6_“希望工程”义演_同步练习
6_“希望工程”义演_同步练习
5.6 “希望工程”义演一、 课前练习:1、下列运算结果正确的是( )。
A 、ab ab 954=+B 、x y xy 66=-C 、10731046x x x =+ D 、08822=-ba b a 2、解方程1253-=+-x x , 移项正确的是( )。
A 、5123+-=-x xB 、1523-=--x xC 、5123--=-x xD 、5123--=--x x 3、解下列方程(1)05)8(5=--x (2)1615312=--+x x4、某人上山的速度为a 千米/小时,后又沿原路下山,下山速度为b 千米/小时,那么这个人上山和下山的平均速度是( )。
A 、2b a +千米/时 B 、2ab 千米/时 C 、ab b a 2+千米/时 D 、ba ab+2千米/时 二、 探索练习:某文艺团体为“希望工程”募捐组织了一场义演,共售出1000张票,其中成人票是每张8元,学生票是每张5元,筹得票款6950元。
问成人票与学生票各售出多少张? 上面的问题中包括哪些量?售出的票包括________________票和__________________票;所得票款包括________________款和__________________款; 上面的问题中包括哪些等量关系?_____________________+______________________=1000张 (1)_____________________+______________________=6950元 (2)解法一: 设售出的成人票为x张,请填写下表:根据等量关系(2) ,可以列出方程:____________________________解得x=____________因此,售出的成人票为___________张,学生票为___________张。
解法二: 设所得的学生票款为y元,请填写下表:根据等量关系(1) ,可以列出方程:____________________________解得y=____________因此,售出的成人票为___________张,学生票为___________张。
七年级数学北师大版上册课时练第5章《应用一元一次方程——“希望工程”义演》(含答案解析)(1)
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!课时练应用一元一次方程——“希望工程”义演一、选择题1.北流市某风景区的门票价格在2019年国庆期间有如下优惠:购票人数为1~50人时,每人票价格为50元;购票人数为51~100人时,每人门票价格45元;购票人数为100人以上时,每人门票价格为40元.某初中初一有两班共103人去该风景区,如果两班都以班为单位分别购票,一共需付4860元,则两班人数分别为()A.56,47B.57,48C.58,45D.59,442.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是()A.从甲组调12人去乙组B.从乙组调4人去甲组C.从乙组调12人去甲组D.从甲组调12人去乙组,或从乙组调4人去甲组3.江陵县青少年活动中心组织实验中学七年级第一批学生前往宜昌参加研学旅行,需要与旅行社联系车辆.如果每辆旅游大巴坐45人,则有28人没有座位,如果每辆坐50人,只有一辆车空12个座位无人坐,其余车辆全部坐满,设有x 辆旅游大巴,则可列方程()A.45x+28=50x﹣12B.45x﹣28=50x+12C.45x﹣28=50x﹣12D.45x+28=50x+124.某超市在“元旦”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;③一次性购物在350元(含350元)以上,一律享受八折优惠;小敏在该超市两次购物分别付了85元和270元,如果小敏把这两次购物改为一次性购物,则小敏至少需付款()元A.284B.308C.312D.3205.某班同学一起去看电影,票价每张50元,20张以上(不含20张)打八折,他们一共花了1000元,则共买了()张电影票.A.20B.25C.20或25D.25或306.某车间有26名工人,每人每天能生产螺栓12个或螺母18个.若要使每天生产的螺栓和螺母按1:2配套,则分配几人生产螺栓?设分配x 名工人生产螺栓,其他工人生产螺母,所列方程正确的是()A.()121826x x =-B.()181226x x =-C.()2181226x x ´=-D.()2121826x x ´=-7.41人参加运土劳动,有30根扁担,要安排多少人抬,多少人挑,可以使扁担和人数相配不多不少?若设有x 人挑土,则可列出的方程是()A.2(30)41x x --=B.(41)302xx +-=C.41302x x -+=D.3041x x-=-8.甲、乙、丙三人共捐611元支援山区建设,甲比乙多25元,比丙少36元,则丙捐款()A.200元B.175元C.236元D.218元9.阳光书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元,但不超过200元,一律打九折;③一次性购书超过200元,一律打八折.如果小明同学一次性购书付款171元,那么他所购书的原价为()A.190元或213.75元B.213.75元C.200元D.190元或200元10.某超市推出如下优惠方案:(1)一次性购物不超过100元不享受优惠;(2)一次性购物超过100元,但不超过300元一律九折;(3)一次性购物超过300元一律八折;兰兰两次购物分别付款80元,252元.如果兰兰一次性购买和上两次相同的物品应付款()A.288元B.288元和332元C.332元D.288元和316元11.甲、乙两店以同样价格出售一种商品,并推出不同的优惠方案在甲店累计购物超过100元后,超出100元的部分打9折;在乙店累计购物超过50元后,超出50元的部分打9.5折,则顾客到州两店购物花费一样时为()A.累计购物不超过50元B.累计购物超过50元不超过100元C.累计购物超过100元D.累计购物不超过50元或刚好为150元12.王芳和李丽同时采摘樱桃,王芳平均每小时采摘8kg ,李丽平均每小时采摘7kg .采摘结束后,王芳从她采摘的樱桃中取出0.25kg 给了李丽,这时两人的樱桃一样多.她们采摘用了多长时间?设她们采摘所用时间为t 小时,下列方程正确的是()A.80.257t t -=B.()80.257t t-=C.()()80.2570.25t t-=+D.80.2570.25t t -=+13.在2016年“手拉手”活动中,新泰安实验小学向山区一所农村学校赠送了20个日记本和20支钢笔,价值共70元.已知每个日记本比每支钢笔少0.5元,则每个日记本和每支钢笔的价格分别为()A.1元,1.5元B.2元,2.5元C.1.5元,2元D.2元,1.5元14.《九章算术》是中国古代数学最重要的著作,奠定了中国古代数学的基本框架.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三.问人数,羊价各几何?”译文:“假设有若干人共同出钱买羊,如果每人出5钱,那么还差45钱;如果每人出7钱,那么仍旧差3钱,求买羊的人数和羊的价钱.”设羊是x 钱,则可列方程为()A.45375x x --=B.45357x x ++=C.45357x x --=D.45375x x ++=15.某班参加“3.12”植树活动,若每人植2棵树,则余21棵树;若每人植3棵树,则差24棵树,求该班有多少名学生?若设该班有x 名学生,则可列方程是()A.224321x x +=+B.224321x x -=-C.221324x x -=+D.221324x x +=-二、填空题16.一个大人一餐能吃四个面包,两个幼儿一餐共吃一个,大人和幼儿共7人,14个面包,则大人有____个,幼儿有____个.17.某人走进一家商店,进门付l角钱,然后在店里购物花掉当时他手中钱的一半,走出商店付1角钱;之后,他走进第二家商店付1角钱,在店里花掉当时他手中钱的一半,走出商店付1角钱;他又进第三家商店付l角钱,在店里花掉当时他手中钱的一半,出店付1角钱;最后他走进第四家商店付l角钱,在店里花掉当时他手中钱的一半,出店付1角钱,这时他一分钱也没有了.该人原有钱的数目是________角.18.甲、乙两人练习赛跑,若甲让乙先跑10米,则甲跑5秒种就能追上乙.若甲让乙先跑2秒钟,则甲跑4秒种就能追上乙,则甲每秒跑____米,乙每秒跑____米.19.小明、小华、小敏三人分别拿出相同数量的钱,合伙订购某种笔记本若干本,笔记本买来后,小明、小华分别比小敏多拿了5本和7本,最后结算时,三人要求按所得笔记本的实际数量付钱,多退少补,结果小明要付给小敏3元,那么,小华应付给小敏_____元.20.一群学生参加夏令营活动,男生戴白色帽子,女生戴红色帽子,休息时他们坐在一起,大家发现了一个有趣的现象:每位男生看到的白色与红色的帽子一样多,而每位女生看到的白色帽子数量是红色的2倍.根据信息,这群学生共有______人.21.校团委组织65名新团员为学校建花坛搬砖,女同学每人每次搬6块,男同学每人每次搬8块,每人搬了4次,共搬了1800块,则这些新团员中有______名男同学.三、解答题22.为拓宽学生视野,某中学决定组织部分师生去庐山西海开展研学旅行活动,在参加此次活动的师生中,若每位老师带19个学生,还剩11个学生没人带;若每位老师带20个学生,就有一位老师少带7个学生,为了安全,既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师.现有甲、乙两种大客车,它们的载客量和租金如表所示.甲种客车乙种客车载客量/(人/辆)3050租金/(元辆)300400(1)参加此次研学旅行活动的老师和学生各有多少人?(2)这次活动全部租甲种客车行吗?如果行,怎样安排;如果不行,请说明理由.(3)学校计划此次研学旅行活动的租车总费用不超过4100元,租用乙种客车不少于7辆,你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.23.明德中学某班需要购买20本笔记本和x(x>40)支圆珠笔作为期末考试的奖品,笔记本每本8元,圆珠笔每支0.8元.现有甲、乙两家文具店可供选择,甲文具店优惠方法:买1本笔记本赠送2支圆珠笔;乙文具店优惠方法:全部商品按九折出售.(1)求单独到甲,乙文具店购买奖品,应各付多少元?(2)圆珠笔买多少支时,单独到甲文具店和单独到乙文具店购买所花的总钱数一样多?(3)若该班需要购买60支圆珠笔,则怎么样购买最省钱?写出购买方案.24.临近春节,上海到扬州的单程汽车票价为80元/人,为了给春节回家的旅客提供优惠,汽车客运站给出了如下优惠方案:乘客优惠方案学生凭学生证票价一律打6折非学生10人以下(含10人)没有优惠;团购:超过10人,其中10人按原价售票,超出部分每张票打8折.(1)若有15名非学生乘客团购买票,则共需购票款多少元?(2)已知一辆汽车共有乘客60名,非学生乘客若达到团购人数则按团购方式缴款,这一车总购票款为3680元,则车上有学生和非学生乘客各多少名?25.某种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的九折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)购买15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?参考答案1-5:CDABC6-10:DCCAD 11-15:DDCCD 16.3417.4518.6419.9.20.721.3022.解:(1)设有x 个老师,依题意,得:19x +11=20x -7,解得:x =18,∴19x +11=353.(2)(18+353)÷30=12(辆)……11(人),12+1=13(辆),13×2=26(人),∵18<26,∴老师数不足以每辆车分2人,∴这次活动不能全部租甲种客车.(3)18+353-50×7=21(人),21<30<50,∴有两种租车方案,方案1:租用1辆甲种客车,7辆乙种客车;方案2:租用8辆乙种客车.方案1所需费用为300+400×7=3100(元);方案2所需费用为400×8=3200(元).∵3100<3200,∴方案1最省钱,即:租用1辆甲种客车,7辆乙种客车.23.解:(1)甲:2080.8(40)0.8128x x ´+-=+乙:(2080.8)0.90.72144x x ´+´=+(2)令0.81280.72144x x +=+200x =(3)(方案一)单独去甲店:0.8x 1280.860128176+=´+=(元)(方案二)单独去乙店:0.72x 1440.7260144187.2+=´+=(元)(方案三)208160´=0.80.9(6040)14.4´´-=(元)16014.4174.4+=由此方案三最省钱,即去甲店买20本笔记本,去乙店买20支圆珠笔.24.解:(1)由题意得:10×80+(15-10)×80×0.8=1120(元);(2)解:设车上有非学生x 人,则有学生(60-x )人,①若0≤x ≤10,由题意得:80x +80×0.6(60-x )=3680,x =25不符合题意,舍去,②若10<x ≤60,由题意得:80×10+80×0.8(x -10)+80×0.6(60-x )=3680,x =40符合题意,综上所述,x =40,25.解:(1)设购买x 盒乒乓球时,两种优惠办法付款一样.根据题意:()()3055530550.9x x ´+-´=´+´,解得20x =.所以,购买20盒乒乓球时,两种优惠办法付款一样.(2)当购买15盒时:甲店需付款()3051555200´+-´=(元),乙店需付款()3051550.9202.5´+´´=(元).因为200202.5<,所以,购买15盒乒乓球时,去甲店较合算.当购买30盒时:甲店需付款()3053055275´+-´=(元);乙店需付款()3053050.9270´+´´=(元).因为275270>,所以购买30盒乒乓球时,去乙店较合算.。
打折销售 “希望工程”义演
【基础知识精讲】熟练掌握列方程解应用题的方法.【重点难点解析】本两节的要点是进一步掌握从实际生活问题出发建立“数学模型——一元一次方程”,应用方程知识解决应用问题.A.重点、难点提示1.进一步经历运用方程解决实际问题的过程,总结运用方程解决实际问题的一般过程.(这是重点,也是难点,要掌握好)2.理解进价、标价、利润、利润率、售价、打折数的定义及其之间的关系.3.能根据利润=实际售价-进价等数量关系列一元一次方程求解.4.通过打折销售的学习,使学生认识到数学的应用价值,激发学生的学习兴趣.5.进一步经历运用方程解决实际问题的过程,掌握列方程解应用题的一般步骤; (这是重点.也是难点,要掌握好)6.借助列表的方法分斩复杂问题中的数量关系,从而建立方程解决实际问题; (这是分析复杂问题中的数量关系时常用的方法)7.培养分析问题、解决问题的能力.B.考点指要用一元一次方程解决实际问题的一般步骤是:商品利润=商品售价-商品进价;商品利润率=商品利润÷商品进价.【典型热点考题】例1 据2001年中国环境状况公报,我国由水蚀和风蚀造成的水土流失面积达356万平方公里,其中风蚀造成的水土流失面积比水蚀造成的水土流失面积多26万平方公里.问水蚀与风蚀造成的水土流失面积各多少万平方公里?解:设水蚀造成的水土流失面积为x万平方公里,则风蚀造成的水土流失面积为(x+26)万平方公里.依题意,得 x+(x+26)=356,解之,得 x=165,∴ x+26=191.答:水蚀和风蚀造成的水土流失面积分别为165万平方公里和191万平方公里.点拨:这是2002年北京西城区的一道中招试题.题目取材于“中国环境状况公报”.提醒考生注意周围环境状况.同时,也体现了解应用题的思路,即“问什么,设什么”,依条件来建立等式——即一元一次方程.例2 某市一中和二中有同样多的同学参加希望杯数学竞赛,学校用汽车把学生送往考场,一中用的汽车,每车坐15人;二中用的汽车,每车坐13人,这样二中比一中要多派一辆汽车,后来每校各增加一个人参加竞赛,这样两校需要的汽车就一样多了,最后又决定每校再各增加一个人参加竞赛,二中又要比一中多派一辆汽车,问最后两校共有多少人参加竞赛.解:设开始两校各有x 人参赛,根据题意,必定有下列情形第一次:一中派车a 辆二中派车a+1辆第二次:多一人,此时x+1人一中派车a+1辆二中派车a+1辆可得:a 辆车,每车15人刚好装x 人第三次:又多一人,此时x+2人一中派车a+1辆二中派车a+2辆可得a+1辆车,每车13人刚好装x+1人∵113115-+=x x ∴.90x =因而最后两校共有184人参赛.