演示实验

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5: 煤油驻波昆特管

讨论了半充满煤油的昆特管实验现象的产生原理,结果表明“喷泉”现象源自空气中声波的驻波,而非煤油的激烈振荡。在驻波的波腹处,空气振动剧烈,气压小,从而吸起该处的煤油,形成了“喷泉”现象

在昆特管中驻波的波腹处,空气振动剧烈,气压小,从而吸起该处的煤油,使得波腹处的煤油飞溅;而在驻波的波节处,驻波能量极小,且两侧波腹处的空气向此聚集,气压大,将此处煤油下压,使得煤油只能向两侧(波腹位置)流动。最终两者达到动态平衡,形成了在实验中看到的“喷泉”现象

操作方法:

1. 将信号源电压输出调至最低,打开信号源;

2. 信号频率调至某一参考值附近,调节频率微调旋钮至管内形成驻波。此时能看到激起的片状水花(若现象不明显可适当增大电压值);

3. 依次观察在各参考频率下管内出现驻波的情况;

4. 测量出某频率下驻波两相邻波腹的距离(半波长),以便根据公式算出波速。注意事项:

1. 改变频率之前先降低输出电压,调好频率后再增大电压,以免声音太大。

2. 注意提醒学生,声波是一种纵波,观察纵波的驻波现象。

3. 在出厂前,形成驻波的频率都经过测试标在仪器平板的表面,频率可根据标示值选择,也可在大约180 赫兹、280 赫兹、360 赫兹、420 赫兹左右选择。

4. 煤油倒入玻璃管量,按出厂前玻璃管立直时标出的高度即可

原理提示:

声波在煤油中传播,入射波和反射波叠加形成驻波,在驻波的波腹处,煤油被激起,形成浪花。在驻波中,波节点始终保持静止,波腹点的振幅为最大,其它各点以不同的振幅振动。所有波节点把介质划分为长l /2 的许多段,每段中各点振幅虽不同,但相位皆相同,而相邻段间的相位则相反。因此,驻波实际上就是分段振动现象,在驻波中没有振动状态和相位的传播,故称为驻波。

6多普勒效应

7共振锯条

4.弹簧耦合摆(共振锯条)

几根锯条,从长到短固定在一根横梁上,调节横梁振动频率,各锯条会随之振动。

实验步骤:

打开电源开关。慢慢调节输出频率,使电机转速逐渐增快,观察弹性钢片的变化。

问题:

什么是共振?共振条件是什么?

结合其它驻波实验,描述驻波特性。

形成驻波时,钢片上端为驻波端头,是钢片振幅最大处,即波腹;本实验室其它弦驻波的端点处都是振幅最小的地方,即波节,这是为什么?(其它实验的端点是固定端,振幅为0;本实验的钢片上端为自由端)

原理及现象:该仪器利用长短不同的弹性钢片在周期性外力作用下作强迫振动,当弹性片的固有频率与强迫外力的频率相同时产生共振现象。调节频率,将在弹性片中可形成驻波。操作方法:

将仪器放置水平桌面上,接通电源,仔细调节电源电压,使电机转速逐渐增快,可观察到弹性钢片从长到短逐个振动,当调节到一定频率时,在较长的钢片中可形成驻波。

8空气点火实验

压缩空气做功,改变增大热量

9道尔顿板

伽尔顿板实验通常是分别多次投入单个小球或者同时投入许多小球,观察比较小球在各个槽中的分布。实验结果发现:投入单个小球,小球与铁钉碰撞后落入哪个槽中完全是偶然的或者随机的。大量小球同时投入或单个小球分别多次投入,最终落入中间部位槽中的小球总是较多,而落入两侧槽中的小球总是较少。多次重复实验发现各槽中小球数目分布基本不变,但又不是绝对相同。

伽尔顿板实验演示了大量偶然事件的统计规律和涨落现象,阐述了物理学中统计与分布的概念。伽尔顿板演示实验是个理想模型,可以演示单个粒子随机性,也可以演示大量粒子的统计规律。

实验表明:单个小球落入某个槽内是随机事件或者偶然事件,大量小球按槽分布遵从确定的规律,这种对大量偶然事件的整体所表现出来的规律成为统计规律。在伽尔顿板实验中,单个小球的运动服从力学规律,大量小球的按槽分布服从统计规律。

10热泵

一台压缩式热泵装置,主要有蒸发器、压缩机、冷凝器和膨胀阀四部分组成,通过让工质不断完成蒸发(吸取环境中的热量)→压缩→冷凝(放出热量)→节流→再蒸发的热力循环过程,从而将环境里的热量转移到水中。

热泵在工作时,把环境介质中贮存的能量QA在蒸发器中加以吸收;它本身消耗一部分能量,即压缩机耗电QB;通过工质循环系统在冷凝器中进行放热QC,QC=QA+QB,由此可以看出,热泵输出的能量为压缩机做的功QB和热泵从环境中吸收的热量QA;因此,采用热泵技术可以节约大量的电能。

制热四个过程原理

(1)压缩过程

蒸发后的运行工质被吸入压缩机,通过压缩机的压缩功能,将工质压缩成高压高温气体,使其对于较低温度的自来水易于放热、液化。

(2)冷凝过程

从压缩机排出的高压高温工质被常温的自来水吸收热量而变成的液态工质。

(3)节流过程

把液化后的工质送入热泵主机蒸发器之前,利用毛细管的压力差,使工质在保温水箱的冷凝器内冷凝降压,将它变成即使在低温下也易于蒸发的状态。

(4)蒸发过程

液态工质从周围空气中吸收热量而不断蒸发汽化,被吸收热量后的空气变为“冷气”。

相关文档
最新文档