八年级数学相似三角形
初中八年级数学知识点总结
![初中八年级数学知识点总结](https://img.taocdn.com/s3/m/bf3296d40342a8956bec0975f46527d3240ca61c.png)
初中八年级数学知识点总结学习从来无捷径。
每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要练的。
下面是小编给大家整理的八年级数学知识点,希望对大家有所帮助。
【相似、全等三角形】1、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似2、相似三角形判定定理 1 两角对应相等,两三角形相似(ASA)3、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似4、判定定理 2 两边对应成比例且夹角相等,两三角形相似(SAS)5、判定定理 3 三边对应成比例,两三角形相似(SSS)6、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似7、性质定理 1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比8、性质定理 2 相似三角形周长的比等于相似比9、性质定理 3 相似三角形面积的比等于相似比的平方10、边角边公理有两边和它们的夹角对应相等的两个三角形全等11、角边角公理有两角和它们的夹边对应相等的两个三角形全等12、推论有两角和其中一角的对边对应相等的两个三角形全等13、边边边公理有三边对应相等的两个三角形全等14、斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等15、全等三角形的对应边、对应角相等【等腰、直角三角形】1、等腰三角形的性质定理等腰三角形的两个底角相等2、推论 1 等腰三角形顶角的平分线平分底边并且垂直于底边3、等腰三角形的顶角平分线、底边上的中线和高互相重合4、推论 3 等边三角形的各角都相等,并且每一个角都等于60°5、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)6、推论 1 三个角都相等的三角形是等边三角形7、推论 2 有一个角等于60°的等腰三角形是等边三角形8、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半9、直角三角形斜边上的中线等于斜边上的一半平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。
青岛版八年级数学上册典例举析:几何证明
![青岛版八年级数学上册典例举析:几何证明](https://img.taocdn.com/s3/m/82544543a6c30c2259019e89.png)
• 所以∠ADE=∠DAE,故EA=ED. • 因为EA是圆的切线,所以由切割线定理知, • EA2=EC·EB. • 而EA=ED,所以ED2=EC·EB.
ppt精品课件
热点三 四点共圆的判定
【例4】 如图,已知△ABC的两条角平分线 AD和CE相交于H,∠B=60°,F在AC 上,且AE=AF.证明:(1)B、D、H、E 四点共圆; (2)EC平分∠DEF. 证明 (1)在△ABC中,因为∠B=60°, 所以∠BAC+∠BCA=120°. 因为AD、CE是角平分线, 所以∠HAC+∠HCA=60°, 故∠AHC=120°.
• (1)证明:A,P,O,M四点共圆; • (2)求∠OAM+∠APM的大小.
ppt精品课件
(1)证明 连接OP、OM, ∵AP与⊙O相切于P,∴OP⊥AP, 又∵M是⊙O的弦BC的中点, ∴OM⊥BC, 于是∠OMA+∠OPA=180°, 由圆心O在∠PAC的内部,
ppt精品课件
可知四边形 APOM 的对角互补, ∴A,P,O,M 四点共圆. (2)解 由(1)得 A,P,O,M 四点共圆,可知∠OAM =∠OPM,又∵OP⊥AP,由圆心在∠PAC 的内部, 可知∠OPM+∠APM=90°, ∴∠OAM+∠APM=90°.
ppt精品课件
• (2)相似三角形的性质 • ①相似三角形对应高的比、对应中线的比和对应角平分线的比
都等于相似比; • ②相似三角形周长的比等于相似比; • ③相似三角形面积的比等于相似比的平方. • (3)直角三角形的射影定理:直角三角形中,每一条直角边是这
条直角边在斜边上的射影与斜边的比例中项;斜边上的高是两直角 边在斜边上射影的比例中项. • 2.(1)圆周角定理:圆上一条弧所对的圆周角等于它所对的圆心角 的一半. • (2)圆心角定理:圆心角的度数等于它所对弧的度数.