例3 一轮船从甲地顺流而下8小时到达乙地,原路返回需12小时才能达到甲地.已知水流速度是每小时3千米,求甲、乙两地的距离.点悟:此题有两个不变量,即甲、乙两地间的距离及船在静水中的速度,分别根据这两个“不变量”可以从两方面设未知数,列出方程.解法1:设甲、乙两地的距离为x 千米,根据题意,得31238+=-x x解这个方程,得x=144答:甲、乙两地相距144千米.解法2:设轮船在静水中的速度为x 千米/小时,根据题意,得8(x+3)=12(x-3)解这个方程,得x=15于是 8(x+3)=8×(15+3)=144.答:甲、乙两地相距144千米.例4 一个个位数是4的三位数,如果把这个数4换到最左边,所得的数比原来的3倍还多98,试求原数.点悟:一个三位数4,百位和十位上的数字均未知,怎么办?干脆设=x ,那么这个三位数如何表示?——应是10x+4,而不应是x+4(想一想,为什么?).解:设这个三位数去掉尾数4,剩下的二位数为x ,那么这个三位数应是10x+4,而把尾数4换到最左边得到的数应为400+x .根据题意,得400+x=3(10x+4)+98解这个方程,得x=10于是 10x+4=104.答:原数为104.点拨:一般来说,解数字问题的关键是要掌握表示数的方法.如果是三位数,则表示成c b a abc ++=10100,并注意求得的某数最高位数字不能是零,且每个数位上的数字都应该是一位数.例5 甲、乙两站的路程是708千米,一辆慢车从甲站开往乙站,慢车走了一个半小时之后,另有一辆快车从乙站开往甲站,已知慢车每小时走92千米,快车每小时走136千米.问两车各走多少小时后相遇?点悟:本题是行程问题中的相向而行相遇问题.若设快车走了x 小时后与慢车相遇,则慢车走了(211+x )小时,可用它们的路程和等于708千米建立方程. 解法1:设快车走了x 小时后与慢车相遇,则快车的路程为136x 千米,慢车的路程为92(211x +)千米.根据题意,得708)211x (92x 136=++解之,得212=x 于是 4211=+x . 答:快车走了212小时,慢车走了4小时后两车相遇. 上述解法是采用了直接设未知数的方法,下面我们采用间接设未知数的方法.解法2:设两车相遇时快车走的路程为x 千米,那么快车所用的时间为136x 小时,而慢车从211小时后到相遇时所用的时间为92570922392708x x -=-⨯-小时,由这两段路程相遇时所用时间相等,所以根据题意,得13692570x x =- 解这个方程,得x=340 ∴340÷136=212(小时)而 4212211=+(小时) 答:快车走了212小时,慢车走了4小时后两车相遇.例6 某市收取水费按以下规定:若每月每户用水不超过20立方米,则每立方米水价按1.2元收费;若超过20立方米,则超过的部分每立方米按2元收费.如果某户居民在某月所交水费的平均水价为每立方米1.5元,那么他这个月共用了多少立方米的水?点悟:首先应明白该用户用水已超过20立方米,可设超了x 立方米,则共用(20+x)立方米水.解:设该用户这个月超用了x 立方米的水,根据题意,得20×1.2+2x=1.5(20+x) 解这个方程,得x=12∴ 20+12=32.答:该用户这个月共用了32立方米的水.点拨:本例把数学与实际生活联系起来,在实际问题中考查应用数学知识的能力,颇具特色.它给我们的启示是:注重双基,注重应用,切不可陷入偏题和怪题的包围中.【考题误区警示】例 一车间人数比二车间人数的54少30人,如从二车间调10人到一车间去,那么一车间人数就是二车间人数的43,求原来每个车间人数? 点悟:找准等量关系,即(一车间原人数)+(调入10人)=43[(二车间原人数)-(调出10人)].解:设二车间原有x 人,则一车间原有(3054-x )人. 根据题意,得)10(4310)3054(-=+-x x 解这个方程,得x=250∴ 17030250543054=-⨯=-x . 答:一车间原有170人,二车间原有250人.常见错误:本例中一方调出10人到另一方,即调出人数=调入人数.在方程中表现为,一方减少,另一方则增加相同数.在解此类调配问题时,易出现只顾一方而忽略另一方的错误,要特别注意避免.【同步达纲练习一】1.甲、乙两车队共有汽车160辆,因工作需要从乙队调20辆车支援甲队,这时甲队的汽车正好是乙队汽车的3倍.问甲、乙两队原有汽车各几辆?2.用一个底面20×20cm 的长方体容器(已装满水)向一个长、宽、高分别是16cm 、10cm 、5cm 的长方体铁盒内倒水.当铁盒装满水时,长方体容器中水的高度下降多少?3.一个三位数,十位上的数比个位上的数大2,百位上的数比个位上的数小2,而这三个数位上的数字之和的17倍等于这个三位数,求这个三位数.4.一项工程,甲单独做需20天完成,乙单独做需30天完成,若先由甲单独做8天,再由乙单独做3天,剩下的由甲、乙二人合做,还需几天能完成?5.一艘船在两个码头之间航行,水流速度是3千米/小时,顺水航行需2小时,逆水航行需3小时,求两个码头之间的航程.6.有两种不同浓度的盐水,甲种盐水浓度是30%,乙种盐水浓度是6%,现在要配成浓度为10%的盐水60克,问应取两种浓度的盐水各多少克?7.某制衣厂接受一批服装订货任务,按计划天数进行生产,如果每天平均生产20套服装,就比订货任务少100套,如果每天平均生产23套服装,就可超过订货任务20套.问这批服装的订货任务是多少套?原计划几天完成?8.某班学生共60人,外出参加植树活动,根据任务的不同,要分成三个小组,使甲、乙、丙三个小组人数之比为2:3:5,求各小组人数?9.如果某商品的进货价降低了8%,而售出价不变,那么利润可由现在的x%增加到(x+10)%,求x.10.某校现有校舍20000平方米,计划拆除部分旧校舍,建新校舍,且新建校舍的面积比拆除的面积的4倍多2000平方米.如果要使建设后校舍总面积比现有校舍面积增加40%,问拆除多少旧校舍?新建多少新校舍?11.下列的数阵是由50个偶数排成的.(1)图中框内的4个数有什么关系?(2)在数阵图中任意作一类似于(1)中的框,设其中的一个数为x,那么其他三个数怎样表示?(3)如果四个数的和是172,能否求出这4个数?(4)如果四个数的和是322,能否求出这4个数?12.有浓度为98%的硫酸溶液8千克,加入浓度为20%的硫酸溶液多少千克,可配制成浓度为60%的硫酸溶液.【同步达纲练习二】1.某商人以800元的价格售出一件商品,结果获利60%,则该商品的进价为每件___________元.2.某商人不了解市场行情,进了一批过时服装,定价比进价只高出20%,结果卖不出去,只好将定价降低20%出售,这样每件只卖96元,该商人每卖出一件服装( ) (怎么比较赚和亏?)A .不赔不赚B .赚8元C .赚4元D .赔4元3.某商品提价25%后,欲恢复原价,则应降价___________.4.某商店卖出一件上衣和一双皮鞋,共收款240元,其中上衣盈利20%,皮鞋亏本20%,那么该商店卖出这两件商品,共( )A .赚10元B .赔10元C .不赔不赚D .无法确定5.某商人购某一商品的进货价比计划便宜8%,而售价不变,那么他的利润(按进货价而定)可由计划的x %增加到(x+10)%,则x 等于( )A .20B .30C .28D .156.某体育比赛入场券30元一张,若降价观众增加一半,收入增加41,问每张入场券降价多少元?7.有一杯水,第一天蒸发掉10%,第二天又继续蒸发掉杯中剩余水的10%,此时如果向杯中加水38克,则杯中水与原来一样多.问杯中原有水多少克?8.某学校食堂第二季度一共节煤3700公斤,其中5月份比4月份多节约20%,6月份比5月份多节约25%,问该食堂6月份节约多少公斤煤?9.某商品的进价为170元,按标价的8.5折销售时,利润率为15%,问商品的标价为多少?10.某商品的进价为1050元,按进价的150%标价,商店允许营业员在利润率不低于20%的情况下打折销售,问营业员最低可以打几折销售此商品?参考答案【同步达纲练习一】1.甲、乙两队原有汽车各100辆,60辆.2.下降2cm(提示:设长方体容器中水的高度下降xcm ,根据题意,得510162020⨯⨯=⋅⋅x ).3.这个三位数是153(提示:应设个位上的数为x 较好).4.还需6天(提示:设甲、乙二人合作还需x 天完成,得方程1)301201(33018201=++⨯+⨯x ). 5.36千米.6.应取甲种10克,乙种50克(提示:设需甲种x 克,则需乙种(60-x)克,于是得方程30%x+60%(60-x)=10%×60,解之,得x=10,∴ 60-x=60-10=50).7.定货任务是900套,原计划40天完成(提示:设原计划x 天完成,得方程20x+100=23x-20,解之,得x=40,∴ 20x+100=900).8.设每一份为x ,则甲、乙、丙三组人数分别为2x 人,3x 人,5x 人.根据题意,得2x+3x+5x=60解之,得x=6故甲、乙、丙三组人数分别为12人、18人和30人.9.设此商品的进货价为P(P ≠0)根据题意,得P(1+x %)=0.92P[1+(x+10)%]两边同除以P ,得1+x %=0.92+0.92(x+10)%解之,得x=15.说明:这里未知数P 称为“辅助未知数”.10.设拆除x 平方米旧校舍,则新建(4x+2000)平方米新校舍.根据题意,得20000-x+(4x+2000)=20000(1+40%)解之,得x=2000,∴ 4x+2000=10000.故拆除2000平方米旧校舍,新建10000平方米新校舍.11.(1)见分析.(2)设左上角的数为x ,则其他三个数可表示为x+2,x+12,x+14(3)设左上角的数为x ,则x+(x+2)+(x+12)+(x+14)=172,4x+28=172,x=36.所以这四个数分别是36、38、48、50.(4)不存在这样的四个数.如(3)设左上角的数为x ,则其他三个数可表示为x+2,x+12,x+14.x+(x+2)+(x+12)+(x+14)=322,4294 x ,不合题意 12.设需加浓度为20%的硫酸溶液.x 千克,8×98%+20%·x=(x+8)·60%,x=7.6.答:需加入浓度为20%的硫酸溶液7.6千克.【同步达纲练习二】1.设该商品的进价为x 元,则由题得:800-x=x ×60%,解得x=500,所以该商品的进价为500元;2.由现在的价格可以计算得到定价,由定价可以计算得到进价,由此可以知道该商人每卖出一件服装赔4元,所以选D ;3.设原价为a ,应降价x %,所以125%a ×(1-x %)=a ,解得x=20,所以应降价20%;4.设上衣的销售价为x 元,则皮鞋的销售价为240-x 元,上衣的成本为x ÷1.2元,皮鞋的成本为(240-x)÷0.8,所以601258.0)240(2.1240-=÷--÷-x x x ,当x>144时赚60125-x ,当x<144时,则亏x 12560-,当x=144时,不赔不赚,所以选D ; 5.D ; 6.设降价x 元,原来的观众人数为a ,a a a a 30413023)30(⨯=-⨯-,解得x=5(元),所以降价5元;7.设杯中原有水x 克,则x ×90%×90%+38=x ,解得x=200(克),所以杯中原有水200克;8.该食堂4月份节约x 公斤煤,则由题得:x+x ×120%+x ×120%×125%=3700,解得x=1000(公斤),所以食堂6月份节约1000×120%×125%=1500公斤煤;9.设商品的标价为x 元,则由题得:x ×85%-170=170×15%,解得x=230(元),所以商品的标价为230元;10.营业员最低可以以成本的x %销售此商品,则由题得:1050×150×x %=1050×120%,解得x=80,所以营业员最低可以打8折销售此商品.。
北师大版七年级数学上册第5章 5.5 应用一元一次方程—“希望工程”义演 培优训练(含答案)
北师版七年级上册第五章一元一次方程5.5应用一元一次方程——“希望工程”义演培优训练卷一.选择题(共10小题,3*10=30)1.某地原有沙漠108公顷,绿洲54公顷,为改善生态环境,防止沙化现象,当地政府实施了“沙漠变绿洲”工程,要把部分沙漠改造为绿洲,使绿洲面积占沙漠面积的80%.设把x公顷沙漠改造为绿洲,则可列方程为( )A.54+x=80%×108B.54+x=80%(108-x)C.54-x=80%(108+x)D.108-x=80%(54+x)2.某公路收费站的收费标准如下:中型汽车为20元/辆,小型汽车为10元/辆.一天上午的某个时段内,该收费站共通过了50辆车,这些车共缴费700元,那么该时段内共通过小型汽车( )A.20辆B.25辆C.30辆D.10辆3. 某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )A.22x=16(27-x)B.16x=22(27-x)C.2×16x=22(27-x)D .2×22x =16(27-x)4.某车间有20名工人生产螺栓和螺母,每人每天能生产螺栓12个或螺母18个.如果分配x 名工人生产螺栓,其余的工人生产螺母,要恰好使每天生产的螺栓和螺母按1∶2配套.求x 所列的方程是( )A .12x =18(20-x)B .18x =12(20-x)C .2×18x =12(20-x)D .2×12x =18(20-x)5.某工程,甲单独做需12天完成,乙单独做需8天完成,现由甲先做3天,乙再参加合作,求完成这项工程共用的时间.若设完成此项工程共用x 天,则下列方程正确的是( ) A.x +312+x 8=1 B.x +312+x -38=1 C.x 12+x 8=1 D.x 12+x -38=1 6.在甲处工作的有272人,在乙处工作的有196人,如果要使乙处工作的人数是甲处工作人数的13,应从乙处调多少人到甲处?若设从乙处调x 人到甲处,则下列方程正确的是( ) A .272+x =13(196-x) B.13(272-x)=196-x C.13×272+x =196-x D.13(272+x)=196-x7.在一农场,鸡的只数与猪的头数的和是70,而鸡的脚数和猪的脚数的和是196,则鸡比猪多( )A.14只B.16只C.22只D.42只8.某工人若每小时生产38个零件,在规定时间内还有15个不能完成,若每小时生产42个零件,则可以超额5个,问规定时间是多少.设规定的时间为x小时,则有( ) A.38x-15=42x+5B.38x+15=42x-5C.42x+38x=15+5D.42x-38x=15-59.假期张老师和王老师带学生乘车外出参加实践活动,甲车主说“每人8折”,乙车主说“学生9折,老师减半”,张老师计算了一下,不论坐谁的车,费用都一样,则张老师和王老师带的学生人数为( )A.6名B.7名C.8名D.9名10.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了( )A.3场B.4场C.5场D.6场二.填空题(共8小题,3*8=24)11.某服装厂有工人54人,每人每天可加工上衣8件或裤子10条,应怎样分配人数,才能使每天生产的上衣和裤子配套?设x人做上衣,则做裤子的人数为______人,根据题意,可列方程为________________,解得___________.12.根据图中提供的信息,可知一个杯子的价格是________.13.某中学的学生自己动手整修操场,如果让初二学生单独工作,需要6小时完成;如果让初三学生单独工作,需要4小时完成.现在由初二、初三学生一起工作x 小时,完成了任务.根据题意,可列方程为______________,解得________.14.一件工程,甲队单独做要8天完成,乙队单独做要9天完成,甲队做3天后,乙队来支援,两队合做x 天完成任务的34,则由此条件可列出的方程是_______________________. 15.甲能在12天内完成某项工作,乙的工作效率比甲高20%,那么乙完成这项工作的天数为_________.16. 已知:派派的妈妈和派派今年共36岁,再过5年,派派的妈妈的年龄是派派年龄的4倍还大1岁,当派派的妈妈40岁时,则派派的年龄为________岁.17.打印一份材料,甲要16小时,乙要20小时,甲打印6小时,乙接着打印,乙还要_________小时完成.18.我市围绕“科学节粮减损,保障粮食安全”,积极推广农户使用“彩钢小粮仓”.每套小粮仓的定价是350元,为了鼓励农户使用,中央、省、市财政给予补贴,补贴部分是农户实际出资的三倍还多30元,则购买一套小粮仓农户实际出资是___________.三.解答题(共7小题,46分)19. (6分) 某校为创建“书香校园”,现有图书5600册,计划创建大小图书角共30个.其中每个小图书角需图书160册,大图书角所需图书比小图书角的2倍少80册.