2021届高考数学二轮复习第二部分专题五解析几何第3讲圆锥曲线的综合应用学案含解析人教版.doc
2020版高考数学二轮复习第2部分专题5解析几何第3讲圆锥曲线中的综合问题教案文
第3讲 圆锥曲线中的综合问题圆锥曲线中的定点、定值问题(5年3考)[高考解读] 定点、定值问题是解析几何中的常见问题,此类试题多考查圆锥曲线的基本知识、解析几何的基本方法,难度不高,不同层次的同学均能顺利解决.此类考题注重考查通性通法的应用,考查考生的逻辑推理和数学运算的核心素养.角度一:定点问题1.(2017·全国卷Ⅱ)设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NP →=2NM →.(1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且OP →·PQ →=1.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .切入点:①点M 在椭圆C 上,且MN ⊥x 轴;②NP →=2NM →.关键点:将OP →·PQ →=1转化为向量的坐标运算,进而证明直线l 过C 的左焦点F . [解] (1)设P (x ,y ),M (x 0,y 0),则N (x 0,0),NP →=(x -x 0,y ),NM →=(0,y 0). 由NP →=2NM →得x 0=x ,y 0=22y .因为M (x 0,y 0)在C 上,所以x 22+y 22=1.因此点P 的轨迹方程为x 2+y 2=2.(2)证明:由题意知F (-1,0).设Q (-3,t ),P (m ,n ),则 OQ →=(-3,t ),PF →=(-1-m ,-n ),OQ →·PF →=3+3m -tn , OP →=(m ,n ),PQ →=(-3-m ,t -n ).由OP →·PQ →=1得-3m -m 2+tn -n 2=1. 又由(1)知m 2+n 2=2,故3+3m -tn =0.所以OQ →·PF →=0,即OQ →⊥PF →.又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F . 角度二:定值问题2.(2019·全国卷Ⅰ)已知点A ,B 关于坐标原点O 对称,|AB |=4,⊙M 过点A ,B 且与直线x +2=0相切.(1)若A 在直线x +y =0上,求⊙M 的半径;(2)是否存在定点P ,使得当A 运动时,|MA |-|MP |为定值?并说明理由. 切入点:①⊙M 过点A ,B ;②⊙M 与直线x +2=0相切.关键点:①确定圆心M 的坐标;②选用合适的参数表示|MA |-|MP |的值.[解] (1)因为⊙M 过点A ,B ,所以圆心M 在AB 的垂直平分线上.由已知A 在直线x +y =0上,且A ,B 关于坐标原点O 对称,所以M 在直线y =x 上,故可设M (a ,a ).因为⊙M 与直线x +2=0相切,所以⊙M 的半径为r =|a +2|.由已知得|AO |=2,又MO ⊥AO ,故可得2a 2+4=(a +2)2,解得a =0或a =4. 故⊙M 的半径r =2或r =6.(2)存在定点P (1,0),使得|MA |-|MP |为定值. 理由如下:设M (x ,y ),由已知得⊙M 的半径为r =|x +2|,|AO |=2.由于MO ⊥AO ,故可得x 2+y 2+4=(x +2)2,化简得M 的轨迹方程为y 2=4x .因为曲线C :y 2=4x 是以点P (1,0)为焦点,以直线x =-1为准线的抛物线,所以|MP |=x +1.因为|MA |-|MP |=r -|MP |=x +2-(x +1)=1,所以存在满足条件的定点P . [教师备选题]1.(2017·全国卷Ⅰ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3⎝ ⎛⎭⎪⎫-1,32,P 4⎝⎛⎭⎪⎫1,32中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.[解] (1)由于P 3,P 4两点关于y 轴对称,故由题设知椭圆C 经过P 3,P 4两点. 又由1a 2+1b 2>1a 2+34b 2知,椭圆C 不经过点P 1,所以点P 2在椭圆C 上.因此⎩⎪⎨⎪⎧1b 2=1,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.故椭圆C 的方程为x 24+y 2=1.(2)证明:设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2.如果l 与x 轴垂直,设l :x =t ,由题设知t ≠0,且|t |<2,可得A ,B 的坐标分别为⎝⎛⎭⎪⎫t ,4-t 22,⎝ ⎛⎭⎪⎫t ,-4-t 22,则k 1+k 2=4-t 2-22t -4-t 2+22t =-1,得t =2,不符合题设.从而可设l :y =kx +m (m ≠1).将y =kx +m 代入x 24+y 2=1得(4k 2+1)x 2+8kmx +4m 2-4=0.由题设可知Δ=16(4k 2-m 2+1)>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1.而k 1+k 2=y 1-1x 1+y 2-1x 2=kx 1+m -1x 1+kx 2+m -1x 2=2kx 1x 2+m -x 1+x 2x 1x 2.由题设k 1+k 2=-1,故(2k +1)x 1x 2+(m -1)(x 1+x 2)=0.即(2k +1)·4m 2-44k 2+1+(m -1)·-8km 4k 2+1=0,解得k =-m +12.当且仅当m >-1时,Δ>0, 于是l :y =-m +12x +m ,即y +1=-m +12(x -2),所以l 过定点(2,-1).2.(2018·北京高考)已知抛物线C :y 2=2px 经过点P (1,2),过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N .(1)求直线l 的斜率的取值范围;(2)设O 为原点,QM →=λQO →,QN →=μQO →,求证:1λ+1μ为定值.[解] (1)因为抛物线y 2=2px 过点(1,2),所以2p =4,即p =2. 故抛物线C 的方程为y 2=4x .由题意知,直线l 的斜率存在且不为0. 设直线l 的方程为y =kx +1(k ≠0),由⎩⎪⎨⎪⎧y 2=4x ,y =kx +1,得k 2x 2+(2k -4)x +1=0.依题意Δ=(2k -4)2-4×k 2×1>0, 解得k <0或0<k <1.又PA ,PB 与y 轴相交,故直线l 不过点(1,-2). 从而k ≠-3.所以直线l 斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1). (2)证明:设A (x 1,y 1),B (x 2,y 2). 由(1)知x 1+x 2=-2k -4k 2,x 1x 2=1k2.直线PA 的方程为y -2=y 1-2x 1-1(x -1). 令x =0,得点M 的纵坐标为y M =-y 1+2x 1-1+2=-kx 1+1x 1-1+2.同理得点N 的纵坐标为y N =-kx 2+1x 2-1+2.由QM →=λ QO →,QN →=μQO →,得λ=1-y M ,μ=1-y N . 所以1λ+1μ=11-y M +11-y N=x 1-1k -x 1+x 2-1k -x 2=1k -1·2x 1x 2-x 1+x 2x 1x 2=1k -1·2k 2+2k -4k 21k 2=2.所以1λ+1μ为定值.1.证明直线过定点的基本思想是使用一个参数表示直线方程,根据直线所过的定点与参数值无关得出x ,y 的方程组,以方程组的解为坐标的点就是直线所过的定点.2.定值问题就是证明一个量或表达式的值与其中的变化因素无关,这些变化的因素可能是直线的斜率、截距,也可能是动点的坐标等,这类问题的一般解法是使用变化的量表示求证目标,通过运算得知求证目标的取值与变化的量无关,当使用直线的斜率和截距表示直线方程时,在解题过程中要注意建立斜率和截距之间的关系,把双参数问题化为单参数问题解决.1.(定点问题)已知抛物线C :y 2=2px (p >0)的焦点为F ,点P (1,a )在此抛物线上,|PF |=2,不过原点的直线l 与抛物线C 交于A ,B 两点,以AB 为直径的圆M 过坐标原点.(1)求抛物线C 的方程; (2)证明:直线l 恒过定点;(3)若线段AB 中点的纵坐标为2,求此时直线l 和圆M 的方程.[解] (1)由题意可得1+p2=2,解得p =2,故抛物线C 的方程为y 2=4x .(2)证明:设直线l 的方程为:x =my +t (t ≠0),A (x 1,y 1),B (x 2,y 2). 联立⎩⎪⎨⎪⎧x =my +t ,y 2=4x ,消去x ,得y 2-4my -4t =0,Δ>0,∴y 1+y 2=4m ,y 1·y 2=-4t . ∵以AB 为直径的圆恒过原点O , ∴OA →·OB →=x 1x 2+y 1y 2=0, 又x 1x 2=(my 1+t )(my 2+t ),∴(m 2+1)·y 1y 2+mt (y 1+y 2)+t 2=0, ∴-4t (m 2+1)+4m 2t +t 2=0, 化为t 2-4t =0,t ≠0,解得t =4. ∴直线l 的方程为:x =my +4.令y =0,可得x =4.因此直线l 恒过定点(4,0). (3)线段AB 中点的纵坐标为2. ∵y 1+y 2=4m , ∴2m =2,即m =1, ∵直线l 恒过定点(4,0). ∴4=0+t ,即t =4, ∴直线l 的方程为x =y +4,∵线段AB 的中点坐标(6,2)即为圆的圆心坐标, 设圆的方程为(x -6)2+(y -2)2=r 2, 把(0,0)代入可得r 2=40.故圆的方程为(x -6)2+(y -2)2=40.2.(定值问题)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的长轴长为4,离心率为12.(1)求椭圆C 的方程;(2)若直线l 1:y =kx 交椭圆C 于A ,B 两点,点M 在椭圆C 上,且不与A ,B 两点重合,直线MA ,MB 的斜率分别为k 1,k 2.求证:k 1,k 2之积为定值.[解] (1)由题意知,2a =4,c a =12,∴a =2,c =1 ∴b 2=a 2-c 2=3, 即椭圆方程为x 24+y 23=1.