教案 北师大版 初中 数学 八年级 下册《相似三角形》
![教案 北师大版 初中 数学 八年级 下册《相似三角形》](https://img.taocdn.com/s3/m/51351197ba4cf7ec4afe04a1b0717fd5360cb20b.png)
教案北师大版初中数学八年级下册《相似三角形》一. 教材分析北师大版初中数学八年级下册《相似三角形》一课,是在学生已经掌握了三角形的基本概念、性质和三角形的全等的基础上进行教学的。
本节课的主要内容是相似三角形的定义、性质和判定,以及相似三角形的应用。
通过本节课的学习,使学生能够掌握相似三角形的知识,提高他们的数学思维能力和解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了三角形的基本概念、性质和三角形的全等,他们对这些知识有了一定的理解和运用。
但是,学生对于相似三角形的理解可能会有一定的困难,因为相似三角形与全等三角形有很大的相似性,但又有其特殊性。
因此,在教学过程中,教师需要引导学生通过观察、操作、思考、交流等活动,深化对相似三角形知识的理解。
三. 教学目标1.知识与技能目标:使学生掌握相似三角形的定义、性质和判定,能够运用相似三角形的知识解决实际问题。
2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 教学重难点1.教学重点:相似三角形的定义、性质和判定。
2.教学难点:相似三角形的判定和应用。
五. 教学方法采用问题驱动法、合作学习法和引导发现法进行教学。
教师通过提出问题,引导学生思考和探索,激发学生的学习兴趣;同时,鼓励学生进行合作学习,培养他们的团队精神和沟通能力;在教学过程中,教师注重引导学生发现知识,培养他们的自主学习能力。
六. 教学准备1.教具准备:多媒体课件、黑板、粉笔、三角板。
2.学具准备:学生每人准备一套三角板。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾三角形的基本概念、性质和全等三角形的知识,为新课的学习做好铺垫。
2.呈现(10分钟)(1)教师通过多媒体课件呈现一组相似的三角形,引导学生观察、思考,从而发现相似三角形的特征。
北师大版初中八年级下册数学:相似三角形
![北师大版初中八年级下册数学:相似三角形](https://img.taocdn.com/s3/m/95045829fad6195f302ba622.png)
结论:在△ABC与△A′B′C中,三个角对应相等,三边 对应成比例
B′
3.相似三角形定义:三角对应①相∠等A=,三度边,∠对A应′=成比度,
例的两个三∠角B=形叫度做,∠相B′似=三角度 形
∠C= 度, ∠C′= 度
②C′
AB= BC=
,A′B′= ,B′C′=
三、教学过程
创设情境 提出问题
动手操作 形成概念
应用新知 解决问题
课堂小结 布置作业
课堂训练 初步运用
1.创设情境,提出问题 问题12:这 图两 中幅 的地 两图个的三形角状形和形大状小和有大何小关 有系 何关系
2问.动题手一,实△践ABC形与成△概A′念B′C′三个内角有什么关系,
各小组将两张地图上的三角形剪下,并测量出它
B′
① ∠A=
∠B=
∠C=
②C′
AB= BC=
AC=
度,∠A′= 度,∠B′= 度, ∠C′=
,A′B′= ,B′C′= ,A′C′=
度, 度 度
; ; ;
结论:两个三角形的三个角对应相等
2.动手实践 形成概念 1各.问小题组二将:两△张A地BC图与上△的A′B三′C角′的形三剪边下又有,什并么测关量系出它们的 角和边,在呢测,量最过后程确中定三我边对的学关生系的是操三边作对进应行成指比导例使误
难点:对应边的确定,从三角形全等到相似 ,图形的形状 是没变,但大小发生了变化,寻求 图形的对应顶点 和对应边,这对于图形的认识还局限于全等的初三学 生来说,还存在一定的困难,为此,我确定本节课的 难点为找确定三角形的对应边,突破难点的关键使用 类比的数学思想
二,教学策略
初中数学八年级下册《相似三角形》
![初中数学八年级下册《相似三角形》](https://img.taocdn.com/s3/m/1ac0da124b35eefdc8d3334d.png)
A
128 27
C 12
B 10 D 27
直接变形法
选项变形
练习3 、当a=-1时,代数式(a+1)2+a(a-3) 的值是( )
A -4
B4
C -2
D2
直接代入法
已知代入
练习4、
不等式组
x
2x 3 1 8 2x
的最小整数解是 ( )
A -1 B 0
C2 D3
直接代入法
选项代入
二、排除法:
排除法根据题设和有关知识,排除明显不正确选项,那么剩下
惟一的选项,自然就是正确的选项,如果不能立即得到正确的选 项,至少可以缩小选择范围,提高解题的准确率。排除法是解选 择题的间接方法,也是选择题的常用方法。
AB AC BC DE DF EF
相似三角形对应周长的比等于相 似比.
独立
快乐晋级
作业
• 习题4.6 •1,2题. • 祝你成功!
下课了!
结束寄语
•不经历风雨,怎么 见彩虹.,没有人能
随随便便成功!
在模拟考试中,有学生大题做得 好,却在选择题上失误丢分,主 要原因有二:
1、复习不够全面,存在知识死角,或者部分
B CE
F
2.两个直角三角形不一定相似.因为
对应角不一定相等,对应边也不一定
成比例;两个等腰直角三角形相似.因 300
450
为对应角相等,对应边成比例.
3.两个等腰三角形一定相似吗?为什么?两个等边三角形呢?
3.两个等腰三角形不一 定相似;
两个等边三角形相似.
D A
B CE
F
讨论
全等三角形和相似三角 形的关系?
八年级数学相似三角形
![八年级数学相似三角形](https://img.taocdn.com/s3/m/44019c3faaea998fcc220eff.png)
八年级数学探索三角形相似的条件1
![八年级数学探索三角形相似的条件1](https://img.taocdn.com/s3/m/e6158833a300a6c30c229fa8.png)
2、如图,在△ABC中,P为AB上的一点,
在下列条件中: ①∠ACP=∠B;②∠APC=∠ACB; ③AC2=AP•AB;④AB•CP=AP•CB, 能满足△APC∽△ACB的条件是( ) A、①②④ B、①③④ C、②③④ D、①②③ A P B
C
3、如图,在△ABC中,D在AB上,
要说明△ACD∽△ABC相似, 已经具备了条件 , 还需添加的条件是 或 或
A D B C
,
.
4、如图,已知
试求
DE BC
AD AE 3 BD EC 2
,
的值.
A
D
B
E C
5、如图,△ABC中,AB=12,BC=18,
AC=15,D为AC上一点,CD= 2 AC, 3 在AB上找一点E,得到△ADE, 若图中两个三角形相似,求AE的长;
A D
B
C
你今天努力了吗?