问该校创建的大小图书角各多少个?20. (6分)) 将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?21. (6分) 世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元.22. (6分)某县中学生足球联赛共赛10轮(即每队需比赛10场),其中胜一场得3分,平一场得1分,输一场得0分,向明中学足球队在这次联赛中所负场数比踢平场数少3场,结果共得19分,向明中学足球队在这次联赛中胜了几场?23. (6分)某蔬菜公司收购到某种蔬菜140吨,准备加工上市销售.该公司的加工能力是:每天可以精加工6吨或粗加工16吨.现计划用15天完成加工任务,该公司应安排几天精加工,几天粗加工?24. (8分)甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过1天罚款1000元,甲、乙两人经商量后签订了该合同.(1)正常情况下,甲、乙两人能否履行该合同?为什么?(2)现两人合做了这项工程的75%,因别处有急事,必须调走1人,问调走谁更合适些?为什么?25. (8分) ) 公园门票价格规定如下表:某校七(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)若两班联合起来,作为一个团体购票,可省多少钱?(3)如果七(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?参考答案1-5BCDDD 6-10DABAC11. (54-x),8x =10(54-x),x =3012.8元13. (16+14)x =1,x =12514. x +38+x 9=3415.10天16. 1217. 12.518.80元19. 解:设创建小图书角x 个,则创建大图书角(30-x)个,根据题意可得160x +(30-x)×(2×160-80)=5600,解得x =20,则30-20=10,答:创建小图书角20个,则创建大图书角10个20. 解:设甲、乙一起做还需x 小时才能完成工作.根据题意,得16×12+(16+14)x =1, 解这个方程,得x =115,115小时=2小时12分, 答:甲、乙一起做还需2小时12分才能完成工作21. 解:设《汉语成语大词典》的标价为x 元,则《中华上下五千年》的标价为(150-x)元, 依题意得50%x +60%(150-x)=80,解得x =100,150-100=50(元).答:《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元22. 解:设该足球队平x场,依题意得3[10-x-(x-3)]+x=19,解得x=4,所以[10-x-(x-3)]=5,答:向明中学足球队在这次联赛中胜5场23. 解:设应安排x天精加工,则有(15-x)天粗加工.依题意得6x+16(15-x)=140.所以x=10,15-x=15-10=5答:该公司应安排10天精加工,5天粗加工24. 解:(1)能履行合同.设甲、乙合做x天完成,则有(130+120)x=1,解得x=12<15,因此两人能履行合同(2)由(1)知,二人合作完成这项工程的75%需要的时间为12×75%=9(天),剩下6天必须由某人做完余下的工程,故他的工作效率为25%÷6=1 24,因为130<124<120,故调走甲更合适25. 解:(1)设七(1)班有x人,则13x+11(104-x)=1240或13x+9(104-x)=1240,初中数学解得x=48或x=76(不合题意,舍去).答:七(1)班48人,七(2)班56人(2)1240-104×9=304(元).答:可省304元钱(3)要想享受优惠,由(1)可知七(1)班48人,只需多买3张,51×11=561,48×13=624>561,所以48人买51人的票可以更省钱11/ 11。
北京四中七年级上册数学一元一次方程应用(二)“希望工程”义演与追赶小明(基础)巩固练习
一元一次方程应用(二)---“希望工程”义演与追赶小明(基础)巩固练习【巩固练习】一、选择题1.一份数学试卷有20道选择题,规定答对一道得5分,不做或做错一题扣1分,结果某学生得分为76分,则他做对题数为( )道.A. 16B. 17C. 18D. 192.学校文艺部组织部分文艺积极分子看演出,共购得8张甲票,4张乙票,总计用了112元.已知每张甲票比乙票贵2元,则甲票、乙票的票价分别是( ).A .甲票10 元/张,乙票8 元/张B .甲票8元∕张,乙票10元∕张C .甲票12元/张,乙票lO 元∕张D .甲票lO 元/张,乙票12元∕张3.足球比赛的计分规则是:胜一场得3分,平一场得1分,负一场得0分,一个队打14场比赛,负5场,共得19分,那么这个队胜了( ).A .3场B .4场C .5场.D .6场4. 飞机逆风时速度为x 千米/小时,风速为y 千米/小时,则飞机顺风时速度为 ( ).A .()x y +千米/小时B .()x y -千米/小时C .(2)x y +千米/小时D .(2)x y +千米/小时5. 一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x 千米/分钟,则所列方程为( ).A .15(1.5)x x -=B .3150(1.5)x x +=C .5031(1.5)60x x -= D .1801150(1.5)x x += 6. 甲列车从A 地以50千米/时的速度开往B 地,1小时后,乙列车从B 地以70千米/时的速度开往A 地,如果A ,B 两地相距200千米,则两车相遇点距A 地( )千米.A. 100B. 112C. 112.5D. 114.5二、填空题7. 学校买回2元的圆珠笔和6元的钢笔作为奖品,共用了290元,已知圆珠笔数量比钢笔数量多5支,那么圆珠笔买了 支,钢笔买了 支.8.关在同一个笼子里的鸡和兔,共有24个头,68只脚,那么这个笼中的鸡有 只.9.若干本书分给某班同学,如果每人6本,则余18本;如果每人7本,则缺24本,则这个班的同学有 人,书有 本.10.甲、乙二人在长为400米的圆形跑道上跑步,已知甲每秒钟跑9米,乙每秒钟跑7米.(1)当两人同时同地背向而行时,经过________秒钟两人首次相遇;(2)当两人同时同地同向而行时,经过________秒钟两人首次相遇.11.甲、乙两人练习100米赛跑,甲每秒跑7米,乙每秒跑6.5米,如果甲让乙先跑1秒,那么甲经过 秒可以追上乙.12.一架飞机飞行于两城市之间,顺风需要5小时30分,逆风需要6小时,已知风速为每小时20千米,则无风时飞机的速度为千米/时.三、解答题13. 甲乙两车间共120人,其中甲车间人数比乙车间人数的4倍少5人.(1)求甲、乙两车间各有多少人?(2)若从甲、乙两车间分别抽调工人,组成丙车间研制新产品,并使甲、乙、丙三个车间的人数比为13∶4∶7,那么甲、乙两车间要分别抽调多少工人?14. 某校共有5个大餐厅和2个小餐厅,经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.15. A、B两地相距216千米,甲、乙分别在A、B两地,若甲骑车的速度为15千米/时,乙骑车的速度为12千米/时.(1)甲、乙同时出发,背向而行,问几小时后他们相距351千米?(2)甲、乙相向而行,甲出发三小时后乙才出发,问乙出发几小时后两人相遇?(3)甲、乙相向而行,要使他们相遇于AB的中点,乙要比甲先出发几小时?(4)甲、乙同时出发,相向而行,甲到达B处,乙到达A处都分别立即返回,几小时后相遇?相遇地点距离A有多远?【答案与解析】一、选择题1.【答案】A【解析】设他做对题数为x道,则不做或做错了(20-x)道,根据题意得:5x-(20-x)=76.2.【答案】A【解析】设乙票价为x元,则甲票价为(2+x)元,依题意得4x+8(2+x)=112. 3.【答案】C【解析】设该队共平x场,则该队胜了14-x-5=9-x场,依题意得3(9-x)+x=19,x=4∴该队胜了14-x-5=9-4=5场.4.【答案】C【解析】逆风速度+2风速=顺风速度.5.【答案】D【解析】相等关系:山下到山顶的路程不变.6. 【答案】C【解析】200505050112.5 5070-⨯+=+二、填空题7.【答案】40,35【解析】设钢笔数量是x支,圆珠笔数量是(x+5)支,则6x+2×(x+5)=290,x=35.35+5=40. 8.【答案】14.【解析】这个笼中的鸡有x只,则兔有(24-x)只,则可列方程:2x+4(24-x)=68,解得:x=14.9.【答案】42,270【解析】设这个班的同学有x人,则:6x+18=7x-24,解得:x=42,则6x+18=270.也可设有数y本,y-18y+24=67,解得y=270,y-18=642.10.【答案】25;200【解析】(1)相遇问题:4002579=+(秒);(2)追及问题:40020097=-(秒).11.【答案】13【解析】设x秒后甲追上乙,列方程得:7x=6.5(x+1),解得:x=13.12.【答案】460【解析】设飞机无风时飞行速度为x千米/时,题意得:112×(x+20)=6×(x-20),解,得x=460.三、解答题13.【解析】解:(1)设乙车间有x人,那么甲车间有(4x-5)人,根据题意得:x+(4x-5)=120,x=25.4x-5=4×25-5=95(人).(2)设甲、乙、丙三个车间人数比的一份为x人,则这三个车间的人数依次为13x人4x人、7x人,依题意得:13x+4x+7x=120.x=5.当x=5时,95-13x=95-13×5=30(人),25-4x=25-4×5=5(人).答:原甲、乙车间各有95人和25人.需分别从甲、乙两车间分别抽调30人和5人组成丙车间.14. 【解析】解:(1)设1个小餐厅可供x名学生就餐,则一个大餐厅可供(1680-2x)名学生就餐,依题意得:2(1680-2x)+x=2280x=3601680-2×360=960(名)答:1个小餐厅可供360名学生就餐,一个大餐厅可供960名学生就餐.(2)960×5+360×2=5520>5300所以如果7个餐厅同时开放,能供全校的5300名学生就餐.15. 【解析】(1)解:设x小时后,甲、乙相距351千米,依题意,得15x+12x=351-216,解这个方程,得x=5.答:5小时后,甲、乙相距351千米.(2)解:设乙出发x小时后两人相遇.依题意,得15(3+x)+12x=216,解这个方程,得x=163.答:乙出发1 63小时后,甲、乙两人相遇.(3)解:设当乙比甲早出发x小时,使甲、乙二人相遇于AB的中点.依题意,得1121621612221512x⨯⨯-=,解这个方程,得x=415.答:只要乙比甲先出发415小时,两人就能相遇于AB的中点. (4)解:设x小时后甲乙相遇,依题意,得15x+12x=216×3解这个方程,得x=24.当x=24时,12x-216=72(千米).答:24小时后两人相遇,相遇地点距离A地72千米.。
5.5 应用一元一次方程—“希望工程”义演
5.5 应用一元一次方程—“希望工程”义演一.解答题(共20小题)1.(2020秋•雁塔区校级期末)某公园门票价格规定如下表:购票张数1﹣50张51﹣100张100张以上单张票价13元11元9元某校七年级两个班共104人去游园,其中(1)班有40多人,不足50人,经估算,如果两个班各以班为单位购票,则一共应付1240元.问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?2.(2020秋•东城区期末)某校七年级准备观看电影《我和我的祖国》,由各班班长负责买票,每班人数都多于40人,票价每张30元,一班班长问售票员买团体票是否可以优惠,售票员说:40人以上的团体票有两种优惠方案可选择:方案一:全体人员可打8折;方案2:若打9折,有5人可以免票.(1)若二班有41名学生,则他该选择哪个方案?(2)一班班长思考一会儿说,我们班无论选择哪种方案要付的钱是一样的,你知道一班有多少人吗?3.(2020秋•怀柔区期末)某校初一年级三个班的学生要到怀柔区某农业教育基地进行社会大课堂活动,三个班学生共101人,其中初一(1)班有20多人,不足30人,二班比一班的人数少5人.教育基地团体购票价格如下:购票张数1~30张31~60张60张以上每张票的价格15元12元10元原计划三个班都以班为单位购票,则一共应付1365元.三个班各有多少人?4.(2020秋•吉林期末)公园门票价格规定如下表:购票张数1~50张51~90张90张以上每张票的价格13元11元9元某校七年级一、二两个班共100人去游园,七年一班有40多人,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1196元.问:(1)两个班各有多少学生;(2)如果两个班联合起来,作为一个团体购票,可省多少元;(3)如果七年一班单独组织去游园,作为组织者的你如何购票才最省钱.5.(2020秋•武都区期末)非遗园的门票价格规定:购票人数1~40人,票价120元;购票人数41~80人,票价100元;购票人数80人以上,票价80元.(1)蚌埠路小学六(1)班36人、六(2)班46人一起去游非遗园.①如果两班都以班为单位分别购票,那么一共需多少钱?②如果两班联合起来,作为一个团体购票,则可以节约多少钱?(2)现又来了两个旅游团,甲团人数少于乙团人数,如果两团都以团为单位分别购票,则一共需付8080元.如果两团作为一个团体购票则需付7600元.问:两个旅游团各有多少人?6.(2020秋•兖州区期末)公园门票价格规定如表:购票张数1~50张51~100张100张以上每张票的价格15元13元11元某校七年级(1)(2)两个班共102人去游园,其中(1)班有40多人,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1422元.问:(1)两个班各有多少学生?(2)如果两个班联合起来,作为一个团体购票,可比两个班都以班为单位购票省多少元钱?(2)如果七年级(1)班单独组织去游园,作为组织者的你如何购票才最省钱?7.(2020秋•南岗区期末)某公园门票价格规定如下表:购票张数1﹣50张51﹣100张100张以上单张票价13元11元9元某校七年级两个班共104人去游园,其中(1)班有40多人,不足50人,经估算,如果两个班以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果七年级(1)班单独组织去游园,作为组织者的你如何购票才最省钱?8.(2020秋•兰州期末)某校科技小组的26名学生在1名生物老师的带领下准备前往国家森林公园考察标本,森林公园的票价是每人5元,一次性购满30张,每张票可少收1元.当老师准备到售票处买27张票时,平时爱动脑筋的聪聪喊住了老师,提议买30张票.(1)请你回答,买30张票合算还是买27张合算,为什么?(2)当少于30人进入森林公园,入园人数为多少时,按实际人数购票和买30张票,两种方法付款相同?9.(2020秋•丹江口市期中)近期电影《我和我的家乡》受到广大青少年的喜爱,某校七年级1班2班的几名同学请他们的家长在网上买票,家长了解到某电影院的活动,设购买电影票的张数为n,购买张数1≤n≤5051≤n≤100n>100每张票的价格40元35元30元家长沟通后决定两个班的同学在期中考试结束后去观看.两个班共有102人,其中1班人数多于40不足50人.经过估算,如果两个班都以班为单位购买,则一共应付3815元.(1)求两个班各有多少个同学?(2)如果两个班联合起来,作为一个团体购票,可以节省多少钱?(3)如果七年级1班同学作为一个团体购票,你认为如何购票才最省钱?可以节省多少钱?10.(2019秋•彭水县期末)为了丰富老年人的晚年生活,甲、乙两单位准备组织退休职工到某风景区游玩.甲、乙两单位退休职工共102人,其中乙单位人数少于50人,且甲单位人数不够100人.经了解,该风景区的门票价格如表:数量(张)1~5051~100101张及以上单价(元/张)605040如果两单位分别单独购买门票,一共应付5500元.(1)甲、乙两单位各有多少名退休职工准备参加游玩?(2)如果甲单位有12名退休职工因身体原因不能外出游玩,那么你有几种购买方案,通过比较,你该如何购买门票才能最省钱?11.(2019秋•高明区期末)研学基地高明盈香生态园的团体票价格如表:数量(张)30~5051~100101及以上单价(元/张)806050某校七年级(1)、(2)班共102人去研学,其中(1)班人数较少,不足50人,两个班相差不超过20人.经估算,如果两个班都以班为单位购票,则一共应付7080元,问:(1)两个班各有多少学生?(2)如果两个班联合起来,作为一个团体购票,可省多少钱?12.