(2)证明:把y =kx 代入3x 2+4y 2=12,得(4k 2+3)x 2-12=0, 设A (x 1,y 1),B (x 2,y 2), 则:x 1+x 2=0,x 1x 2=-124k 2+3,y 1+y 2=kx 1+kx 2=0,y 1y 2=k 2x 1x 2=-12k24k 2+3,∴k 1k 2=y 1-y x 1-x ·y 2-y x 2-x =y 1y 2-y y 1+y 2+y 2x 1x 2-x 1+x 2x +x 2,=y 1y 2+y 2x 1x 2+x 2=-12k 24k 2+3+y 2-124k 2+3+x 2=-12k 24k 2+3+3⎝ ⎛⎭⎪⎫1-x 24-124k 2+3+x 2=-34×-124k 2+3+x 2-124k 2+3+x 2=-34.故k 1,k 2之积为定值-34.圆锥曲线中的最值、范围问题(5年2考)[高考解读] 圆锥曲线中的最值、范围问题也是解析几何中的常见问题,此类问题重在考查解析几何的基本知识,重视通性通法的考查,考查考生的逻辑推理和数学运算的核心素养.(2016·全国卷Ⅱ)已知A 是椭圆E :x 24+y 23=1的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA .(1)当|AM |=|AN |时,求△AMN 的面积; (2)当2|AM |=|AN |时,证明:3<k <2.切入点:①MA ⊥NA ;②|AM |=|AN |;③2|AM |=|AN |.关键点:①由MA ⊥NA ,|MA |=|NA |确定直线AM 的倾斜角,进而求出AM 的方程; ②借助一元二次方程根与系数的关系及弦长公式,根据2|AM |=|AN |建立关于k 的方程,再借助导数解决问题.[解] (1)设M (x 1,y 1),则由题意知y 1>0. 由已知及椭圆的对称性知,直线AM 的倾斜角为π4.又A (-2,0),因此直线AM 的方程为y =x +2. 将x =y -2代入x 24+y 23=1得7y 2-12y =0.解得y =0或y =127,所以y 1=127.因此△AMN 的面积S △AMN =2×12×127×127=14449.(2)证明:设直线AM 的方程为y =k (x +2)(k >0), 代入x 24+y 23=1得(3+4k 2)x 2+16k 2x +16k 2-12=0.由x 1·(-2)=16k 2-123+4k2得x 1=-4k23+4k2,故|AM |=|x 1+2|1+k 2=121+k23+4k 2.由题意,设直线AN 的方程为y =-1k(x +2),故同理可得|AN |=12k 1+k23k 2+4. 由2|AM |=|AN |得23+4k 2=k3k 2+4, 即4k 3-6k 2+3k -8=0.设f (t )=4t 3-6t 2+3t -8,则k 是f (t )的零点.f ′(t )=12t 2-12t +3=3(2t -1)2≥0,所以f (t )在(0,+∞)单调递增.又f (3)=153-26<0,f (2)=6>0,因此f (t )在(0,+∞)上有唯一的零点,且零点k 在(3,2)内,所以3<k <2.[教师备选题]1.(2018·浙江高考)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上.(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆x 2+y 24=1(x <0)上的动点,求△PAB 面积的取值范围.[解] (1)证明:设P (x 0,y 0),A ⎝ ⎛⎭⎪⎫14y 21,y 1,B ⎝ ⎛⎭⎪⎫14y 22,y 2. 因为PA ,PB 的中点在抛物线上, 所以y 1,y 2为方程⎝ ⎛⎭⎪⎫y +y 022=4·14y 2+x 02,即y 2-2y 0y +8x 0-y 20=0的两个不同的实根. 所以y 1+y 2=2y 0, 因此,PM 垂直于y 轴.(2)由(1)可知,⎩⎪⎨⎪⎧y 1+y 2=2y 0,y 1y 2=8x 0-y 20,所以|PM |=18(y 21+y 22)-x 0=34y 20-3x 0,|y 1-y 2|=2y 20-4x 0. 因此,△PAB 的面积S △PAB =12|PM |·|y 1-y 2|=324(y 20-4x 0)32.因为x 2+y 204=1(x 0<0), 所以y 20-4x 0=-4x 20-4x 0+4∈[4,5], 因此,△PAB 面积的取值范围是⎣⎢⎡⎦⎥⎤62,15104.2.(2017·山东高考)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,椭圆C 截直线y =1所得线段的长度为2 2.(1)求椭圆C 的方程;(2)动直线l :y =kx +m (m ≠0)交椭圆C 于A ,B 两点,交y 轴于点M .点N 是M 关于O 的对称点,⊙N 的半径为|NO |.设D 为AB 的中点,DE ,DF 与⊙N 分别相切于点E ,F ,求∠EDF 的最小值.[解] (1)由椭圆的离心率为22, 得a 2=2(a 2-b 2),又当y =1时,x 2=a 2-a 2b 2,得a 2-a 2b2=2,所以a 2=4,b 2=2. 因此椭圆方程为x 24+y 22=1. (2)设A (x 1,y 1),B (x 2,y 2).联立方程,得⎩⎪⎨⎪⎧y =kx +m ,x 24+y22=1,得(2k 2+1)x 2+4kmx +2m 2-4=0. 由Δ>0得m 2<4k 2+2,(*) 且x 1+x 2=-4km2k 2+1,因此y 1+y 2=2m2k 2+1,所以D ⎝ ⎛⎭⎪⎫-2km 2k 2+1,m 2k 2+1.又N (0,-m ), 所以|ND |2=⎝ ⎛⎭⎪⎫-2km 2k 2+12+⎝ ⎛⎭⎪⎫m 2k 2+1+m 2,整理得|ND |2=4m2+3k 2+k 4k 2+2.因为|NF |=|m |, 所以|ND |2|NF |2=k 4+3k 2+k 2+2=1+8k 2+3k 2+2.令t =8k 2+3,t ≥3, 故2k 2+1=t +14.所以|ND |2|NF |2=1+16t +t2=1+16t +1t+2. 令y =t +1t,所以y ′=1-1t2.当t ≥3时,y ′>0,从而y =t +1t在[3,+∞)上单调递增,因此t +1t ≥103,等号当且仅当t =3时成立,此时k =0, 所以|ND |2|NF |2≤1+3=4.由(*)得-2<m <2且m ≠0, 故|NF ||ND |≥12. 设∠EDF =2θ,则sin θ=|NF ||ND |≥12, 所以θ的最小值为π6,从而∠EDF 的最小值为π3,此时直线l 的斜率是0.综上所述:当k =0,m ∈(-2,0)∪(0,2)时,∠EDF 取到最小值π3.求解范围、最值问题的常见方法解决有关范围、最值问题时,先要恰当地引入变量如点的坐标、角、斜率等,建立目标函数,然后利用函数的有关知识和方法求解.利用判别式构造不等式,从而确定参数的取值范围;利用已知参数的取值范围求新参数的范围,解这类问题的核心是在两个参数之间建立相等关系;利用隐含的不等关系,从而求出参数的取值范围; 利用已知不等关系构造不等式,从而求出参数的取值范围;利用函数值域的求法,确定参数的取值范围.1.(最值问题)(2019·佛山二模)已知F 为椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点,过原点O 的动直线l 与C 交于A ,B 两点.当A 的坐标为⎝⎛⎭⎪⎫1,255时,|OB |=|BF |.(1)求椭圆C 的标准方程;(2)延长BF 交椭圆C 于Q ,求△QAB 的面积的最大值.[解] (1)由A ⎝ ⎛⎭⎪⎫1,255,得B ⎝ ⎛⎭⎪⎫-1,-255,而|OB |=|BF |,∴F (-2,0),即c =2. 由⎩⎪⎨⎪⎧1a 2+45b 2=1,a 2=b 2+4,解得a 2=5,b 2=1.∴椭圆C 的标准方程为x 25+y 2=1.(2)当直线BF 斜率不存在时,BF 的方程为:x =-2, 此时B ⎝ ⎛⎭⎪⎫-2,-55,|BQ |=255,A ⎝⎛⎭⎪⎫2,55, S △QAB =12×255×2=255;当BF 所在直线斜率存在时,设BF 的方程为:y =k (x +2)(k ≠0).联立⎩⎪⎨⎪⎧y =k x +,x 25+y 2=1,得(1+5k 2)x 2+20k 2x +20k 2-5=0.设B (x 1,y 1),Q (x 2,y 2), 则x 1+x 2=-20k 21+5k 2,x 1x 2=20k 2-51+5k 2.则|BQ |=1+k 2x 1+x 22-4x 1x 2=1+k 2·⎝ ⎛⎭⎪⎫-20k 21+5k 22-80k 2-201+5k 2=1+k 2·251+k21+5k2. O 到BQ 的距离d =|2k |1+k2,则A 到BQ 的距离为4|k |1+k2.∴S △QAB =12·1+k 2·251+k 21+5k 2·4|k |1+k 2=45k 4+k 21+5k 2. 令1+5k 2=t (t >1), 则S △QAB =45·-425⎝ ⎛⎭⎪⎫1t 2+325×1t +125. 当1t =38时,(S △QAB )max = 5. 综上,△QAB 的面积的最大值为 5.2.(范围问题)已知椭圆x 2a 2+y 2b2=1(a >b >0)上的点到右焦点F (c,0)的最大距离是2+1,且1,2a,4c 成等比数列.(1)求椭圆的方程;(2)过点F 且与x 轴不垂直的直线l 与椭圆交于A ,B 两点,线段AB 的中垂线交x 轴于点M (m,0),求实数m 的取值范围.[解] (1)由题意可知,⎩⎨⎧a +c =2+1,1·4c =2a 2,a 2=b 2+c 2,解之得⎩⎨⎧a =2,b =1,c =1,故椭圆的方程为x 22+y 2=1.(2)由题意得F (1,0),设AB 的方程为y =k (x -1),由⎩⎪⎨⎪⎧x 2+2y 2=2,y =k x -,消去y 得(1+2k 2)x 2-4k 2x +2k 2-2=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4k 21+2k 2,y 1+y 2=k (x 1+x 2)-2k =-2k 1+2k 2,可得线段AB 的中点N ⎝ ⎛⎭⎪⎫2k 21+2k 2,-k 1+2k 2,当k =0时,直线MN 为y 轴,此时m =0.