平面向量知识点总结归纳
平面向量知识点总结(精华)
必修4 平面向量知识点小结一、向量的基本概念1.向量的概念:既有大小又有方向的量,注意向量和数量的区别.向量常用有向线段来表示 .注意:不能说向量就是有向线段,为什么?提示:向量可以平移.举例 1 已知A(1,2),B(4,2),则把向量u A u B ur按向量a r( 1,3)平移后得到的向量是. 结果:(3,0)2.零向量:长度为 0 的向量叫零向量,记作:0r,规定:零向量的方向是任意的;3.单位向量:长度为一个单位长度的向量叫做单位向量(与u A uu B r共线uuur的单位向量是u A u B ur );| AB|4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;5.平行向量(也叫共线向量):方向相同或相反的非零向量a r、b r叫做平行向量,记作:a r∥b r,规定:零向量和任何向量平行 . 注:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有r0);④三点A、B、C 共线u A uu B r、u A u C ur共线.6.相反向量:长度相等方向相反的向量叫做相反向量 . a r的相反向量记作a r.举例 2 如下列命题:(1)若|a r | |b r | ,则a r b r. (2)两个向量相等的充要条件是它们的起点相同,终点相同 . (3)若u A u B uru D u C u r,则ABCD是平行四边形 .(4)若ABCD是平行四边形,则u A uu B r u D u C uur.(5)若a r b r,b r c r,则a r c r.(6)若a r / /b r,b r / /c r则a r / /c r.其中正确的是. 结果:(4)(5)二、向量的表示方法1.几何表示:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后;2. 符号表示 :用一个小写的英文字母来表示,如 a r ,b r , c r 等;3. 坐标表示 :在平面内建立直角坐标系,以与 x 轴、 y 轴方向相同 的两个单位向量 i r , r j 为基底,则平面内的任一向量 a r 可表示为 a r xi r y r j (x, y ) ,称 ( x, y )为向量 a r 的坐标, a r (x, y )叫做向量 a r 的坐标表示 .结论:如果向量的起点在原点,那么向量的坐标与向量的终点坐标 相同.三、平面向量的基本定理定理 设e r 1,e r 2同一平面内的一组基底向量, a r 是该平面内任一向量, 则存在唯一实数对 ( 1, 2),使 a r 1e r 1 2e r 2.1)定理核心: a rλ1e r 1 λ2er 2;(2)从左向右看,是对向量 a r的分解,且表达式唯一;反之,是对向量 a r的合成 .(3)向量的正交分解:当 e r 1,e r 2时,就说 a r λ1r e 1 λ2r e 2为对向量 a r的正交分 解.举例 3 (1)若 a r(1,1), b r(1, 1), c r( 1,2) ,则 c r. 结果:1r 3 r a b.22(2)下列向量组中, 能作为平面内所有向量基底的是 B A. e r 1(0,0) , e r 2(1, 2) B. r e 1( 1,2) , e r 2(5,7) C. r e 1(3,5) , e r 2(6,10)(1)模:| a r | | | |a r |;(2)方向:当 0时, a r 的方向与 a r 的方向相同,当D. e r 1(2, 3) , 1, 3 ,24(3)已知u A u D ur ,u B u E ur分别是 可用向量 a r,b r表示为 . (4)已知 △ABC 中,点 值是 . 结果: 0 四、实数与向量的积 实数 与向量 a r 的积是 下: △ABC 的边 BC ,AC 上的中线 ,且 u A u D ura r4r a2果 结上 边B u u r Bu u u u ru u ru u u u r C u 的u u r u u 个向量,记作 a r ,它的长度和方向规定如方向与a r的方向相反,当0时,a r r0,注意:a r 0.五、平面向量的数量积1. 两个向量的夹角:对于非零向量a r,b r,)称为向量a r,b r的夹角. uuur r作OAa r,u ru u把r bAOB (0当 0时, a r , b r 同向;当 时, a r , b r 反向;当 2时,a r ,b r 垂直. 2. 平面向量的数量积 :如果两个非零向量 a r , b r ,它们的夹角为 , 我们把数量 | a r || b r | cos 叫做 a r 与b r 的数量积(或内积或点积) ,记作: a r b r , 即 a r b r |a r | |b r |cos .规定:零向量与任一向量的数量积是 0. 注:数量积是一个实数,不再是一个向量 举例 4(1)△ ABC 中,| u A uu B r| 3 ,|u A uu C r| 4 ,|u B u C ur| 5 ,则 9.uuur uuur AB BC果:结果:2)已知a r1,21,b r0, 12,c ra rkb r,d ra rb r,c r与d r的夹角为 4,则k1. 3)已知 |a r| 2,|b r| 5, a rb r3,则 |a rb r| ___ . 结果: 23. 4)已知 ra, rb 是两个非零向量,且| a r| |b r| |a rb r|,则a r与a rb r的夹角为 30o . 结果: 3.向量b r 在向量 a r上的投影: |b r | cos ,它是一个实数,但不一定大于 0. 举例 5 已知|a r| 3,|b r| 5,且 a rb r12 ,则向量 a r在向量 b r上的投影为 ___ . 结果: 152.54. a r b r 的几何意义 :数量积 a r b r 等于a r 的模|a r |与b r 在a r 上的投影的积 .5. 向量数量积的性质 :设两个非零向量 a r , ( 1) a r b a r b 0 ; (2)当 a r 、 b 同向时, a r b |a r | |b|,特别地, a r b r |a r | | b r |是a r 、 b r同向的充要分条件 ; 当a r 、 b r 反向时, a r b r |a r | |b r |,a r b r |a r | 件; 当 为锐角时, a r b r 0,且 a r 、b r 不同向, 充分条件 ; 当 为钝角时, a r b r 0 ,且 a r 、 b r 不反向; 充分条件 .(3)非零向量 a r , b r 夹角b r ,其夹角为 ,则:a r 2|b r |是a r 、 b r 反向的充要分条 ab ab 的计算公式: cos 0 是 为锐角的 必要不 0 是 为钝角的 必要不 | a r a ||b b r | ;④ a r b r |a r ||b r | . 举例 6 取值范1)已知 a r( ,2 ) , b r(3 ,2) ,如果 a r与b r的夹角为锐角,则 的 3或 0且 3;(2)已知△OFQ 的面积为 S ,且u O u F ur u F u Q ur 1,若12 S 23,则u O u F ur, u F u Q ur夹角的 取值范围是 _____ . 结果: 4, 3;43①用 k 表示 a rb r;②求 a rb r的最小值,并求此时 a r与b r的夹角 的大小. 结果:① a rb r k 4k 1(k 0) ;②最小值为 12, 60o. 六、向量的运算1. 几何运算 (1)向量加法运算法则:①平行四边形法则;②三角形法则 . r 运算形式:若 u A uu B r a r , u B uu C r b r ,则向量u A uu C r 叫做 a r与b 的和,即 r r uuur uuur uuur a b AB BC AC ;作图:略 . 注:平行四边形法则只适用于不共线的向量 .(2)向量的减法 运算法则:三角形法则 . 运算形式:若 u A uu B r a r , u A u C ur b r ,则 a r b r u A u B ur u A uu C r C uu A ur ,即由减向量的终 点指向被减向量的终点 .作图:略 .注:减向量与被减向量的起点相同 .举例 7( 1)化简:①u A u B uru B u C urC uuD ur;② u A uu B ru A u D uru D uu C ur;③uuur uuur uuur uuur uuur uuur r (AB CD) (AC BD) . 结果:① AD ;② CB ;③ 0;(2)若正方形 ABCD 的边长为 1,u A u B ura r,u B u C urb r,u A u C ur rc ,则 |a rb rc r|.结果: 2 2 ;(3)若O 是△ABC 所在平面内一点,且满足 O uu B urO uu C ur u O u B urO uu C ur2u O u A ur,则△ABC 的 形状为 . 结果:直角三角形;( 4)若 D 为 △ ABC 的边 BC 的中点, △ ABC 所在平面内有一点 P ,满足 u P u A ur u B u P urC uu P ur r0,设 || u u PAu u DuP ur r || ,则 的值为 . 