求函数定义域和值域方法和典型题归纳

合集下载

函数定义域值域求法(全十一种)

函数定义域值域求法(全十一种)
解:由题意知,此框架围成的面积是由一个矩形和一个半圆组成的图形的面积,如图。
文档大全
实用标准
因为CD=AB=2x,所以CDx,所以
2
L2xxx
y2x

22
LABCDL2xx
AD,
22
(2
)
2
2
x
Lx
根据实际问题的意义知
2x
L
0
2x
2
x
0
0x
L
2
2
故函数的解析式为y(2)xLx
2
五、参数型
,定义域(0,
即为所求的定义域。
2
例3已知f(x)的定义域为[-2,2],求f(x1)
的定义域。
2
解:令2x12
2
,得1x3
2
,即0x3
,因此0|x|3,从而
3x3,故函数的定义域是{x|3x3}。
(2)已知f[g(x)]的定义域,求f(x)的定义域。
其解法是:已知f[g(x)]的定义域是[a,b],求f(x)定义域的方法是:由axb,求
恒成立,解得
3
0k;
4
②当k=0时,方程左边=3≠0恒成立。
综上k的取值范围是
四、实际问题型
3
0k。
4
这里函数的定义域除满足解析式外,还要注意问题的实际意义对自变量的限制,这点要
加倍注意,并形成意识。
例7将长为a的铁丝折成矩形,求矩形面积y关于一边长x的函数的解析式,并求函
数的定义域。
1
解:设矩形一边为x,则另一边长为(a2x)
含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之
一,在求函数的值域中同样发挥作用。

函数的定义域和值域的求法

函数的定义域和值域的求法

(题型二) :已知f gx的定义域,求f (x)的定义域
例2.已知f 2x 1的定义域 (1,5], 求f (x)的定义域
解: 由题意知:
1 x 5
3 2x 1 9
f (x)的定义域为 3,9
变式练习
已知f (2x 1)的定义域1,5,求f (2 5x)的定义域
解: 由题意知:
1 x 5
2、求函数的值域通常有: (1)直接法; (2)分离常数法; (3)图像法;(4)判别式法;(5)换元法
方法一、直接法(观察法)
例1,(1)已知函数f(x)=2x-3, x∈{0,1,2,3,5},求f(x)的值域
(2)已知函数y=-2x+1,x∈(3,6),求该函 数的值域
变式练习:求下列函数的值域:(观察法)
x2-x+3 x2-x+1
的值域
方法归纳:形如y= aa12xx22++bb12xx++cc1(2 a1≠0或a2 ≠0) 的值域的求法。一般可用判别式△≥0求得。
练习:1 求函数y= 2 求函数y=
3x x2+4 的值域 2x2+4x-7 x2+2x+3 的值5 x 3x 1
函数的定义域指自变量的取值集合。 中学数学中涉及的求定义域问题一般 有两大类:一类是求初等函数的定义 域问题;一类是求抽象函数的定义域 问题。
使函数有意义的x的取值范围
1、整式: R 2、分式: 使分母不为0的x的集合 3、偶次根式:被开方式≥0
4、零次幂式: 底式不等于0 5、几个因式的和(差、积)的形式:列方程组(不等
解 : 令t 3x 1,则x 1(t 2 1) 3
且t 0,

函数的定义域与值域知识点与题型归纳

函数的定义域与值域知识点与题型归纳

●高考明方向了解构成函数的要素,会求一些简单函数的定义域和值域.★备考知考情定义域是函数的灵魂,高考中考查的定义域多以选择、填空形式出现,难度不大;有时也在解答题的某一小问当中进行考查;值域是定义域与对应法则的必然产物,值域的考查往往与最值联系在一起,三种题型都有,难度中等.一、知识梳理《名师一号》P13知识点一常见基本初等函数的定义域注意:1、研究函数问题必须遵循“定义域优先”的原则!!!2、定义域必须写成集合或区间的形式!!!(1)分式函数中分母不等于零(2)偶次根式函数被开方式大于或等于0(3)一次函数、二次函数的定义域均为R(4)y=a x(a>0且a≠1),y=sin x,y=cos x的定义域均为R(5)y=log a x(a>0且a≠1)的定义域为(0,+∞)(6)函数f(x)=x0的定义域为{x|x≠0}12 (7)实际问题中的函数定义域,除了使函数的解析式有意 义外,还要考虑实际问题对函数自变量的制约. (补充)三角函数中的正切函数y =tan x 定义域为{|,,}2∈≠+∈x x R x k k Z ππ 如果函数是由几个部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的实数集合.知识点二 基本初等函数的值域注意:值域必须写成集合或区间的形式!!!(1)y =kx +b (k ≠0)的值域是R .(2)y =ax 2+bx +c (a ≠0)的值域是:当a >0时,值域为{y |y ≥4ac -b 24a}; 当a <0时,值域为{y |y ≤4ac -b 24a} (3)y =k x (k ≠0)的值域是{y |y ≠0}(4)y =a x (a >0且a ≠1)的值域是{y |y >0}(5)y =log a x (a >0且a ≠1)的值域是R .(补充)三角函数中正弦函数y =sin x ,余弦函数y =cos x 的值域均为[]1,1- 正切函数y =tan x 值域为R3 《名师一号》P15知识点二 函数的最值注意:《名师一号》P16 问题探究 问题3函数最值与函数值域有何关系?函数的最小值与最大值分别是函数值域中的最小元素与最大元素;任何一个函数,其值域必定存在,但其最值不一定存在.1、温故知新P11 知识辨析1(2)函数21=+x y x 的值域为11,,22⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭( )答案:正确2、温故知新P11 第4题4 函数(]()1122,,222,,2--⎧-∈-∞⎪=⎨-∈-∞⎪⎩x x x y x 的值域为( ) 3.,2⎛⎫-+∞ ⎪⎝⎭A ().,0-∞B 3.,2⎛⎫-∞- ⎪⎝⎭C (].2,0-D答案:D注意:牢记基本函数的值域3、温故知新P11 第6题函数()=y f x 的值域是[]1,3,则函数()()123=-+F x f x 的值域是( )[].5,1--A [].2,0-B [].6,2--C [].1,3D答案:A注意:图像左右平移没有改变函数的值域二、例题分析:(一)函数的定义域1.据解析式求定义域例1. (1)《名师一号》P13 对点自测15(2014·山东) 函数()=f x 为( )A.⎝ ⎛⎭⎪⎫0,12 B .(2,+∞) C.⎝ ⎛⎭⎪⎫0,12∪(2,+∞) D.⎝ ⎛⎦⎥⎤0,12∪[2,+∞)解析 要使函数有意义,应有(log 2x )2>1,且x >0, 即log 2x >1或log 2x <-1,解得x >2或0<x <12. 所以函数f (x )的定义域为⎝ ⎛⎭⎪⎫0,12∪(2,+∞). 例1. (2)《名师一号》P14 高频考点 例1(1)函数f (x )=1-2x +1x +3的定义域为( ) A .(-3,0] B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1]6 解析:由题意得⎩⎨⎧1-2x ≥0,x +3>0,解得-3<x ≤0.注意:《名师一号》P14 高频考点 例1 规律方法(1) 求函数的定义域,其实质就是以函数解析式所含运算有意义为准则,列出不等式或不等式组,然后求出它们的解集. 函数的定义域一定要用集合或区间表示例2. (补充)若函数2()lg(21)f x ax x =++的定义域为R 则实数a 的取值范围是 ;答案:()1,+∞变式:2()lg(21)=++f x ax ax练习:(补充) 若函数27()43kx f x kx kx +=++的定义域为R7则实数k 的取值范围是 ;答案:30,4⎡⎫⎪⎢⎣⎭2.求复合函数的定义域例3.(1)《名师一号》P14 高频考点 例1(2)(2015·北京模拟)已知函数y =f (x )的定义域为[0,4],则函数y =f (2x )-ln(x -1)的定义域为( )A .[1,2]B .(1,2]C .[1,8]D .(1,8]解析:由已知函数y =f (x )的定义域为[0,4].则使函数y =f (2x )-ln(x -1)有意义,需⎩⎨⎧ 0≤2x ≤4,x -1>0,解得1<x ≤2,所以定义域为(1,2].例3. (2)《名师一号》P13 对点自测2已知函数f (x )=1x +1,则函数f (f (x ))的定义域是( ) A .{x |x ≠-1} B .{x |x ≠-2}C .{x |x ≠-1且x ≠-2}D .{x |x ≠-1或x ≠-2}8解析 ⎩⎪⎨⎪⎧ x ≠-1,1x +1+1≠0,解得x ≠-1且x ≠-2.注意:《名师一号》P14 高频考点 例1 规律方法(2) (P13 问题探究 问题1 类型二)已知f (x )的定义域是[a ,b ],求f [g (x )]的定义域, 是指满足a ≤g (x )≤b 的x 的取值范围,而已知f [g (x )]的定义域是[a ,b ],指的是x ∈[a ,b ].例4.(补充)已知2(1)f x +的定义域是[]0,1,求()f x 的定义域。

