点∽频响特性121212121212[()()]1212()()()m nm n j j j m j j j n j m nj N e N e N e H j KM e M e M e N N N KeM M M H j e ψψψθθθψψψθθθϕωωω+++−+++=== 1212()()()m n ϕωψψψθθθ=+++−+++ 1212()m nN N N H j KM M M ω= 其中Oσ⋅×ip jz iθj ψj ωiM jN §4.5系统函数零极点∽频响特性RC 21()()11()V s R sH s V s R s sC RC ===++CR++-1v -2v 【例2】研究图示的高通滤波网络的频响特性10z =零点:11p RC=−极点:解:转移函§4.5系统函数零极点∽频响特性()|()s j H s H j ωω==11()1211()j j j N e V H j e M e V ψϕωθω==→211111,()V N V M ϕωψθ==−O ×j ω1M 1N 1θ190ψ=σ1RC−以矢量因子表示为1211111110,000,90()90N V N M RC M V θψϕω⎧==→=→=⎪⎨⎪==→=⎩0ω=时,§4.5系统函数零极点∽频响特性121111111222,2245,90()45N V N M RC RC M V θψϕω⎧==→=→=⎪⎨⎪==→=⎩ 1211111190,90()0N V M V θψϕω⎧→⇒→⎪⎨⎪→=→=⎩1RC ω=时,此点为高通滤波网络截止频率点ω→∞时,45 901RCω()ϕωO ()H j ω221§4.5系统函数零极点∽频响特性s RC 21()()()V j H j V j ωωω=1122R C R C ++-1v -2v C1R1C2R2++--3v 3kv 【例3】由平面几何法研究下图所示二阶系统的频响特性,,且§4.5系统函数零极点∽频响特性1311211112112223221()()1()()11()()()()()1sC V s V s R V s k s sC H s V s R C s s R R C R C V s kV s R sC ⎧⎪⎪=⎪+⎪⇒==⎨⎪++⎪=⎪+⎪⎩i 1121122110;,z p p R C R C ==−=−O ×j ω1M 1N 1θ190ψ= σ111R C −×2M 2θ221R C−解:零、极点为:1122R C R C 由于221R C −,所以靠近原点,111R C −离开较远。