当k ≠0时,直线MN 的方程为y +k1+2k 2=-1k ⎝ ⎛⎭⎪⎫x -2k 21+2k 2, 令y =0得m =k 21+2k 2=11k 2+2∈⎝ ⎛⎭⎪⎫0,12, 综上可知,实数m 的取值范围为⎣⎢⎡⎭⎪⎫0,12.圆锥曲线中的探索性问题(5年2考)[高考解读] 高考对探究性问题要求较低,考查频次较少,本题考查抛物线的概念和标准方程以及抛物线与直线的关系,考查考生的逻辑推理、数学运算的核心素养以及应用解析几何方法解决几何问题的能力.(2016·全国卷Ⅰ)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连接ON 并延长交C 于点H .(1)求|OH ||ON |;(2)除H 以外,直线MH 与C 是否有其他公共点?说明理由. 切入点:①l :y =t (t ≠0); ②M 关于点P 的对称点为N ; ③ON 的延长线交C 于点H .关键点:①通过直线l 与y 轴及抛物线C 的交点确定N 点,由此确定H 点,求出N 点、H 点的坐标;②将直线与抛物线的交点问题转化为方程组解的问题.[解] (1)如图,由已知得M (0,t ),P⎝ ⎛⎭⎪⎫t 22p ,t . 又N 为M 关于点P 的对称点,故N ⎝ ⎛⎭⎪⎫t 2p ,t , 故直线ON 的方程为y =p tx ,将其代入y 2=2px 整理得px 2-2t 2x =0, 解得x 1=0,x 2=2t 2p.因此H ⎝ ⎛⎭⎪⎫2t 2p ,2t .所以N 为OH 的中点,即|OH ||ON |=2.(2)直线MH 与C 除H 以外没有其他公共点.理由如下:直线MH 的方程为y -t =p 2t x ,即x =2tp(y -t ).代入y 2=2px 得y 2-4ty +4t 2=0,解得y 1=y 2=2t , 即直线MH 与C 只有一个公共点,所以除H 以外,直线MH 与C 没有其他公共点. [教师备选题](2015·全国卷Ⅱ)已知椭圆C :9x 2+y 2=m 2(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l 过点⎝ ⎛⎭⎪⎫m3,m ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率;若不能,说明理由.[解] (1)证明:设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ). 将y =kx +b 代入9x 2+y 2=m 2,得(k 2+9)x 2+2kbx +b 2-m 2=0,故x M =x 1+x 22=-kbk 2+9,y M=kx M +b =9bk 2+9. 于是直线OM 的斜率k OM =y M x M=-9k,即k OM ·k =-9.所以直线OM 的斜率与l 的斜率的乘积为定值. (2)四边形OAPB 能为平行四边形.因为直线l 过点⎝ ⎛⎭⎪⎫m3,m ,所以l 不过原点且与C 有两个交点的充要条件是k >0,k ≠3. 由(1)得OM 的方程为y =-9kx .设点P 的横坐标为x P . 由⎩⎪⎨⎪⎧y =-9k x ,9x 2+y 2=m 2,得x 2P =k 2m 29k 2+81,即x P =±km3k 2+9. 将点⎝ ⎛⎭⎪⎫m 3,m 的坐标代入直线l 的方程得b =m-k3, 因此x M =k k -mk 2+.四边形OAPB 为平行四边形,当且仅当线段AB 与线段OP 互相平分,即x P =2x M . 于是±km 3k 2+9=2×k k -mk 2+,解得k 1=4-7,k 2=4+7.因为k i >0,k i ≠3,i =1,2,所以当直线l 的斜率为4-7或4+7时,四边形OAPB 为平行四边形.解决探索性问题的注意事项存在性问题,先假设存在,推证满足条件的结论,若结论正确,则存在,若结论不正确,则不存在.当条件和结论不唯一时,要分类讨论.当给出结论要推导出存在的条件时,先假设成立,再推出条件.当条件和结论都未知,按常规方法解题很难时,要开放思维,采取其他的途径.1.(最值的存在性问题)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率是32,且经过点⎝⎛⎭⎪⎫1,-32.(1)求椭圆C 的标准方程;(2)[一题多解]过椭圆C 的右焦点F 的直线l 与椭圆C 相交于A ,B 两点,点B 关于x 轴的对称点为H ,试问△AFH 的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.[解] (1)由e =ca =32可设a =2t ,c =3t (t >0), 所以b =a 2-c 2=t ,即椭圆C 的方程为x 24t 2+y 2t2=1,把点⎝ ⎛⎭⎪⎫1,-32代入椭圆C 的方程得t =1, 所以a =2,b =1,所以椭圆C 的标准方程为x 24+y 2=1.(2)法一:显然直线l 的斜率存在且不为0,设直线l 的方程为x =my +3,A (x 1,y 1),B (x 2,y 2),则H (x 2,-y 2),联立⎩⎨⎧x =my +3,x 2+4y 2=4,消去x 得,(m 2+4)y 2+23my -1=0.显然Δ>0,由根与系数的关系得y 1+y 2=-23m m 2+4,y 1y 2=-1m 2+4,直线AH 的方程为y =y 1+y 2x 1-x 2(x -x 2)-y 2, 令y =0,得x =x 1y 2+x 2y 1y 1+y 2=my 1+3y 2+my 2+3y 1y 1+y 2=2my 1y 2+3y 1+y 2y 1+y 2=433, 即直线AH 与x 轴交于一个定点,记为M ⎝⎛⎭⎪⎫433,0,所以S △AFH =12|FM |×|y 1+y 2|=12×33×23|m |m 2+4 =1|m |+4|m |≤14. 所以△AFH 的面积存在最大值,且最大值为14.法二:显然直线l 的斜率存在且不为0,设直线l 的方程为x =my +3,A (x 1,y 1),B (x 2,y 2),则H (x 2,-y 2),联立⎩⎨⎧x =my +3,x 2+4y 2=4,消去x 得,(m 2+4)y 2+23my -1=0.显然Δ>0,由根与系数的关系得y 1+y 2=-23m m 2+4,y 1y 2=-1m 2+4,作AA 1⊥x 轴于A 1(图略),设HB 交x 轴于点B 1,x 1>x 2,y 1>0,y 2<0,则m >0, △AFH 的面积S =S 梯形AA 1B 1H -S △AA 1F -S △HB 1F =y 1|+|y 2x 1-x 22-12(x 1-c )|y 1|-12(c -x 2)|y 2|=12[3(y 1+y 2)-x 2y 1-x 1y 2]=12[3(y 1+y 2)-(my 2+3)y 1-(my 1+3)y 2]=-my 1y 2=mm 2+4=1m +4m≤14,所以△AFH 的面积存在最大值,且最大值为14. 2.(点的存在性问题)已知动圆C 过定点F (1,0),且与定直线x =-1相切. (1)[一题多解]求动圆圆心C 的轨迹E 的方程;(2)过点M (-2,0)的任一条直线l 与轨迹E 交于不同的两点P ,Q ,试探究在x 轴上是否存在定点N (异于点M ),使得∠QNM +∠PNM =π?若存在,求点N 的坐标;若不存在,请说明理由.[解] (1)法一:依题意知,动圆圆心C 到定点F (1,0)的距离与到定直线x =-1的距离相等,由抛物线的定义,可得动圆圆心C 的轨迹E 是以F (1,0)为焦点,x =-1为准线的抛物线,其中p =2.∴动圆圆心C 的轨迹E 的方程为y 2=4x . 法二:设动圆圆心C (x ,y ),依题意得x -2+y 2=|x +1|,化简得y 2=4x ,即为动圆圆心C 的轨迹E 的方程. (2)假设存在点N (x 0,0)满足题设条件.由∠QNM +∠PNM =π可知,直线PN 与QN 的斜率互为相反数,即k PN +k QN =0.①易知直线PQ 的斜率必存在且不为0,设直线PQ :x =my -2,由⎩⎪⎨⎪⎧y 2=4x ,x =my -2,得y 2-4my +8=0.由Δ=(-4m )2-4×8>0,得m >2或m <- 2. 设P (x 1,y 1),Q (x 2,y 2),则y 1+y 2=4m ,y 1y 2=8. 由①得k PN +k QN =y 1x1-x 0+y 2x 2-x 0=y 1x 2-x 0+y 2x 1-x 0x 1-x 0x 2-x 0=0,∴y 1(x 2-x 0)+y 2(x 1-x 0)=0, 即y 1x 2+y 2x 1-x 0(y 1+y 2)=0.消去x 1,x 2,得14y 1y 22+14y 2y 21-x 0(y 1+y 2)=0,即14y 1y 2(y 1+y 2)-x 0(y 1+y 2)=0. ∵y 1+y 2≠0,∴x 0=14y 1y 2=2,∴存在点N (2,0),使得∠QNM +∠PNM =π.。
2021-2022年高考数学二轮复习专题1.6圆锥曲线教学案