(2019秋•琼中县期末)列方程解应用题我县某校七年级师生共60人,前往海口电影公社参加“研学”活动,商务车和快车的价格如下表所示:(教师技成人票购买,学生按学生票购买)运行区间成人票价(元/张)学生票价(元/张)出发站终点站商务车快车商务车快车营根海口42353830若师生均乘坐商务车,则共需2296元.问参加“研学”活动的教师有多少人?学生有多少人?13.(2019秋•怀柔区期末)某校初一年级两个班的学生要到航天科普教育基地进行社会大课堂活动,其中初一(1)班有40多人,初一(2)班有50多人,教育基地门票价格如下:购票张数1~50张51~100张100张以上每张票的价格12元10元8元原计划两班都以班为单位分别购票,则一共应付1106元.请回答下列问题:(1)初一(2)班有多少人?(2)你作为组织者如何购票最省钱?比原计划省多少钱?14.(2019秋•贵阳期末)2019第九届贵阳汽车文化节.在贵阳国际会展竟中心设置了室外展馆和室内展馆.某单位组织150名员工参观,每名员工只参观一个展馆,共支付票款2000元,票价信息如下:地点票价室外展馆10元/人室内展馆20元/人(1)参观室外展馆和室内展馆的人数各是多少人?(2)若举办方针对100人以上的团体给予所有票价八折优惠,在总人数与总支付票款不变的情况下,参观室内展馆的人数是多少?15.(2019秋•江岸区期中)近期电影《少年的你》受到广大青少年的喜爱,某校七年级1班、2班的几名同学请他们的家长在网上买票,家长了解到某电影院的活动,设购买电影票的张数为n:购买张数1≤n≤5051≤n≤100n>100每张票的价格38元30元26元家长沟通后决定两个班的同学在期中考试结束后去观看.两个班共有104人,其中1班人数多于40不足50人.经过估算,如果两个班都以班为单位购买,则一共应付3504元.(1)求两个班各有多少同学?(2)如果两个班联合起来,作为一个团体购票,可以节省多少钱?(3)如果七年级1班同学作为一个团体购票,你认为如何购票才最省钱?可以节省多少钱?16.(2020秋•肃州区期末)为准备联合韵律操表演,甲、乙两校共100名学生准备统一购买服装(一人买一套)参加表演,(其中甲校人数多于乙校人数,且甲校学生不够99人)下面是服装厂给出的演出服装的价格表:购买服装的套数1套至49套50套至99套100套及以上每套服装的价格60元50元40元如果两所学校分别单独购买服装,一共应付5420元.(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少钱?(2)甲、乙两校各有多少学生准备参加表演?(3)如果甲校有9名同学被抽调去参加书法比赛不能参加韵律操演出,请你为两校设计一种最省钱的购买服装方案.17.(2019秋•岐山县期末)2016年春节即将来临,甲、乙两单位准备组织退休职工到某风景区游玩.甲、乙两单位共102人,其中甲单位人数多于乙单位人数,且甲单位人数不够100人.经了解,该风景区的门票价格如下表:数量(张)1﹣5051﹣100101张及以上单价(元/张)60元50元40元如果两单位分别单独购买门票,一共应付5500元.(1)如果甲、乙两单位联合起来购买门票,那么比各自购买门票共可以节省多少钱?(2)甲、乙两单位各有多少名退休职工准备参加游玩?(3)如果甲单位有12名退休职工因身体原因不能外出游玩,那么你有几种购买方案,通过比较,你该如何购买门票才能最省钱?18.(2019秋•武昌区校级期中)公园的门票价格规定如下表:购票张数1到50张51到100张101到150张150张以上每张票的价格12元10元8元超过150张的部分7元某校七年级(1)(2)两个班共104人,其中(1)班40多人,不足50人,经估算,如果两个班都以班为单位购票,则一共应付1136元,问:(1)若两班联合起来作为一个团体购票,可省多少钱?(2)两班学生各有多少人?(3)若七年级(3)班有n人(46<n<55)与(1),(2)班一起去游园,某商家赞助,支付三个班的所有门票费,则该商家最少花费元(用含n的式子表示).19.(2019秋•海淀区校级月考)学校组织游学活动,去往北京市某公园,公园门票价格规定如下表:购票张数1﹣50张51﹣100张100张以上单张票价13元11元9元北京线路共有104人参加本次游园,分两车出发,编号为1号和2号.其中1号车有40多人,不足50人.经估算,如果两辆车以车为单位购票,则一共应付1240元.(1)1号车与2号车各有多少学生?(2)若两车联合起来,作为一个团体购票,可省多少钱?(3)若1号车单独组织去游园,如何购票才最省钱,并说明理由.20.(2018秋•下陆区期末)某城市开展省运会,关心中小学生观众,门票价格优惠规定见表.某中学七年级甲、乙两个班共86人去省运会现场观看某一比赛项目,其中乙班人数多于甲班人数,甲班人数不少于35人.如果两班都以班级为单位分别团体购买门票,则一共应付8120元.购票张数1~40张41~80张81张(含81张)以上平均票价(元/张)1009080(1)如果甲、乙两个班联合起来作为一个团体购买门票,则可以节省不少钱,联合起来购买门票能节省多少钱?(2)问甲、乙两个班各有多少名学生?(3)如果乙班有m(0<m<20,且m为整数)名学生因事不能参加,试就m的不同取值,直接写出最省钱的购买门票的方案?。
2019年秋北师大版深圳专用数学七年级上册同步分层训练第五章5应用一元一次方程——“希望工程”义演含答案
5应用一元一次方程——“希望工程”义演知识点用一元一次方程解决双等量关系问题1.[教材习题5.8第2题变式]A种饮料比B种饮料每瓶便宜1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元.如果设B种饮料的单价为x元/瓶,那么下面所列方程正确的是() A.2x+3(x+1)=13 B.2(x+1)+3x=13C.2(x-1)+3x=13 D.2x+3(x-1)=132.动物园的门票售价:成人票每张50元,儿童票每张30元.某日动物园售出门票700张,共得29000元.设儿童票售出x张,根据题意可列出的一元一次方程是()A.30x+50(700-x)=29000B.50x+30(700-x)=29000C.30x+50(700+x)=29000D.50x+30(700+x)=290003.某次数学竞赛共出了15道选择题,选对一题得4分,选错一题扣2分.若某同学每题都作答,共得了36分,则他选对了________道题()A.10 B.11 C.12 D.134.2018·邵阳程大位是我国明朝商人,珠算发明家,他60岁时完成的《算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人.下列求解结果正确的是()A.大和尚有25人,小和尚有75人B.大和尚有75人,小和尚有25人C.大和尚有50人,小和尚有50人D.大、小和尚各有100人5.某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A区的生活物资比发往B区的生活物资的1.5倍少1000件,则发往A区的生活物资有________件.6.已知:派派的妈妈和派派今年共36岁,再过5年,派派妈妈的年龄比派派年龄的4倍还大1岁,当派派的妈妈40岁时,派派的年龄为________岁.7.2018·海南“绿水青山就是金山银山”,海南省委省政府高度重视生态环境保护,截至2017年年底,全省建立国家级、省级和市县级自然保护区共49个,其中国家级10个,省级比市县级多5个,则省级和市县级自然保护区各有多少个?8.某校组织师生去参观三峡工程建设,如果单独租用30座客车若干辆,刚好坐满;如果单独租用40座客车,可少租一辆,且余20个座位,求该校参观三峡工程建设的人数.9.甲、乙、丙三辆卡车所运货物的吨数之比为6∶7∶4.5,已知甲车比丙车多运货物12吨,则三辆卡车共运货()A.120吨B.130吨C.140吨D.150吨10.小明根据方程5x+2=6x-8编写了一道应用题,请你把空缺的部分补充完整.某手工小组计划教师节前做一批手工品送给老师,如果每人做5个,那么就比原计划少2个;_______________.则该手工小组有几人?(设该手工小组有x人)11.某车间共有28名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母18个.如果每天生产的螺栓和螺母要按1∶2配套,那么应分别安排多少名工人生产螺栓,多少名工人生产螺母,才能使每天生产的螺栓和螺母恰好配套?12.某景点的门票价格如下表:某校七年级(1)(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人,但是两班总人数多于100人.如果两班都以班级为单位单独购票,那么一共需要支付1118元;如果两班联合起来作为一个团体购票,那么只需支付816元.(1)两班各有多少人?(2)团体购票与单独购票比较,两个班各节省了多少钱?13.某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的12还多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价-进价)(1)该超市第一次购进甲、乙两种商品各多少件?(2)该超市将第一次购进的甲、乙两种商品全部销售完后一共可获得多少元的利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙商品是按原价打几折销售的.详解详析1.C 2.A3.B [解析] 设他选对了x 道题,则4x -2(15-x )=36,解得x =11.4.A [解析] 设大和尚有x 人,则小和尚有(100-x )人.根据题意,得3x +100-x3=100,解得x =25,则100-x =100-25=75.所以,大和尚有25人,小和尚有75人.5.3200 [解析] 设发往B 区的生活物资有x 件,则发往A 区的生活物资有(1.5x -1000)件.根据题意,得x +1.5x -1000=6000,解得x =2800,所以1.5x -1000=3200.6.12 [解析] 设今年派派的年龄为x 岁,则妈妈的年龄为(36-x )岁.根据题意,得36-x +5=4(x +5)+1,解得x =4,所以36-x =32.因为40-32=8(岁),所以4+8=12(岁).7.解:设市县级自然保护区有x 个,则省级自然保护区有(x +5)个. 根据题意,得10+x +5+x =49,解得x =17, 所以x +5=22.答:省级自然保护区有22个,市县级自然保护区有17个. 8.[解析] 先设需要30座的客车x 辆,根据人数不变可列出方程. 解:设需要30座的客车x 辆.根据题意,得30x =40(x -1)-20,解得x =6. 所以参观人数为30×6=180(人).故该校参观三峡工程建设的人数为180人.9.C [解析] 设甲车运了6x 吨,则乙车运了7x 吨,丙车运了4.5x 吨. 根据题意,得6x -4.5x =12, 解得x =8.三辆车共运(6+7+4.5)×8=140(吨). 10.如果每人做6个,那么就比原计划多8个 11.[解析] 由题意可找出两个等量关系: ①生产螺栓工人数+生产螺母工人数=28; ②螺栓总数∶螺母总数=1∶2.题目要求的是生产螺栓、螺母的工人数,因此表示这两者关系的①用来设未知数,而等量关系②用来列方程.对于②还可用“螺母总数=螺栓总数×2”来表示,更易列方程.解:设安排x 名工人生产螺栓,则安排(28-x )名工人生产螺母.根据题意,得 18(28-x )=12x ×2,解得x =12.则28-12=16(名).答:应安排12名工人生产螺栓,16名工人生产螺母,才能使每天生产的螺栓和螺母恰好配套. 12.解:(1)设七年级(1)班有x 人.根据题意,得 8x +1118-12x 10×8=816,解得x =49.所以1118-12×4910=53(人).答:七年级(1)班有49人,(2)班有53人.(2)七年级(1)班节省的费用为(12-8)×49=196(元),七年级(2)班节省的费用为(10-8)×53=106(元). 答:七年级(1)班节省了196元,七年级(2)班节省了106元.13.解:(1)设该超市第一次购进甲商品x 件,则购进乙商品(12x +15)件.根据题意,得22x +30(12x +15)=6000,解得x =150. 则12x +15=90. 因此,该超市第一次购进甲商品150件,购进乙商品90件. (2)(29-22)×150+(40-30)×90=1950(元).因此,该超市将第一次购进的甲、乙两种商品全部销售完后一共可获得1950元的利润. (3)设第二次乙商品是按原价打y 折销售的.根据题意,得(29-22)×150+(40×y10-30)×90×3=1950+180,解得y =8.5.因此,第二次乙商品是按原价打8.5折销售的.。
“打折销售”、“希望工程义演”、“能追上小明吗”“教育储蓄”专题练习
乐学教育学员个性化教学辅导教案“打折销售”、“希望工程义演”、“能追上小明吗”“教育储蓄”专题练习一、相关公式1、打折销售:a 、利润率= ×100%b 、利润=成本×利润率=售价-成本价(进价)c 、售价=标价×打折数(不打折时,售价=标价 =成本价+利润 =成本价×(1+利润率)d 、 标价=成本价×(1+提高成数)e 、成本价=售价-利润2、行程问题:路程=速度×时间a 相遇问题:甲走路程+乙走路程=全程b 追赶问题:甲走路程=甲、乙之间路程+乙 走路程(解题时不能生硬套公式,应具体问题具体分析)3、储蓄问题:a 利息=本金×利率×期数b 本息和=本金+本金×利率×期数=本金×(1+利率×期数)c 利率= ×100%d 利息税=利息×税率e 税后利息=利息×(1-税率)=本金×利率×期数×(1-税率)4、工程问题:a 工作量=工作效率×工作时间b 全部工作量=各部分工作量之和二、习 题:(一)打折销售。
1、一件商品按成本价提高20%后标价,又以九折销售,售价为360元,求商品的成本价。
2、小明花了188元买了一双皮鞋,这双皮鞋是按8折销售的,求这双皮鞋的标价。
3、某商品标价165元,以九折售出后仍可获利10%,求商品的进价(成本价)。
利润成本 利 息本 金4、某种鲜花进价每枝5元,若按标价的8折出售,仍可获利3元,求该鲜花的标价。
5、一商店把货物打七折销售,每件仍可获利6 元,如果该货物的标价为每件20元,求进价。
6、某种药每瓶售价72元,利润率20%,求进价。
7、某种电器进价是1000元,按进价的九折出售时,利润率为35%,求这种电器的标价。
8、某商店一套服装的进价为200元,若按标价的80%出售,可获利72元,求该服装的标价。
七年级数学希望工程义演
“希望工程”义演-
罗马石柱,和苍天,和这些断壁残垣一起落泪哭泣…… 1、从下面两个选项中为本文选一个标题,并说明理由。 A、哭泣的圆明园
B、今非昔比的圆明园 标题:_________(填序号) 理由:______________________________________________________________________ 2、艾青在
学挤在一把伞下,为了不因为自己而使同学淋湿,女孩子不住地把伞往同学那边移,等到达目的地千岛湖时,女孩子身上的背包也已湿漉漉的了。大家纷纷冲向饭馆吃饭去了,女孩子一个人呆在招待所里,从背包里取出馒头。可是,由于塑料袋破了一个洞,湿透背包的雨水将馒头泡透了,
女孩子就这样一边流泪一边嚼着被雨水浸泡过的馒头。 ⑤女孩子还没有吃完一个馒头,同学们就回来了。她没有料到她们会回来得这么快,来不及藏起湿透了的馒头,只好匆忙地往还没有干的背包里塞。班长突然说:“哎呀,我还没有吃饱呢,能给我吃一个馒头吗?”女孩子不好意思
年,曾经围绕这圆明园需不需要重建有过争论,结果是理智的人们理解了废墟的价值,尊重了历史留给我们残酷的真实,这片废墟留下了。当时,我是为留下拍案叫好。可今日见到这么多在废墟上在遗址前欢笑嘻闹的人群,我有点怀疑留下的必要了,在经过那么多岁月之后,眼前这般断
壁残垣,还能提醒人们对一个多世纪前那场噩梦的记忆,那场中华民族的灾难与奇耻大辱?! ⑩该是来圆明园,天就要阴的。一阵沙尘扑面而来,豆大的雨点砸了下来,劈头劈脸,欢笑的人群直往外冲。剩下我一人,静静地,在洁白的石块上坐下,对着这大水法遗址,对着这华美残破的
起来,用极低的声音问:“老师,我可以带馒头吗?”一阵其实并没有恶意的笑声刺激着女孩,她的脸通红通红的,低着头默默地坐下,眼泪沿着脸颊流了下来。李老师走过去,抚摸着她的头说:“你放心,可以带馒头的。” ③出发的前一天,女孩子拿着饭票在学校食堂买了六个馒头,
《打折销售与“希望工程”义演》同步课堂教学课件
用一元一次方程解决实际问题的一般步骤是什么?