函数的定义域与值域求法典型例题(解析版)

函数的定义域与值域求法典型例题(解析版)

专题13:函数的定义域与值域求法典型例题(解析版)函数定义域的常见其一、已知函数解析式型即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。

例1、求函数yx 2 2x 15的定义域。

x 3 82 x 5或x3 x 2x 15 0解:要使函数有意义,则必须满足即 x 5且x 11 x 3 8 0解得x 5或x 3且x 11即函数的定义域为x x 5或x 3且x 11 。

二、抽象函数型抽象函数是指没有给出解析式的函数,不能用常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的定义域,一般有两种情况。

(一)已知f (x )的定义域,求f g (x ) 的定义域。

其解法是:已知f (x )的定义域是[a ,b ]求f g (x ) 的定义域是解a g (x ) b ,即为所求的定义域。

例2、已知f (x )的定义域为[ 2,2],求f (x 1)的定义域。

2解: 2 x 2, 2 x 1 2,解得 3 x 23即函数f (x 1)的定义域为x 3 x 3(二)已知fg (x ) 的定义域,求f (x )的定义域。

2其解法是:已知f g (x ) 的定义域是[a ,b ]求f (x )的定义域的方法是:a x b ,求g (x )的值域,即所求f (x )的定义域。

例3、已知f (2x 1)的定义域为[1,2],求f (x )的定义域。

解: 1 x 2, 2 2x 4, 3 2x 1 5。

即函数f (x )的定义域是x |3 x 5 。

三、逆向思维型即已知所给函数的定义域求解析式中参数的取值范围。

特别是对于已知定义域为R ,求参数的范围问题通常是转化为恒成立问题来解决。

例4、已知函数ymx 2 6mx m 8的定义域为R 求实数m 的取值范围。

22分析:函数的定义域为R ,表明mx 6mx m 8 0,使一切x R 都成立,由x 项的系数是m ,所以应分m 0或m 0进行讨论。

高中函数定义域、值域经典习题及答案

高中函数定义域、值域经典习题及答案

高中函数定义域、值域经典习题及答案1、求函数的定义域:⑴ $y=\frac{x^2-2x-15}{x+3}-\frac{3}{x-1}$首先要注意分母不能为0,所以$x\neq-3$和$x\neq1$。

又因为分式中有$x-1$的项,所以还要满足$x\neq1$。

所以函数的定义域为$x\in(-\infty,-3)\cup(-3,1)\cup(1,+\infty)$。

⑵ $y=1-\frac{1}{x+1}$分母不能为0,所以$x\neq-1$。

所以函数的定义域为$x\in(-\infty,-1)\cup(-1,+\infty)$。

⑶ $y=\frac{1}{1+\frac{1}{x-1}}+\frac{2x-1}{2-x^2}$分母不能为0,所以$x\neq1$。

分式中有$x-1$的项,所以还要满足$x\neq1$。

分母不能为0,所以$x\neq\pm\sqrt{2}$。

所以函数的定义域为$x\in(-\infty,-\sqrt{2})\cup(-\sqrt{2},1)\cup(1,\sqrt{2})\cup(\sqrt{2},+\infty)$。

2、设函数$f(x)$的定义域为$[0,1]$,则函数$f(x+2)$的定义域为$[2,3]$;函数$f(2x)$的定义域为$[0,\frac{1}{2}]$。

3、若函数$f(x+1)$的定义域为$[-2,3]$,则函数$f(2x-1)$的定义域为$[-\frac{5}{2},2]$;函数$f(-2)$的定义域为$[-3,-1]$。