2021年高考数学二轮复习专题1.6圆锥曲线教学案一.考场传真1. 【xx 课标1,理10】已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为A .16B .14C .12D .10【答案】A2.【xx 课标II ,理9】若双曲线(,)的一条渐近线被圆所截得的弦长为2,则的离心率为( )A .2B .C .D .【答案】A【解析】由几何关系可得,双曲线的渐近线为:,圆心到渐近线距离为:,不妨考查点到直线的距离:222023b a b d ca b +⨯===+,整理可得:,双曲线的离心率.故选A. 3.【xx 课标3,理10】已知椭圆C :,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线相切,则C的离心率为A.B.C.D.【答案】A4.【xx课标1,理】已知双曲线C:(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A 与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为________.【答案】【解析】如图所示,作,因为圆A与双曲线C的一条渐近线交于M、N两点,则为双曲线的渐近线上的点,且,,而,所以,点到直线的距离221APba=+,在中,,代入计算得,即,由得,所以.5.【xx课标II,理16】已知是抛物线的焦点,是上一点,的延长线交轴于点.若为的中点,则 .【答案】66.【xx 课标3,理5】已知双曲线C : (a >0,b >0)的一条渐近线方程为,且与椭圆有公共焦点,则C 的方程为A .B .C .D .【答案】B【解析】双曲线C : (a >0,b >0)的渐近线方程为 ,椭圆中:2222212,3,9,c 3a b c a b ==∴=-== ,椭圆,即双曲线的焦点为 ,据此可得双曲线中的方程组:222523b a c a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩,解得: ,则双曲线 的方程为 .故选B .7.【xx 课标3,理20】已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 与A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点,求直线l 与圆M 的方程.(2)由(1)可得()21212122,424y y m x x m y y m +=+=++=+ .故圆心 的坐标为 ,圆 的半径 .由于圆 过点 ,因此 ,故()()()()121244220x x y y --+++= ,即()()1212121242200x x x x y y y y ++++++= .由(1)可得 .所以 ,解得 或 .当 时,直线 的方程为 ,圆心 的坐标为 ,圆 的半径为 ,圆 的方程为 .当 时,直线 的方程为 ,圆心 的坐标为 ,圆 的半径为 ,圆 的方程为 .8.【xx 课标1,理20】已知椭圆C :(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,),P 4(1,)中恰有三点在椭圆C 上.(1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.【解析】(1)由于,两点关于y 轴对称,故由题设知C 经过,两点.又由知,C 不经过点P 1,所以点P 2在C 上.因此222111314b a b ⎧=⎪⎪⎨⎪+=⎪⎩,解得.故C 的方程为. (2)设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,如果l 与x 轴垂直,设l :x =t ,由题设知,且,可得A ,B 的坐标分别为(t ,),(t ,).则221242421t t k k ---++==-,得,不符合题设.从而可设l :().将代入得222(41)8440k x kmx m +++-=由题设可知.,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=,x 1x 2=.而.由题设,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m km k m k k --+⋅+-⋅=++.解得.当且仅当时,,欲使l :,即,所以l 过定点(2,)9.【xx 课标II ,理】设O 为坐标原点,动点M 在椭圆C :上,过M 作x 轴的垂线,垂足为N ,点P 满足.(1) 求点P 的轨迹方程;(2)设点Q 在直线上,且.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .二.高考研究【考纲解读】1.考纲要求(1)直线方程:①在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.②能根据两条直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.③能根据两条直线的斜率判定这两条直线平行或垂直.④掌握正确直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.⑤能用解方程组的方法求两条相交直线的交点坐标.⑥掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.(2)圆与方程:①掌握确定圆的几何要素,掌握圆的标准方程与一般方程.②能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.③能用直线和圆的方程解决一些简单的问题.④初步了解用代数方法处理几何问题的思想.(3)圆锥曲线:①了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.②掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质.③了解双曲线的定义、几何图形和标准方程.知道它的简单几何性质.④了解圆锥曲线的简单应用.⑤理解数形结合的思想(2)曲线与方程:了解方程的曲线与与曲线方程的对应关系.2.命题规律:1、题量稳定:解析几何与立体几何相似,在高考试卷中试题所占分值比例较大.一般地,解析几何在高考试卷中试题大约出现3个题目左右,其中选择题、填空题占两道,解答题占一道;其所占平均分值为22分左右,所占平均分值比例约为14%.2、整体平衡,重点突出:重点内容重点考,重点内容年年考.三大圆锥曲线知识的考查几乎没有遗漏,通过对知识的重新组合,考查时既注意全面,更注意突出重点,对支撑数学科知识体系的主干知识,考查时保证较高的比例并保持必要深度.直线与圆的方程,圆锥曲线的定义、标准方程、几何性质等是支撑解析几何的基石,也是高考命题的基本元素.高考十分注重对这些基础知识的考查,有的是考查定义的理解和应用,有的是求圆锥曲线的标准方程,有的是直接考查圆锥曲线的离心率,有的是考查直线与圆和圆锥曲线的位置关系等.数学高考对解析几何内容的考查主要集中在如下几个类型:①求曲线方程(类型确定,甚至给出曲线方程);②直线、圆和圆锥曲线间的交点问题(含切线问题);③与圆锥曲线定义有关的问题(涉及焦半径、焦点弦、焦点三角形和准线,利用余弦定理等)④与曲线有关的最值问题(含三角形和四边形面积);⑤与曲线有关的几何证明(圆线相切、四点共圆、对称性或求对称曲线、平行、垂直等);⑥探求曲线方程中几何量及参数间的数量特征(很少);3、题型稳定,中规中矩,不偏不怪,内容及位置也很稳定.解析几何试题的难度都不算太大,选择题、填空题大多属中等题,圆一般不单独考查,总是与直线、圆锥曲线相结合的综合型考题.高考一般不给出图形,以考查学生的想象能力、分析问题的能力,从而体现解析几何的基本思想和方法,解答题加大与相关知识的联系(如向量、函数与导数、方程、不等式等),难度不是太大,所有问题均很直接,都不具备探索性.特别是近几年的解答题,计算量减少,但思考量增大,对于用代数方法研究有关直线与椭圆、抛物线位置关系问题,体现在解法上,不仅仅只是利用根与系数关系研究,而是在方法的选择上更加灵活,如联立方程求交点或向量的运算等,思维层次的要求并没有降低. 若再按以前的“解几套路”解题显然难以成功. 3.学法导航1.求解两条直线的平行或垂直问题时要考虑斜率不存在的情况.对解题中可能出现的特殊情况,可用数形结合的方法分析研究.2. 解决与圆有关的问题一般有两种方法:几何法,通过研究圆的性质、直线与圆、圆与圆的位置关系,进而求得圆的基本量和方程.代数法,即用待定系数法先设出圆的方程,再由条件求得各系数.3讨论直线与圆及圆与圆的位置关系时,要注意数形结合,充分利用圆的几何性质寻找解题途径,减少运算量.圆上的点与圆外点的距离的最值问题,可以转化为圆心到点的距离问题;圆上的点与直线上点的距离的最值问题,可以转化为圆心到直线的距离问题;圆上的点与另一圆上点的距离的最值问题,可以转化为圆心到圆心的距离问题.4.准确把握圆锥曲线的定义和标准方程及其简单几何性质,注意当焦点在不同坐标轴上时,椭圆、双曲线、抛物线方程的不同表示形式.求圆锥曲线方程的基本方法就是待定系数法,可结合草图确定.5.明确圆锥曲线中a ,b ,c ,e 各量之间的关系是求解问题的关键.在求解有关离心率的问题时,一般并不是直接求出c 和a 的值,而是根据题目给出的椭圆或双曲线的几何特点,建立关于参数c ,a ,b 的方程或不等式,通过解方程或不等式求得离心率的值或取值范围.6.解决直线与圆锥曲线问题的通法是联立方程,利用根与系数的关系,设而不求思想,弦长公式等简化计算;涉及中点弦问题时,也可用“点差法”求解.7.解析几何中的探索性问题,从类型上看,主要是存在类型的相关题型,解决这类问题通常采用“肯定顺推法”,将不确定性问题明确化.其步骤为:假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.一.基础知识整合基础知识:1. 直线的方程:点斜式:; 截距式:;两点式:; 截距式:;一般式:,其中A 、B 不同时为0.2.两条直线的位置关系:两条直线,有三种位置关系:平行(没有公共点);相交(有且只有一个公共点);重合(有无数个公共点).在这三种位置关系中,我们重点研究平行与相交.两直线平行两直线的斜率相等或两直线斜率都不存在;两直线垂直两直线的斜率之积为或一直线斜率不存在,另一直线斜率为零;与已知直线0(0,0)Ax By C A B ++=≠≠平行的直线系方程为;若给定的方程是一般式,即l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0,则有下列结论:l 1∥l 2⇔A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0;l 1⊥l 2⇔A 1A 2+B 1B 2=0.两平行直线间距离公式:10(0,0)Ax By C A B ++=≠≠与2120(0,0,)Ax By C A B C C ++=≠≠≠的距离3.圆的有关问题:圆的标准方程:(r >0),称为圆的标准方程,其圆心坐标为(a ,b ),半径为r ,特别地,当圆心在原点(0,0),半径为r 时,圆的方程为.圆的一般方程:022=++++F Ey Dx y x (>0)称为圆的一般方程,其圆心坐标为(,),半径为.当=0时,方程表示一个点(,);当<0时,方程不表示任何图形.