10.4 探索三角形相似的条件(2)
回顾:三角形相似的条件
1、如果一个三角形的两个角与另一个三角形 的两个角对应相等,那么这两个三角形相似。 2、平行于三角形一边的直线与其他两边(或两 边的延长线)相交,所构成的三角形与原三角 形相似。
情境创设:
当两个三角形的两条边及其夹角 对应相等时,这两个三角形全等。相 应地,我们探索两个三角形相似,可 以从哪几个方面考虑找出条件?
B
C
B′
AB AC C′ A' B' A' C' ∴△ABC∽△A′B′C′
讨论:
1、如图,在△ABC和△A′B′C′中, ∠B=∠B′,要使△ABC∽△A′B′C′, 还需要添加什么条件?
A A′
B
C
八年级数学相似三角形的判定教学设计
![八年级数学相似三角形的判定教学设计](https://img.taocdn.com/s3/m/39a0b518284ac850ac024224.png)
八年级数学相似三角形的判定(精品教学设计)一、知识要点:相似三角形(similar triangles):在和中,如果我们就说与相似,记作∽。
k 就是它们的相似比。
相似三角形的判定方法:1.平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似。
2.如果两个三角形的三组对应边的比相等,那么这两个三角形相似。
3.如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。
4.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
二、例题解析:例1.判断对错:(1)两个直角三角形一定相似吗?为什么?(2)两个等腰三角形一定相似吗?为什么?(3)两个等腰直角三角形一定相似吗?为什么?(4)两个等边三角形一定相似吗?为什么?(5)两个全等三角形一定相似吗?为什么?提示说明:要说明两个三角形相似,要同时满足对应角相等,对应边成比例。
要说明不相似,则只要否定其中的一个条件。
解:(1)不一定相似。
反例直角三角形只确定一个直角,其他的两对角可能相等,也可能不相等。
所以直角三角形不一定相似。
(2)不一定相似。
反例等腰三角形中只有两边相等,而底边不固定。
因此两个等腰三角形中有两边对应成比例,两底边的比不一定等于对应腰的比,所以等腰三角形不一定相似。
(3)一定相似。
在直角三角形ABC与直角三角形A′B′C′中设AB=a,A′B′=b,则BC=a,B′C′=b,AC=a,A′C′= b∴∴ABC∽A′B′C′(4)一定相似。
因为等边三角形各边都相等,各角都等于60度,所以两个等边三角形对应角相等,对应边成比例,因此两个等边三角形一定相似。
(5)一定相似。
全等三角形对应角相等,对应边相等,所以对应边比为1,所以全等三角形一定相似,且相似比为1。
变形:两个相似比为1的相似三角形全等吗?分析:全等。
因为这两个三角形相似,所以对应角相等。
又相似比为1,所以对应边相等。
因此这两个三角形全等。
八年级数学相似三角形的识别2
![八年级数学相似三角形的识别2](https://img.taocdn.com/s3/m/e83621f14afe04a1b071de9d.png)
(2)∵∠1=∠2 , ∠B=∠C ∴△ABE∽△ACD ①判断上述推理是否正确?若正 确说明理由,若不正确请你 改正。 ②利用新的识别方法应该注意什么
两组相等的角应该是三角形的内角
2.学一学,达成目标
例 如图D,E分别是△ ABC边AB,AC 上的点,DE∥BC.
A D B E
解:(1)由上面(3)题可知: △ ADE∽ △ABC
AD AE . AB AC
AB AC 反比 . AD AE
3.想一想,发散探究
例 如图D,E分别是△ ABC边AB,AC 上的点,DE∥BC.
A D B E C
还是在上面例题的条件下,
AB AC 吗? AD AE
BD CE 吗? AD AE
A P
B
C
挑战自我
如图,已知在△ABC中,D是AC上一点,过D画 线段DE使E在△ABC的边上,并且点D、E和 △ABC的一个顶点组成的小三角形与△ABC相似, 你能想出一种不同的画法?
A
●
E 形ABCD是由三个正方形 ABEG,GEFH,HFCD组成的,找出图中的相似三角形.
A E B C F G
D
(3)图中与△GFD相似的
三角形是______________ △GBC △BFA .
我们在运用条件一判定两个三角 形相似时,需要注意图中隐含的 哪些条件?
等角的余角、补角
公共角
对顶角
直角
两直线平行时的同位角、内错角
4.试一试,解释生活
(2)故事激趣《拿破仑测莱茵河宽》
1805年,拿破仑率领大军与德俄联军在莱茵河作战。 当时德俄联军在北岸步阵,法军在南岸,中间隔着 很宽的莱茵河。法军要开炮轰击德俄联军,必须知 道河的宽度。拿破仑为此大伤脑筋。站在南岸远望 德俄阵地。忽然,他观察到对面岸边的一个标志O, 于是他想出了一个测量河宽的办法。
八年级数学相似三角形
![八年级数学相似三角形](https://img.taocdn.com/s3/m/8b2837a810661ed9ad51f3a0.png)
相似三角形判定定理3:三边对应成比例,两三角形相似。
直角三角形相似的特殊判定定理:斜边与一直角边对应成比
例,两直角三角形相似.
相似三角形的传递性:如果两个三角形都与第三个三角形相
似,那么这两个三角形也相似.