4、知函数$f(x)$的定义域为$[-1,1]$,且函数$F(x)=f(x+m)-f(x-m)$的定义域存在,求实数$m$的取值范围。

由于$F(x)$的定义域存在,所以$f(x+m)$和$f(x-m)$的定义域都存在,即$x+m\in[-1,1]$,$x-m\in[-1,1]$。

解得$-1-m\leq x\leq1-m$,$m-1\leq x\leq m+1$。

高一数学求函数的定义域与值域的常用方法

高一数学求函数的定义域与值域的常用方法

1、函数的有关概念(1)函数的概念:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数记作: y =f (x ),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )| x ∈A }叫做函数的值域注意:① “y =f (x )”是函数符号,可以用任意的字母表示,如“y =g (x )”;②函数符号“y =f (x )”中的f (x )表示与x 对应的函数值,一个数,而不是f 乘x .(2)构成函数的三要素是什么?定义域、对应关系和值域(3)初中学过哪些函数?它们的定义域、值域、对应法则分别是什么?通过三个已知的函数:y =ax +b (a ≠0)y =ax 2+b x +c (a ≠0)y =x k (k ≠0) (三)1、如何求函数的定义域例1:已知函数f (x ) =3+x +21+x (1)求函数的定义域;(2)求f (-3),f (32)的值; (3)当a >0时,求f (a ),f (a -1)的值.分析:函数的定义域通常由问题的实际背景确定,如前所述的三个实例.如果只给出解析式y =f (x ),而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数的集合,函数的定义域、值域要写成集合或区间的形式.解:例2、设一个矩形周长为80,其中一边长为x,求它的面积关于x的函数的解析式,并写出定义域.分析:小结几类函数的定义域:(1)如果f(x)是整式,那么函数的定义域是实数集R .(2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合.(3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合.(4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合.(即求各集合的交集)(5)满足实际问题有意义.2、如何判断两个函数是否为同一函数例3、下列函数中哪个与函数y=x相等?(1)y = (x)2 ; (2)y = (33x);x2(3)y =2x; (4)y=x分析:○1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)○2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

函数的定义域与值域计算练习题

函数的定义域与值域计算练习题

函数的定义域与值域计算练习题函数是数学中的一个重要概念,它描述了一种关系,将一个集合中的每个元素映射到另一个集合中的唯一元素。

在函数的定义中,一个关键的要素就是定义域和值域。

定义域指的是函数接受输入的所有可能值的集合,值域则是函数所能取到的所有输出值的集合。

在本文中,我们将探讨函数的定义域和值域的计算方法,并通过练习题加深理解。

练习题 1:考虑函数f(x) = √(x-2)。

1. 计算函数 f(x) 的定义域。

2. 计算函数 f(x) 的值域。

解答:1. 函数 f(x) 为平方根函数,要使得函数有实数解,必须满足 x-2 ≥ 0,即x ≥ 2。

因此,函数 f(x) 的定义域为[2, +∞)。

2. 对于定义域内的任意 x 值,我们可以计算出对应的函数值。

由于平方根函数的性质,函数值必须大于等于 0。

因此,函数 f(x) 的值域为[0, +∞)。

练习题 2:考虑函数 g(x) = 1 / (x+3)。

1. 计算函数 g(x) 的定义域。

2. 计算函数 g(x) 的值域。

解答:1. 函数 g(x) 中分母为 x+3,因此要使得函数有意义,分母不能为零。

即 x+3 ≠ 0,解得x ≠ -3。

因此,函数 g(x) 的定义域为 R - {-3},即全体实数集去掉 -3 所在的点。

2. 对于定义域内的任意 x 值,我们可以计算出对应的函数值。

由于分母为 x+3,当 x 趋近于无穷大时,分母趋近于无穷大,函数值趋近于0。

同理,当 x 趋近于负无穷大时,函数值也趋近于 0。

因此,函数 g(x) 的值域为 (-∞, 0) 与(0, +∞)。

通过以上两个练习题的解答,我们可以看出函数的定义域和值域的计算方法:1. 对于定义域,需要考虑函数中存在的限制条件,如根号函数中的非负性,分数函数中的分母不为零等。

根据这些限制条件,我们可以求解出定义域的范围。

2. 对于值域,可以通过将函数中的变量逐渐趋近于无穷大或负无穷大,观察函数的取值变化趋势。

函数定义域、值域经典习题及答案

函数定义域、值域经典习题及答案

函数定义域、值域经典习题及答案1、求函数的定义域⑴ $y=\frac{x^2-2x-15}{x+3-3}$,化简得 $y=\frac{x-5}{x-3}$,所以定义域为 $(-\infty,-3)\cup(3,5)\cup(5,\infty)$。

⑵$y=1-\frac{1}{x-1}$,要使分母不为0,所以$x\neq1$,即定义域为 $(-\infty,1)\cup(1,\infty)$。

⑶ $y=\frac{1}{1+x-1}+\frac{2x-1+4-x^2}{2}$,化简得$y=\frac{5-2x-x^2}{2(1+x-1)}=\frac{-x^2-2x+5}{2x}$,要使分母不为0,所以 $x\neq0$,即定义域为 $(-\infty,0)\cup(0,\infty)$。

2、设函数 $f(x)$ 的定义域为 $[-1,1]$,则 $f(x^2)$ 的定义域为 $[0,1]$,$f(x-2)$ 的定义域为 $[-3,-1]$。

若函数 $f(x+1)$ 的定义域为 $[-2,3]$,则 $f(2x-1)$ 的定义域为 $[-\frac{1}{2},2]$,$f(-2)$ 的定义域为 $[-3,-1]$。

3、根据复合函数的定义,要使 $f(x+1)$ 有定义,$x+1$ 必须在定义域 $[-2,3]$ 中,即 $-2\leq x+1\leq 3$,解得$-4\leq x\leq 2$。

同理,要使 $f(2x-1)$ 有定义,$2x-1$ 必须在$[-2,3]$ 中,即 $-\frac{1}{2}\leq 2x-1\leq 3$,解得 $-\frac{1}{2}\leq x\leq 2$。

要使 $f(-2)$ 有定义,$-2$ 必须在 $[-2,3]$ 中,即 $-2\leq -2\leq 3$,显然成立。

根据 $f(x)$ 的定义域为 $[-1,1]$,$f(x+m)$ 和 $f(x-m)$ 的定义域也必须在 $[-1,1]$ 中,即 $-1\leq x+m\leq 1$,$-1\leq x-m\leq 1$,解得 $-m-1\leq x\leq m-1$。

值域和定义域的例题讲解

值域和定义域的例题讲解

高中函数值域和定义域的大小,是高中数学常考的一个知识点,本文介绍了函数求值域最常用的九种方法和例题讲解.一.观察法通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。

例1求函数y=3+√(2-3x)的值域。

点拨:根据算术平方根的性质,先求出√(2-3x)的值域。

解:由算术平方根的性质,知√(2-3x)≥0,故3+√(2-3x)≥3。

∴函数的知域为.点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。

本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。

练习:求函数y=[x](0≤x≤5)的值域。

(答案:值域为:{0,1,2,3,4,5})二.反函数法当函数的反函数存在时,则其反函数的定义域就是原函数的值域。

例2求函数y=(x+1)/(x+2)的值域。

点拨:先求出原函数的反函数,再求出其定义域。

解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。

点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。

这种方法体现逆向思维的思想,是数学解题的重要方法之一。

练习:求函数y=(10x+10-x)/(10x-10-x)的值域。

(答案:函数的值域为{y∣y<-1或y>1})三.配方法当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域例3:求函数y=√(-x2+x+2)的值域。