圆的参数方程:圆的普通方程与参数方程之间有如下关系: (θ为参数)(θ为参数)直线与圆的位置关系:直线与圆的位置关系的判断:【方法一】几何法:根据圆心与直线的距离与半径的大小关系进行判断;设圆心到直线的距离为,圆的半径为,则(1)直线与圆相交直线与圆有两个公共点;(2)直线与圆相离直线与圆无公共点;(3)直线与圆相切直线与圆有且只有一个公共点;【方法二】代数法:把直线的方程圆的方程联立方程组,消去其中一个未知数得到关于另外一个数的未知数的一元二次方程,则(1)直线与圆相交直线与圆有两个公共点;(2)直线与圆相离直线与圆无公共点;(3)直线与圆相切直线与圆有且只有一个公共点;若直线与圆相交,设弦长为,弦心距为,半径为,则4.椭圆及其标准方程:椭圆的定义:椭圆的定义中,平面内动点与两定点、的距离的和大于||这个条件不可忽视.若这个距离之和小于||,则这样的点不存在;若距离之和等于||,则动点的轨迹是线段.椭圆的标准方程:(>>0),(>>0).椭圆的标准方程判别方法:判别焦点在哪个轴只要看分母的大小:如果项的分母大于项的分母,则椭圆的焦点在x 轴上,反之,焦点在y 轴上.求椭圆的标准方程的方法:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解.如果已知椭圆过两个点(不是在坐标轴上的点),求其标准方程时,为了避免对焦点的讨论可以设其方程为221(0,0)Ax By A B +=>>或;椭圆的参数方程: 椭圆(>>0)的参数方程为(θ为参数).说明 ⑴ 这里参数θ叫做椭圆的离心角.椭圆上点P 的离心角θ与直线OP 的倾斜角α不同:;⑵ 椭圆的参数方程可以由方程与三角恒等式相比较而得到,所以椭圆的参数方程的实质是三角代换.5.椭圆的简单几何性质椭圆的几何性质:设椭圆方程为(>>0).范围: -a≤x≤a,-b≤x≤b,所以椭圆位于直线x=和y=所围成的矩形里.对称性:分别关于x 轴、y 轴成轴对称,关于原点中心对称.椭圆的对称中心叫做椭圆的中心.顶点:有四个(-a ,0)、(a ,0)(0,-b )、(0,b ). 线段、分别叫做椭圆的长轴和短轴.它们的长分别等于2a 和2b ,a 和b 分别叫做椭圆的长半轴长和短半轴长. 所以椭圆和它的对称轴有四个交点,称为椭圆的顶点.离心率:椭圆的焦距与长轴长的比叫做椭圆的离心率.它的值表示椭圆的扁平程度.0<e <1.e 越接近于1时,椭圆越扁;反之,e 越接近于0时,椭圆就越接近于圆.椭圆的第二定义:平面内动点M 与一个顶点的距离和它到一条定直线的距离的比是常数(e <1=时,这个动点的轨迹是椭圆.准线:根据椭圆的对称性,(>>0)的准线有两条,它们的方程为.对于椭圆(>>0)的准线方程,只要把x 换成y 就可以了,即.椭圆的焦半径:由椭圆上任意一点与其焦点所连的线段叫做这点的焦半径.设(-c ,0),(c ,0)分别为椭圆(>>0)的左、右两焦点,M (x ,y )是椭圆上任一点,则两条焦半径长分别为,,椭圆中涉及焦半径时运用焦半径知识解题往往比较简便.在椭圆中,如果一个三角形的两个顶点是焦点,另一个顶点在椭圆上,称该三角形为焦点三角形,则三角形的周长为定值等于,面积等于,其中是短半轴的长;过焦点垂直于对称轴的弦长即通径长为2b 2a6.双曲线及其标准方程:双曲线的定义:平面内与两个定点、的距离的差的绝对值等于常数2a (小于||)的动点的轨迹叫做双曲线.在这个定义中,要注意条件2a <||,这一条件可以用“三角形的两边之差小于第三边”加以理解.若2a=||,则动点的轨迹是两条射线;若2a >||,则无轨迹.若<时,动点的轨迹仅为双曲线的一个分支,又若>时,轨迹为双曲线的另一支.而双曲线是由两个分支组成的,故在定义中应为“差的绝对值”.双曲线的标准方程:和(a >0,b >0).这里,其中||=2c.要注意这里的a 、b 、c 及它们之间的关系与椭圆中的异同.双曲线的标准方程判别方法是:如果项的系数是正数,则焦点在x 轴上;如果项的系数是正数,则焦点在y 轴上.对于双曲线,不一定大于,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上. 求双曲线的标准方程,应注意两个问题:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解.如果已知双曲线过两个点(不是在坐标轴上的点),求其标准方程时,为了避免对焦点的讨论可以设其方程为或7.双曲线的简单几何性质双曲线的实轴长为,虚轴长为,离心率>1,离心率e 越大,双曲线的开口越大.双曲线的渐近线方程为或表示为.若已知双曲线的渐近线方程是,即,那么双曲线的方程具有以下形式:,其中k 是一个不为零的常数.双曲线的第二定义:平面内到定点(焦点)与到定直线(准线)距离的比是一个大于1的常数(离心率)的点的轨迹叫做双曲线.对于双曲线,它的焦点坐标是(-c ,0)和(c ,0),与它们对应的准线方程分别是和.在双曲线中,如果一个三角形的两个顶点是焦点,另一个顶点在椭圆上,称该三角形为焦点三角形,则面积等于212tan 2b F PF ,其中是虚半轴的长;过焦点垂直于对称轴的弦长即通径长为 8.抛物线的标准方程和几何性质抛物线的定义:平面内到一定点(F )和一条定直线(l )的距离相等的点的轨迹叫抛物线.这个定点F 叫抛物线的焦点,这条定直线l 叫抛物线的准线.需强调的是,点F 不在直线l 上,否则轨迹是过点F 且与l 垂直的直线,而不是抛物线.抛物线的方程有四种类型:、、、.对于以上四种方程:应注意掌握它们的规律:曲线的对称轴是哪个轴,方程中的该项即为一次项;一次项前面是正号则曲线的开口方向向x 轴或y 轴的正方向;一次项前面是负号则曲线的开口方向向x 轴或y 轴的负方向.抛物线的几何性质,以标准方程y2=2px 为例(1)范围:x ≥0;(2)对称轴:对称轴为y=0,由方程和图像均可以看出;(3)顶点:O (0,0),注:抛物线亦叫无心圆锥曲线(因为无中心);(4)离心率:e=1,由于e 是常数,所以抛物线的形状变化是由方程中的p 决定的;(5)准线方程;(6)焦半径公式:抛物线上一点,F 为抛物线的焦点,对于四种抛物线的焦半径公式分别为(p >0):22112:;2:22p p y px PF x y px PF x ==+=-=-+ 22112:;2:22p p x py PF y x py PF y ==+=-=-+ (7)焦点弦长公式:对于过抛物线焦点的弦长,可以用焦半径公式推导出弦长公式.设过抛物线y2=2px (p >O )的焦点F 的弦为AB ,A ,B ,AB 的倾斜角为,则有或,以上两公式只适合过焦点的弦长的求法,对于其它的弦,只能用“弦长公式”来求.在抛物线中,以抛物线的焦点弦为直径的圆与该抛物的对应准线相切;9.直线与圆锥曲线的位置关系:①直线与圆锥曲线的相离关系,常通过求二次曲线上的点到已知直线的距离的最大值或最小值来解决. ②直线与圆锥曲线仅有一个公共点,对于椭圆,表示直线与其相切;对于双曲线,表示与其相切或与双曲线的渐近线平行,对于抛物线,表示直线与其相切或直线与其对称轴平行.③直线与圆锥曲线有两个相异的公共点,表示直线与圆锥曲线相割,此时直线被圆锥曲线截得的线段称为圆锥曲线的弦.直线被圆锥曲线所截得弦为,则长为||||A B A B AB x x y y =-=-,其中为直线的斜率必备方法:1.点差法(中点弦问题)利用“点差法”来解决中点弦问题,其基本思路是设点(即设出弦的端点坐标)——代入(即将端点代入曲线方程)——作差(即两式相减)——得出中点坐标与斜率的关系.2.联立消元法:韦达定理法:将直线方程代入圆锥曲线的方程,消元后得到一个一元二次方程,利用韦达定理和中点坐标公式建立等式求解3.设而不求法4.判别式法5.求根公式法椭圆与双曲线的经典结论一.椭圆1.2.标准方程:3.4.点P 处的切线PT 平分△PF 1F 2在点P 处的外角.5.PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.6.以焦点弦PQ 为直径的圆必与对应准线相离.7.以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.8.设A 1、A 2为椭圆的左、右顶点,则△PF 1F 2在边PF 2(或PF 1)上的旁切圆,必与A 1A 2所在的直线切于A 2(或A 1).9.椭圆(a >b >o )的两个顶点为,,与y 轴平行的直线交椭圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是.10.若在椭圆上,则过的椭圆的切线方程是.11.若在椭圆外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是.12.AB 是椭圆的不平行于对称轴且过原点的弦,M 为AB 的中点,则.13.若在椭圆内,则被Po 所平分的中点弦的方程是.14.若在椭圆内,则过Po 的弦中点的轨迹方程是.15.若PQ 是椭圆(a >b >0)上对中心张直角的弦,则122222121111(||,||)r OP r OQ r r a b+=+==. 16.若椭圆(a >b >0)上中心张直角的弦L 所在直线方程为,则(1) ;(2) .17.给定椭圆:(a >b >0), :222222222()a b b x a y ab a b -+=+,则(i )对上任意给定的点,它的任一直角弦必须经过上一定点M (.(ii )对上任一点在上存在唯一的点,使得的任一直角弦都经过点.18.设为椭圆(或圆)C : (a >0,. b >0)上一点,P 1P 2为曲线C 的动弦,且弦P 0P 1, P 0P 2斜率存在,记为k 1, k 2, 则直线P 1P 2通过定点的充要条件是.19.过椭圆 (a >0, b >0)上任一点任意作两条倾斜角互补的直线交椭圆于B ,C 两点,则直线BC 有定向且(常数).20.椭圆 (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点,则椭圆的焦点角形的面积为,2tan )2b Pc γ . 21.若P 为椭圆(a >b >0)上异于长轴端点的任一点,F 1, F 2是焦点, , ,则.22.椭圆(a >b >0)的焦半径公式:,( , ).23.若椭圆(a >b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当0<e ≤时,可在椭圆上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.24.P 为椭圆(a >b >0)上任一点,F 1,F 2为二焦点,A 为椭圆内一定点,则2112||||||2||a AF PA PF a AF -≤+≤+,当且仅当三点共线时,等号成立.25.椭圆(a >b >0)上存在两点关于直线:对称的充要条件是.26.