结果:2;(5)若点O 是 △ABC 的外心,且 u O u A ur u O uu B r u C uu O r r0 ,则△ABC 的内角 C 为 . 结果: 120o.2. 坐标运算 :设 a r (x 1,y 1) ,b (x 2,y 2) ,则(1)向量的加减法运算 :a r b (x 1 x 2,y 1 y 2),a r b (x 1 x 2,y 1 y 2) . 举例 8 (1)已知3)已知 a r(cos x,sin x) , rb (cos y,sin y) ,且满足 |k ra b | 3|a rkb|其中 k 0 )点A(2,3) ,B(5,4) ,C(7,10) ,若u A uu P r u A uu B ru A uu C r( R) ,则当 ______ 时,点P在第一、三象限的角平分线上 . 结果:21;(2)已知 A(2,3) , B(1,4) ,且21 u A u B ur (sin x,cos y), x, y ( 2,2),则 x y . 结 果: 6 或2;(3)已知作用在点 A(1,1)的三个力 F 1(3,4) ,F 2(2, 5) , F 3(3,1) ,则合力 F u r u Fur 1u F ur 2 u F ur 3的终点坐标是 . 结果: (9,1) .(2)实数与向量的积 : a r (x 1,y 1) ( x 1, y 1).(3)若 A(x 1, y 1) , B(x 2, y 2) ,则 u A u B ur (x 2 x 1,y 2 y 1) ,即一个向量的坐标等 于表示这个向量的有向线段的终点坐标减去起点坐标 .举例 9 设A(2,3) , B( 1,5) ,且 u A uu C r 13u A u B ur, u A u D ur 3u A u B ur,则 C,D 的坐标分别是3举例 10 已知向量 a r(sin x,cos x ) , b (sin x ,sin x) , c r( 1,0) .(1)若 x 3,求向量 a r、 c r的夹角;3(2)若x [38 , 4],函数 f(x) a rb r的最大值为 12,求 的值.结果:(1)150o;8 4 22) 21或 2 1.5)向量的模 : a r2 |a r |2 x 2 y 2 |a r | x 2 y 2 . 举例 11 已知 a r ,b r 均为单位向量,它们的夹角为 . 结果: 13 .位向量,则 P 点斜坐标为 (x,y) .1)若点 P 的斜坐标为 (2, 2) ,求 P 到 O 的距离 |PO| ;2)求以O 为圆心, 1为半径的圆在斜坐标系 xOy 中的方程.结果:( 1) 2;(2) x 2y 2xy 1 0 . 七、向量的运算律 1. 交换律: a r 2. 结合律: a r 3. 分配律: ( r b rr arr a)r b rr a r a rr a r c )r br b r( r b r b( r ar ) r b r r a(r r 举例 13 给出下列命题:ar (b c r ) a r b a r c r a r (b c r ) (a r b) c r结果: (1,131),( 7,9).4)平面向量数量积yxx r b60o,那么 |a r3b r|6)两点间的距离 :若 A(x 1, y 1) , B(x 2,y 2),则|AB| (x 2 x 1)2 (y 2 y 1)2 . 举例 12 如图,在平面斜坐标系 于斜坐标系 的斜坐标是这样定义的:若 u O u P urxe r 1方向的单 xOy 中, xOy 60o,平y 面上任一点 P关ye r 2,其中 e r 1,e r 2分别为60o与 x 轴、④ 若a rb r0,则 a r0r或b r r0;⑤若 a r b r c rb r则a r c r;⑥ |a r |2 a r 2;⑦ ar a r2bb a r ; ⑧ (a rb r )2 a r 2 b r 2;⑨ (a rb r )2 a r 22a rb rb r 2. 其中正确的是 . 结果:①⑥⑨ . 说明:(1)向量运算和实数运算有类似的地方也有区别:对于一个 向量等式, 可以移项,两边平方、两边同乘以一个实数, 两边同时取模, 两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一 个向量,切记两向量不能相除 ( 相约) ; (2)向量的“乘法”不满足结合律,即 八、向量平行 (共线) 的充要条件 a r //b a r b (a r b)2 (|a r ||b|)2 举例 14 (1) 若向量 a r (x,1) , 相同. 结果: 2. ( 2)已知 a r (1,1) ,b (4,x) ,u r果:4. uuur uuur (3)设 PA ( k,12) , PB (4,5) , 果: 2 或 11. 九、向量垂直的充要条件0. (4,x) ,当 x x 1 y 2 y 1 x 2r br br rrb ar r 2b , uu urPC r v ar (b c r) (a rb) c r,为什么? 时, a r 与b r共线且方向 2a r b ,且 u r //v r,则 x(10, k) , 则k时, A,B,C 共线 . y 1 y 2 0.|AB AC AB AC特别地 uuur uuuruuur uuur .|AB | |AC | |AB | | AC |举例 15 (1)已知 u O u A ur( 1,2) ,O uu B ur(3,m) , (2)以原点 O 和 A(4,2)为两个顶点作等腰直角三角形 B 的坐标是 .结果: (1,3) 或( 3,-1)); (3)已知 n r(a,b)向量 n rm r,且|n r| |m r| ,则m r的坐标是 ( b,a) . 十、线段的定比分点1. 定义:设点 P 是直线 P 1P 2上异于 P 1、 P 2的任意一点,若存在一个实 数 ,使 u P u 1P ur u P u P ur 2 ,则实数 叫做点 P 分有向线段 P 1P 2 所成的比 , P 点叫 做有向线段 u P u 1u P ur 2的以定比为 的定比分点 . 2. 的符号与分点 P 的位置之间的关系 (1) P 内分线段 P 1P 2 ,即点P 在线段 P 1P 2上 0; (2) P 外分线段 u P u 1u P u 2r 时,①点 P 在线段 P 1P 2的延长线上 P 在线段 P 1P 2的反向延长线上 1 0.x 1x 2 uuuruuur uuur 若OA OB ,则 m. 结果: OAB , B 90 ,则点 32; 结果: (b, a)或1,②点比为 1.举例 16 若点 P 分u A u B ur所成的比为 43,则 A 分u B u P ur所成的比为 .结果: 73.33. 线段的定比分点坐标公式 :设 P 1(x 1, y 1) , P 2( x 2, y 2) ,点P(x, y)分有向线段 u P u 1u P u 2r 所成的比为 ,则定比分x 1 x 21 y 1 y 2x 1时,就得到线段 P 1P 2的中点坐标公式y说明:(1) 的意义,即分别为分点,起点,终点的坐标 . (2)在具体计算时应根据题设条件,灵活地确定起点,分点和 终点,并根据这些点确定对应的定比举例 17 (1)若 M( 3, 2) ,N(6, 1),且 结果: ( 6, 37) ;3(2)已知 A(a,0) , B(3,2 a),直线 y 1ax 与线段 AB 交于M ,且u A u M uur 2u M uu B ur,则 a r. 结果:2或 4 .十一、平移公式如果点 P(x,y)按向量 a r (h,k) 平移至 P(x,y) ,则 x x h,;曲线 f(x,y) 0按 y y k.向量 a r (h,k) 平移得曲线 f(x h,y k) 0.说明:( 1)函数按向量平移与平常“左加右减”有何联系?( 2) 向量平移具有坐标不变性,可别忘了啊!举例 18 (1)按向量 a r 把(2, 3)平移到(1, 2) ,则按向量 a r把点( 7,2)平 移到点 ________ . 结果: ( 8,3) ;(2)函数 y sin 2x 的图象按向量 a r平移后,所得函数的解析式是点坐标公式为特别地,当1).x 1 x 2 , 2 y 1 y 2 .2 在使用定比分点的坐标公式时, 应明确 (x,y) ,(x 1,y 1)、(x 2,y 2)13uM uuN ur,则点 P 的坐标为 uuu ury cos2x 1 ,则a r _________ . 结果:( ,1) .4 十二、向量中一些常用的结论1. 一个封闭图形首尾连接而成的向量和为零向量,要注意运用;2.模的性质:|a r| |b r| |a r b r| |a r| |b r|.(1)右边等号成立条件: (2)左边等号成立条件: (3)当 a r 、b r 不共线 |a r | 3. 三角形重心公式在 △ABC 中,若 A(x 1, y 1) , B(x 2,y 2) , C(x 3,y 3) ,则其重 心的 坐标为举例 19 若△ABC 的三边的中点分别为 心的坐标为 . 结果: 32,34.335. 三角形“三心”的向量表示G 为△ ABC 的重心,特别地 u P uu A r u P u Bur u P u C ur 0r G为△ ABC 的重心 .uuur uuur uuur uuur uuur uuur(2)PA PB PB PC PC PA P 为△ ABC 的垂心 .uuuur uuur uuuur uuur uuuur uuur( 3 ) |AB|PC |BC|PA |CA|PB 0 P 为 △ ABC 的 内 心 ; 向 量 uuur uuur uu A u B ur uu A u C ur ( 0)所在直线过 △ ABC 的内心. |AB | | AC |6.