点拨:将被开方数配方成完全平方数,利用二次函数的最值求。

解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。

此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4] ∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。

函数的定义域和值域知识点总结

函数的定义域和值域知识点总结

函数定义域的几种求法:一、已知复杂函数,求f(x)例1.若函数f(x+1)的定义域是[-2,3],求f(x)的定义域例2.若f( )的定义域为[0,3],求f(x)的定义域总结:二、已知简单函数f(x),求复杂函数例1.若函数f(x)的定义域为[1,4],求函数f(x+2)的定义域总结:三、综合一和二,求函数的定义域例1.若函数f(x+1) 的定义域是[-2,3],求函数f(2x-1)的定义域四、当定义域为R时,求未知数的取值范围例1.已知函数y=²的定义域为R,求m 的取值范围例3.已知函数y=的定义域为R,求实数a的取值范围²总结:函数值域基本初等函数的定义域和值域1.一次函数f(x)=k x+b(k≠0)的定义域是R,值域是R2.反比例函数f(x)=(k≠0)的定义域是(-∞,0)∪(0,+ ∞),值域是(-∞,0)∪(0,+ ∞)3.二次函数f(x)=ax2+bx+c(a≠0)的定义域是R。

当a>0时,值域是[f(-),+ ∞); 当a<0,时,值域是(-∞,f(-)]函数值域的常用方法:一、利用简单函数值域求复杂函数值域例1.求函数y=-1的值域解:已知≧0,所以-1≧-1,所以函数y=-1的值域为[-1, + ∞]例2.求函数y=-的值域例3.求函数y=²的值域例4.求函数y=+1的值域例5.求函数y=+1的值域二、配方法例6.求函数y=²-4x+5的值域例7.求函数y=²-6x+10的值域解:y=²-4x+5=(x-2)2+1≧1所以,函数y=²-4x+5的值域为[1,+∞)例8.求函数y=的值域²三、将函数形式变成x=( )y的形式,利用已知函数值或者Δ的取值范围来判定例9.求函数y=²的值域²解:函数变形:y²+2yx+3y=2²+4x-7即:(y-2)²+2(y-2)x+3y+7=0当y=0时,显然不成立;当y≠0时,上式可以看作是关于x的一元二次方程,由于定义域x∈R,则有Δ≧0,即:Δ=4(y-2)2-4(y-2)(3y+7) ≧0所以2y2+5y-18≦0,解得:-≦y﹤2(x=2舍去)所以函数y=²的值域为[-,2)²。

函数定义域值域经典习题及答案练习题

函数定义域值域经典习题及答案练习题

函数定义域值域经典习题及答案练习题1.求函数的定义域1) 求下列函数的定义域:a) $y=\frac{x^2-2x-15}{x+3-3}$b) $y=1-\frac{1}{x-1}$c) $y=\frac{1}{1+(x-1)}+\frac{(2x-1)+4-x^2}{2}$2) 设函数$f(x)$的定义域为$[0.1]$,则函数$f(x^2)$的定义域为$[0.1]$;函数$f(x-2)$的定义域为$[-2.1]$;函数$f(x+1)$的定义域为$[-2.3]$,则函数$f(2x-1)$的定义域为$[0.5]$;函数$f(-2)$的定义域为$[0.1]$。

3) 已知函数$f(x)=\sqrt{\frac{x-1}{x+1}}$,则函数$f\left(\frac{1}{x}\right)$的定义域为$x\neq0$。

2.求函数的值域5) 求下列函数的值域:a) $y=x^2+2x-3$,$x\in\mathbb{R}$b) $y=x^2+2x-3$,$x\in[1.2]$c) $y=\frac{3x-1}{x+1}$d) $y=\begin{cases}0.& x<5\\ \frac{1}{x+1}。

& x\geq 5\end{cases}$e) $y=\frac{5x^2+9x+4}{x^2-1}$f) $y=x-3+x+1$g) $y=x^2-x$h) $y=-x^2+4x+5$i) $y=4-\frac{x^2+4x+5}{x^2-1}$6) 已知函数$f(x)=\frac{2x^2+ax+b}{x^2+1}$的值域为$[1.3]$,求$a$和$b$的值。

3.求函数的解析式1) 已知函数$f(x-1)=x^2-4x$,求函数$f(x)$和$f(2x+1)$的解析式。

2) 已知$f(x)$是二次函数,且$f(x+1)+f(x-1)=2x^2-4x$,求$f(x)$的解析式。

求函数定义域和值域方法和典型题归纳

求函数定义域和值域方法和典型题归纳

求函数定义域、值域方法和典型例题一、基础知识整合1.函数的定义:设集合A和B是非空数集,按照某一确定的对应关系f,使得集合A中任意一个数x,在集合B中都有唯一确定的数f(x)与之对应。

则称f:为A到B的一个函数。

2.由定义可知:确定一个函数的主要因素是①确定的对应关系(f),②集合A的取值范围。

由这两个条件就决定了f(x)的取值范围③{y|y=f(x),x ∈A}。

3.定义域:由于定义域是决定函数的重要因素,所以必须明白定义域指的是:(1)自变量放在一起构成的集合,成为定义域。

(2)数学表示:注意一定是用集合表示的范围才能是定义域,特殊的一个个的数时用“列举法”;一般表示范围时用集合的“描述法”或“区间”来表示。

4.值域:是由定义域和对应关系(f)共同作用的结果,是个被动变量,所以求值域时一定注意求的是定义域范围内的函数值的范围。

(1)明白值域是在定义域A内求出函数值构成的集合:{y|y=f(x),x∈A}。

(2)明白定义中集合B是包括值域,但是值域不一定为集合B。

二、求函数定义域(一)求函数定义域的情形和方法总结1已知函数解析式时:只需要使得函数表达式中的所有式子有意义。

(1)常见要是满足有意义的情况简总:①表达式中出现分式时:分母一定满足不为0;②表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0(非负数)。

③表达式中出现指数时:当指数为0时,底数一定不能为0.④根号与分式结合,根号开偶次方在分母上时:根号下大于0.⑤表达式中出现指数函数形式时:底数和指数都含有x ,必须满足指数底数大于0且不等于1.(0<底数<1;底数>1)⑥表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大于0且不等于 1.(2()log (1)x f x x =-)注:(1)出现任何情形都是要注意,让所有的式子同时有意义,及最后求的是所有式子解集的交集。

(完整版)求函数定义域及值域方法及典型题归纳

(完整版)求函数定义域及值域方法及典型题归纳

<一>求函数定义域、值域方法和典型题归纳一、基础知识整合1.函数的定义:设集合A 和B 是非空数集,按照某一确定的对应关系f ,使得集合A 中任意一个数x,在集合B 中都有唯一确定的数f(x)与之对应。