相似三角形的性质:
定义:相似三角形对应角相等,对应边成比例. 相似三角形性质定理1: 相似三角形对应角平分线
一、相似三角形的定义
对应角相等 、对应边成比例_ 的两个三角形,叫做相似三角 形。
二、相似三角形的判定
三、相似三角形的性质
相似三角形的判定:
相似三角形的预备定理:平行于三角形一边的直线截其他两
边所在的直线,截得的三角形与原三角形相似。
相似三角形判定定理1:两角对应相等,两三角形相似。 相似三角形判定定理2:两边对应成比例且夹角相等,两三角
方案如图1,乙设计方案如图2。你认为哪位同学设计的 方案较好?试说明理由.(加工损耗忽略不计,计算结果中 可保留分数) C
D
E
B
D
E
A
B
A F
G
F
C
图1
图2
请说明理由。 ( 2) 设 BD=x, AF=y, 求 y与 x的 函 数 关 系 式 , 并 指 出 定 义 域 。 ( 3) 当 ADF是 等 腰 三 角 形 时 , 求 AF的 长 。
A
F
B
D
C
作业
如图,一块直角三角形木板的一条直角边长为1.5m,面 积为1.5㎡,工人师傅要把它加工成一个面积最大的正方 形桌面,请甲、乙两位同学进行设计加工方案,甲设计
(1) 如图, 在△ABC中, ∠ACB=90°, DE⊥AB,则图中有没有 三角形相似?
八年级数学相似三角形练习题
![八年级数学相似三角形练习题](https://img.taocdn.com/s3/m/3937723ca32d7375a4178024.png)
相似三角形2A卷窗体顶端1、如果△ABC∽△A′B′C′,相似比为k (k≠1),则k的值是()A.∠A:∠A′B.A′B′:AB C.∠B:∠B′D.BC:B′C′2、若△ABC∽△A′B′C′,∠A=40°,∠C=110°,则∠B′等于()A.30°B.50°C.40°D.70°3、三角形三边之比3:5:7,与它相似的三角形最长边是21cm,另两边之和是()A.15cm B.18cm C.21cm D.24cm4、如图AB∥CD∥EF,则图中相似三角形的对数为()A.1对B.2对C.3对D.4对5、△ABC∽△A1B1C1,相似比为2:3,△A1B1C1∽△A2B2C2,相似比为5:4,则△ABC与△A2B2C2的相似比为()A.B.C.D.6、在比例尺1:10000的地图上,相距2cm的两地的实际距离是()A.200cm B.200dm C.200m D.200km7、已知线段a=10,线段b是线段a上黄金分割的较长部分,则线段b的长是()A.B.C.D.8、若则下列各式中不正确的是()A.B.C.D.9、已知△ABC中,D、E分别在AB、AC上,且AE=1.2,EC=0.8,AD=1.5,DB=1,则下列式子正确的是()A.B.C.D.10、如图:在△ABC中,DE∥AC,则DE:AC=()A.8:3B.3:8 C.8:5D.5:8B卷1、计算(1)若求的值.(2)已知:且2a-b+3c=21,求a,b,c的值.2、如图:AD∥BC∥EF,则图中有多少对相似的三角形并写出来.3、在等边△ABC中,P是BC上一点,AP的垂直平分线分别交AB、AC于M、N,求证:△MBP∽△PCN.。
八年级数学相似三角形
![八年级数学相似三角形](https://img.taocdn.com/s3/m/994260b9ee06eff9aff80717.png)
如图,△ABC中,AB=5,AC=4,BC=6, P是AB上一点,过点P作PQ//BC交AC于点Q
(8)连接BQ、CP交于点O,你 又可以得到哪些结论?
A
P
Q
O
B
C
(9)若
S POB
___2____
,则 OQ _____,
OB
S PBCQ
___9____
如图,△ABC中,AB=5,AC=4,BC=6, P是AB上一点,过点P作PQ//BC交AC于点Q
(10)过点A作MN//BC,与N
A
P
Q
O
B
C
M
若PQ=4,BC=6,则 AM=__1_2__
如图,△ABC中,AB=5,AC=4,BC=6, P是AB上一点,过点P作PQ//BC交AC于点Q
(11)过点P作PR//AC,PR 与 PQ 的和为一定值吗?
AC BC
如图,△ABC中,AB=5,AC=4,BC=6, P是AB上一点,过点P作PQ//BC交AC于点Q
(6)当
AP AB
____时,将△APQ
沿PQ翻折,顶点A刚好落在BC上 P
A Q
M
B E DF C
(7)当 AP 1 时,作PE⊥BC,QF⊥BC,则
AB 2
S矩形PEFQ _______
S ABC
高邮南海中学 陈伟
如图,△ABC中,AB=5,AC=4,BC=6, P是AB上一点,过点P作PQ//BC交AC于点Q
(1)若
AP PB
1 2
,则
AP AB
_____
A
P
Q
(2)此时你可以得到哪些结论?