点 P 分有向线段 u P 1uu P ur 2所成的比 向量形式设点 P 分有向线段 P 1P 2所成的比为 ,若 M 为平面内的任一点,则 uuuur uuuur uuuur uuuur u M uu P r MP 1MP 2,特别地 P 为有向线段 u P u 1u P ur 2的中点 u M uu P r MP 1MP 2. 127. 向 量 u P u A ur ,u P u B ur ,u P u C ur 中三终 点 A,B,C 共线 存 在实数 , ,使得 uuuruuur uuur PA PB PC 且1.举例 20 平面直角坐标系中, O 为坐标原点,已知两点 A(3,1) ,B( 1,3), 若点 C满足 OC 1OA 2OB ,其中 1, 2R 且 1 21, 则点 C 的轨迹是 . 结 果:直线 AB .a r 、b 同向或a r 、b a r 、b r 反向或r rr rrG(x 1 x 2 x 3 3y 1y 2y 3 ) 3)A(2,1) 、B( 3,4)、C( 1, 1),则 △ ABC 的重 uuur 1 uuur uuur uuur1) PG (PA PB PC)r。
(完整版)平面向量知识点及方法总结总结
平面向量知识点小结及常用解题方法一、平面向量两个定理1。
平面向量的基本定理 2.共线向量定理.二、平面向量的数量积1.向量b 在向量a 上的投影:||cos b θ,它是一个实数,但不一定大于0.2。
a b ⋅的几何意义:数量积a b ⋅等于a 的模||a 与b 在a 上的投影的积。
三坐标运算:设11(,)a x y =,22(,)b x y =,则(1)向量的加减法运算:1212(,)a b x x y y +=++,1212(,)a b x x y y -=--。
(2)实数与向量的积:1111(,)(,)a x y x y λλλλ==。
(3)若11(,)A x y ,22(,)B x y ,则2121(,)AB x x y y =--,即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标。
(4)平面向量数量积:1212a b x x y y ⋅=+.(5)向量的模:222222||||a a x y a x y ==+⇔=+。
四、向量平行(共线)的充要条件221212//(0)()(||||)0a b a b b a b a b x y y x λ⇔=≠⇔⋅=⇔-=.五、向量垂直的充要条件12120||||0a b a b a b a b x x y y ⊥⇔⋅=⇔+=-⇔+=。
六.121211222221(,),(,)cos ,.x x y y a x y b x y a b x y x +===+七、向量中一些常用的结论1.三角形重心公式在ABC △中,若11(,)A x y ,22(,)B x y ,33(,)C x y ,则重心坐标为123123(,)33x x x y y y G ++++。
2.三角形“三心"的向量表示(1)0GA GB GC G ++=⇔为△ABC 的重心。
(2)PA PB PB PC PC PA P ⋅=⋅=⋅⇔为△ABC 的垂心.(3)||||||0AB PC BC PA CA PB P ++=⇔为△ABC 的内心;3. 向量,,PA PB PC 中三终点,,A B C 共线⇔存在实数,αβ,使得PA PB PC αβ=+且1αβ+=.4. 在ABC △中若D 为BC 边中点则1()2AD AB AC =+5.与AB 共线的单位向量是||AB AB ±七.向量问题中常用的方法(一)基本结论的应用1。
高中数学平面向量知识点归纳总结
高中数学平面向量知识点归纳总结
1. 平面向量的定义
平面向量是具有大小和方向的有序数对,可以用箭头表示。
常
用字母表示向量,如a、b等。
向量的大小可以用模表示,记作|a|。
2. 平面向量的运算
2.1 向量的加法
向量的加法是指将两个向量按照相同的方向连接起来,得到一
个新的向量。
加法满足交换律和结合律。
2.2 向量的减法
向量的减法是指将两个向量相加的相反向量相加,得到一个新
的向量。
2.3 向量的数量积
向量的数量积(点积)是指两个向量相乘后的数量,用点表示,记作a · b。
数量积满足交换律和分配律。
2.4 向量的向量积
向量的向量积(叉积)是指两个向量相乘后的向量,用叉表示,记作a × b。
3. 平面向量的性质
3.1 平行向量
如果两个向量的方向相同或相反,则它们是平行向量。
平行向
量的数量积等于两个向量的模的乘积。
3.2 垂直向量
如果两个向量的数量积为0,则它们是垂直向量。
垂直向量的
点积为0。
3.3 向量的模
向量的模表示向量的大小,可以使用勾股定理求解。
4. 平面向量的应用
平面向量在几何中有广泛的应用,可以用来表示平移、旋转和
线段的位置关系等。
在物理学中,平面向量可以用来表示力的大小
和方向。
以上是关于高中数学平面向量的基本知识点归纳总结。
希望能够对你的学习和理解有所帮助!。
平面向量知识点归纳
平面向量一.向量有关概念:1.向量的概念:既有大小又有方向的量,注意向量与数量的区别。
向量常用有向线段来表示,注意不能说向量就就是有向线段,为什么?(向量可以平移)。
如:2.零向量:长度为0的向量叫零向量,记作:,注意零向量的方向就是任意的;3.单位向量:长度为一个单位长度的向量叫做单位向量(与AB u u u r共线的单位向量就是||AB AB ±u u u r u u u r);4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;5.平行向量(也叫共线向量):方向相同或相反的非零向量、叫做平行向量,记作:∥,规定零向量与任何向量平行。
提醒:①相等向量一定就是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行就是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0r);④三点A B C 、、共线⇔ AB AC u u u r u u u r、共线; 6.相反向量:长度相等方向相反的向量叫做相反向量。
的相反向量就是-。
如下列命题:(1)若a b =r r,则a b =r r 。
(2)两个向量相等的充要条件就是它们的起点相同,终点相同。
(3)若AB DC =u u u r u u u r ,则ABCD 就是平行四边形。
(4)若ABCD 就是平行四边形,则AB DC =u u u r u u u r 。
(5)若,a b b c ==r r r r ,则a c =r r。
(6)若//,//a b b c r r r r ,则//a c r r。
其中正确的就是_______(答:(4)(5))二.向量的表示方法:1.几何表示法:用带箭头的有向线段表示,如,注意起点在前,终点在后;2.符号表示法:用一个小写的英文字母来表示,如,,等;3.坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量,j 为基底,则平面内的任一向量可表示为(),a xi y j x y =+=r r r,称(),x y 为向量的坐标,=(),x y 叫做向量的坐标表示。
高中数学平面向量知识点总结
高中数学平面向量知识点总结一、平面向量的基本概念1. 定义:平面向量是有大小和方向的量,可以用有序实数对表示。
2. 表示法:通常用小写字母加箭头表示,如 $\vec{a}$。
3. 相等:两个向量大小相等且方向相同时,这两个向量相等。
4. 零向量:大小为零的向量,没有特定方向。
二、平面向量的运算1. 加法:- 规则:平行四边形法则或三角形法则。
- 交换律:$\vec{a} + \vec{b} = \vec{b} + \vec{a}$。
- 结合律:$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$。
2. 减法:- 规则:与加法类似,但方向相反。
- 逆向量:$\vec{a} - \vec{a} = \vec{0}$。
3. 数乘:- 定义:向量与实数相乘。
- 规则:$k\vec{a} = \vec{a}$ 的长度变为 $|k|$ 倍,方向与$k$ 的符号一致。
- 分配律:$(k + l)\vec{a} = k\vec{a} + l\vec{a}$。
- 结合律:$k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}$。
三、平面向量的坐标表示1. 坐标表示:$\vec{a} = (x, y)$,其中 $x$ 和 $y$ 是向量在坐标轴上的分量。
2. 几何意义:$x$ 分量表示向量在 $x$ 轴上的长度,$y$ 分量表示向量在 $y$ 轴上的长度。
3. 坐标运算:- 加法:$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$。
- 减法:$(x_1, y_1) - (x_2, y_2) = (x_1 - x_2, y_1 - y_2)$。
- 数乘:$k(x, y) = (kx, ky)$。