则称f:为A 到B 的一个函数。

2.由定义可知:确定一个函数的主要因素是①确定的对应关系(f ),②集合A 的取值范围。

由这两个条件就决定了f(x)的取值范围③{y|y=f(x),x ∈A}。

3.定义域:由于定义域是决定函数的重要因素,所以必须明白定义域指的是:(1)自变量放在一起构成的集合,成为定义域。

(2)数学表示:注意一定是用集合表示的范围才能是定义域,特殊的一个个的数时用“列举法”;一般表示范围时用集合的“描述法”或“区间”来表示。

4.值域:是由定义域和对应关系(f )共同作用的结果,是个被动变量,所以求值域时一定注意求的是定义域范围内的函数值的范围。

(1)明白值域是在定义域A 内求出函数值构成的集合:{y|y=f(x),x ∈A}。

(2)明白定义中集合B 是包括值域,但是值域不一定为集合B 。

二、求函数定义域(一)求函数定义域的情形和方法总结1已知函数解析式时:只需要使得函数表达式中的所有式子有意义。

(1)常见要是满足有意义的情况简总:①表达式中出现分式时:分母一定满足不为0;②表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0(非负数)。

③表达式中出现指数时:当指数为0时,底数一定不能为0.④根号与分式结合,根号开偶次方在分母上时:根号下大于0.⑤表达式中出现指数函数形式时:底数和指数都含有x ,必须满足指数底数大于0且不等于1.(0<底数<1;底数>1)⑥表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大于0且不等于 1.(2()log (1)x f x x =-)注:(1)出现任何情形都是要注意,让所有的式子同时有意义,及最后求的是所有式子解集的交集。

函数的定义域和值域知识题型总结(含答案)

函数的定义域和值域知识题型总结(含答案)

函数得定义域与值域一、定义域:1。

函数得定义域就就是使函数式得集合、2。

常见得三种题型确定定义域:①已知函数得解析式,就就是、②复合函数f [g(x)]得有关定义域,就要保证内函数g(x)得域就是外函数f (x)得域、③实际应用问题得定义域,就就是要使得有意义得自变量得取值集合、二、值域:1。

函数y=f(x)中,与自变量x得值得集合、2.常见函数得值域求法,就就是优先考虑,取决于 ,常用得方法有:①观察法;②配方法;③反函数法;④不等式法;⑤单调性法;⑥数形法;⑦判别式法;⑧有界性法;⑨换元法(又分为法与法)例如:①形如y=,可采用法;②y=,可采用法或法;③y=a[f(x)]2+bf (x)+c,可采用法;④y=x-,可采用法;⑤y=x-,可采用法;⑥y=可采用法等、典型例题例1、求下列函数得定义域:(1)y=;(2)y=; (3)y=、解:(1)由题意得化简得即故函数得定义域为{x|x〈0且x≠—1}、(2)由题意可得解得故函数得定义域为{x|—≤x≤且x≠±}、(3)要使函数有意义,必须有即∴x≥1,故函数得定义域为[1,+∞)、变式训练1:求下列函数得定义域:(1)y=+(x—1)0 ; (2)y=+(5x-4)0; (3)y=+lgcosx;解:(1)由得所以-3〈x〈2且x≠1、故所求函数得定义域为(—3,1)∪(1,2)、(2)由得∴函数得定义域为(3)由,得借助于数轴,解这个不等式组,得函数得定义域为例2、设函数y=f(x)得定义域为[0,1],求下列函数得定义域、(1)y=f(3x); (2)y=f();(3)y=f(; (4)y=f(x+a)+f(x-a)、解:(1)0≤3x≤1,故0≤x≤,y=f(3x)得定义域为[0, ]、(2)仿(1)解得定义域为[1,+∞)、(3)由条件,y得定义域就是f与定义域得交集、列出不等式组故y=f得定义域为、(4)由条件得讨论:①当即0≤a≤时,定义域为[a,1—a];②当即-≤a≤0时,定义域为[-a,1+a]、综上所述:当0≤a≤时,定义域为[a,1-a];当—≤a≤0时,定义域为[—a,1+a]、(0<a<)得定义域就是( ) 变式训练2:若函数f(x)得定义域就是[0,1],则f(x+a)·f(x—a)A、 B、[a,1—a] C、[—a,1+a]D、[0,1]解: B例3、求下列函数得值域:(1)y= (2)y=x—;(3)y=、解:(1)方法一(配方法)∵y=1—而∴0〈∴∴值域为、方法二 (判别式法)由y=得(y-1)∵y=1时,1、又∵R,∴必须=(1-y)2—4y(y-1)≥0、∴∵∴函数得值域为、(2)方法一(单调性法)定义域,函数y=x,y=-均在上递增,故y≤∴函数得值域为、方法二 (换元法)令=t,则t≥0,且x=∴y=-(t+1)2+1≤(t≥0),∴y∈(—∞,]、(3)由y=得,ex=∵ex>0,即>0,解得-1<y<1、∴函数得值域为{y|—1〈y〈1}、变式训练3:求下列函数得值域:(1)y=; (2)y=|x|、解:(1)(分离常数法)y=-,∵≠0,∴y≠-、故函数得值域就是{y|y∈R,且y≠-}、(2)方法一(换元法)∵1-x2≥0,令x=sin,则有y=|sincos|=|sin2|,故函数值域为[0,]、方法二y=|x|·∴0≤y≤即函数得值域为、例4.若函数f(x)=x2-x+a得定义域与值域均为[1,b](b>1),求a、b得值、解:∵f(x)=(x-1)2+a-、∴其对称轴为x=1,即[1,b]为f(x)得单调递增区间、∴f(x)min=f(1)=a—=1①f(x)max=f(b)=b2—b+a=b ②由①②解得变式训练4:已知函数f(x)=x2—4ax+2a+6(x∈R)、(1)求函数得值域为[0,+∞)时得a得值;(2)若函数得值均为非负值,求函数f(a)=2—a|a+3|得值域、解:(1)∵函数得值域为[0,+∞),∴Δ=16a2—4(2a+6)=02a2-a-3=0∴a=-1或a =、(2)对一切x∈R,函数值均非负,∴Δ=8(2a2-a-3)≤0-1≤a≤,∴a+3>0,∴f(a)=2-a(a+3)=-a2-3a+2=-(a+)2+(a)、∵二次函数f(a)在上单调递减,∴f(a)min=f=—,f(a)max=f(-1)=4,∴f(a)得值域为、小结归纳1。

必修一 数学 定义域,值域,解析式 求法,例题,习题(含答案)

必修一 数学  定义域,值域,解析式 求法,例题,习题(含答案)

