求函数定义域和值域方法和典型题归纳

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

<一>求函数定义域、值域方法和典型题归纳

一、基础知识整合

1.函数的定义:设集合A 和B 是非空数集,按照某一确定的对应关系f ,使得集合A 中任意一个数x,在集合B 中都有唯一确定的数f(x)与之对应。则称f:为A 到B 的一个函数。

2.由定义可知:确定一个函数的主要因素是①确定的对应关系(f ),②集合A 的取值范围。由这两个条件就决定了f(x)的取值范围③{y|y=f(x),x ∈A}。

3.定义域:由于定义域是决定函数的重要因素,所以必须明白定义域指的是:

(1)自变量放在一起构成的集合,成为定义域。

(2)数学表示:注意一定是用集合表示的范围才能是定义域,特殊的一个个的数时用“列举法”;一般表示范围时用集合的“描述法”或“区间”来表示。

4.值域:是由定义域和对应关系(f )共同作用的结果,是个被动变量,所以求值域时一定注意求的是定义域范围内的函数值的范围。

(1)明白值域是在定义域A 内求出函数值构成的集合:{y|y=f(x),x ∈A}。

(2)明白定义中集合B 是包括值域,但是值域不一定为集合B 。

二、求函数定义域

(一)求函数定义域的情形和方法总结

1已知函数解析式时:只需要使得函数表达式中的所有式子有意义。

(1)常见要是满足有意义的情况简总:

①表达式中出现分式时:分母一定满足不为0;

②表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0(非负数)。

③表达式中出现指数时:当指数为0时,底数一定不能为0.

④根号与分式结合,根号开偶次方在分母上时:根号下大于0.

⑤表达式中出现指数函数形式时:底数和指数都含有x ,必须满足指数底数大于0且不等于1.(0<底数<1;底数>1)

⑥表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大于0且不等于 1.

(2()log (1)x f x x =-)

注:(1)出现任何情形都是要注意,让所有的式子同时有意义,及最后求的是所有式子解集的交集。

(2)求定义域时,尽量不要对函数解析式进行变形,以免发生变化。(形

如:2()x f x x

=) 2.抽象函数(没有解析式的函数)

解题的方法精髓是“换元法”,根据换元的思想,我们进行将括号为整体的换元思路解题,所以关键在于求括号整体的取值范围。总结为:

(1)给出了定义域就是给出了所给式子中x 的取值范围;

(2)在同一个题中x 不是同一个x ;

(3)只要对应关系f 不变,括号的取值范围不变。

(4)求抽象函数的定义域个关键在于求f(x)的取值范围,及括号的取值范围。

例1:已知f(x+1)的定义域为[-1,1],求f (2x-1)的定义域。

解:∵f(x+1)的定义域为[-1,1];(及其中x 的取值范围是[-1,1])

∴012x ≤+≤ ; (x+1的取值范围就是括号的取值范围) ∴f(x)的定义域为[0,2];(f 不变,括号的取值范围不变)

∴f(2x-1)中

0212x ≤-≤ ∴1322

x -≤≤ ∴f(2x-1)的定义域为13|22x x ⎧⎫-

≤≤⎨⎬⎩⎭ 3.复合函数定义域

复合函数形如:(())y f g x =,理解复合函数就是可以看作由几个我们熟悉的函数组成的函数,或是可以看作几个函数组成一个新的函数形式。 例2:()(2,3),()(1)(2),

f x

g x f x f x -=++-若函数的定义域为求g(x)的定义域。

分析:由题目可以看出g(x)是由y=x+1、y=x-2和y=f(x)三个函数复合起来的新函数。此时做加运算,所以只要求出f(x+1)和f(x-2)的定义域,再根据求函数定义域要所有式子同时满足,即只要求出f(x+1)和f(x-2)的定义域的交集即可。

解:由f(x)的定义域为(-2,3),则

f(x+1)的定义域为(-3,2),f(x-2)的定义域为(0,4);

3204

x x -<<⎧∴⎨<<⎩,解得0

(二)求定义域的典型题1.已知函数解析式

(1)求下列函数的定义域

2

11 (1)();(2)()(1)();

31

x

f x f x x f x

x x

-==++=

+-

22

(23)

11

(4)()(1);(5)()log();(6)()

42

x

x

f x x f x x f x

x

+

-

=-=-=+

-

(2)求下列函数的定义域

(1)()()

1

2

(3)()()

f x f x

x

f x f x

==

-

==

(3)与函数定义域有关的问题题

①若函数

22

4

()

(21)

x

f x

x m x m

-

=

+++

的定义域为R,求实数m的取值范围。

②函数y=R,求k的取值范围。

③函数()

f x=R,求m的取值范围。

2.求抽象数定义域

①若函数f(x)的定义域为(-2,6),求

1

(1)

2

f x-的定义域。

②若数()

f x的定义域为[0,2],求函数

(2)

()

1

f x

g x

x

=

-

的定义域。

③若数(1)

f x-的定义域为[-1,2],

求函数()(2)

g x f x

=++的定义域。

④若函数()

f x的定义域为[0,1],

1

()()(),()

2

g x f x a f x a a

=++-≤,求函数g(x)的定义域。

相关文档
最新文档