四、平面向量的模与单位向量1. 模(长度):- 定义:向量从原点到其终点的距离。
第六章平面向量知识点总结
第六章平面向量知识点总结一、平面向量的概念平面向量是指平面上具有大小和方向的量。
它是由起点和终点确定的有向线段。
在平面直角坐标系中,平面向量可以表示为一个有序数对(a, b),其中a表示横坐标的增量,b表示纵坐标的增量。
二、平面向量的表示1. 平面向量的概念平面向量是由两个向量确定的,即它的坐标是有序对(x, y)。
例如平面向量a=(1, 2),其中1表示横坐标的增量,2表示纵坐标的增量。
2. 平面向量的运算(1)平面向量的加法平面向量的加法是指将两个平面向量的对应坐标相加,即(a, b)+(c, d)=(a+c, b+d)。
(2)数乘对于平面向量a=(x, y)和实数k,数乘ka=(kx, ky)。
三、平面向量的运算平面向量的运算包括:平面向量的加法、数乘、模长和方向角。
1. 平面向量的加法设平面向量a=(x₁, y₁),b=(x₂, y₂),则a+b=(x₁+x₂, y₁+y₂)。
2. 数乘设平面向量a=(x, y),实数k,则ka=(kx, ky)。
3. 模长平面向量的模长表示向量的长度,它的计算公式是:|a| = √(x² + y²)。
4. 方向角平面向量的方向角表示向量与x轴的夹角。
它的计算公式是:θ = arctan(y/x)。
四、平面向量的线性运算1. 向量的共线如果平面向量a=λb,则a和b共线。
2. 向量的线性组合设有向量a、b,向量a' = λa,b' = μb,如果a' + b' = 0,那么向量a和b线性无关。
也就是说,向量a和向量b不是平行的,且不是共线的。
3. 平面向量线性运算的性质(1)结合律(a+b)+c=a+(b+c)(2)交换律a+b=b+a(3)数乘结合律k(la)=(kl)a五、平面向量的坐标位置关系1. 向量的平行平面向量a和b平行的充要条件是a=λb。
2. 向量的垂直平面向量a和b垂直的充要条件是a·b=0。
平面向量知识点总结归纳
平面向量知识点总结归纳一、向量的基本概念1. 向量的定义既有大小又有方向的量叫做向量。
例如,物理学中的力、位移、速度等都是向量。
向量可以用有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。
向量的大小叫做向量的模,记作a(对于向量a)。
模为0的向量叫做零向量,记作0,零向量的方向是任意的。
模为1的向量叫做单位向量。
2. 向量的表示方法几何表示:用有向线段表示向量,有向线段的起点和终点分别表示向量的起点和终点。
例如,以A为起点,B为终点的向量记作AB。
字母表示:用小写字母a,b,c,表示向量。
3. 相等向量与平行向量相等向量:长度相等且方向相同的向量叫做相等向量。
若a=b,则a=b且a与b方向相同。
例如,在平行四边形ABCD中,AB=DC。
平行向量(共线向量):方向相同或相反的非零向量叫做平行向量。
规定零向量与任意向量平行。
若a与b是平行向量,则记作ab。
例如,在梯形ABCD中,ADBC。
二、向量的运算1. 向量的加法三角形法则已知非零向量a,b,在平面内任取一点A,作AB=a,BC=b,则向量AC=a+b。
例如,若a表示向东3个单位长度的位移,b表示向北4个单位长度的位移,那么a+b表示向东北方向5个单位长度(根据勾股定理3^2+4^2 = 5)的位移。
平行四边形法则已知两个不共线向量a,b,作AB=a,AD=b,以AB,AD为邻边作平行四边形ABCD,则向量AC=a+b。
运算律:向量加法满足交换律a+b=b+a,结合律(a+b)+c=a+(b+c)。
2. 向量的减法定义:向量a与b的差ab=a+(b),其中b是b的相反向量,b与b大小相等,方向相反。
三角形法则:已知向量a,b,在平面内任取一点O,作OA=a,OB=b,则向量BA=ab。
3. 向量的数乘定义:实数与向量a的积是一个向量,记作a,它的长度a=a,它的方向当> 0时与a相同,当<0时与a相反,当= 0时,a=0。
平面向量知识点归纳总结
平面向量知识点归纳总结平面向量是数学中的一个重要概念,它在几何、物理、工程等领域中具有广泛的应用。
本文将对平面向量的定义、运算、性质和常见应用进行归纳总结。
一、平面向量的定义平面向量是具有大小和方向的量,用箭头表示。
一个平面向量由起点和终点确定,可以用有序对表示。
例如,向量AB表示从点A指向点B的有向线段,记作AB。
二、向量的表示方法1. 坐标表示:平面向量可以用坐标表示,一个平面上的向量可以表示为(a, b),其中a和b分别表示向量在x轴和y轴上的分量。
2. 线段表示:向量的起点和终点可以表示为两个点的坐标,向量本身可以表示为连接这两个点的线段。
三、向量的运算1. 加法运算:向量的加法运算满足平行四边形法则。
设有向量A和B,它们的和记作A + B,可以通过将A的终点与B的起点相连,得到一条新的有向线段,该线段的起点为A的起点,终点为B的终点。
新的线段即为向量A + B。
2. 数乘运算:向量的数乘运算满足分配律和结合律。
设有向量A和实数k,它们的数乘记作kA,向量kA的长度是向量A长度的k倍,方向与A相同(当k>0时)或相反(当k<0时)。
3. 减法运算:向量的减法可以通过将减数取负后与被减数进行加法运算得到。
即A - B = A + (-B)。
4. 零向量:零向量是长度为0的向量,记作0。
任何向量与零向量相加等于该向量本身。
四、向量的性质1. 平移不变性:向量在平面上进行平移操作时,大小和方向保持不变。
2. 相等性:两个向量相等,当且仅当它们的起点和终点重合。
3. 平行性:两个向量平行,当且仅当它们的方向相同或相反。
4. 共线性:三个或三个以上的向量共线,当且仅当它们在同一条直线上或平行于同一条直线。
5. 长度:向量的长度可以利用勾股定理计算得到,即向量AB的长度为√(x2 - x1)² + (y2 - y1)²。
6. 单位向量:长度为1的向量称为单位向量。
五、向量的应用1. 向量的分解:一个向量可以被分解成x轴和y轴上的两个分量。
(完整版)高中数学平面向量知识点总结
高中数学必修4之平面向量知识点归纳一.向量的基本概念与基本运算1、向量的概念:①向量:既有大小又有方向的量向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行③单位向量:模为1个单位长度的向量④平行向量(共线向量):方向相同或相反的非零向量⑤相等向量:长度相等且方向相同的向量2、向量加法:设,ABa BCb uu u ru uu r r r ,则a +b r =AB BC u u u r u u u r =ACuu u r (1)a a a 00;(2)向量加法满足交换律与结合律;AB BCCDPQQRAR u u u r u u u r u uu r u u u r u u u r u u u rL,但这时必须“首尾相连”.3、向量的减法:①相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量②向量减法:向量a 加上b 的相反向量叫做a 与b 的差,③作图法:b a可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点)4、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下:(Ⅰ)a a ;(Ⅱ)当0时,λa 的方向与a 的方向相同;当时,λa 的方向与a 的方向相反;当0时,0a,方向是任意的5、两个向量共线定理:向量b 与非零向量a 共线有且只有一个实数,使得b =a6、平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21,使:2211e ea,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底二.平面向量的坐标表示1平面向量的坐标表示:平面内的任一向量a r可表示成axi yj r rr ,记作a r=(x,y)。
2平面向量的坐标运算:(1)若1122,,,ax y bx y rr ,则1212,a bx x y y r r (2)若2211,,,y x B y x A ,则2121,AB x x y y u u u r(3)若a r =(x,y),则a r =(x, y)(4)若1122,,,a x y b x y r r ,则1221//0a b x y x y rr (5)若1122,,,ax y bx y rr ,则1212a bx x y y r r 若ab rr ,则02121y y x x 三.