函数的定义域(1)函数的定义域就是使得这个函数关系式有意义的实数的全体构成的集合 (2)求函数定义域的注意事项☉分式分母不为零; ☉偶次根式的被开方数大于等于零; ☉零次幂的底数不为零; ☉实际问题对自变量的限制若函数由几个式子构成,求其定义域时要满足每个式子都要有意义(取“交集”)。

(3)抽象复合函数定义域的求法☉已知y=f (x )的定义域是A ,求y=f (g (x ))的定义域,可通过解关于g (x )∈A 的不等式,求出x 的范围☉已知y=f (g (x ))的定义域是A ,求y=f (x )的定义域,可由x ∈A ,求g (x )的取值范围(即y=g (x )的值域)。

例1.函数()f x =的定义域为 ( ) A. (-∞,4) B. [4,+∞) C. (-∞,4] D. (-∞,1)∪(1,4] 【答案】D 【解析】要使解析式有意义需满足:40{10x x -≥-≠,即x 4≤且1x ≠所以函数()1f x x =- 的定义域为(-∞,1)∪(1,4] 故选:D例2( )A. {|11}x x x ≥≤-或B. {|11}x x -≤≤C. {1}D. {-1,1}【答案】D : 2210{ 10x x -≥-≥,解得: 1x =±.{-1,1}.故选D.例3.已知函数()21y f x =-的定义域为()2,2-,函数()f x 定义域为__________.【答案】[]1,3-【解析】由函数()21y f x =-的的定义域为(−2,2),得: 2113x -≤-≤,故函数f (x )的定义域是[]1,3-.例4.若函数()y f x =的定义域为[]0,2, )A. [)0,1B. []0,1C. [)(]0,11,4⋃ D. ()0,1 【答案】A 函数()y f x =的定义域是[]0,2, 022{ 10x x ≤≤∴-≠,解不等式组:01x ≤<,故选A.例5.已知函数()1y f x =+的定义域是[]2,3-,则()2y f x =的定义域是( )A. []1,4-B. []0,16C. []2,2-D. []1,4【答案】C 【解析】解:由条件知: ()1f x +的定义域是[]2,3-,则1x 14-≤+≤,所以214x -≤≤,得[]x 2,2∈-例6.已知函数y f x =+()1定义域是[]-23,,则y f x =-()21的定义域是( )A B. []-14, C. []-55, D. []-37,【答案】A例7___________.【答案】[]3,4-【解析】要使函数有意义,则2120x x +-≥,即2120x x --≤,即34x -≤≤,故函数的定义域为[]3,4-,故答案为[]3,4-.函数值域定义:对于函数y=f (x ),x ∈A 的值相对应的y 值叫函数值,函数值得集合{f (x )|x ∈A }叫做函数的值域。

函数定义域、值域求法小结

函数定义域、值域求法小结

函数定义域、值域求法总结一、定义域是函数y=f(x)中的自变量x 的范围。

(1)分母不为零(2)偶次根式的被开方数非负。

(3)对数中的真数部分大于0。

(4)指数、对数的底数大于0,且不等于1(5)0x 中0≠x 二、值域是函数y=f(x)中y 的取值范围。

常用方法:(1)直接法 (2)图象法(数形结合) (3)函数单调性法(4)配方法 (5)换元法 (6)反函数法(逆求法) (7)分离常数法 (8)判别式法三、典例解析1、定义域问题例1 求下列函数的定义域:①14)(2--=x x f ②2143)(2-+--=x x x x f③=)(x f x11111++④xx x x f -+=0)1()(⑤373132+++-=x x y解:①要使函数有意义,必须:142≥-x 即: 33≤≤-x∴函数14)(2--=x x f 的定义域为: [3,3-]②要使函数有意义,必须:⎩⎨⎧≠-≠-≤≥⇒⎩⎨⎧≠-+≥--13140210432x x x x x x x 且或 4133≥-≤<--<⇒x x x 或或∴定义域为:{ x|4133≥-≤<--<x x x 或或}③要使函数有意义,必须: 011110110≠++≠+≠⎪⎪⎪⎩⎪⎪⎪⎨⎧xx x ⇒2110-≠-≠≠⎪⎩⎪⎨⎧x x x ∴函数的定义域为:}21,1,0|{--≠∈x R x x 且④要使函数有意义,必须: ⎩⎨⎧≠-≠+001x x x ⎩⎨⎧<-≠⇒01x x∴定义域为:{}011|<<--<x x x 或⑤要使函数有意义,必须: ⎩⎨⎧≠+≥+-073032x x ⎪⎩⎪⎨⎧-≠∈⇒37x R x 即 x<37- 或 x>37- ∴定义域为:}37|{-≠x x例2 若函数aax ax y 12+-=的定义域是R ,求实数a 的取值范围 解:∵定义域是R,∴恒成立,012≥+-aax ax ∴⎪⎩⎪⎨⎧≤<⇒≤⋅-=∆>2001402a a a a a 等价于 例3 若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )41(-⋅x f 的定义域 解:要使函数有意义,必须:43434543434514111411≤≤-⇒⎪⎩⎪⎨⎧≤≤-≤≤-⇒⎪⎩⎪⎨⎧≤-≤-≤+≤-x x x x x ∴函数)41(+=x f y )41(-⋅x f 的定义域为:⎭⎬⎫⎩⎨⎧≤≤-4343|x x ∴-1≤2x -1≤1,解之0≤x ≤1, ∴f(2x -1)的定义域为[0,1]。

定义域与值域的求法

定义域与值域的求法

1、 定义域R 上函数y=f(x)值域为[a,b],则y=f(2x+5)值域为( ) 解:由于y=f(x)的定义域为R ,所以y=f(2x+5)的定义域也为R ,且2x+5能取到任意值,即y=f(2x+5)值域也为[a,b]。