实际问题
抽象
数学问题
解释
不 合 理 合理 解的 合理性
分 析
已知量、未知量、 等量关系 列 出
验 证
方程 的解
求 出
方程
随堂练习
一件夹克按成本价提高50%后标价,后因季
节关系按标价的8折出售,每件以60元卖出,这
种夹克每件的进价是多少元?
解:设每件夹克进价为X元,则其标价为: X· (1+ 50%)元,售价为 1.5X× 80% 元; 列方程得:1.5X× 80% = 60 解得 X=50
初中生计划捐赠数 + 高中生原计划捐赠册数 = 3500册 初中学生实捐赠册数 + 高中学生实捐赠册数 = 4125册
解:设初中学生原计划捐书X册,则高中学 生原计划捐书(3500-X)册,由题意得:
由题意得:
5x+8(1000-x)=6950
解得: x=350
∴
1000-x=1000-350=650(张)
答:售出学生票350张,成人票650张。
解法二:设所得学生票款为y元,填写下表: 票款/元 票数/张 学 生 y Y/5 成 人 6950-y (6950-y)/8
根据相等关系成人票数+学生票数=1000张 , 列方程得:Y/5+ (6950-y)/8=1000 去分母得: 8y+5(6950-y)=40000 解得: ∴ Y/5 = 350 y=1750 1000-350 = 650
生票5元/张,成人票8元/张.问:售出成人和学生 票各多少张? 问题三: 列方程解应用题;
并考虑还有没有另外的解题方法?
例2、某文艺团体为“希望工程”募捐组织了一次义演, 售出1000张票,筹得票款6950元.学生票5元/张,成人票8 元/张。问:售出成人和学生票各多少张?
第五章 5.5应用一元一次方程-“希望工程”义演同步练习-2021-2022学年北师大版数学七年级上
初中数学北师大版七年级上学期第五章 5.5应用一元一次方程——“希望工程”义演一、单选题1.已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树。
设男生有x人,则( )A. 3x+2(30-x)=72B. 3x+2(72-x)=30C. 2x+3(30-x)=72D. 2x+3(72-x)=302.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设A 种饮料单价为x元/瓶,那么下面所列方程正确的是A. 2(x-1)+3x=13B. 2(x+1)+3x=13C. 2x+3(x+1)=13D. 2x+3(x-1)=133.已知九年级某班30位同学种树72棵,男生每人种3棵,女生每人种2棵,设男生x人,则()A. B. C. D.4.2016年9月28日﹣12月31日,山东临沂灯展中千万盏彩灯点亮300亩天然花海.某日,从晚上17时开始每小时进入灯展的人数约为900人(之前该灯展有游客400人),同时每小时走出灯展的人数约为600人,已知该灯展的饱和人数约为1600人,则该灯展人数饱和时的时间约为()A. 21时B. 22时C. 23时D. 24时5.某公园门票的价格为:成人票10元/张,儿童票5元/张.现有x名成人、y名儿童,买门票共花了75元.据此可列出关于x、y的二元一次方程为()A. 10x+5y=75B. 5x+10y=75C. 10x﹣5y=75D. 10x=75+5y二、填空题6.有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人.设大和尚有x人,则可列一元一次方程为________.7.鸡兔同笼是我国古代著名趣题之一,书中是这样叙述的:“今有雉兔同笼,上有三十五头下有九十四足,问雉兔各几何?意思是有若干只鸡兔在同一个笼子里从上面数有35个头,从下面数有94只脚,则笼子中鸡________只,兔________只。
5.6《“希望工程”义演》练习
5.6《“希望工程”义演》练习一、基础过关1.某校化学、物理两个课外学习小组共n人,化学和物理两个小组人数之比为5:4,则化学小组有_______人,物理小组有_______人.2.将某班的学生分成x组,若每组8人,则多2人;若每组9人,则差4人.则x=_____.3.甲、乙两人去买东西,他们所带钱数比是7:6,甲花去50元,乙花去60元,则二人余下的钱数比为3:2,则两人余下的钱数分别是___________.4.某服装加工厂接受生产学校校服的任务,已知每3m长的布料可做上衣2件或裤子3条,1 件上衣和一条裤子为一套,计划用750m的布料生产校服,应用_______布料生产上衣,用_______布料做裤子才能恰好配套,共能生产_______套.5.小华买了60分和80分的邮票共10枚,花了7元2角,那么60分的邮票买了______枚,80分的邮票买了_________枚.6.一个农场,母鸡的只数与猪的头数之和是70,而腿数之和是196,则母鸡比猪多______只.7.甲比乙大15岁,5年前甲的年龄是乙的年龄的两倍,则乙的现在年龄是________.8.一群小孩分一堆梨,一个人1个多1个,一个人2个少2个,则小孩有____人,梨有__ 个.9.一个大人一餐吃4个面包,4个小孩一餐合吃1个面包,现有大人和小孩各100人,一餐刚好吃完100个面包,问大人、小孩各有几人?10汽车若干辆装运货物一批,若每辆汽车装3.5吨货物,这批货物就有2吨运不走;若每辆汽车装4吨货物,那么装完这批货物后,还可以装其他货物1吨,问汽车有多少辆?这批货物有多少吨?11.某车间有50个工人,每人平均每天可加工螺栓9个或螺母12个,一个螺栓与两个螺母正好配套,要使每天加工的螺栓与螺母恰好配套,应如何分配加工螺栓和螺母的工人?二、能力提升12.一艘轮船货舱容积为2000立方米,可载重500吨,现有甲、乙两种货物待运,已知甲种货物每吨的体积为7立方米,乙种货物每吨体积为2立方米,两种货物各应装多少吨最合理?(不计货物之间的空隙)13.宏达公司三个部,生产部120人,销售部人数是公司总人数的31,且销售部人数的21比售后服务部少30人,求公司总人数.14.甲乙两家营业厅,其中甲营业厅工作人员是乙的2倍,后因工作需要,从甲营业厅抽调16人支援乙营业厅,使得抽调后的甲营业厅的工作人员是乙的一半还少3人,求甲、乙两营业厅后来工作人员各有多少?三、聚沙成塔某中学组织初一同学春游,原计划租用45座客车若干辆,但有15人没有座位;如果租用同样数量的60座客车,则多出一辆,且其余客车恰好坐满,已知45座客车的租金为每辆220元,60座客车的租金为每辆300元,问:(1)初一年级人数是多少?原计划租用多少辆车?(2)要使每个同学都有座位,怎样租用更合算?。
七级数学上册教学课件:第5章5.5应用一元一次方程——“希望工程”义演(北师大版)精品
仅供学习交流!!!