平面向量的数量积1两个向量的数量积:已知两个非零向量a r 与b r,它们的夹角为,则a r ·b r =︱a r︱·︱b r ︱cos 叫做a r与b r 的数量积(或内积)规定00ar r 2向量的投影:︱b r ︱cos =||a b a r r r ∈R ,称为向量b r 在a r方向上的投影投影的绝对值称为射影3数量积的几何意义:a r ·b r 等于a r 的长度与b r 在a r方向上的投影的乘积4向量的模与平方的关系:22||a a a a r r r r 5乘法公式成立:2222a b ab a b a b r r r r r r r r ;2222abaa bb r r r r r r 222aa bbr r r r 6平面向量数量积的运算律:①交换律成立:a bb arr r r ②对实数的结合律成立:a b a b a bRr r r r r r ③分配律成立:abca cb c r r r r r r r ca br r r 特别注意:(1)结合律不成立:ab ca b c r r r r r r ;(2)消去律不成立a ba cr r r r 不能得到bc rr (3)a b r r =0不能得到a r =0r或b r =0r 7两个向量的数量积的坐标运算:已知两个向量1122(,),(,)ax y b x y rr,则a r ·b r=1212x x y y 8向量的夹角:已知两个非零向量a r与b r ,作OA u u u r =a r , OB uuu r =b r ,则∠AOB=(01800)叫做向量a r 与b r 的夹角cos =cos,a b a ba b??r r r r r r =222221212121y x y x y y x x 当且仅当两个非零向量a r 与b r 同方向时,θ=00,当且仅当a r与b r 反方向时θ=1800,同时0r与其它任何非零向量之间不谈夹角这一问题9垂直:如果a r 与b r 的夹角为900则称a r 与b r 垂直,记作a r⊥br 10两个非零向量垂直的充要条件:a ⊥ba ·b =O02121y y x x 平面向量数量积的性质一、选择题1.在△ABC 中,AB =AC ,D ,E 分别是AB ,AC 的中点,则().A .AB 与AC 共线B .DE 与CB 共线C .AD 与AE 相等D .AD 与BD 相等2.下列命题正确的是().A .向量AB 与BA 是两平行向量B .若a ,b 都是单位向量,则a =bC .若AB =DC ,则A ,B ,C ,D 四点构成平行四边形D .两向量相等的充要条件是它们的始点、终点相同3.平面直角坐标系中,O 为坐标原点,已知两点A(3,1),B(-1,3),若点C满足OC =OA +OB ,其中,∈R ,且+=1,则点C 的轨迹方程为().A .3x +2y -11=0B .(x -1)2+(y -1)2=5C .2x -y =0D .x +2y -5=04.已知a 、b 是非零向量且满足(a -2b)⊥a ,(b -2a)⊥b ,则a 与b 的夹角是A .6B .3C .23D .565.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C ),则AP =A .λ(AB +AD ),λ∈(0,1)B .λ(AB +BC ),λ∈(0,22)C .λ(AB -AD ),λ∈(0,1)D .λ(AB -BC ),λ∈(0,22)6.△ABC 中,D ,E ,F 分别是AB ,BC ,AC 的中点,则DF =().(第1题)A.EF+ED B.EF-DE C.EF+AD D.EF+AF7.若平面向量a与b的夹角为60°,|b|=4,(a+2b)·(a-3b)=-72,则向量a的模为().A.2 B.4 C.6 D.128.点O是三角形ABC所在平面内的一点,满足OA·OB=OB·OC=OC·OA,则点O是△ABC的().A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点9.在四边形ABCD中,AB=a+2b,BC=-4a-b,DC=-5a-3b,其中a,b不共线,则四边形ABCD为().A.平行四边形B.矩形C.梯形D.菱形10.如图,梯形ABCD中,|AD|=|BC|,EF∥AB∥CD则相等向量是().A.AD与BC B.OA与OBC.AC与BD D.EO与OF二、填空题11.已知向量OA=(k,12),OB=(4,5),OC=(-k,10),且A,B,C三点共线,则k=.12.已知向量a=(x+3,x2-3x-4)与MN相等,其中M(-1,3),N(1,3),则x=.13.已知平面上三点A,B,C满足|AB|=3,|BC|=4,|CA|=5,则AB·BC +BC·CA+CA·AB的值等于.14.给定两个向量a=(3,4),b=(2,-1),且(a+mb)⊥(a-b),则实数m 等于.15.已知A,B,C三点不共线,O是△ABC内的一点,若OA+OB+OC=0,则O是△ABC的.16.设平面内有四边形ABCD和点O,OA=a,OB=b,OC=c, OD=d,若a+c=b+d,则四边形ABCD的形状是.三、解答题17.已知点A(2,3),B(5,4),C(7,10),若点P满足AP=AB+λAC(λ∈R),试求λ为何值时,点P在第三象限内?(第10题)18.如图,已知△ABC,A(7,8),B(3,5),C(4,3),M,N,D分别是AB,AC,BC的中点,且MN与AD交于F,求DF.(第18题)19.如图,在正方形ABCD中,E,F分别为AB,BC的中点,求证:AF⊥DE(利用向量证明).(第19题) 20.已知向量a=(cos θ,sin θ),向量b=(3,-1),则|2a-b|的最大值.一、选择题1.B 解析:如图,AB 与AC ,AD 与AE 不平行,AD 与BD 共线反向.2.A解析:两个单位向量可能方向不同,故B 不对.若AB =DC ,可能A ,B ,C ,D 四点共线,故C 不对.两向量相等的充要条件是大小相等,方向相同,故D 也不对.3.D解析:提示:设OC =(x ,y),OA =(3,1),OB =(-1,3),OA =(3,),OB =(-,3),又OA +OB =(3-,+3),∴(x ,y)=(3-,+3),∴33+=-=y x ,又+=1,由此得到答案为D .4.B解析:∵(a -2b)⊥a ,(b -2a)⊥b ,∴(a -2b)·a =a 2-2a ·b =0,(b -2a)·b =b 2-2a ·b =0,∴a 2=b 2,即|a|=|b|.∴|a|2=2|a||b|cos θ=2|a|2cos θ.解得cos θ=21.∴a 与b 的夹角是3π.5.A解析:由平行四边形法则,AB +AD =AC ,又AB +BC =AC ,由λ的范围和向量数乘的长度,λ∈(0,1).6.D解析:如图,∵AF =DE ,∴DF =DE +EF =EF +AF .7.C解析:由(a +2b)·(a -3b)=-72,得a 2-a ·b -6b 2=-72.而|b|=4,a ·b =|a||b|cos 60°=2|a|,∴|a|2-2|a|-96=-72,解得|a|=6.8.D 解析:由OA ·OB =OB ·OC =OC ·OA ,得OA ·OB =OC ·OA ,即OA ·(OC -OB )=0,故BC ·OA =0,BC ⊥OA ,同理可证AC ⊥OB ,∴O 是△ABC 的三条高的交点.9.C解析:∵AD =AB +BC +D C =-8a -2b =2BC ,∴AD ∥BC 且|AD |≠|BC |.∴四边形ABCD 为梯形.10.D解析:AD 与BC ,AC 与BD ,OA 与OB 方向都不相同,不是相等向量.(第1题)二、填空题11.-32.解析:A ,B ,C 三点共线等价于AB ,BC 共线,AB =OB -OA =(4,5)-(k ,12)=(4-k ,-7),BC =OC -OB =(-k ,10)-(4,5)=(-k -4,5),又A ,B ,C 三点共线,∴5(4-k)=-7(-k -4),∴k =-32.12.-1.解析:∵M(-1,3),N(1,3),∴MN =(2,0),又a =MN ,∴=4-3-2=3+2x x x 解得4=1=-1=-x x x 或∴x =-1.13.-25.解析:思路1:∵AB =3,BC =4,CA =5,∴△ABC 为直角三角形且∠ABC =90°,即AB ⊥BC ,∴AB ·BC =0,∴AB ·BC +BC ·CA +CA ·AB=BC ·CA +CA ·AB =CA ·(BC +AB )=-(CA )2=-2CA =-25.思路2:∵AB =3,BC =4,CA =5,∴∠ABC =90°,∴cos ∠CAB =CAAB =53,cos ∠BCA =CABC=54.根据数积定义,结合图(右图)知AB ·BC =0,BC ·CA =BC ·CA cos ∠ACE =4×5×(-54)=-16,CA ·AB =CA ·AB cos ∠BAD =3×5×(-53)=-9.∴AB ·BC +BC ·CA +CA ·AB =0―16―9=-25.14.323.解析:a +mb =(3+2m ,4-m),a -b =(1,5).∵(a +mb)⊥(a -b),∴ (a +mb)·(a -b)=(3+2m)×1+(4-m)×5=0m =323.15.答案:重心.解析:如图,以OA ,OC 为邻边作□AOCF交AC 于点E ,则OF =OA +OC ,又OA +OC =-OB ,(第15题)D(第13题)∴OF =2OE =-OB .O 是△ABC 的重心.16.答案:平行四边形.解析:∵a +c =b +d ,∴a -b =d -c ,∴BA =CD .∴四边形ABCD 为平行四边形.三、解答题17.λ<-1.解析:设点P 的坐标为(x ,y),则AP =(x ,y)-(2,3)=(x -2,y -3).AB +λAC =(5,4)-(2,3)+λ[(7,10)-(2,3)]=(3,1)+λ(5,7)=(3+5λ,1+7λ).∵AP =AB +λAC ,∴ (x -2,y -3)=(3+5λ,1+7λ).∴713532yx 即7455yx 要使点P 在第三象限内,只需74055解得λ<-1.18.DF =(47,2).