对应边(线段、周长、面积)之比 B
八年级数学探索三角形相似的条件4
![八年级数学探索三角形相似的条件4](https://img.taocdn.com/s3/m/a2a0621c4b35eefdc8d333ae.png)
知识方面: 方法方面:
小结与回顾
例题讲解
变式二、一个钢筋三角架长分别为20cm、 50 cm、60 cm,现要再做一个与其相似的钢筋 三角架,而只有长为30 cm和50 cm的两根钢筋, 要求以其中一根为一边,从另一根上截下两段 (允许有余料)作为两边,则不同的截法有 种。
;259luxu1095bt https:///4056.html 259luxu1095bt ;
ALeabharlann A’B’’C’’B
C B’
C’
判定方法三:如果一个三角形的三条边与 另一个三角形的三条边对应成比例,那么 这两个三角形相似;
几何语言:在△ABC与△A‘B’C‘中,
AB AC BC , A' B' A' C' B' C'
∴△ABC∽△A‘B’C‘
例题讲解
例1、根据下列条件,判断△ABC与△A′B′C′是否相似,并
行正常,她算是白操心了.唉,想归想,既然来了,那就顺其自然吧.此时,今天の寿星陈丽雅正在台上和同学对唱.“陆陆,快,来这边坐.”晓得陆羽の性情比较被动,她刚一进门,陈悦然马上过来把她拉到自己の位置坐好.陆羽:...跟梦里の未来一样,她被安排在中间,左是陈,右是狄.“来了.”狄景 涛抬眸望她一眼,客气地打了声招呼,下意识往右边挪了挪.他の右边并列坐着几个男生.“嗯,谢谢.”陆羽一如既往の文静秀气,从容大方地坐下,不复以往の腼腆和不自在.两人の表现让陈悦然大跌眼镜,忙贴近陆羽坐下,凑过来悄声问:“哎,你俩怎么了?”原以为是陆羽又闹小性子终于惹狄生 气,如今看来,貌似比想象の更严重.情侣之间一旦不争不吵,言行客气,意味着感情到头了.“没什么,”陆羽笑了笑,神情轻柔温和,“对了,我八点钟走.”“这么快?!”“嗯,这次休了很长の假,文教
新人教版八年级下册相似三角形知识点
![新人教版八年级下册相似三角形知识点](https://img.taocdn.com/s3/m/a8801aca9f3143323968011ca300a6c30d22f17c.png)
新人教版八年级下册相似三角形知识点
相似三角形是几何学中的重要概念,在八年级下册的数学课程中有相关的研究内容。
下面是一些关于相似三角形的知识点:
相似三角形的定义
相似三角形指的是具有相同形状但大小不同的三角形。
两个三角形相似的条件是它们的对应角度相等,并且对应边的比值相等。
判断相似三角形的方法
判断两个三角形是否相似,可以通过以下方法进行:
- AA判据:如果两个三角形的两个角分别相等,则它们是相似三角形。
- SSS判据:如果两个三角形的三边长度比值相等,则它们是相似三角形。
- SAS判据:如果两个三角形的两个角和边的比值分别相等,则它们是相似三角形。
相似三角形的性质
相似三角形具有以下性质:
- 对应角相等:两个相似三角形的对应角相等。
- 对应边比值相等:两个相似三角形的对应边的比值相等。
- 对应高比值相等:两个相似三角形的对应高的比值等于对应
边的比值。
相似三角形的应用
相似三角形的概念在实际问题中有广泛的应用,例如:
- 海上测距:通过相似三角形可以使用测距仪测量远距离物体
的高度或距离。
- 影像处理:在电脑图像处理中,相似三角形可以用于图像的
放大或缩小。
- 工程模型:在建筑和工程设计中,相似三角形可以用于制作
模型以便于观察和分析。
以上是关于新人教版八年级下册相似三角形知识点的简要介绍。
相似三角形作为重要的几何概念,在学习数学过程中会经常应用到。
希望这份文档对你有所帮助!。
八年级数学相似知识点总结
![八年级数学相似知识点总结](https://img.taocdn.com/s3/m/0be5692f9a6648d7c1c708a1284ac850ad0204d1.png)
八年级数学相似知识点总结一、相似的定义当两个图形中对应的角分别相等,对应的边的长度成比例时,那么这两个图形就是相似的。
具体表达为:如果△ABC和△A'B'C'两个三角形中有,∠A=∠A', ∠B=∠B', ∠C=∠C',且AB/A'B'=BC/B'C'=AC/A'C',那么就可以得出△ABC~△A'B'C'。
其中,记作△ABC~△A'B'C'。
二、相似的判定1. 两个三角形中对应的角相等。
2. 两个三角形中对应的边成比例。
3. 如果两个三角形满足以上两个条件,那么它们就是相似的。
三、相似的性质1. 两个相似三角形中对应的边的比例等于它们对应的角的正弦值。
2. 相似三角形中的对应角相等,对应边比例相等,对应高比例相等,对应中线比例相等。
3. 具有公共顶点的两个三角形分别与第三个相似的两个三角形,这两个三角形相似。
四、相似三角形的应用1. 相似三角形的判定方法是在已知一个三角形和要证明相似的三角形中每次要找两个相等的角。
2. 相似三角形应用在海伦公式中,海伦公式:设三角形的三边分别为a、b、c,p是它的半周长,S是它的面积。