最新中小学课件
18
最新中小学课件
19
结束语
最可怕的敌人,就是没有坚强的信念。
最新(约前468~前376)名翟,鲁人 ,一说 宋人, 战国初 期思想 家,政 治家, 教育家 ,先秦 堵子散 文代表 作家。 曾为宋 国大夫 。早年 接受儒 家教育 ,后聚 徒讲学 ,创立 与儒家 相对立 的墨家 学派。 主张•兼 爱”“ 非攻“ 尚贤” “节用 ”,反 映了小 生产者 反对兼 并战争 ,要求 改善经 济地位 和社会 地位的 愿望, 他的认 识观点 是唯物 的。但 他一方 面批判 唯心的 宿命论 ,一方 面又提 出同样 是唯心 的“天 志”说 ,认为 天有意 志,并 且相信 鬼神。 墨于的 学说在 当时影 响很大 ,与儒 家并称 为•显 学”。 《墨子》是先秦墨家著作,现存五 十三篇 ,其中 有墨子 自作的 ,有弟 子所记 的墨子 讲学辞 和语录 ,其中 也有后 期墨家 的作品 。《墨 子》是 我国论 辩性散 文的源 头,运 用譬喻 ,类比 、举例 ,推论 的论辩 方法进 行论政 ,逻辑 严密, 说理清 楚。语 言质朴 无华, 多用口 语,在 先秦堵 子散文 中占有 重要的 地位。 公输,名盘,也作•“般”或•“班 ”又称 鲁班, 山东人 ,是我 国古代 传说中 的能工 巧匠。 现在, 鲁班被 人们尊 称为建 筑业的 鼻祖, 其实这 远远不 够.鲁 班不光 在建筑 业,而 且在其 他领域 也颇有 建树。 他发明 了飞鸢 ,是人 类征服 太空的 第一人 ,他发 明了云 梯(重武 器),钩 钜(现 在还用) 以及其 他攻城 武器, 是一位 伟大的 军事科 学家, 在机械 方面, 很早被 人称为 “机械 圣人” ,此外 还有许 多民用 、工艺 等方面 的成就 。鲁班 对人类 的贡献 可以说 是前无 古人, 后无来 者,是 我国当 之无愧 的科技 发明之 父。
2021-2022学年北师大版数学七年级上册 5.5 应用一元一次方程:“希望工程”义演 同步练习
应用一元一次方程——“希望工程”义演一、单选题1.江陵县青少年活动中心组织实验中学七年级第一批学生前往宜昌参加研学旅行,需要与旅行社联系车辆.如果每辆旅游大巴坐45人,则有28人没有座位,如果每辆坐50人,只有一辆车空12个座位无人坐,其余车辆全部坐满,设有x辆旅游大巴,则可列方程()A.45x+28=50x﹣12B.45x﹣28=50x+12C.45x﹣28=50x﹣12D.45x+28=50x+122.七年级男生入住的一楼有x间,如果每间住6人,恰好空出一间;如果每间住5人就有4人没有房间住,则一楼共有()间.A..7 B..8 C..9 D.103.杨老师利用暑假带领团员们乘汽车到农村进行社会调查,每张汽车票原价是50元。
甲车主说:乘我的车,全部8折优惠;乙车主说;乘我的车,学生9折优惠,老师不要票.杨老师计算了一下,发现无论乘哪辆车花费都一样。
杨老师去农村带领的团员人数为()A.6 B.7 C.8 D.94.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.若设这个班有x名学生,可列出的方程为()A.3x+20=4x-25 B.3(x+20)=4(x-25) C.3x-25=4x+20 D.3x-20=4x+255.为了开展阳光体育活动,八年级1班计划购买毽子、跳绳若干和5个篮球三种体育用品,共花费200元,其中毽子单价3元,跳绳单价5元,篮球单价33元,购买体育用品方案共有()A.8种B.6种C.4种D.2种6.某乡镇有甲、乙两家液化气站,他们的每罐液化气的价格、质和量都相同.为了促销,甲站的液化气每罐降价25%销售;每个用户购买乙站的液化气,第1罐按照原价销售,若用户继续购买,则从第2罐开始以7折优惠,促销活动都是一年.若小明家每年购买8罐液化气,则购买液化气最省钱的方法是().A.买甲站的B.买乙站的C.买两站的都可以D.先买甲站的1罐,以后再买乙站的7.阳光书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;①一次性购书超过100元,但不超过200元,一律打九折;①一次性购书超过200元,一律打八折.如果小明同学一次性购书付款171元,那么他所购书的原价为()A .190元或213.75元B .213.75元C .200元D .190元或200元8.北流市某风景区的门票价格在2019年国庆期间有如下优惠:购票人数为1~50人时,每人票价格为50元;购票人数为51~100人时,每人门票价格45元;购票人数为100人以上时,每人门票价格为40元.某初中初一有两班共103人去该风景区,如果两班都以班为单位分别购票,一共需付 4860元,则两班人数分别为( )A .56,47B .57,48C .58,45D .59,449.已知甲盒中有糖果259颗,乙盒中有糖果53颗,为了使甲盒糖果数是乙盒的3倍,需要从甲盒中拿出糖果放入乙盒中,设从甲盒中拿出糖果x 颗放入乙盒中,则可列方程为( ) A .2593(53)x =+ B .259353x -=⨯ C .2593(53)x x -=+ D .2593(53)x x +=- 10.某超市在“元旦”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;①一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠; ①一次性购物在350元(含350元)以上,一律享受八折优惠;小敏在该超市两次购物分别付了90 元和270元,如果小敏把这两次购物改为一次性购物,则小敏至少需付款( )元A .288B .296C .312D .32011.某公司为调动职工工作积极性,向工会代言人提供了两个加薪方案,要求他从中选择: 方案一:是12个月后,在年薪20000元的基础上每年提高500元(第一年年薪20000元); 方案二:是6个月后,在半年薪10000元的基础上每半年提高125元(第6个月末发薪水10000元);但不管是选哪一种方案,公司都是每半年发一次工资,如果你是工会代言人,认为哪种方案对员工更有利?( )A .方案一B .方案二C .两种方案一样D .工龄短的选方案一,工龄长的选方案二 12.“喜茶”店中的A 种奶茶比B 种奶茶每杯贵5元 ,小颖买了3杯A 种奶茶、5杯B 种奶茶,一共花了135元,问A 种奶茶、B 种奶茶每杯分别的多少元?若设A 种奶茶x 元,则下列方程中正确的是( )A .()535135x x +-=B .()553135x x -+=C .()535135x x ++=D .()553135x x ++=二、填空题13.《孙子算经》是我国古代重要的数学著作.书中记载这样一个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这个问题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车无人乘坐,若每2人共乘一车,最终剩余9个人无车可乘,则有_____辆车,_____人.14.某校为更好的进行大阅读活动的开展,购买了名著《三国演义》200套、《西游记》160套,共用了18200元,《三国演义》每套比《西游记》每套多15元,求《三国演义》和《西游记》每套各多少元?设西游记每套x元,可列方程为__________.15.现在秋菜大量上市,一种大葱售价2元/千克,如果买10千克以上全部按九折销售,买10千克及以下不打折,坤叔买这种大葱花了19.8元,那么他买了______千克的这种大葱.16.某校组织若干名师生到九龙口风景区进行社会实践活动.若学校租用30座的客车x辆,则余下18人无座位;若租用45座的客车则可少租用2辆,且最后一辆还没坐满,则乘坐最后一辆45座客车的人数是____.17.国家发展改革委表示,今年国庆中秋小长假中,居民消费需求集中释放,进一步巩固了消费回升的好势头.小长假期间,某商场推出回馈消费者的打折活动,具体优惠情况如表:某市民在该商场购买了一件原价400元的商品A和一件原价x元的商品B,实际付费1006元.则x的值可能为__(注:两件商品可以单独付款或一起付款)三、解答题18.为了防止新冠疫情的进一步传播,提高环境卫生水平,邢台市区对每个社区提出了两种储存生活垃圾的方案.方案一:买分类垃圾桶,需要费用4000元,以后每月的垃圾处理费用250元;方案二:买不分类垃圾桶,需要费用3000元,以后每月的垃圾处理费用450元.(1)交费时间为多少个月时,两种方案费用相同?(2)若交费时间为12个月,哪种方案更合适,并说明理由;19.某种海产品,若直接销售,每吨可获利润1200元;若粗加工后销售,每吨可获利润5000元;若精加工后销售,每吨可获利润7500元.某公司现有这种海产品140吨,该公司的生产能力是:如果进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受各种条件限制,公司必须在15天内将这批海产品全部销售或加工完毕,为此该公司设计了三种方案:方案一:全部进行粗加工;方案二:尽可能多地进行精加工,没有来得及进行精加工的直接销售;方案三:将一部分进行精加工,其余的进行粗加工,并恰好15天完成.你认为选择哪种方案可获利润最多,为什么?最多可获利润多少元?20.小明家准备在网上购买一些茶壶和茶杯,在查阅天猫网店后,发现甲、乙两家网店都在出售两种同样品牌的茶壶和茶杯,定价相同;茶壶每把定价50元,茶杯每只定价10元,“双十一”期间两家网店均提供包邮服务,并提出了各自的优惠方案:甲店买一送一大酬宾:(买一把茶壶赠送茶杯一只);乙店全场9折优惠(按实际价格的90%收费).小明爸爸需茶壶5把,茶杯若干只(不少于5只).(1)用代数式表示(所填式子需化简):当购买茶杯x只时,在甲店购买需付款___________元;在乙店购买需付款____________________________元.(2)当需购买20只茶杯时①到哪家网店购买比较合算?说出你的理由.①你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并求出此时需付款几元?(3)当购买茶杯多少只时,两种优惠方案付款一样?21.公园门票价格规定如下表:某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,若两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?22.某校球队计划购买12套队服和一批护具(护腕和扩膝),现从甲、乙两商场了解到:同一品牌的队服报价每套均为200元,护具报价每套均为50元.甲商场的优惠政策为:每购买一套队服赠送一套护具;乙商场的优惠政策为:所有队服和护具均按报价的八五折销售.若设该球队计划购买护具x套,则:(1)用含x的式子分别表示在甲、乙两商场购买队服和护具所需要的费用;(2)当购买多少套护具时,在甲、乙两商场购买队服和护具所需的费用相同?(3)如要购买30套护具,请设计出最省钱的购买方案.参考答案1.A解:设有x辆汽车,根据题意得:45x+28=50x﹣12.故选:A.2.D解:设共有x间,由题意得:6(x﹣1)=5x+4,解得x=10.故一楼共有10间.故选:D.3.C解:设王老师一共带了x名学生,依题意得:0.8(x+1)=0.9x,解得:x=8.即王老师一共带了8名学生.故选C.4.A解:根据两种分法书的本数不变可列方程为:3x+20=4x-25.故选A.5.D解:设毽子能买x个,跳绳能买y根,根据题意可得:3x+5y=200﹣33×5,y=7﹣x,①x、y都是正整数,①x=5时,y=4;x=10时,y=1;①购买方案有2种.故选D.6.B解:设每罐液化气的原价为x,则在甲站购买8罐液化气需8×(1-25%)x=6x,在乙站购买8罐液化气需x+7×0.7x=5.9x,由于6x>5.9x,所以购买液化气最省钱的方法是买乙站的.故选B .7.A解:设他所购书的原价为x 元当100<x≤200时,由题意可得:90%x=171解得:x=190当x >200时,由题意可得:80%x=171解得:x=213.75综上:他所购书的原价为190元或213.75元.故选A .8.C解:①103×45=4635<4860,①一个班的人数不多于50人,另一个班的人数多于50人,①若(1)班人数为1~50人,(2)班的人数为51~100人时,设(1)班有x 人,(2)班有(103-x)人,则由题意,得50x+45(103-x)=4860,解得x=45,①103-x=58人,经检验符合题意;①若(1)班人数为1~50人,(2)班的人数为51~100人时,设(1)班有x 人,(2)班有(103-x)人,则由题意,得50x+40(103-x)=4860,解得x=74,①103-x=29人,经检验不符合题意,舍去;①一个班有45人,另一个班有58人.故选C .9.C解:设从甲盒中拿出糖果x 颗放入乙盒中,则甲盒中现在有(259-x)颗糖果,乙盒中现有(53+x)颗糖果,根据题意得,2593(53)x x -=+.故选:C .解:第一次购物可能有两种情况,这两种情况下付款方式不同(折扣率不同),①没有超过100元,即是90元,则实际购物为90;①一次性购物在100元(含100元)以上,350元(不含350元)以内,享受九折优惠,设实际购物为x元,依题意得:x×0.9=90,解得x=100元;第二次购物消费270元,满足一次性购物在100元(含100元)以上,350元(不含350元)以内,享受九折优惠;设第二次实质购物价值为x元,那么依题意有x×0.9=270,解得:x=300元;①他两次购物的实质价值为90+300=390或100+300=400,均超过了350元,因此均可以按照8折付款:390×0.8=312(元),400×0.8=320(元),综上所述:如果小敏把这两次购物改为一次性购物,则小敏至少需付款312元;故答案为:C.11.B解:第n年:方案一:12个月后,在年薪20000元的基础上每年提高500元,第一年:20000元第二年:20500元第三年:21000元第n年:20000+500(n-1)=500n+19500元,方案二:6个月后,在半年薪10000元的基础上每半年提高125元,第一年:20125元第二年:20375元第三年:20625元第n年:10000+250(n-1)+10000+250(n-1)+125=500n+19625元,由此可以看出方案二年收入永远比方案一,故选方案二更划算;故选B.解:设A 种奶茶x 元,根据题中条件可得:3x+5(x -5)=135.故选B.13.15 39解:设有x 辆车,依题意得:3(x -2)=2x+9.解得,x=15.①2x+9=2×15+9=39(人)答:15辆车,有39人.故答案为:15,39.14.()2001516018200x x +=+解:设《西游记》每套x 元,则《三国演义》每套(x+15)元,根据题意得: ()2001516018200x x +=+.故答案为:()2001516018200x x +=+.15.9.9或11解:设他买了x 千克的大葱,根据题意得,若10x ≤,则2=19.8x ,解得=9.9x ;若10x >,则20.9=19.8x ⨯,解得=11x ;故答案为:9.9或11.16.(153-15x )解:①学校租用30座的客车x 辆,则余下18人无座位;若租用45座的客车则可少租用2辆,且最后一辆还没坐满,①乘坐最后一辆60座客车的人数是:(30x+18)-45(x -3)=30x+18-45x+135=153-15x .故答案为:153-15x .17.760或857.5或807.5解:①若0100x <≤时,合在一起付款,()4000.91006x +⨯=,解得717.78x ≈(不合题意),分开付款,4000.91006x ⨯+=,解得646x =(不合题意);氜若100300x <≤时,合在一起付款,()4000.851006x +⨯=,解得783.53x ≈(不合题意),分开付款,4000.91006x ⨯+=,解得646x =(不合题意);①若300400x <≤时,合在一起付款,()4000.851006x +⨯=,解得783.53x ≈(不合题意),分开付款,4000.90.91006x ⨯+=,解得717.78x ≈(不合题意);①若400500x <≤时,合在一起付款,()4000.81006x +⨯=,解得857.5x =(不合题意),分开付款,4000.90.91006x ⨯+=,解得717.78x ≈(不合题意);①若500800x <≤时,合在一起付款,()4000.81006x +⨯=,解得857.5x =(不合题意),分开付款,4000.90.851006x ⨯+=,解得760x =,成立;①若800x >时,合在一起付款,()4000.81006x +⨯=,解得857.5x =,成立分开付款,4000.90.81006x ⨯+=,解得807.5x =,成立.故答案是:760或857.5或807.5.18.(1)5个月;(2)方案一解:(1)设交费时间为x 个月,方案一的购买费和垃圾处理费共为M 元,方案二的购买费和垃圾处理费共为N 元.依题意,得M =250x +4000;N =450x +3000,令M =N ,即250x +4000=450x +3000,解得:x =5,①交费时间为5个月时,两种方案费用相同.