解析:∵A(7,8),B(3,5),C (4,3),AB =(-4,-3),AC =(-3,-5).又D 是BC 的中点,∴AD =21(AB +AC )=21(-4-3,-3-5)=21(-7,-8)=(-27,-4).又M ,N 分别是AB ,AC 的中点,∴F 是AD 的中点,∴DF =-FD =-21AD =-21(-27,-4)=(47,2).19.证明:设AB =a ,AD =b ,则AF =a +21b ,ED =b -21a .∴AF ·ED =(a +21b)·(b -21a)=21b 2-21a 2+43a ·b .又AB ⊥AD ,且AB =AD ,∴a 2=b 2,a ·b =0.∴AF ·ED =0,∴AF ⊥ED .本题也可以建平面直角坐标系后进行证明.20.分析:思路1:2a -b =(2cos θ-3,2sin θ+1),∴|2a -b|2=(2cos θ-3)2+(2sin θ+1)2=8+4sin θ-43cos θ.又4sin θ-43cos θ=8(sin θcos3π-cos θsin3π)=8sin(θ-3π),最大值为8,∴|2a -b|2的最大值为16,∴|2a -b|的最大值为4.思路2:将向量2a ,b 平移,使它们的起点与原点重合,则|2a -b|表示2a ,b终点间的距离.|2a|=2,所以2a 的终点是以原点为圆心,2为半径的圆上的动点P ,b 的终点是该圆上的一个定点Q ,由圆的知识可知,|PQ|的最大值为直径的长为4.(第18题)(第19题)。
平面向量知识点归纳总结图
平面向量知识点归纳总结图一、平面向量的定义1.1 平面向量的概念在平面上任意选定一个起点和一个终点之间的有序对称就称为平面向量,记作。
平面向量可以用有向线段来表示,有向线段的起点就是平面向量的起点,终点就是平面向量的终点。
1.2 平面向量的表示平面向量可以用坐标表示,设平面向量的起点为原点O,终点为点A(x, y),则平面向量记作。
1.3 平面向量的相等两个平面向量相等指的是它们的模相等,并且方向相同,即两个平面向量相等当且仅当。
二、平面向量的运算2.1 平面向量的加法设和,平面向量+的结果是一个新的平面向量,其起点为向量的起点,终点为向量的终点。
2.2 平面向量的减法设,平面向量-的结果是一个新的平面向量,其起点为向量的起点,终点为向量的终点。
2.3 数乘设,数的积是一个新的平面向量,其长度是向量的倍数,方向与向量相同。
三、平面向量的运算性质3.1 交换律3.2 结合律3.3 分配律四、平面向量的应用4.1 平面向量的线段设线段的两个端点分别为A(x1, y1)和B(x2, y2),则向量的终点减去起点的坐标差即为该线段的平面向量表示。
4.2 平面向量的位置关系(1) 共线若向量平行,则它们共线。
(2) 垂直若,则它们垂直。
4.3 平面向量的运动学应用若一个物体在平面内的任意两点A、B之间作平移运动,其位矢向量表示。
五、平面向量的数量积5.1 定义设,,则积。
5.2 计算(1)坐标法(2)数量积的几何意义5.3 性质(1)交换律(2)结合律(3)分配律5.4 应用(1)判断共线若,则共线。
(2)判断垂直若,则垂直。
(3)夹角公式若,则夹角α的余弦值是的数量积。
六、平面向量的叉乘6.1 定义设,把数视为数乘6.2 计算6.3 性质6.4 应用七、平面向量的混合积7.1 定义设、,则混合积7.2 计算7.3 性质7.4 应用八、几何向量8.1 平面向量的模8.2 单位向量8.3 平行四边形法则8.4 平面向量的夹角公式8.5 平面向量的坐标表示8.6 平面向量的位置关系总结平面向量是高中数学中的一个重要概念,它不仅有着丰富的几何意义,还具有广泛的物理意义。
平面向量知识点归纳总结
平面向量是指在平面上具有大小和方向的量。
下面是平面向量的一些重要知识点的归纳总结:1.平面向量的表示:●使用箭头或小写字母加上一个横线来表示,如a→或AB。
●平面向量通常用两个有序实数(分量)表示,如a = (a₁, a₂)。
2.向量的模/长度:●向量的模/长度表示为|a|,计算公式为|a| = √(a₁²+ a₂²)。
3.向量的方向角:●向量与正x 轴之间的夹角称为方向角。
●方向角可以使用三角函数来表示,如tanθ= a₂/a₁。
4.向量的运算:●向量的加法:a + b = (a₁+ b₁, a₂+ b₂)。
●向量的减法:a - b = (a₁- b₁, a₂- b₂)。
●数乘:k * a = (k * a₁, k * a₂),其中k 为实数。
5.向量的数量积(点积):●向量a 和向量b 的数量积(点积)表示为a ·b。
●计算公式为a ·b = a₁* b₁+ a₂* b₂。
●点积满足交换律:a ·b = b ·a。
●点积的几何意义:a ·b = |a| * |b| * cosθ,其中θ为a 和b 之间的夹角。
6.向量的矢量积(叉积):●向量a 和向量b 的矢量积(叉积)表示为a ×b。
●计算公式为a ×b = (0, 0, a₁* b₂- a₂* b₁),即得到一个垂直于平面的向量。
●矢量积满足反交换律:a ×b = - (b ×a)。
●矢量积的几何意义:|a ×b| = |a| * |b| * sinθ,其中θ为a 和b 之间的夹角。
7.平行向量和共线向量:●平行向量指方向相同或相反的向量。
●共线向量指在同一直线上的向量。
●如果两个向量平行,则它们的叉积为零。
8.向量的投影:●向量a 在向量b 上的投影表示为projₐb。
●计算公式为projₐb = (|a| * |b| * cosθ) * u,其中θ为a 和b 之间的夹角,u 为b 的单位向量。
平面向量知识点总结归纳
平面向量知识点总结归纳1、向量:既有大小,又有方向的量.数量:只有大小,没有方向的量.有向线段的三要素:起点、方向、长度.零向量:长度为0 的向量.单位向量:长度等于1个单位的向量.平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行.相等向量:长度相等且方向相同的向量.2、向量加法运算:⑴三角形法则的特点:首尾相连.⑵平行四边形法则的特点:共起点.⑶三角形不等式: a b a b a b⑷运算性质:①交换律:a ;②结合律:(a b c a b c ③aCaBbAa b C -AB=B C⑸坐标运算:设a =x y ),b =(x , y ),则a +b =x +x , y +y ).1 2 1 21 12 23、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设a x y ),b =(x , y ),则a b x -x , y -y ).1 12 2 1 2 1 2μ) a a aa b a be b = λa .设A 、B 两点的坐标分别为( x , y ) , ( x , y ) ,则 - x , y - y ).4、向量数乘运算:1122212⑴实数λ 与向量 a 的积是一个向量的运算叫做向量的数乘,记作 λa ① λaa②当λ > 0 时, λa 的方向与a 的方向相同;当λ < 0 时, λa 的方向与a 反;当λ = 0时, λa⑵运算律:① λ (μa a⑶坐标运算:设 ax y , 则λax y ) = (λx ,λ y ) .5、向量共线定理:向量 a a b 共线,当且仅当有唯一一个实数λ ,使设a = x y ), b = ( x , y ) ,其中b ≠ 0 ,则当且仅当 x y - x y= 0 时,向量 a11 2 2 1 22 1b (b ≠ 0 )共线.6、平面向量基本定理:如果e 1 、e 2 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ 、λ ,使 a = e + λ e .(不共12 1 1 2 2线的向量 、 12作为这一平面内所有向量的一组基底)7、分点坐标公式:设点P 是线段P P 上的一点, P 、P 的坐标分别是(x , y ) ,1 2⎛ x + λ x 121 1y + λ y ⎫( x , y ) ,当P P = λPP 时,点P 的坐标是 1 2 , 1 + λ λ 2 ⎪ . 2 2 1 2⎝ 1 1+ ⎭ 8、平面向量的数量积: ⑴ a ba ba b 0 ≤ θ ≤ 180 .零向量与任一向量的数量积为 0 .⑵性质:设 ab是非零向量,则① a b a b②当 ab向时,⑷坐标运算:设两个非零向量 a = x y ),b = ( x , y ) ,则a ⋅b = x x + y y . 11221 21 2AB = ( x 1a b a b a b向时, a ba b a ⋅ a = a = a a = a ⋅aa ⋅b ≤ a b⑶运算律:① a b b a λa ⋅ b = λ a ⋅ b = a ⋅ λb(a + b ⋅ c = a ⋅c + b ⋅ ce若a x y ,则a x y2 ,或a x y2 .设a =x y ),b =(x , y ),则a b x x +y y = 0 .1 12 2 1 2 1 2设a 是非零向量,a x y ),b =(x , y ),θ是a 与b 的夹角,则cosθ=1 12 2.aa bx +y y2 1 2x2 +y2 x2 +y21 12 2。
平面向量的数学知识点总结
平面向量的数学知识点总结一、向量的定义及基本性质1. 向量的定义向量是具有大小和方向的量,用箭头表示。
在平面坐标系中,向量可以用有序数对表示。
向量通常用小写粗体字母表示,如a、b。