那么有S=√p(p−a)(p−b)(p−c),p=a+b+c/2。
3. 利用相似三角形求解高度或者长度,当一个三角形内接一圆时,三角形的高和半径成比例。
4. 利用相似三角形求解两个相似图形的未知边。
当两个图形相似时,我们只需要通过已知边的比值求解未知边,可以通过比例关系来解决。
在现实生活中,相似的概念也有广泛的应用。
例如,建筑物的设计、地理地貌的测算、地图的制作等等,相似的知识都有所体现。
因此,学好相似知识对我们在实际应用中解决问题具有非常重要的意义。
通过对数学中相似知识点的总结,使我们更深刻的理解了相似的定义、判定、性质及应用,为学习几何学奠定了坚实的基础。
八年级数学讲义相似三角形的性质
![八年级数学讲义相似三角形的性质](https://img.taocdn.com/s3/m/ebd6f219fab069dc5122019e.png)
相似三角形的性质1.相似三角形的有关概念:定义:三角对应相等、三边对应成比例的两个三角形叫做相似三角形。
记作:△ABC∽△A′B′C′另外,相似三角形具有传递性(性质)。
2.典型例题例1.如图,正方形ABCD的边长为2,AE=EB,MN=1,线段MN的两端在BC、CD上,若△AED与以M、N、C为顶点的三角形相似,求CM的长.例2.如图,AB∥CD,S△AOB=m2, S△DOC=n2,求S梯形ABCD.B CDMNEAD CA BOm2n2例3.如图,已知梯形ABCD 中, AB ∥BC,AC,BD 交于E,过E 作FG ∥BC,求证:EF=EG.例4.如图,在ABC ∆中,矩形DEFG 的一边DE 在BC 上,点G 、F 分别在AB 、AC 上,AH 是BC 边上的高,AH 与GF 相交于K ,18=GF ,10=EF ,48=BC 。
⑴求AH 的长;⑵若设x AH =,矩形DEFG 的周长为y ,写出y 与x 的函数关系式,并写出它的定义域。
思考:如图,P 为△ABC 内一点,求P 点作线段DE 、FG 、HI 分别平行于AB 、BC 和CA ,且DE=FG=HI=d ,AB=510,BC=450,CA=425,求d.A CFEB DGC B A I F G E PD H C课堂小练1.如图所示,CA ∥FG ∥BD ,若每两个三角形相似,构成一组相似三角形,那么图中相似三角形的组数是( )A .1B .2C .3D .4 2.如图所示,△ABC 中,DE ∥BC ,GF ∥AB ,则图中与△ABC 相似的三角形的个数是( )A .2B .3C .4D .3.如果两个等腰直角三角形的斜边之比为1:2A .1:1 B.1:2 C .1:2 D .1:44.如图,在△ABC 中,DE ∥BC ,AD :BD=1:2 A .21=BC DE B .31=BC DE C .12ADE ABC ∆=∆周长周长 D .13ADE ABC ∆=∆面积面积5.如图所示,AC ⊥BC ,AD ⊥CD ,AB=5,AC=3, 要使Rt △ABC ∽Rt △ACD ,则CD 应为( )A .59 B .512 C .59或512D .无法确定 6.如图所示,E 、F 分别是线段AB 、CD 上的点,且AB ∥CD ,CE ∥FB ,AD 交CE 、BF 于点M 、N ,则图中相似三角形共有( ) A .8对 B .6对 C .4对 D .2对7.如果一个三角形的一条高分这个三角形为两个相似三角形,则这个三角形必是( A .等腰三角形 B .锐角三角形C .直角三角形D .等腰三角形或直角三角形 8中,AE :EB=1:2,若△AEF 的面积为6cm ,则△DCF 的面积为( )A .54cm 2B .18cm 2C .12cm 2D .24cm 29.如图,DE ∥BC ,EF ∥AB ,S △ADE =1,S △EFC =4,则四边形BFED 的面积为( ) A .2 B .4 C .8 D .910.如图,矩形EFGH 内接于△ABC ,AD ⊥BC 于点D ,交EH 于点M ,BC =10㎝,AM =8㎝,S △ABC =100㎝2。
8.4 相似三角形 复习课件2 (青岛版八年级下)
![8.4 相似三角形 复习课件2 (青岛版八年级下)](https://img.taocdn.com/s3/m/2042b1c00508763230121206.png)
〖知识点〗 1.相似三角形的定义。
2.相似三角形的判定。
3.相似三角形的性质的应用。
〖复习〗 1、相似三角形的定义是什么? 答:三边对应成成比例,三个角对应 相等的两个三角形叫做相似三角形 。
2、判定两个三角形相似有哪些主要方法? 答:①两角对应相等,两个三角形相似. ②两条边对应成比例且夹角相等,两三角形相似. ③三边对应成比例,那么这两个三角形相似.
通这 一节的复 习之后你 有哪些收 获?
DE= 2, EF=2,
AB BC 2 DE EF
∴
又∵∠ABC= ∠DEF=135 °
∴ △ABC∽△DEF
例2. D为△ABC中AB边上一点,∠ACD= ∠ ABC.