(2)当x =12时,M =250×12+4000=7000元,N =450×12+3000=8400元,7000<8400,①若交费时间为12个月,选择方案一更合适.19.方案三可获利润最多,最多可获利润850000元.解:方案一:可获利润为:5000×140=700000(元);方案二:15天可精加工6×15=90(吨),说明还有50吨需要直接销售,故可获利润:7500×90+1200×50=735000(元);方案三:设将x 吨海产品进行精加工,则将(140-x )吨进行粗加工, 由题意得:14015616x x -+=, 解得:x =60,故可获利润7500×60+5000×80=850000(元),①850000>735000>700000,所以选择方案三可获利润最多,最多可获利润850000元.20.(1)10x +200,9x +225;(2)①甲店,理由见解析;①甲店购买5只茶壶,乙店购买15只茶杯,需付款385元;(3)25只解:(1)甲店:()550510x ⨯+-⨯=10x +200(元),乙店:()5501090%x ⨯+⨯=9x +225(元);(2)①甲店:10x +200=10×20+200=400元,乙店:9x +225=9×20+225=405元,①400<405,①到甲店购买更合算;①方案:甲店购买5只茶壶,乙店购买15只茶杯,5×50+15×10×90%=385元;(3)设购买a 只茶杯时,两种优惠方案付款一样,甲店:50×5+(a -5)×10=10a +200,乙店:(50×5+10a )×90%=225+9a ,令10a +200=225+9a ,解得:a=25,①当购买25只茶杯时,两种优惠方案一样.21.(1)初一(1)班的人数为48人,初一(2)班的人数为56人;(2)可省304元;(3)购买51张门票时最省钱.解:(1)设初一(1)班的人数为x人,则初一(2)班的人数为(104-x)人,由题意得:()131********x x+-=,解得:48x=,①初一(2)班的人数为:1044856-=(人);答:初一(1)班的人数为48人,初一(2)班的人数为56人.(2)由表格及题意可得:两班联合起来的票钱为:1049936⨯=(元),①1240-936=304(元);答:作为一个团体购票可省304元.(3)由(1)得:初一(1)班的人数为48人,由表格可得:当以48人去购票时,则需花费48×13=624(元);当以51人去购票时,则需花费51×11=561(元);答:购买51张门票时最省钱.22.甲:2400(0<x≤12);(50x+1800)(x>12)乙:(42.5 x+2040)(2)32套(3)在甲商场购买12套队服和12套护具,其余护具在乙商场购买最省钱解:(1)在甲商场购买队服和护具所需要的费用:当0<x≤12时,200×12=2400(元);当x>12时,200×12+(x-12)×50=(50x+1800)元.在乙商场购买队服和护具所需要的费用为:(200×12+50x)×0.85=(42.5 x+2040)元.(2)当0<x≤12时,令42.5 x+2040=2400.解得x=14417,不合题意,舍去;当x>12时,42.5 x+2040=50x+1800解得x=32.答:当购买32套护具时,在甲、乙两商场购买队服和护具所需的费用相同.(3)因为购买12套队服和12套护具时,在甲商场相当于打八折.护具超过12套的部分就不打折,所以在甲商场购买12套队服和12套护具,其余护具在乙商场购买最省钱,只需12×200+18×50×0.85=3165(元).。
七年级数学上册 第五章 一元一次方程课时练习 (新版)北师大版
第五章 一元一次方程1 认识一元一次方程第1课时 一元一次方程1.下列是一元一次方程的是( )A .x 2-x =4B .2x -y =0C .2x =1D .1x=22.方程x +3=-1的解是( ) A .x =2 B .x =-4 C .x =4 D .x =-23.若关于x 的方程2x +a -4=0的解是x =-2,则a 的值是 .4.把一些图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则还缺25本.设这个班有x 名学生,则由题意可列方程为 .第2课时 等式的基本性质1.下列变形符合等式的基本性质的是( )A .若2x -3=7,则2x =7-3B .若3x -2=x +1,则3x -x =1-2C .若-2x =5,则x =5+2D .若-13x =1,则x =-32.解方程-34x =12时,应在方程两边( ) A .同时乘-34 B .同时乘4 C .同时除以34 D .同时除以-343.利用等式的基本性质解方程:(1)x +1=6; (2)3-x =7; (3)-3x =21.2 求解一元一次方程第1课时 利用移项解一元一次方程1.下列变形属于移项且正确的是( )A .由3x =5+2得到3x +2=5B .由-x =2x -1得到-1=2x +xC .由5x =15得到x =155D .由1-7x =-6x 得到1=7x -6x2.解方程-3x +4=x -8时,移项正确的是( ) A .-3x -x =-8-4 B .-3x -x =-8+4C .-3x +x =-8-4D .-3x +x =-8+43.一元一次方程3x -1=5的解为( )A .x =1B .x =2C .x =3D .x =44.解下列方程:(1)13x +1=12; (2)3x +2=5x -7.5.下面是某位同学的作业,他的解答正确吗?如果不正确,请把正确的步骤写出来.解方程:2x -1=-x +5.解:移项,得2x -x =1+5,合并同类项,得x =6.第2课时利用去括号解一元一次方程1.方程3-(x+2)=1去括号正确的是( )A.3-x+2=1B.3+x+2=1C.3+x-2=1D.3-x-2=12.方程1-(2x-3)=6的解是( )A.x=-1B.x=1C.x=2D.x=03.当x=时,代数式-2(x+3)-5的值等于-9.4.解下列方程:(1)5(x-8)=-10; (2)8y-6(y-2)=0;(3)4x-3(20-x)=-4; (4)-6-3(8-x)=-2(15-2x).5.李强是学校的篮球明星,在一场比赛中,他一人得了23分.如果他投进的2分球比3分球多4个,那么他一共投进了多少个2分球,多少个3分球?第3课时 利用去分母解一元一次方程1.对于方程5x -13-2=1+2x 2,去分母后得到的方程是( ) A .5x -1-2=1+2x B .5x -1-6=3(1+2x)C .2(5x -1)-6=3(1+2x)D .2(5x -1)-12=3(1+2x)2.方程x 4=x -15的解为( ) A .x =4 B .x =1 C .x =-1 D .x =-43.(1)若式子x -83与14x +5的值相等,则x = ; (2)若x 3+1与2x -73互为相反数,则x = . 4.解方程:(1)3x -52=2x 3; (2)4x +95-3+2x 3=1;(3)15(x +15)=12-13(x -7); (4)2y -13=y +24-1.5.某班同学分组参加活动,原来每组8人,后来重新编组,每组6人,这样比原来增加了2组,则这个班共有多少名学生?3 应用一元一次方程——水箱变高了1.内径为120mm的圆柱形玻璃杯,和内径为300mm、内高为32mm的圆柱形玻璃盆可以盛同样多的水,则玻璃杯的内高为( )A.150mmB.200mmC.250mmD.300mm2.用一根长12cm的铁丝围成一个长方形,使得长方形的宽是长的12,则这个长方形的面积是( )A.4cm2B.6cm2C.8cm2D.12cm23.将一个底面半径是5cm,高为10cm的圆柱体冰淇淋盒改造成一个直径为20cm的圆柱体.若体积不变,则改造后圆柱体的高为多少?4.把一个三边长分别为3dm,4dm,5dm的三角形挂衣架,改装成一个正方形挂衣架.求这个正方形挂衣架的面积.4 应用一元一次方程——打折销售1.如图是“大润发”超市中“飘柔”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价为( )A.22元B.23元C.24元D.26元2.某商品的售价比原售价降低了15%,如果现在的售价是51元,那么原来的售价是( )A.28元B.62元C.36元D.60元3.某商品进价是200元,标价是300元,要使该商品的利润率为20%,则该商品销售时应打( )A.7折B.8折C.9折D.6折4.一件商品在进价基础上提价20%后,又以9折销售,获利20元,则进价是多少元?5.一件商品的标价为1100元,进价为600元,为了保证利润率不低于10%,最低可打几折销售?5 应用一元一次方程——“希望工程”义演1.已知甲仓库储粮35吨,乙仓库储粮19吨,现调粮食15吨给两仓库,则应分配给两仓库各多少吨,才能使得甲仓库的储粮是乙仓库的两倍?2.希望中学团委组织65名新团员为学校建花坛搬砖,女同学每人每次搬6块,男同学每人每次搬8块.每人搬了4次,共搬了1800块,问这些新团员中有多少名男同学?3.在广州亚运会中,志愿者们手上、脖子上的丝巾非常美丽.某车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1800条或者脖子上的丝巾1200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?6 应用一元一次方程——追赶小明1.甲、乙两人练习赛跑,甲每秒跑7米,乙每秒跑6.5米,甲让乙先跑5米.设x秒后甲可追上乙,则下列所列方程中正确的是( )A.6.5+x=7.5B.7x=6.5x+5C.7x+5=6.5xD.6.5+5x=7.52.小明和爸爸在一条长400米的环形跑道上,小明每秒跑9米,爸爸骑车每秒骑16米,两人同时同地反向而行,经过秒两人首次相遇.3.一轮船往返于A,B两港之间,逆水航行需3小时,顺水航行需2小时,水速是3千米/时,求轮船在静水中的速度.4.甲、乙两站相距300千米,一列慢车从甲站开往乙站,每小时行40千米,一列快车从乙站开往甲站,每小时行80千米.已知慢车先行1.5小时,快车再开出,则快车开出多少小时后与慢车相遇?第五章一元一次方程1 认识一元一次方程第1课时一元一次方程1.C2.B3.84.3x+20=4x-25第2课时等式的基本性质1.D2.D3.解:(1)x =5.(2)x =-4.(3)x =-7.2 求解一元一次方程第1课时 利用移项解一元一次方程1.D2.A3.B4.解:(1)x =-32.(2)x =92. 5.解:他的解答不正确.正确解答:移项,得2x +x =5+1,合并同类项,得3x =6,系数化为1,得x =2.第2课时 利用去括号解一元一次方程1.D2.A3.-14.解:(1)x =6.(2)y =-6.(3)x =8.(4)x =0.5.解:设他投进3分球x 个,则投进2分球(x +4)个.由题意得2(x +4)+3x =23,解得x =3,则x +4=7.答:他投进了7个2分球,3个3分球.第3课时 利用去分母解一元一次方程1.D2.D3.(1)92 (2)434.解:(1)x =3.(2)x =32.(3)x =-516.(4)y =-25. 5.解:设这个班共有x 名学生,根据题意得x 8=x6-2,解得x =48. 答:这个班共有48名学生.3 应用一元一次方程——水箱变高了1.B2.C3.解:设改造后圆柱体的高为x cm ,根据题意得25π×10=100πx ,解得x =2.5. 答:改造后圆柱体的高为2.5cm.4.解:设这个正方形挂衣架的边长为x dm ,根据题意得4x =3+4+5,解得x =3,则x 2=9. 答:这个正方形挂衣架的面积为9dm 2.4 应用一元一次方程——打折销售1.C2.D3.B4.解:设进价是x 元,由题意得0.9×(1+20%)x =x +20,解得x =250.答:进价是250元.5.解:设打x折时利润率为10%,根据题意得0.1x×1100=600×(1+10%),解得x=6.答:为了保证利润率不低于10%,最低可打6折销售.5 应用一元一次方程——“希望工程”义演1.解:设应分配给甲仓库x吨,则分配给乙仓库(15-x)吨,根据题意得35+x=2(19+15-x),解得x=11,则15-x=4.答:应分配给甲仓库11吨,分配给乙仓库4吨.2.解:设新团员中有x名男同学,则有(65-x)名女同学,由题意得32x+24(65-x)=1800,解得x=30.答:这些新团员中有30名男同学.3.解:设应分配x名工人生产脖子上的丝巾,则分配(70-x)名工人生产手上的丝巾,由题意得1800(70-x)=2×1200x,解得x=30,则70-x=70-30=40.答:应分配30名工人生产脖子上的丝巾,40名工人生产手上的丝巾.6 应用一元一次方程——追赶小明1.B2.163.解:设轮船在静水中的速度是x千米/时,根据题意得2(x+3)=3(x-3),解得x=15.答:轮船在静水中的速度是15千米/时.4.解:设快车开出x小时后与慢车相遇,则此时慢车开出(x+1.5)小时,根据题意得80x+40(x +1.5)=300,解得x=2.答:快车开出2小时后与慢车相遇.(本资料素材和资料部分来自网络,供参考。
应用一元一次方程——希望工程义演同步练习含答案
5.5 应用一元一次方程——“希望工程”义演预习感知1.有一个专项加工茶杯车间,一个工人平均每小时可以加工杯身12个,或者加工杯盖15个,车间共有90人,安排加工杯身的人数为多少时,才能使生产的杯身和杯盖正好配套?设安排加工杯身的人数为x ,则加工杯盖的为____人,每小时加工杯身_________个,杯盖_______个,则可列方程为_______,解得x =___________.2.完成用一元一次方程分析和解决实际问题的基本过程.A 基础训练达标区1.小明买了80分和2元的邮票共16枚,花了18元8角,若设他买80分邮票x 张,则可列方程( )A.()8021618.8x x +-=B.()821618.8x x +-=C.()0. 821618.8x x +-=D.()80216188x x +-=2.现有每千克8元的甲种糖和每千克5元的乙种糖共15千克,混合后每千克要卖6元,则甲、乙两种糖各有( )A.5千克,10千克B.10千克,5千克C.11.5千克,3.5千克D.11千克,4千克3.A 种饮料比B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下列方程正确的是( )A.()21313x x -+=B.()21313x x ++=C.()23113x x ++=D.()23113x x +-=4.41人参加运土劳动,有30根扁担,要安排多少人抬,多少人挑,可以使扁担和人数相配不多不少?若设有x 人挑土,则可列出的方程是( )A.()23041x x --=B.()41302x x +-=C.41302x x -+= D.3041x x -=- 5.动物园的门票售价:成人票50元/张,儿童票30元/张,某日动物园售出门票700张,共计29000元,设儿童门票售出了x 张,则成人门票售出了___________张,根据题意得_____________.6.学校买来大、小椅子共20张,共花去275元.已知大椅子每张15元,小椅子每张10元,问买了大椅子共多少张?x,列出方程为____________,解得x =_______.因此,买了大椅子_________张.7.某车间有工人100名,平均每人每天加工螺栓18个或螺母24个,要使每天加工的螺栓与螺母配套(一个螺栓配两个螺母),如果你是生产厂长应怎样安排人员生产?B 综合训练提升区8.根据图中提供的信息,可知一个杯子的价格是( )共43元A.51元B.35元C.8元D.7.5元9.在2016年“手拉手”活动中,新泰安实验小学向山区一所农村学校赠送了20个日记本和20支钢笔,价值共70元.已知每个日记本比每支钢笔少05.元,则每个日记本和每支钢笔的价格分别为( ) A.1元,1.5元 B.2元,2.5元 C.1.5元,2元 D.2元,1.5元10.甲、乙、丙三人共捐611元支援山区建设,甲比乙多25元,比丙少36元,则丙捐款( )A.200元B.175元C.236元D.218元11.某班54名同学参加植树,男生每人植树3棵,女生每人植树2棵,一共植树137棵,则这班男生有_________人,女生有_________人.12.将一批490吨的货物分给甲、乙两船运输,现甲、乙两船分别运走了其任务的57、37,在已运走的货物中,甲船比乙船多运30吨,则分配给甲、乙两船的任务数分别是_______吨、_______吨.13.某县为鼓励失地农民自主创业,在2015年对60位自主创业的失地农民进行奖励,共计划奖励10万元.奖励标准是:失地农民自主创业连续经营一年以上的给予1000元奖励;自主创业且解决5人以上失业人员稳定就业一年以上的,再给予2000元奖励,问:该县失地农民中自主创业连续经营一年以上的和自主创业且解决5人以上失业人员稳定就业一年以上的农民分别有多少人?这一天共赚得多少钱?C 创新拓展区15.在五一期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:票价成人:每张35元学生:按成人票五折优惠团体票(16人以上含16人):按成人票六折优惠爸爸,等一下,让我算一下,换一种方式买票是否可以省钱大人门票是每张35元,学生门票是五折优惠,我们一共12人,共花350元(1)小明他们一共去了几个成人,几个学生?(2)请你帮助小明算一算,用哪种方法购买更省钱?说明理由.5.5 应用一元一次方程——“希望工程”义演参考答案预习感知1.()90x - 12x ()1590x - ()121590x x =- 502.23395x x ++= 70 70 A 基础训练达标区1.C2.A3.A4.C5.()700x - ()507003029000x x -+=6.20x - 15x ()1020x - 买大椅子的钱+买小椅子的钱275= ()151020275x x +-= 15 157.设安排x 名工人生产螺栓,则有()100x -名工人生产螺母. ()21810024x x ⨯=-⨯,解得40x =,10060x -=.所以安排40名工人生产螺栓,安排60名工人生产螺母.B 综合训练提升区8.C9.C10.C11.29 2512.210 28013.设失地农民中自主创业连续经营一年以上的有x 人,根据题意得()()10006010002000100000x x +-+=,解得:40x =,60604020x ∴-=-=.答:该县失地农民中自主创业连续经营一年以上的和自主创业且解决5人以上失业人员稳定就业一年以上的农民分别为40人和20人.14.设购辣椒kg x ,根据题意得:()4 1.644116x x +-=,解得19x =,4425x -=,共赚()()5419 2.0 1.62529-⨯+-⨯=.C 创新拓展区15.(1)设一共去了x 个成人,()12x -个学生,根据题意得()135********x x +⨯-⨯=,解得8x =,124x -=.(2)若购团体票需:16350.6336⨯⨯=(元),因为336350<元,故购团体票更省钱.。