过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.27.过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.28.P 是椭圆(a >b >0)上一点,则点P 对椭圆两焦点张直角的充要条件是.29.设A ,B 为椭圆上两点,其直线AB 与椭圆相交于,则.30.在椭圆中,定长为2m (o <m ≤a )的弦中点轨迹方程为2222222221()cos sin x y a b m a bαα-+=+,其中,当时, . 31.设S 为椭圆(a >b >0)的通径,定长线段L 的两端点A ,B 在椭圆上移动,记|AB |=,是AB 中点,则当时,有,);当时,有,.32.椭圆与直线有公共点的充要条件是.33.椭圆与直线有公共点的充要条件是2222200()A a B b Ax By C +≥++.34.设椭圆(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上任意一点,在△PF 1F 2中,记, ,,则有.35.经过椭圆(a >b >0)的长轴的两端点A 1和A 2的切线,与椭圆上任一点的切线相交于P 1和P 2,则.36.已知椭圆(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且.(1)22221111||||OP OQ a b +=+;(2)|OP |2+|OQ |2的最大值为;(3)的最小值是.37.MN 是经过椭圆(a >b >0)过焦点的任一弦,若AB 是经过椭圆中心O 且平行于MN 的弦,则.38.MN 是经过椭圆(a >b >0)焦点的任一弦,若过椭圆中心O 的半弦,则2222111||||a MN OP a b +=+. 39.设椭圆(a >b >0),M (m ,o ) 或(o , m )为其对称轴上除中心,顶点外的任一点,过M 引一条直线与椭圆相交于P 、Q 两点,则直线A 1P 、A 2Q (A 1 ,A 2为对称轴上的两顶点)的交点N 在直线:(或)上.40.设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF .41.过椭圆一个焦点F 的直线与椭圆交于两点P 、Q , A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF .42.设椭圆方程,则斜率为k (k ≠0)的平行弦的中点必在直线:的共轭直线上,而且.43.设A 、B 、C 、D 为椭圆上四点,AB 、CD 所在直线的倾斜角分别为,直线AB 与CD 相交于P ,且P 不在椭圆上,则22222222||||cos sin ||||cos sin PA PB b a PC PD b a ββαα⋅+=⋅+. 44.已知椭圆(a >b >0),点P 为其上一点F 1, F 2为椭圆的焦点,的外(内)角平分线为,作F 1、F 2分别垂直于R 、S ,当P 跑遍整个椭圆时,R 、S 形成的轨迹方程是(2222222{[()()]}()[()]b y a ce x c x y cx ce x c +-+⋅++=+).45.设△ABC 内接于椭圆,且AB 为的直径,为AB 的共轭直径所在的直线,分别交直线AC 、BC 于E 和F ,又D 为上一点,则CD 与椭圆相切的充要条件是D 为EF 的中点.46.过椭圆(a >b >0)的右焦点F 作直线交该椭圆右支于M ,N 两点,弦MN 的垂直平分线交x 轴于P ,则.47.设A (x 1 ,y 1)是椭圆(a >b >0)上任一点,过A 作一条斜率为的直线L ,又设d 是原点到直线 L 的距离, 分别是A 到椭圆两焦点的距离,则.48.已知椭圆( a >b >0)和( ),一直线顺次与它们相交于A 、B 、C 、D 四点,则│AB │=|CD │.49.已知椭圆( a >b >0),A 、B 、是椭圆上的两点,线段AB 的垂直平分线与x 轴相交于点, 则.50.设P点是椭圆(a>b>0)上异于长轴端点的任一点,F1、F2为其焦点记,则(1).(2) .51.设过椭圆的长轴上一点B(m,o)作直线与椭圆相交于P、Q两点,A为椭圆长轴的左顶点,连结AP和AQ分别交相应于过B点的直线MN:于M,N两点,则.52.L是经过椭圆(a>b>0)长轴顶点A且与长轴垂直的直线,E、F是椭圆两个焦点,e是离心率,点,若,则是锐角且或(当且仅当时取等号).53.L是椭圆(a>b>0)的准线,A、B是椭圆的长轴两顶点,点,e是离心率,,H是L与X轴的交点c是半焦距,则是锐角且或(当且仅当时取等号).54.L是椭圆(a>b>0)的准线,E、F是两个焦点,H是L与x轴的交点,点,,离心率为e,半焦距为c,则为锐角且或(当且仅当时取等号).55.已知椭圆(a>b>0),直线L通过其右焦点F2,且与椭圆相交于A、B两点,将A、B与椭圆左焦点F1连结起来,则2222112(2)||||a bb F A F Ba-≤⋅≤(当且仅当AB⊥x轴时右边不等式取等号,当且仅当A、F1、B三点共线时左边不等式取等号).56.设A、B是椭圆(a>b>0)的长轴两端点,P是椭圆上的一点,, ,,c、e分别是椭圆的半焦距离心率,则有(1).(2) .(3) .57.设A、B是椭圆(a>b>0)长轴上分别位于椭圆内(异于原点)、外部的两点,且、的横坐标,(1)若过A点引直线与这椭圆相交于P、Q两点,则;(2)若过B引直线与这椭圆相交于P、Q两点,则. 58.设A、B是椭圆(a>b>0)长轴上分别位于椭圆内(异于原点),外部的两点,(1)若过A点引直线与这椭圆相交于P、Q两点,(若B P交椭圆于两点,则P、Q不关于x轴对称),且,则点A、B的横坐标、满足;(2)若过B点引直线与这椭圆相交于P、Q两点,且,则点A、B的横坐标满足.59.设是椭圆的长轴的两个端点,是与垂直的弦,则直线与的交点P的轨迹是双曲线.60.过椭圆(a>b>0)的左焦点作互相垂直的两条弦AB、CD则2222282()||||ab a bAB CDa b a+≤+≤+.61.到椭圆(a>b>0)两焦点的距离之比等于(c为半焦距)的动点M的轨迹是姊妹圆.62.到椭圆(a>b>0)的长轴两端点的距离之比等于(c为半焦距)的动点M的轨迹是姊妹圆.63.到椭圆(a>b>0)的两准线和x轴的交点的距离之比为(c为半焦距)的动点的轨迹是姊妹圆(e为离心率).64.已知P是椭圆(a>b>0)上一个动点,是它长轴的两个端点,且,,则Q点的轨迹方程是.65.椭圆的一条直径(过中心的弦)的长,为通过一个焦点且与此直径平行的弦长和长轴之长的比例中项.。
高考数学二轮复习 专题15 圆锥曲线的综合应用教学案 文-人教版高三全册数学教学案
专题15 圆锥曲线的综合应用圆锥曲线中的定点与定值、最值与X围问题是高考的热点,主要以解答题的形式呈现,往往作为考题的压轴题之一,以椭圆或抛物线为背景,尤其是与条件或结论相关存在性开放问题,对考生的代数恒等变形能力、计算能力有较高要求.考点一圆锥曲线中的最值、X围圆锥曲线中的X围、最值问题,可以转化为函数的最值问题(以所求式子或参数为函数值),或者利用式子的几何意义求解.例1、如下图,设抛物线y2=2px(p>0)的焦点为F,抛物线上的点A到y轴的距离等于|AF|-1.(1)求p的值;(2)假设直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x 轴交于点M,求M的横坐标的取值X围.[变式探究]点A (0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 是椭圆E 的右焦点,直线AF的斜率为233,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程. 解:(1)设F (c ,0),由条件知,2c =233,得c = 3.又ca =32,所以a =2,b 2=a 2-c 2=1. 故E 的方程为x 24+y 2=1.考点二 定点、定值问题探究1.由直线方程确定定点,假设得到了直线方程的点斜式:y -y 0=k (x -x 0),那么直线必过定点(x 0,y 0);假设得到了直线方程的斜截式:y =kx +m ,那么直线必过定点(0, m ).2.解析几何中的定值问题是指某些几何量(线段的长度、图形的面积、角的度数、直线的斜率等)的大小或某些代数表达式的值等与题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值.例2、椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,A (a ,0),B (0,b ),O (0,0),△OAB 的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:|AN |·|BM |为定值.所以|AN |·|BM |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1·⎪⎪⎪⎪⎪⎪1+2y 0x 0-2 =⎪⎪⎪⎪⎪⎪x 20+4y 20+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+2=⎪⎪⎪⎪⎪⎪4x 0y 0-4x 0-8y 0+8x 0y 0-x 0-2y 0+2=4.当x 0=0时,y 0=-1,|BM |=2,|AN |=2, 所以|AN |·|BM |=4.综上可知,|AN |·|BM |为定值. [方法规律]1.求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得出定值.2.定值问题求解的基本思路是使用参数表示要解决的问题,然后证明与参数无关,这类问题选择消元的方向是非常关键的.[变式探究]如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)经过点A (0,-1),且离心率为22.(1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为定值.k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-k x 2=2k +(2-k )⎝ ⎛⎭⎪⎫1x 1+1x 2=2k +(2-k )x 1+x 2x 1x 2=2k +(2-k )4k 〔k -1〕2k 〔k -2〕=2k -2(k -1)=2.