2、 函数y=f(x),定义域为R,值域为【-2,2】,则y=f(x+1)-1的值域 ( ) 解:因为y=f(x),定义域为R ,值域为[-2,2],所以不论x 取何值,函数的值域都是[-2,2],所以将x 换成(x+1)后,(x+1)的取值范围依然是R ,所以函数f(x+1)的值域依然时[-2,2], 即,-2≤f(x+1)≤2,所以,-2-1≤f(x+1)-1≤2-1,即,-3≤f(x+1)-1≤1,综上所述,y=f(x+1)-1的值域是:[-3,1]. 3、 已知函数y=1/2(x-1)^2+1的定义域和值域都是区间[1,b](b >1)求b 的值已知函数y=1/2(x-1)^2+1为开口向上得抛物线,对称轴x=1 区间[1,b]在对称轴右边,单增所以f(x)最小=f(1)=1f(x)最大=f(b)=(1/2)(b-1)²+1由题意f(b)=b于是(1/2)(b-1)²+1=b即b ²-4b+3=0 (b-1)(b-3)=0因b>1所以b=3函数解析式,复合函数的定义域,值域定 义 域:例1、 若函数aax ax y 12+-=的定义域是R ,求实数a 的取值范围 例2、设f(x)的定义域为[0,2],求函数f(x+a)+f(x-a)(a >0)的定义域.练习:若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )41(-⋅x f 的定义域 1、函数x x x f -=13)(2的定义域是( )A.),1(+∞B. )1,0(C. )1,(-∞D. ]1,(--∞2、函数x x x x f -+=0)1()(的定义域是( )A.{}0|<x xB. {}0|>x xC. {}10|-≠<x x x 且D. {}10|-≠≠x x x 且3、xx x f -++=211)(的定义域是( )A.),1[+∞-B. ),2[+∞C. )2,1(-D. {}21|≠-≥x x x 且4、2384)(3-+=x x x f 的定义域是( ) A.),32[+∞ B. ⎭⎬⎫⎩⎨⎧≠32|x x C. ),2[+∞ D. ]1,(--∞ 5、若函数()f x 的定义域[0,2],则函数1)2()(-=x x f x g 的定义域是( ) A [0,1] B [)1,0 C [)(]4,11,0⋃ D ()1,0 6、已知函数)(x f 的定义域为[a ,b],其中b a b a ><<,0,则函数()()x f x f x g -+=)(的定义域是( )A ],(b b -B ],(b a -C ],[b b -D ],[a a -7、已知函数)1(+=x f y 的定义域为[-2,3],则()12-=x f y 的定义域是_________8.已知(1)f x +的定义域为[2,3]-,则(21)f x -定义域是: A.5[0,]2B.[1,4]-C.[5,5]-D.[3,7]-9.已知函数()f x 的定义域为[0,1],函数2()f x 的定义域为:___________函数的值域1. 直接观察法:对于一些比较简单的函数,其值域可通过观察得到。

史上最全面的函数定义域值域求法好题集含详解

史上最全面的函数定义域值域求法好题集含详解

史上最全面的函数定义域、值域的求法好题集一、单选题1 .函数y = ∕(x+l )的值域是[-2,3],则函数y = "x-2)的值域是( )A. [-1,4]B. [1,6]C. [-2,3]D. [-3,2]2 .己知函数/(1)=1。

82(--+6工+ 7)的值域记为集合4,函数g (χ) = Ji6-0的值域为B ,则有(),・/、 sin4x + √3cos4x 八函数∕(x) == ----------- - ------- 的值域为()sin2x-√3 cos 2xg(x) + x+4,x< g(x)、 :、,则函数/(幻的值域 g(x)-x,x≥g(x)—Q.CUC + 3cι +1, x < 1,, , 的值域为R,则实数。

的取值范围是()A. (一2,2)B. (-U )C. [-M]D. [-2,2]6. 函数∕∙(χ)二工-2+2-』在区间(0,4]上的值域为(A.xc / 15η B∙ (-∞,-]4C∙ [|,2] D. (—8,2]A.9、[一:,+8)4 B. 9 —,0(1,÷∞)4C. 97一二,。

(二,+8)4 4 D∙ 9—,0 D (2,+”5) 4 A. β⊂QΛB. A ⊂ C κBC. Au83∙ 若函数V= ∕(Λ)的值域为则函数 ∕7(.v)∕(.v) +的值域为() /(二)A.B. C.5 1() 2 ’ 3D.4.已知函数∕(x) = lnx-0r 2+(4z-l)x + 6z(4z > 0)的值域与函数∕(∕(x))的值域相同,则。

的取值范围为(A. (0』B.(L+8)C.D. 4一,+835. 7. 8. 已知∕(x) =lnx,x≥∖A. (-00,-1]B. (-1,0)C. [-1,0)D. [-1,09.己知函数 ∕(x) = ------ --- 2sinx + 3x'在区间[-2,2]的值域为, ∣jiιj m+n =3Λ +1 ()取值范围是()A. (l,+∞)B. (2,+∞)cosx. x<a,11.若函数∕(x) = { 1 的值域为[T1],则实数4的取值范围是(),x a x A. [l,+oo) B. (―00,—1]C. (0, 1] D∙ (—1,0)12 .已知函数八力的定义域A ,值域是3 = {y ∣Q<y≤M' g(x)定义域C,值域是 3 = {y c≤ y≤d^.甲:如果任意再wA,存在々£0,使得/(5)二g(毛),那么4口。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

<一>求函数定义域、值域方法和典型题归纳一、基础知识整合1.函数的定义:设集合A 和B 是非空数集,按照某一确定的对应关系f ,使得集合A 中任意一个数x,在集合B 中都有唯一确定的数f(x)与之对应。

则称f:为A 到B 的一个函数。

2.由定义可知:确定一个函数的主要因素是①确定的对应关系(f ),②集合A 的取值范围。

由这两个条件就决定了f(x)的取值范围③{y|y=f(x),x ∈A}。

3.定义域:由于定义域是决定函数的重要因素,所以必须明白定义域指的是:(1)自变量放在一起构成的集合,成为定义域。

(2)数学表示:注意一定是用集合表示的范围才能是定义域,特殊的一个个的数时用“列举法”;一般表示范围时用集合的“描述法”或“区间”来表示。

4.值域:是由定义域和对应关系(f )共同作用的结果,是个被动变量,所以求值域时一定注意求的是定义域范围内的函数值的范围。

(1)明白值域是在定义域A 内求出函数值构成的集合:{y|y=f(x),x ∈A}。

(2)明白定义中集合B 是包括值域,但是值域不一定为集合B 。

二、求函数定义域(一)求函数定义域的情形和方法总结1已知函数解析式时:只需要使得函数表达式中的所有式子有意义。

(1)常见要是满足有意义的情况简总:①表达式中出现分式时:分母一定满足不为0;②表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0(非负数)。

③表达式中出现指数时:当指数为0时,底数一定不能为0.④根号与分式结合,根号开偶次方在分母上时:根号下大于0.⑤表达式中出现指数函数形式时:底数和指数都含有x ,必须满足指数底数大于0且不等于1.(0<底数<1;底数>1)⑥表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大于0且不等于 1.(2()log (1)x f x x =-)注:(1)出现任何情形都是要注意,让所有的式子同时有意义,及最后求的是所有式子解集的交集。

(2)求定义域时,尽量不要对函数解析式进行变形,以免发生变化。

(形如:2()x f x x=) 2.抽象函数(没有解析式的函数)解题的方法精髓是“换元法”,根据换元的思想,我们进行将括号为整体的换元思路解题,所以关键在于求括号整体的取值范围。