2. 向量的相等两个向量相等的条件是它们的大小和方向都相同。
即向量a=b当且仅当|a|=|b|且a与b的方向相同。
3. 向量的加法向量的加法满足交换律和结合律。
即a+b=b+a,(a+b)+c=a+(b+c)。
4. 向量的数乘向量的数乘满足结合律和分配律。
即k*(a+b)=k*a+k*b,(k+m)*a=k*a+k*m。
5. 向量的减法向量的减法可以用加法和数乘表示。
即a-b=a+(-1)*b。
6. 向量的数量积向量的数量积(又称点积、内积)是向量的一种乘法。
定义为a·b=|a|*|b|*cos(θ),其中θ为a和b之间的夹角。
7. 向量的性质(1)向量的模长:|a|=√(a1²+a2²);(2)向量的共线:如果向量a与向量b共线,那么它们的数量积为0,即a·b=0;(3)向量的夹角:cos(θ)=a·b/(|a|*|b|)。
二、平面向量的坐标表示1. 平面向量的坐标表示平面向量可以用有序数对表示。
如向量a可以表示为(a1,a2)。
2. 平面向量的坐标运算(1)向量的加法:a+b=(a1+b1,a2+b2);(2)向量的数乘:k*a=(k*a1,k*a2);(3)向量的减法:a-b=a+(-1)*b。
三、向量的线性运算1. 向量的线性相关性如果存在不全为0的实数λ1、λ2,使得λ1a+λ2b=0,则向量a与向量b线性相关。
2. 向量的线性无关性如果向量a与向量b线性无关,那么不存在不全为0的实数λ1、λ2,使得λ1a+λ2b=0。
3. 向量的线性表示对于线性无关的n个向量a1、a2、…、an,可以表示任意向量b的线性组合。
即存在唯一的实数λ1、λ2、…、λn,使得b=λ1a1+λ2a2+…+λnan。
平面向量知识点归纳
向量板块公式1.向量的基本概念(1)向量:有大小,有方向的量. (2)向量是可以任意平移的. (3)向量的表示:①小写字母法(印刷体:a ;手写体a ) ②有向线段法:AB (终点指向起点) (4)向量的大小:即为向量的长度,常叫向量的模.记为||a 或||(5)向量的角:两向量起点相同,两向量a 与b 所形成的夹角,记为><b a ,.向量的角的取值范围为]180,0[︒︒,当︒>=<0,b a 时,两个向量方向一致,当︒>=<180,b a 时,两个向量的方向相反,当︒>=<90,b a 时,两个向量垂直.(6)单位向量:长度为1的向量.即1||=a ,则a 为单位向量.(7)零向量:长度为0的向量.即0||=a ,则a 为零向量.(规定零向量的方向任意的) (8)共线向量:共线向量也角平行向量,即方向相同或相反的向量.(规定:零向量与任意向量平行)(9)相等向量:大小相等方向相同的两个向量. (10)反向量:大小相等方向相反的两个向量.2.向量的坐标: 若),(),,(2211y x B y x A ,则),(1212y y x x --=3.向量的运算 =a ),(11y x ,=b ),(22y x (1)向量加向量 b a + (结果为向量)①几何法: 三角形法则:首尾顺次向量,和向量为最初起点指向最后终点. 平行四边形法则:起点相同,和向量为两向量所夹的一条对角线. ②坐标法:=+b a ),(2121y y x x ++ (2)向量减向量 b a - (结果为向量)①几何法:加上反向量(或者加法的逆运算) ②坐标法:=-b a ),(2121y y x x -- (3)实数乘向量a λ(结果为向量):①几何法:||||||a a λλ=,0>λ,与a 同向,0<λ,与a 同向,0=λ,方向任意.②坐标法:=a λ),(11y x λλ (4)向量乘向量 b a ⋅ (结果为实数)①几何法: ||||b a b a =⋅cos ><b a , ②坐标法: =⋅b a 2121y y x x + 4.实数与向量的转化:22||a a =5.向量的模 (1)几何法:2||a a = (2)坐标法:=||a 2121y x +6.向量的夹角余弦:cos ||||,b a ba b a ⋅>=<222221212121y x y x y y x x +++=7.向量的投影:向量a 在向量b 上的投影x : (1)几何法:x ||,cos ||b ba b a a ⋅>=<= (2)坐标法: x =⋅=||b b a 22222121y x y y x x ++8.向量的平行: (1)几何法: b a b a //⇒=λ (2)坐标法:⇒=2121y yx x b a // 9.向量垂直 (1)几何: b a b a ⊥⇒=⋅0 (2)坐标:02121=+y y x x b a ⊥⇒ 10.平面向量基本定理: (1)基底:两个不共线的非零向量21,e e ;(2)基本定理:对于平面内的一组基底21,e e ,对于平面内的任意一个向量p ,存在唯一一组实数21,λλ,使得2211e e p λλ+=11.在三角形中或在平行四边形中的做题技巧:坐标化,特殊化(1)若直接或者间接告诉直角,则在直角处建立坐标系,通过坐标法完成;(2)若对于任意三角形(没有直接或间接提供直角),则将某个角特殊为直角,建系找点,通过坐标法找到结果,然后逐个验证选项的正确性;若对于任意平行四边形,则将四边形变为矩形,建系找点,通过坐标法找到结果,然后逐个验证选项的正确性. 12.常用的结论:(1)=,则M 为AB 中点; (2)2=,则M 为AB 三等分点.。
平面向量知识点总结
平面向量知识点总结平面向量是代数学中的一个概念,它是描述平面上的位置和方向的量。
平面向量的知识点主要包括向量的定义和表示、向量的基本运算、向量的共线和平行、向量的数量积和叉积等。
下面是对这些知识点的详细总结:1.向量的定义和表示:平面向量是有大小和方向的量。
用有向线段来表示向量,线段的起点代表向量的作用点,线段的长度代表向量的大小,线段的方向代表向量的方向。
向量通常用小写字母加箭头表示,如向量a用符号→a表示。
向量可以用坐标表示法来表示。
在平面直角坐标系中,向量可以表示为一个具有两个分量的有序数对,如向量→a可以表示为→a=(a₁,a₂),其中a₁和a₂称为向量→a的分量。
2.向量的基本运算:平面向量有加法和乘法运算。
(1)向量的加法:向量的加法是指将两个向量的对应分量相加得到一个新的向量的运算。
即,如果→a=(a₁,a₂),→b=(b₁,b₂),则→a+→b=(a₁+b₁,a₂+b₂)。
(2)向量的乘法:向量的乘法有数量乘法和数量积的概念。
-数量乘法:向量的数量乘法是指将向量的每个分量乘以一个实数得到一个新的向量的运算。
即,如果→a=(a₁,a₂),k为实数,则k×→a=(k×a₁,k×a₂)。
- 数量积:向量的数量积,也叫点积或内积,是两个向量的数量积的值等于这两个向量的模的乘积与它们的夹角的余弦值的乘积,即→a·→b= ,→a,,→b,cosθ。
其中,θ为两个向量的夹角,→a,和,→b,为两个向量的模。
3.向量的共线和平行:两个向量共线的标准是它们的方向相同或相反。
换言之,如果有两个非零向量→a和→b,存在一个实数k,使得→a=k×→b,则→a与→b共线。
两个向量平行的标准是它们的方向相同。
换言之,如果有两个非零向量→a和→b,存在一个实数k,使得→a=k×→b,则→a与→b平行。
4.向量的数量积:向量的数量积,也叫点积或内积,是两个向量的数量积的值等于这两个向量的模的乘积与它们的夹角的余弦值的乘积。
平面向量的计算知识点总结
平面向量的计算知识点总结一、基本概念1. 平面向量的定义在二维空间中,若给定两个不平行的线段AB和CD,其起点O重合,那么可以确定一个平面向量a,记作a=→AB。
平面向量a表示由有向线段AB所确定的量,它的大小为线段AB的长度,方向为从A指向B。
2. 平面向量的表示平面向量可以用有向线段来表示,也可以用坐标表示。
若O为坐标原点,i为x轴正向单位向量,j为y轴正向单位向量,那么平面向量a可以表示为a=xi+yj,其中x为a在x轴上的投影,y为a在y轴上的投影。
3. 平行向量与相等向量如果两个平面向量a=→AB和b=→CD的方向相同,则称它们为平行向量;如果两个平面向量a=→AB和b=→CD的大小和方向均相同,则称它们为相等向量。
4. 向量的模和方向角给定平面向量a=xi+yj,它的模记作|a|,定义为平面向量a的长度,即|a|=sqrt(x^2+y^2);它的方向角记作θ,定义为平面向量a与x轴正向的夹角,即tanθ=y/x。
二、平面向量的运算1. 平面向量的加法给定平面向量a=→AB和b=→CD,它们的和记作c=a+b,c=→AC,其中C为有向线段AB和CD的终点。
平面向量的加法满足平行四边形法则和三角形法则,即将起点O作为共同点,以a和b为两条边作平行四边形或三角形的第三边。
2. 平面向量的减法给定平面向量a=→AB和b=→CD,它们的差记作c=a-b,c=→AD,其中D为有向线段AB和CD的终点。
平面向量的减法可以理解为将向量b取反后与向量a进行加法运算。
3. 数乘运算给定平面向量a=xi+yj和实数k,那么ka=kxi+kyj,它的模为|ka|=|k||a|,它的方向与向量a的方向相同(k>0)或相反(k<0),即乘积ka为向量a的长度的k倍或-k倍。
4. 数量积给定平面向量a=→AB和b=→CD,它们的数量积记作a·b,定义为|a|·|b|·cosθ,其中|a|和|b|分别为向量a和b的模,θ为向量a和b之间的夹角。
高中平面向量知识点总结
高中平面向量知识点总结一、平面向量的定义与性质1. 平面向量的定义平面向量是具有大小和方向的几何对象,通常用有向线段来表示,记作AB→,其中A、B 为起点和终点。