故k AP +k AQ 为定值2.例3、焦距为22的椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右顶点为A ,直线y =43与椭圆C 交于P ,Q 两点(P在Q 的左边),Q 在x 轴上的射影为B ,且四边形ABPQ 是平行四边形.(1)求椭圆C 的方程;(2)斜率为k 的直线l 与椭圆C 交于两个不同的点M ,N .假设M 是椭圆的左顶点,D 是直线MN 上一点,且DA ⊥AM .点G 是x 轴上异于点M 的点,且以DN 为直径的圆恒过直线AN 和DG 的交点,求证:点G 是定点.设G (t ,0),那么t ≠-2,假设以DN 为直径的圆恒过直线AN 和DG 的交点,那么DG ⊥AN , 所以GD →·AN →=0恒成立. 因为GD →=(2-t ,4k ),AN →=⎝ ⎛⎭⎪⎫-8k 21+2k 2,4k 1+2k 2, 所以GD →·AN →=(2-t )·-8k 21+2k 2+4k ·4k1+2k2=0恒成立,即8k 2t1+2k2=0恒成立,所以t =0, 所以点G 是定点(0,0). [方法规律]1.动直线l 过定点问题,设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k (x +m ),故动直线过定点(-m ,0).2.动曲线C 过定点问题,引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.[变式探究]两点A (-2,0),B (2,0),动点P 在x 轴上的投影是Q ,且2PA →·PB →=|PQ →|2. (1)求动点P 的轨迹C 的方程;(2)过F (1,0)作互相垂直的两条直线交轨迹C 于点G ,H ,M ,N ,且E 1,E 2分别是GH ,MN 的中点.求证:直线E 1E 2恒过定点.-1),M (x 3,y 3),N (x 4,y 4),联立⎩⎪⎨⎪⎧x 24+y 22=1,y =k 〔x -1〕,消去y 得(2k 2+1)x 2-4k 2x +2k 2-4=0.那么Δ>0恒成立.所以x 1+x 2=4k 22k 2+1,且x 1x 2=2k 2-42k 2+1.所以GH 中点 E 1坐标为⎝ ⎛⎭⎪⎫2k22k 2+1,-k 2k 2+1,同理,MN 中点E 2坐标为⎝⎛⎭⎪⎫2k 2+2,k k 2+2,所以kE 1E 2=-3k2〔k 2-1〕, 所以lE 1E 2的方程为y =-3k 2〔k 2-1〕⎝ ⎛⎭⎪⎫x -23,所以过点⎝ ⎛⎭⎪⎫23,0, 当两直线的斜率分别为0和不存在时,lE 1E 2的方程为y =0,也过点⎝ ⎛⎭⎪⎫23,0,综上所述,lE 1E 2过定点⎝ ⎛⎭⎪⎫23,0. 考点三 圆锥曲线中的存在性问题存在性问题的解题步骤:(1)先假设存在,引入参变量,根据题目条件列出关于参变量的方程(组)或不等式(组).(2)解此方程(组)或不等式(组),假设有解那么存在,假设无解那么不存在. (3)得出结论.例3、 椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-1,0),F 2(1,0),点A ⎝⎛⎭⎪⎫1,22在椭圆C上.(1)求椭圆C 的标准方程;(2)是否存在斜率为2的直线,使得当该直线与椭圆C 有两个不同交点M ,N 时,能在直线y =53上找到一点P ,在椭圆C 上找到一点Q ,满足PM →=NQ →?假设存在,求出直线的方程;假设不存在,说明理由.故y 0=y 1+y 22=t9,且-3<t <3. 由PM →=NQ →得⎝ ⎛⎭⎪⎫x 1-x 3,y 1-53=(x 4-x 2,y 4-y 2),所以有y 1-53=y 4-y 2,y 4=y 1+y 2-53=29t -53.也可由PM →=NQ →知四边形PMQN 为平行四边形,而D 为线段MN 的中点,因此,D 也为线段PQ 的中点,所以y 0=53+y 42=t 9,可得y 4=2t -159.[方法规律]1.此类问题一般分为探究条件、探究结构两种.假设探究条件,那么可先假设条件成立,再验证结论是否成立,成立那么存在,不成立那么不存在;假设探究结论,那么应先求出结论的表达式,再针对其表达式进行讨论,往往涉及对参数的讨论.2.求解步骤:假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,假设方程组有实数解,那么元素(点、直线、曲线或参数)存在,否那么,元素(点、直线、曲线或参数)不存在.[变式探究]椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且过点P ⎝ ⎛⎭⎪⎫1,32,F 为其右焦点.(1)求椭圆C 的方程;(2)设过点A (4,0)的直线l 与椭圆相交于M ,N 两点(点M 在A ,N 两点之间),是否存在直线l 使△AMF 与△MFN 的面积相等?假设存在,试求直线l 的方程;假设不存在,请说明理由.解:(1)因为c a =12,所以a =2c ,b =3c .设椭圆方程x 24c 2+y 23c2=1,又点P ⎝ ⎛⎭⎪⎫1,32在椭圆上,所以14c 2+34c 2=1,解得c 2=1.所以椭圆方程为x 24+y 23=1.(2)易知直线l 的斜率存在,设l 的方程为y =k (x -4),由⎩⎪⎨⎪⎧y =k 〔x -4〕,x 24+y 23=1消去y ,得(3+4k 2)x 2-32k 2x +64k 2-12=0,由题意知Δ=(32k 2)2-4(3+4k 2)(64k 2-12)>0,1.[2017课标1,文20]设A ,B 为曲线C :y =24x 上两点,A 与B 的横坐标之和为4.〔1〕求直线AB 的斜率;〔2〕设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程. [答案]〔1〕1; 〔2〕7y x =+.[解析]解:〔1〕设A 〔x 1,y 1〕,B 〔x 2,y 2〕,那么12x x ≠, 2114x y =, 2224x y =,x 1+x 2=4,于是直线AB 的斜率12121214y y x x k x x -+===-.〔2〕由24x y =,得'2xy =.设M 〔x 3,y 3〕,由题设知312x =,解得32x =,于是M 〔2,1〕. 设直线AB 的方程为y x m =+,故线段AB 的中点为N 〔2,2+m 〕,|MN |=|m +1|.将y x m =+代入24x y =得2440x x m --=.当()1610m ∆=+>,即1m >-时, 1,2221x m =±+.从而()12||=2421AB x x m -=+. 由题设知2AB MN =,即()()42121m m +=+,解得7m =. 所以直线AB 的方程为7y x =+.2.[2017课标II ,文20]设O 为坐标原点,动点M 在椭圆C 上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明过点P 且垂直于OQ 的直线l 过C 的左焦点F. [答案]〔1〕〔2〕见解析[解析]C 的左焦点F.3.[2017课标3,文20]在直角坐标系xOy 中,曲线22y x mx =+-与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答以下问题:〔1〕能否出现AC ⊥BC 的情况?说明理由;〔2〕证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. [答案]〔1〕不会;〔2〕详见解析 [解析]〔1〕不能出现AC ⊥BC 的情况,理由如下:设1,0A x (), 2,0B x (),那么12x x ,满足220x mx +-=,所以122x x =-.又C 的坐标为〔0,1〕,故AC 的斜率与BC 的斜率之积为121112x x --=-,所以不能出现AC ⊥BC 的情况.值.4.[2017某某,文21]〔本小题总分值14分〕在平面直角坐标系xOy中,椭圆C:22221x ya b+=(a>b>0)的离心率为22,椭圆C截直线y=1所得线段的长度为22.(Ⅰ)求椭圆C的方程;(Ⅱ)动直线l:y=kx+m(m≠0)交椭圆C于A,B两点,交y轴于点M.点N是M关于O的对称点,圆N的半径为|NO|. 设D为AB的中点,DE,DF与圆N分别相切于点E,F,求∠EDF的最小值.[答案]〔Ⅰ〕22142x y+=.(II)3π.[解析]又()0,N m -,所以2222222121km m ND m k k ⎛⎫⎛⎫=-++ ⎪ ⎪++⎝⎭⎝⎭整理得()()22422241321m k k ND k++=+ ,所以22134ND NF≤+=,由〔*〕得 22m -<<且0m ≠.故12NF ND≥, 设2EDF θ∠=, 那么1sin 2NF NDθ=≥, 所以θ的最小值为π6, 从而EDF ∠的最小值为π3,此时直线L 的斜率是0.综上所述:当0k =, ()(m ∈⋃时, EDF ∠取到最小值π3.5.[2017,文19]椭圆C 的两个顶点分别为A (−2,0),B(2,0),焦点在x . 〔Ⅰ〕求椭圆C 的方程;〔Ⅱ〕点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过D 作AM 的垂线交BN 于点E .求证:△BDE 与△BDN 的面积之比为4:5.[答案]〔Ⅰ〕2214x y += ;〔Ⅱ〕详见解析.由点M在椭圆C上,得.所以.又,,所以与的面积之比为4:5.6.[2017某某,17] 如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作 直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l .〔1〕求椭圆E 的标准方程;〔2〕假设直线E 的交点Q 在椭圆E 上,求点P 的坐标.[答案]〔1〕22143x y +=〔2〕4737(,)77 [解析]〔2〕由〔1〕知, ()11,0F -, ()21,0F . 设()00,P x y ,因为点P 为第一象限的点,故000,0x y >>.F 1 ⋅O⋅F 2xy(第17题)。
高考数学二轮复习第三讲圆锥曲线的综合应用课件
故
������������ ������������ + 为定值 ������������ ������������
2.