总结为:(1)给出了定义域就是给出了所给式子中x 的取值范围;(2)在同一个题中x 不是同一个x ;(3)只要对应关系f 不变,括号的取值范围不变。

(4)求抽象函数的定义域个关键在于求f(x)的取值范围,及括号的取值范围。

例1:已知f(x+1)的定义域为[-1,1],求f (2x-1)的定义域。

解:∵f(x+1)的定义域为[-1,1];(及其中x 的取值范围是[-1,1])∴012x ≤+≤ ; (x+1的取值范围就是括号的取值范围) ∴f(x)的定义域为[0,2];(f 不变,括号的取值范围不变)∴f(2x-1)中0212x ≤-≤ ∴1322x -≤≤ ∴f(2x-1)的定义域为13|22x x ⎧⎫-≤≤⎨⎬⎩⎭ 3.复合函数定义域复合函数形如:(())y f g x =,理解复合函数就是可以看作由几个我们熟悉的函数组成的函数,或是可以看作几个函数组成一个新的函数形式。

例2:()(2,3),()(1)(2),f xg x f x f x -=++-若函数的定义域为求g(x)的定义域。

分析:由题目可以看出g(x)是由y=x+1、y=x-2和y=f(x)三个函数复合起来的新函数。

此时做加运算,所以只要求出f(x+1)和f(x-2)的定义域,再根据求函数定义域要所有式子同时满足,即只要求出f(x+1)和f(x-2)的定义域的交集即可。

解:由f(x)的定义域为(-2,3),则f(x+1)的定义域为(-3,2),f(x-2)的定义域为(0,4);3204x x -<<⎧∴⎨<<⎩,解得0<x<2 所以,g(x)的定义域为(0,2).(二)求定义域的典型题1.已知函数解析式(1)求下列函数的定义域211 (1)();(2)()(1)();31xf x f x x f xx x-==++=+-22(23)11(4)()(1);(5)()log();(6)()42xxf x x f x x f xx+-=-=-=+-(2)求下列函数的定义域(1)()()12(3)()()f x f xxf x f x==-==(3)与函数定义域有关的问题题①若函数224()(21)xf xx m x m-=+++的定义域为R,求实数m的取值范围。

②函数y=R,求k的取值范围。

③函数()f x=R,求m的取值范围。

2.求抽象数定义域①若函数f(x)的定义域为(-2,6),求1(1)2f x-的定义域。

②若数()f x的定义域为[0,2],求函数(2)()1f xg xx=-的定义域。

③若数(1)f x-的定义域为[-1,2],求函数()(2)g x f x=++的定义域。

④若函数()f x的定义域为[0,1],1()()(),()2g x f x a f x a a=++-≤,求函数g(x)的定义域。

⑤若()log (1),()log (1)a a f x x g x x =+=-,(0,1)a a >≠且,令 F (x )=f(x)-g(x),求F (x )的定义域。

二、求函数值域(一)求函数值域方法和情形总结1.直接观察法(利用函数图象)一般用于给出图象或是常见的函数的情形,根据图象来看出y 值的取值范围。

2.配方法适用于二次函数型或是可以化解成二次函数型的函数,此时注意对称轴的位置,在定义域范围内(以a<0为例),此时对称轴的地方为最大值,定义域为内端点离对称轴最远的端点处有最小值;对称轴在定义域的两边则根据单调性来求值域。

总结为三个要点:(1)含参数的二次型函数,首先判断是否为二次型,即讨论a ;(2)a 不为0时,讨论开口方向;(3)注意区间,即讨论对称轴。

例1:求2()46f x x x =-+在[1,5]上的值域.解:配方:2()(2)2f x x =-+f(x)的对称轴为x=2在[1,5]中间 min (2)2y f ==(端点5离x=2距离较远,此时为最大值)max (5)11y f ==所以,f(x)的值域为[2,11].3.分式型(1)分离常量法:应用于分式型的函数,并且是自变量x 的次数为1,或是可以看作整体为1的函数。

具体操作:先将分母搬到分子的位子上去,观察与原分子的区别,不够什么就给什么,化为d y a bx c =++。

例2:51()42x f x x -=+求的值域. 解:510(42)1515744()424242(42)x x f x x x x +---===-+++由于分母不可能为0,则意思就是函数值不可能取到54, 即:函数f(x)的值域为5{|}4y y ≠. 跟踪练习:已知(]2()4(1)3(0,2)f x ax a x x =++-∈在x=2处有最大值,求a 的取值范围.1,2⎡⎫+∞⎪⎢⎣⎭(2)利用20x ≥来求函数值域:适用于函数表达式为分式形式,并且只出现2x 形式,此时由于为平方形式大多时候x 可以取到任意实数,显然用分离常量法是行不通,只有另想它法(有界变量法)。

例3:求函数2231()2x f x x -=+的值域. 解:由于22x +不等于0,可将原式化为22231yx y x +=-即 2(3)12y x y -=--(由于20x ≥)只需3y ≠,则有21203y x y --=≥-3)y -(12)0y --≥ 所以,函数值域1,32y ⎡⎫∈-⎪⎢⎣⎭. (3)方程根的判别式法:适用于分式形式,其中既出现变量x 又出现2x 混合,此时不能化为分离常量,也不能利用上述方法。

对于其中定义域为R 的情形,可以使用根的判别式法。

例4:求函数221x y x =+的值域解:由于函数的定义域为R ,即210x +≠原式可化为 220yx x y -+=(由于x 可以取到任意的实数,那么也就说总有一个x 会使得上述方程有实数根,即方程有根那么判别式大于或等于0,注:这里只考虑有无根,并不考虑根为多少)所以,2440y ∆=-≥所以,函数值域为[]1,1y ∈-跟踪练习:求下列函数值域 (1)11y x =+ (2)2211x y x -=+ (3)211y x =+ 22(4)36x y x x +=++ (5)若2328log 1mx x n y x ++=+的定义域为R ,值域为[]0,2,求常数m,n 的值(m=n=5)4.换元法通过换元将一个复杂的问题简单化更便于求函数值域,一般函数特征是函数解析式中含有根号形式,以及可将问题转换为我们熟悉的函数形式等问题。

而换元法其主要是让我们明白一种动态的方法来学习的一种思路,注重换元思维的培养,并不是专一的去解答某类问题,应该多加平时练习。

注:换元的时候应及时确定换元后的元的取值范围。

例5:求函数()2f x x =解:令20,1t t x t =≥=+则,带入原函数解析式中得 2221152(1)222()48y t t t t t =+-=-+=-+因为,0t ≥所以,函数的值域为15,8y ⎡⎫∈+∞⎪⎢⎣⎭. 跟踪练习:求下列函数的域(1)22sin 3cos 1y x x =-- (2)21y x =+(3)sin cos sin cos y x x x x =++,(令t=sin cos x x +)(4) []4=3cos (0,))y x x θθπ=++∈令。

相关文档
最新文档