2. 平面向量的性质(1)平面向量相等的充分必要条件是它们的大小相等,方向相同。
(2)平面向量相加的几何意义:平面向量A+B的几何意义是以B为起点,在A的方向上作另一有向线段,则A+B的终点是以A、B的起点为起点、终点的有向线段。
(3)平面向量乘以实数的几何意义:实数k是负数时,它对平面向量的作用是对此向量作方向相反或绝对值为|k|倍的拉伸;k为正数时,它对平面向量的作用是对此向量作方向相同或绝对值为k倍的拉伸;k=0时,作用是得到一个零向量。
二、平面向量的基本运算1. 平面向量的加法平面向量A(a1, a2)、B(b1, b2)相加的结果是C(c1, c2),其中c1=a1+b1,c2=a2+b2。
2. 平面向量的减法平面向量A(a1, a2)、B(b1, b2)相减的结果是C(c1, c2),其中c1=a1-b1,c2=a2-b2。
3. 平面向量的数量积平面向量A(a1, a2)、B(b1, b2)的数量积是a1b1+a2b2,它是一个标量(实数)。
4. 平面向量的数量积的性质(1)交换律:A·B = B·A(2)分配律:A·(B+C) = A·B + A·C(3)A·A = |A|^2,其中|A|为向量A的模。
(4)若向量A与向量B夹角为θ,则A·B = |A||B|cosθ5. 平面向量的夹角若向量A、B夹角为θ,则A·B = |A||B|cosθ三、平面向量的应用1. 向量的共线性与共面性两个向量共线的充分必要条件是它们的方向相同或相反;三个向量共面的充分必要条件是它们的线性相关。
2. 向量的投影向量A在向量B上的投影是A在B方向上的长度,记作proj_BA = |A|cosθ,其中θ为A 与B的夹角。
平面向量知识点总结归纳
平面向量知识点总结归纳平面向量是二维空间内的向量,由两个有大小和方向的向量组成,可以用于描述平面内的位移、速度、加速度等物理量。
平面向量的知识点总结如下:一、平面向量的定义1. 平面向量是具有大小和方向的量,通常用有向线段来表示,记作→AB。
2. 平面向量的大小称为模,记作|→AB|或AB,表示向量的长度。
3. 平面向量的方向可以用与x轴的夹角来表示,记作θ。
二、平面向量的表示方法1. 基底表示法:使用坐标系中的两个非零向量作为基底,根据向量分解的原理将向量表示为基底的线性组合。
2. 基底表示法的基底选择:通常选择单位向量i和j作为基底,i表示x轴的正方向,j表示y轴的正方向。
三、平面向量的运算1. 加法:向量相加的结果是一个新的向量,新向量的大小等于两个向量大小的和,方向等于两个向量的夹角的平分线方向。
2. 减法:向量相减的结果是一个新的向量,新向量的大小等于两个向量大小的差,方向等于两个向量的夹角的平分线反方向。
3. 数乘:向量乘以一个标量得到的是一个新的向量,新向量的大小等于标量与原向量大小的乘积,方向与原向量相同(正向量)或相反(负向量)。
4. 内积:向量的内积是两个向量的大小之积与它们夹角的余弦值之积,可以用于求夹角、判断垂直和平行等。
5. 外积:向量的外积又称为叉乘,结果是一个新的向量,大小等于两个向量的大小之积与它们夹角的正弦值之积,方向垂直于这两个向量构成的平面。
6. 向量的投影:一个向量在另一个向量上的投影是一个新的向量,大小等于原向量与投影方向的夹角的余弦值与原向量大小之积,方向与投影方向相同。
四、平面向量的性质1. 平面向量相等的充要条件是它们大小相等且方向相同。
2. 平面向量相反的充要条件是它们大小相等且方向相反。
3. 平面向量与其负向量的和等于零向量。
4. 平面向量的模可以为零,只有零向量的模为零,其它向量的模都大于零。
5. 平面向量与标量相乘,改变的是向量的大小,不改变其方向。
平面向量知识点总结
平面向量知识点总结平面向量是高中数学中的重要概念之一,是解决平面几何问题的数学工具。
本文将对平面向量的概念、运算、线性组合、共线与共面、平行与垂直、向量投影、平面的方程、向量积等知识点进行总结,并介绍一些相关的解题技巧。
一、概念1. 定义:平面向量是具有大小和方向的量,一般用有向线段表示。
2. 向量的模:向量的模表示向量的长度,用||AB||或 |AB| 表示。
3. 零向量:长度为零,没有方向的向量,记作0。
4. 平移:向量可以表示平面上的平移,即通过向量的起点和终点来表示移动的方向和距离。
二、运算1. 向量的加法:设有向线段AB和AC,以A为起点,AB的终点是B,AC的终点是C,则向量AB加上向量AC等于以A为起点,以C为终点的向量AD。
2. 向量的减法:向量的减法可以理解为向量加法的逆运算,即向量A减去向量B等于向量A加上向量B的相反向量。
3. 向量的数乘:向量的数乘是指用实数k乘以一个向量A,得到的结果是长度为k倍的向量,且方向与A相同(当k大于0)或相反(当k小于0)。
4. 向量的点乘:设A、B为两个向量,其夹角为θ,两个向量的点乘结果等于AB的模乘以BC的模乘以θ的余弦值,即A·B=|AB|×|BC|×cosθ。
三、线性组合线性组合是指对多个向量进行数乘和加法运算得到的结果。
对于向量a1、a2、...、an和实数k1、k2、...、kn,它们的线性组合可以表示为k1a1 + k2a2 + ... + knan。
四、共线与共面1. 共线:若两个向量的方向相同或相反,则它们是共线的;若两个向量的方向不同,则它们是不共线的。
2. 共面:若三个向量都在同一个平面内,则它们是共面的;若三个向量不在同一个平面内,则它们是不共面的。
五、平行与垂直1. 平行:若两个向量的方向相同或相反,则它们是平行的。
2. 垂直:若两个向量的点乘结果为0,则它们是垂直的。
即A·B=0,其中A和B为两个向量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量知识点总结归纳
1、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量.
有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量.
单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 2、向量加法运算:
⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点.
⑶三角形不等式:a b a b a b -
≤
+≤+.
⑷运算性质:①交换律:a b b a +=+;②结合律:()()
a b c a b c ++=++; ③00a a a +=+=.
⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++. 3、向量减法运算:
⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--.
b
a
C B
A
a b C C -=A -AB =B
设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =--. 4、向量数乘运算:
⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=;
②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=.
⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③()
a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==.
5、向量共线定理:向量()
0a a ≠与b 共线,当且仅当有唯一一个实数λ,使
b a λ=.
设()11,a x y =,()22,b x y =,其中0b ≠,则当且仅当12210x y x y -=时,向量a 、
()
0b b ≠共线.
6、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底)
7、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,
()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλ
λ++⎛⎫
⎪++⎝⎭. 8、平面向量的数量积:
⑴()
cos 0,0,0180a b a b a b θθ⋅=≠≠≤≤.零向量与任一向量的数量积为0. ⑵性质:设a 和b 都是非零向量,则①0a b a b ⊥⇔⋅=.②当a 与b 同向时,
a b a b ⋅=;当a 与b 反向时,a b a b ⋅=-;2
2a a a a ⋅==或a a a =⋅.③a b a b ⋅≤.
⑶运算律:①a b b a ⋅=⋅;②()()()
a b a b a b λλλ⋅=⋅=⋅;③()
a b c a c b c +⋅=⋅+⋅. ⑷坐标运算:设两个非零向量()11,a x y =,()22,b x y =,则1212a b x x y y ⋅=+.
若(),a x y =,则2
22a x y =+,或2a x y =+ 设()11,a x y =,()22,b x y =,则12120a b x x y y ⊥⇔+=.
设a 、b 都是非零向量,()11,a x y =,()22,b x y =,θ是a 与b 的夹角,则
121
cos a b a b
x θ⋅==
+.。