求证:AC2=AD· AB
分析: 要证明AC2=AD· AB,需要先将 B AC AB 乘积式改写为比例式 , =
AD AC
4. △ ABC中,AB的中点为D,AC的中点为E, 连结DE, 求△ ADE与△ ABC的相似比。
解 :∵D、E分别为AB、AC的中点 ∴DE∥BC,且
AD AE 1 AB AC 2
B D A
EHale Waihona Puke C∴ △ADE∽△ABC∴ △ADE与△ABC的相似比为1:2
5.如图,DE∥BC, AD:DB=2:3, 求△ AED
A字型 8字型
公共边角型
双垂直型
三垂直型
4、相似三角形有哪些性质 答: 1、对应角相等,对应边 , 2、相似三角形的对应边的比叫做________, 一般用k表示. 3、对应角平分线、对应中线、对应高线、对应 周长的比都等于 。 4、相似三角形面积的比等于 。
人教版八年级数学上册电子书第十一章 相似三角形
![人教版八年级数学上册电子书第十一章 相似三角形](https://img.taocdn.com/s3/m/51958880ab00b52acfc789eb172ded630b1c98f0.png)
人教版八年级数学上册电子书第十一章
相似三角形
相似三角形是几何学中的一个重要概念,本章将介绍相似三角形的定义、性质以及相似三角形的判定方法。
一、相似三角形的定义
相似三角形是指具有相等或成比例的对应角度,并且对应边成比例的两个三角形。
当两个三角形的形状相似时,它们的所有对应角度都相等,对应边的长度成比例。
二、相似三角形的性质
1. 相似三角形的对应边成比例。
设两个相似三角形中的对应边分别为a、b和c、d,如果它们相似,则有a/b = c/d。
2. 相似三角形的对应角度相等。
设两个相似三角形中的对应角分别为∠A、∠B和∠C、∠D,如果它们相似,则有∠A = ∠C,∠B = ∠D。
3. 相似三角形的周长成比例。
设两个相似三角形的对应边长分
别为a、b和c、d,如果它们相似,则周长之比为a+b+c : c+d。
三、相似三角形的判定方法
1. AA判定法:如果两个三角形的两个角分别相等,则它们相似。
2. AAA判定法:如果两个三角形的每个角都相等,则它们相似。
3. SAS判定法:如果两个三角形的一个角相等,且两个角的对
边成比例,则它们相似。
4. SSS判定法:如果两个三角形的对应边成比例,则它们相似。
这些判定方法是判断两个三角形是否相似的基本依据,可以帮
助我们在几何学中进行相似三角形的判断和推导。
以上是人教版八年级数学上册电子书第十一章相似三角形的内容简介。
通过学习相似三角形的定义、性质以及判定方法,我们可以更好地理解几何学中的相似三角形概念,并应用于实际问题的解决中。
新人教版八年级数学下册27.2.1 第3课时 两边成比例且夹角相等的两个三角形相似(优秀教学设计)
![新人教版八年级数学下册27.2.1 第3课时 两边成比例且夹角相等的两个三角形相似(优秀教学设计)](https://img.taocdn.com/s3/m/c8a49112bb4cf7ec4bfed068.png)
27.2.1 相似三角形的判定第3课时 两边成比例且夹角相等的两个三角形相似1.理解“两边成比例且夹角相等的两个三角形相似”的含义,能分清条件和结论,并能用文字、图形和符号语言表示;(重点)2.会运用“两边成比例且夹角相等的两个三角形相似”判定两个三角形相似,并解决简单的问题.(难点)一、情境导入利用刻度尺和量角器画两个三角形,使它们的两条对应边成比例,并且夹角相等.量一量第三条对应边的长,计算它们的比与前两条对应边的比是否相等.另两个角是否对应相等?你能得出什么结论?二、合作探究探究点:两边成比例且夹角相等的两个三角形相似 【类型一】 直接利用判定定理判定两个三角形相似已知:如图,在△ABC 中,∠C =90°,点D 、E 分别是AB 、CB 延长线上的点,CE =9,AD =15,连接DE .若BC =6,AC =8,求证:△ABC ∽△DBE .解析:首先利用勾股定理可求出AB 的长,再由已知条件可求出DB ,进而可得到DB ∶AB 的值,再计算出EB ∶BC 的值,继而可判定△ABC ∽△DBE .证明:∵在Rt △ABC 中,∠C =90°,BC =6,AC =8,∴AB =BC 2+AC 2=10,∴DB =AD -AB =15-10=5,∴DB ∶AB =1∶2.又∵EB =CE -BC =9-6=3,∴EB ∶BC =1∶2,∴EB ∶BC =DB ∶AB ,又∵∠DBE =∠ABC =90°,∴△ABC ∽△DBE .方法总结:解本题时一定要注意必须是两边对应的夹角才行,还要注意一些隐含条件,如公共角、对顶角等.变式训练:见《学练优》本课时练习“课堂达标训练” 第2题【类型二】 添加条件使三角形相似如图,已知△ABC 中,D 为边AC 上一点,P 为边AB 上一点,AB =12,AC =8,AD =6,当AP 的长度为________时,△ADP 和△ABC 相似.解析:当△ADP ∽△ACB 时,AP AB =AD AC ,∴AP 12=68,解得AP =9.当△ADP ∽△ABC 时,AD AB =AP AC ,∴612=AP 8,解得AP =4,∴当AP 的长度为4或9时,△ADP 和△ABC 相似.故答案为4或9.方法总结:添加条件时,先明确已知的条件,再根据判定定理寻找需要的条件,对应本题可先假设两个三角形相似,再利用倒推法以及分类讨论解答.变式训练:见《学练优》本课时练习“课堂达标训练” 第5题【类型三】 利用三角形相似证明等积式如图,CD 是Rt △ABC 斜边AB 上的高,E 为BC 的中点,ED 的延长线交CA 的延长线于F .