2020-2021学年七年级数学上册尖子生同步培优题典 专题5
专题5.7一元一次方程的应用(3)希望工程义演姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020春•新蔡县期中)某制衣店现购买蓝色、黑色两种布料共138m,共花费540元.其中蓝色布料每米3元,黑色布料每米5元,两种布料各买多少米?设买蓝色布料x米,则依题意可列方程()A.3x+5(138﹣x)=540 B.5x+3(138﹣x)=540C.3x+5(138+x)=540 D.5x+3(138+x)=5402.(2019秋•玉田县期末)根据图中提供的信息,可知一个杯子的价格是()A.6元B.8元C.10元D.12元3.(2019秋•无锡期末)甲、乙两店分别购进一批无线耳机,每副耳机的进价甲店比乙店便宜10%,乙店的标价比甲店的标价高5.4元,这样甲乙两店的利润率分别为20%和17%,则乙店每副耳机的进价为()A.56元B.60元C.72元D.80元4.(2019秋•章丘区期末)甲、乙、丙三种商品单价的比是6:5:4,已知甲商品比丙商品的单价多12元,则三种商品的单价之和为()A.75元B.90元C.95元D.100元5.(2020春•淇县期中)新型冠状肺炎疫情正在全球蔓延肆虐,口罩成了人们生活中必不可少的物品,某口罩厂有26名工人,每人每天可以生产800个口罩面或1000个口罩耳绳.一个口罩面需要配两个耳绳,为使每天生产的口罩刚好配套,设安排x名工人生产口罩面,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x6.(2019秋•石城县期末)小石家的脐橙成熟了!今年甲脐橙园有脐橙7000千克,乙脐橙园有脐橙5000千克,因客户订单要求,需要从乙脐橙园运部分脐橙到甲脐橙园,使甲脐橙园脐橙数量刚好是乙脐橙园的2倍.设从乙脐橙园运脐橙x千克到甲脐橙园,则可列方程为()A.7000=2(5000+x)B.7000﹣x=2×5000C.7000﹣x=2(5000+x)D.7000+x=2(5000﹣x)7.(2019秋•武侯区期末)为进一步深化课堂教学改革,武侯区初中数学开展了分享学习课堂之“生讲生学”活动,某中学决定购买甲、乙两种礼品共30件,用于表彰在活动中表现优秀的学生.已知某商店甲乙两种礼品的标价分别为25元和15元,购买时恰逢该商店全场9折优惠活动,买完礼品共花费495元,问购买甲、乙礼品各多少件?设购买甲礼品x件,根据题意,可列方程为()A.25x+15(30﹣x)=495 B.[25x+15(30﹣x)]×0.9=495C.[25x+15(30﹣x)]×9=495 D.[25x+15(30﹣x)]÷0.9=4958.(2019秋•北流市期末)北流市某风景区的门票价格在2019年国庆期间有如下优惠:购票人数为1~50人时,每人票价格为50元;购票人数为51﹣100人时,每人门票价格45元购票人数为100人以上时,每人门票价格为40元.某初中初一有两班共103人去该风景区,如果两班都以班为单位分别购票,一共需付4860元,则两班人数分别为()A.56,47 B.57,48 C.58,45 D.59,449.(2020春•肇东市期末)已知,每本练习本比每根水性笔便宜2元,小刚买了6本练习本和4根水性笔正好用去18元,设水性笔的单价为x元,下列方程正确的是()A.6(x+2)+4x=18 B.6(x﹣2)+4x=18C.6x+4(x+2)=18 D.6x+4(x﹣2)=1810.(2019秋•大丰区期末)大丰新华书店推出售书优惠方案,如果李明同学一次性购书付款162元,那么李明同学所购书的原价可能是()①一次性购书不超过100元,不享受优惠②一次性购书超过100元但不超过200元,一律打九折③一次性购书超过200元,一律打八折A.180元B.202.5元C.180元或202.5元D.180元或200元二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020春•南岗区校级月考)某玩具店销售一种玩具,按规定会员购买打八折,非会员购买打九折,同样购买一样玩具,小芳用会员卡比小明不用会员卡购买少花了3元钱,则这种玩具用会员卡购买的价格是元.12.(2020春•雨花区校级期中)当前,国内疫情防控阶段性成效进一步巩固,为了全面推进复工复产促进消费,五一期间百货大楼推出全场打八折的优惠活动,持贵宾卡可在八折基础上继续打折,小明妈妈持贵宾卡买了标价为1000元的商品,共节省280元,则用贵宾卡又享受了折优惠?13.(2020•禅城区模拟)五一期间,青年旅行社组织一个团;老师和学生共50人组成的旅行团到凤凰古城旅游,景区门票售票标准是:成人门票50元/张,学生门票20元/张,该旅行团购买门票共花费1800元,若设该团购买成人门票x张,则可列方程为:.14.(2019秋•呼和浩特期末)传统文化与创意营销的结合使已有近600年历史的故宫博物院重新焕发出生机一些文创产品让顾客爱不释手.某购物网站上销售故宫文创笔记本和珐琅书签,已知文创笔记本的销量比珐琅书签销量的2倍少700件,二者销量之和为5900件,为了计算该网站文创笔记本与珐琅书签销量的和某同学列出了一元一次方程(2x﹣700)+x=5900.请你在横线上写出该同学设的未知数x代表的是什么.15.(2019秋•娄底期末)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出九,盈五;人出八,不足五.问人数几何?译文为:现有一些人共同买一个物品,每人出9元,还盈余5元;每人出8元,则还差5元,问共有人.16.(2020春•侯马市期末)为支持武汉抗击疫情,全国各地加班加点为前线医护人员提供防护面罩和防护服.某车间有30名工人,每人每天生产防护服160件或防护面罩240个,一件防护服和一个防护面罩配成一套,若分配x名工人生产防护服,其他工人生产防护面罩,恰好使每天生产的防护服和防护面罩配套,则所列方程是.17.(2019秋•九龙坡区校级期末)某专卖店正在开展“感恩十年,童行有你”促销活动一次性购物不超过200元不享受优惠;一次性购物超过200元但不超过500元,超过200元的部分九折优惠;一次性购物超过500元一律八折.在活动期间,张三两次购物分别付款195元、452元,若张三选择这两次购物合并成一次性付款可以节省元.18.(2019秋•慈利县期末)《九章算术》是中国古代《算经十书》最重要的一部,它的出现标志中国古代数学形成了完整的体系,其中有一道阐述“盈不足数”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?意思是说:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元.问共有人.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2020春•普陀区期末)有一旅客携带了30千克行李乘某航空公司的飞机,按该航空公司规定,旅客最多可免费携带20千克的行李,超重部分每千克按飞机票价的1.5%购买行李票,现该旅客购买的飞机票和行李票共920元.(1)该旅客需要购买千克的行李票;(2)该旅客购买的飞机票是多少元?20.(2019秋•香坊区期末)某中学到商店购买足球和排球,购买足球40个,排球30个共花费4000元,已知购买一个足球比购买一个排球多花30元.(1)求购买一个足球和一个排球各需多少元?(2)学校决定第二次购买足球和排球共50个,正好赶上商场对商品价格进行调整,一个足球售价比第一次购买时提高了10%,一个排球按第一次购买时售价的九折出售,如果学校第二次购买足球和排球的总费用是第一次购买总费用的86%,求学校第二次购买排球多少个?21.(2020•安徽)某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)2019年4月份a x a﹣x2020年4月份 1.1a 1.43x(2)求2020年4月份线上销售额与当月销售总额的比值.22.(2020春•丽水期末)某班级想购买若干个篮球和排球,某文具店篮球和排球的单价之和为35元,篮球的单价比排球的单价的2倍少10元.(1)求篮球和排球的单价各是多少元;(2)该文具店有两种让利活动,购买时只能选择其中一种方案.方案一:所有商品打7.5折销售;方案二:全场购物每满100元,返购物券30元(不足100元不返券),购物券全场通用,若该班级需要购买15个篮球和10个排球,则哪一种方案更省钱,并说明理由.23.(2019秋•雨花区校级期末)某超市计划购进甲、乙两种型号的节能灯共1000只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型25 30乙型45 60(1)如果进货款恰好为37000元,那么可以购进甲型节能灯多少只?(2)超市为庆祝元旦进行大促销活动,决定对乙型节能灯进行打折销售,要求全部售完后,乙型节能灯的利润率为20%,请问乙型节能灯需打几折?24.(2019秋•息县期末)李老师准备购买若干个某种笔记本奖励学生,甲、乙两家商店都有足够数量的这种笔记本,其标价都是每个6元,甲商店的促销方案是:购买这种笔记本数量不超过5个时,原价销售;超过5个时,超过部分按原价的7折销售.乙商店的销售方案是:一律按标价的8折销售.(1)若李老师要购买x(x>5)个这种笔记本,请用含x的式子分别表示李老师到甲商店和乙商店购买全部这种笔记本所需的费用.(2)李老师购买多少个这种笔记本时,到甲、乙两家商店购买所需费用相同?(3)若李老师需要20个这种笔记本,则到甲、乙哪家商店购买更优惠?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.6 “希望工程”义演
一、 课前练习:
1、下列运算结果正确的是( )。
A 、ab ab 954=+
B 、x y xy 66=-
C 、10
7
3
1046x x x =+ D 、0882
2
=-ba b a 2、解方程1253-=+-x x , 移项正确的是( )。
A 、
5123+-=-x x B 、1523-=--x x C 、5123--=-x x D 、5123--=--x x 3、解下列方程
(1)05)8(5=--x (2)16
1
5312=--+x x
4、某人上山的速度为a 千米/小时,后又沿原路下山,下山速度为b 千米/小时,那么这个人上山和下山的平均速度是( )。
A 、
2b a +千米/时 B 、2ab 千米/时 C 、ab b a 2+千米/时 D 、b
a ab
+2千米/时 二、 探索练习:
某文艺团体为“希望工程”募捐组织了一场义演,共售出1000张票,其中成人票是每张8元,学生票是每张5元,筹得票款6950元。
问成人票与学生票各售出多少张? 上面的问题中包括哪些量?
售出的票包括________________票和__________________票;
所得票款包括________________款和__________________款; 上面的问题中包括哪些等量关系?
_____________________+______________________=1000张 (1)
_____________________+______________________=6950元 (2)
解法一: 设售出的成人票为x张,请填写下表:
根据等量关系(2) ,可以列出方程:____________________________
解得x=____________
因此,售出的成人票为___________张,学生票为___________张。
解法二: 设所得的学生票款为y元,请填写下表:
根据等量关系(1) ,可以列出方程:____________________________
解得y=____________
因此,售出的成人票为___________张,学生票为___________张。
三、巩固练习:
1、几名同学约好利用暑假去植物园游玩,其中有3人坐公共汽车,5人骑自行车,门票和车费一共用去169元,已知公共汽车票每张3元,那么门票每张多少元?
2、读题填空:小明花了30元买了两种书,共5本,单价分别为3元和8元,每种书各买了多少本?
解:设3元的买了x本,则8元的买___________本,
根据题意列方程为_________________________________,
解方程得x=___________,
答:3元的买了___________本,8元的买了___________本。
3、读题填空:某公园成人票价20元,儿童票价8元,某旅行团共有60人,买门票共花了
960元,问:成人与儿童各多少人?
解:设有儿童x人,则成人___________人,
根据题意列出方程:_________________________________,
解方程得x=___________,
答:成人有___________人,儿童有___________人。
4、列方程解应用题:小兵用172元买了两种书,共10本,单价分别是18元、10元。
每种书小兵各买了多少本?
解:设小兵买了单价为18元的书x本,则买了单价为10元的书_______本, 依题意,得(列方程并解方程)
5、学校决定对数学竞赛优胜者进行奖励,获胜者共25人,其中获省里奖的每人奖励价值为200元的奖品,获得市里奖的每人奖励价值50元的奖品,共花去2000元,那么你知道获得省、市奖的学生各有多少人?
四、填空选择题:
1、有一块合金重量是50千克,其中所含铜与锌的比为3∶2,则合金中含铜千克,
含锌千克。
2、小月买了A、B两瓶果汁,一共花了8元,其中A果汁比B果汁贵2元,则A果汁单价为____ 元,B果汁单价为元。
3、两本书厚度共9 cm,其中一本厚度是另一本书厚度的2倍,则这两本书的厚度分别是 cm
和 cm。
4、七(1)班学生开展义务植树活动,参加者是未参加者的3倍,若班里共有48人,则参
加者有人,未参加者有人。
5、小明买了笔记本和练习本共12本,共花了13.1元,笔记本单价是1.5元,练习本单价
是0.8元,则小明买了笔记本本,练习本本。
6、一个大人一餐能吃四个面包,两个幼儿一餐共吃一个,大人和幼儿共7人,14个面包,则
大人有个,幼儿有个。
7、甲队有32人,乙队有28人,如果要使甲队人数是乙队人数的2倍,设从乙队抽调x人到
甲队.(完成下表的填空)
8、小亮家今年承包的鱼塘到期了,共抓起鲫鱼和鳊鱼500千克,共卖了2800元,已知鲫鱼
和鳊鱼每千克分别为6元和5元,则鲫鱼千克,鳊鱼千克。
9、小菲和同学去参观科学宫和博物馆,买10张门票共花了98元,已知大门票每张20元,
小门票每张3元,则大门票买了张,小门票买了张。
10、某车间28名工人生产螺栓和螺母,螺栓与螺母个数1∶2,每人每天平均生产螺栓12个或螺母18个,刚好配套.求多少人生产螺栓?设:有x名工人生产螺栓,其余人生产螺母.
依题意列方程应为()。
A.12x=18(28-x)
B.2×12x=18(28-x)
C.12×18x=18(28-x)
D.12x=2×18(28-x)
13、一个长方形的长比宽多3 cm,如果把它的长和宽分别增加2 cm后,面积增加14 cm2,设原长方形宽为x cm,依题意列方程应为()。
A.(x+3)(x+2)-x2=14
B.(x+2)(x+5)-x2=14
C.(x+2)(x+5)-x(x+3)=14
D.x(x+2)=14
五、提高题:
1、如果数p比数q 多54,数q的三倍比数p少20,则p、q各为多少?
2、李白无事街上走,提壶去买酒,遇店加一倍,见花喝一斗(斗为古代盛器皿),三遇店和
花喝完壶中酒,问壶中原有多少斗酒?。