求证:AC ·CF =BC ·DF .解析:先证明△ADC ∽△CDB 可得AD CD =AC BC ,再结合条件证明△FDC ∽△F AD ,可得AD CD=DF CF,则可证得结论. 证明:∵∠ACB =90°,CD ⊥AB ,∴∠DAC +∠B =∠B +∠DCB =90°,∴∠DAC =∠DCB ,且∠ADC =∠CDB ,∴△ADC ∽△CDB ,∴AD CD =AC BC.∵E 为BC 的中点,CD ⊥AB ,∴DE =CE ,∴∠EDC =∠DCE ,∵∠EDC +∠FDA =∠ECD +∠ACD ,∴∠FCD =∠FDA ,又∠F =∠F ,∴△FDC ∽△F AD ,∴DF CF =AD DC ,∴AC BC =DF CF,∴AC ·CF =BC ·DF . 方法总结:证明等积式或比例式的方法:把等积式或比例式中的四条线段分别看成两个三角形的对应边,然后证明两个三角形相似,得到要证明的等积式或比例式.【类型四】 利用相似三角形的判定进行计算如图所示,BC ⊥CD 于点C ,BE ⊥DE 于点E ,BE 与CD 相交于点A ,若AC =3,BC =4,AE =2,求CD 的长.解析:因为AC =3,所以只需求出AD 即可求出CD .可证明△ABC 与△ADE 相似,再利用相似三角形对应边成比例即可求出AD .解:在Rt △ABC 中,由勾股定理可得AB =BC 2+AC 2=42+32=5.∵BC ⊥CD ,BE⊥DE ,∴∠C =∠E ,又∵∠CAB =∠EAD ,∴△ABC ∽△ADE ,∴AB AD =AC AE ,即5AD =32,解得AD =103,∴CD =AD +AC =103+3=193. 方法总结:利用相似三角形的判定进行边角计算时,应先利用条件证明三角形相似或通过作辅助线构造相似三角形,然后利用相似三角形对应角相等和对应边成比例进行求解.变式训练:见《学练优》本课时练习“课后巩固提升”第7题【类型五】 利用相似三角形的判定解决动点问题如图,在△ABC中,∠C=90°,BC=8cm,5AC-3AB=0,点P从B出发,沿BC方向以2cm/s的速度移动,与此同时点Q从C出发,沿CA方向以1cm/s的速度移动,经过多长时间△ABC和△PQC相似?解析:由AC与AB的关系,设出AC=3x cm,AB=5x cm,在直角三角形ABC中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,进而得到AB与AC的长.然后设出动点运动的时间为t s,根据相应的速度分别表示出PC与CQ的长,由△ABC和△PQC相似,根据对应顶点不同分两种情况列出比例式,把各边的长代入即可得到关于t的方程,求出方程的解即可得到t的值,从而得到所有满足题意的时间t的值.解:由5AC-3AB=0,得到5AC=3AB,设AB为5x cm,则AC=3x cm,在Rt△ABC 中,由BC=8cm,根据勾股定理得25x2=9x2+64,解得x=2或x=-2(舍去),∴AB=5x =10cm,AC=3x=6cm.设经过t秒△ABC和△PQC相似,则有BP=2t cm,PC=(8-2t)cm,CQ=t cm,分两种情况:①当△ABC∽△PQC时,有BCQC=ACPC,即8t=68-2t,解得t=3211;②当△ABC∽△QPC时,有ACQC=BCPC,即6t=88-2t,解得t=125.综上可知,经过125或3211秒△ABC和△PQC相似.方法总结:本题的关键是根据三角形相似的对应顶点不同,分两种情况△ABC∽△PQC 与△ABC∽△QPC分别列出比例式来解决问题.变式训练:见《学练优》本课时练习“课后巩固提升”第8题三、板书设计1.三角形相似的判定定理:两边成比例且夹角相等的两个三角形相似;2.应用判定定理解决简单的问题.本节课采用探究发现式教学法和参与式教学法为主,利用多煤体引导学生始终参与到学习活动的全过程中,处于主动学习的状态.采用动手实践,自主探索与合作交流的学习方法,使学生积极参与教学过程.在教学过程中展开思维,培养学生提出问题、分析问题、解决问题的能力,进一步理解观察、类比、分析等数学思想.(赠品,不喜欢可以删除)数学这个家伙即是科学界的“段子手”,又是“心灵导师”一枚。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我居住的小城,有一条阔溪穿城而过,名泗溪。上世纪九十年代以前,溪畔有一条用鹅卵石筑成的堤坝,叫孟潭栋。ag线上电子游艺 据史载:小城原是一沙洲,泗溪流经苔湖头,分成南北两支,两支流水之间的那一片孤岛,便是现在小城的核心区域。孟潭栋未建时,每遇洪水,小城即成泽国,水患连连。清分流口上筑堤截水,两流合一,从主河道流向飞云江。从此,小城水患根治。后人为感念孟公恩德,遂把此堤命名为“孟潭栋”,以示纪念。
孟潭栋全程长约二里许,沿着河道的流向自然而筑,犹如一条彩色的巨龙蜿蜒在溪边。
坝外,是开阔的沙滩。沙滩上,遍布大大小小、形形色色的鹅卵石,长满高高矮矮、蓬蓬丛丛的溪棝树和芦苇茅草。临水处,一线赤色的溪沙,深深浅浅地倚着滩、偎着水,像五线谱般营造了一片 非常柔美的景致。
坝内,是一片肥沃的沙地。那些沙地松软好耕作,一年四季菜花闹、麦苗青、稻花香、西瓜脆、甘蔗甜,从不闲着。沙地的边缘,便是鳞次栉比的民房了。
坝上,也不寂寞。那坝都是用恐龙蛋般的鹅卵石垒成的,留有天然的缝隙。溪风吹来了尘土,也送来了花草的种子。于是,那些缝隙窟窿就引来了许多鸟儿和野花的青睐,它们欢快地在那筑窝生长。 春天一到,整条堤坝,就成了如锦的彩带。早起的农人荷把锄头走过坝顶下地劳作,暮归的老牛在牧童的歌声中悠然返栏。