考点1
考点2
考点3
考点4
考点1
考点2
考点3
考点4
(1)求 C 的方程; (2)直线 l 不过原点 O 且不平行于坐标轴,l 与 C 有两个交点 A,B,线段 AB 的中点为 M.证明 :直线 OM 的斜率与直线 l 的斜率的乘积为定值. 解 :(1)由题意有 解得 a2=8,b2=4. 所以 C
第三讲 圆锥曲线的综合应用
1.理解数形结合的思想.
2.了解圆锥曲线的简单应用.
1.解答圆锥曲线的综合问题时应根据曲线的几何特征,熟练运用圆锥曲线的知
识将曲线的几何特征转化为数量关系(如方程、函数等),再结合代数、三角知识
解答,要重视函数与方程思想、等价转化思想的应用. 对于求曲线方程中参数的取值范围问题,应根据题设条件及曲线的几何性质(曲
1 p= , 2 1 , 2 ������
ቤተ መጻሕፍቲ ባይዱ
(2)因为函数 y=- ������ 的导函数为 y'=-
设 A(x0,y0),则直线 MA 的方程为 y-y0=MA 上, 所以-2-y0=- × 联立
1 2 1 2 1 (-x0). ������0
1 (x-x0),因为点 2 ������0
M(0,-2)在直线
1 4
(1)求抛物线的方程 ; (2)试问 :
������������ ������������ + 的值是否为定值?若是,求出定值 ;若不是,说明理由. ������������ ������������
考点1
考点2
届数学二轮复习第二部分专题篇素养提升文理专题五解析几何第3讲圆锥曲线的综合应用学案含解析
第3讲圆锥曲线的综合应用JIE TI CE LUE MING FANG XIANG解题策略·明方向⊙︱考情分析︱1.圆锥曲线中的定点与定值、最值与范围问题是高考必考的问题之一,主要以解答题形式考查,往往作为试卷的压轴题之一.2.以椭圆或抛物线为背景,尤其是与条件或结论相关存在性开放问题.对考生的代数恒等变形能力、计算能力有较高的要求,并突出数学思想方法考查.⊙︱真题分布︱(理科)年份卷别题号考查角度分值202 0Ⅰ卷20椭圆的简单性质及方程思想、定点问题12Ⅱ卷19椭圆离心率的求解,利用抛物线的定义求抛物线和椭圆的标准方程12Ⅲ20椭圆标准方程和求三角形12(文科)Ⅲ卷21椭圆标准方程和求三角形面积问题,椭圆的离心率定义和数形结合求三角形面积,12201 9Ⅰ卷21直线与圆的位置关系,定值问题12Ⅱ卷20椭圆的定义及其几何性质、参数的范围12Ⅲ卷21直线与抛物线的位置关系、定点问题12201 8Ⅰ卷20直线的方程,直线与抛物线的位置关系、证明问题12Ⅱ卷20直线的方程,直线与抛物线的位置关系、圆的方程12Ⅲ卷20直线与椭圆的位置关系、证明问题12KAO DIAN FEN LEI XI ZHONG DIAN考点分类·析重点考点一圆锥曲线中的最值、范围问题错误!错误!错误!错误!典例1(2020·青海省玉树州高三联考)已知直线l:x-y+1=0与焦点为F的抛物线C:y2=2px(p〉0)相切.(1)求抛物线C的方程;(2)过点F的直线m与抛物线C交于A,B两点,求A,B两点到直线l的距离之和的最小值.【解析】(1)将l:x-y+1=0与抛物线C:y2=2px联立得:y2-2py+2p=0,∵l与C相切,∴Δ=4p2-8p=0,解得:p=2,∴抛物线C的方程为:y2=4x。
(2)由题意知,直线m斜率不为0,可设直线m方程为:x =ty+1,联立{y2=4x,x=ty+1得:y2-4ty-4=0.设A(x1,y1),B(x2,y2),则y1+y2=4t,∴x1+x2=ty1+1+ty2+1=4t2+2,∴线段AB中点M(2t2+1,2t).设A,B,M到直线l距离分别为d A,d B,d M,则d A+d B=2d M=2·错误!=2错误!错误!=2错误!错误!,∵(t-错误!)2+错误!≥错误!,∴当t=错误!时,错误!min=错误!,∴A,B两点到直线l的距离之和的最小值为:22×错误!=错误!。
高考数学二轮复习 专题四 解析几何 第3讲 圆锥曲线的综合问题学案
第3讲 圆锥曲线的综合问题[考情考向分析] 1.圆锥曲线的综合问题一般以直线和圆锥曲线的位置关系为载体,以参数处理为核心,考查范围、最值问题,定点、定值问题,探索性问题.2.试题解答往往要综合应用函数与方程、数形结合、分类讨论等多种思想方法,对计算能力也有较高要求,难度较大.热点一 范围、最值问题圆锥曲线中的范围、最值问题,可以转化为函数的最值问题(以所求式子或参数为函数值),或者利用式子的几何意义求解.例1 (2018·浙江省稽阳联谊学校联考)已知离心率为32的椭圆C :x 2a 2+y2b2=1(a >b >0)过点P ⎝ ⎛⎭⎪⎫1,32,与坐标轴不平行的直线l 与椭圆C 交于A ,B 两点,其中M 为A 关于y 轴的对称点,N (0,2),O 为坐标原点.(1)求椭圆C 的方程;(2)分别记△PAO ,△PBO 的面积为S 1,S 2,当M ,N ,B 三点共线时,求S 1·S 2的最大值. 解 (1)∵c a =32,a 2=b 2+c 2,∴a =2b . 把点P ⎝ ⎛⎭⎪⎫1,32代入椭圆方程可得1a 2+34b 2=1, 解得a =2,b =1,∴椭圆方程为x 24+y 2=1.(2)设点A 坐标为(x 1,y 1),点B 坐标为(x 2,y 2), 则M 为(-x 1,y 1),设直线l 的方程为y =kx +b ,联立椭圆方程可得(4k 2+1)x 2+8kbx +4b 2-4=0, ∴x 1+x 2=-8kb 4k 2+1,x 1x 2=4b 2-44k 2+1,Δ>0,∵M ,N ,B 三点共线, ∴k MN =k BN , 即y 1-2x 1+y 2-2x 2=0, 化简得8k (1-2b )=0, 解得b =22或k =0(舍去). 设A ,B 两点到直线OP 的距离分别为d 1,d 2. 直线OP 的方程为3x -2y =0,|OP |=72, ∴S 1·S 2=116|(3x 1-2y 1)(3x 2-2y 2)|,化简可得S 1·S 2=116|(2k -3)2x 1x 2+2(2k -3)(x 1+x 2)+2|=⎪⎪⎪⎪⎪⎪-14+3k 4k 2+1. 又3k 4k 2+1∈⎣⎢⎡⎭⎪⎫-34,0∪⎝⎛⎦⎥⎤0,34, ∴当k =-12时,S 1·S 2的最大值为3+14.思维升华 解决范围问题的常用方法(1)数形结合法:利用待求量的几何意义,确定出极端位置后,利用数形结合法求解. (2)构建不等式法:利用已知或隐含的不等关系,构建以待求量为元的不等式求解. (3)构建函数法:先引入变量构建以待求量为因变量的函数,再求其值域.跟踪演练1 (2018·绍兴市柯桥区模拟)已知抛物线C :y 2=4x 的焦点为F ,直线l :y =kx -4(1<k <2)与y 轴、抛物线C 相交于点P ,A ,B (自下而上),记△PAF ,△PBF 的面积分别为S 1,S 2.(1)求AB 中点M 到y 轴的距离d 的取值范围; (2)求S 1S 2的取值范围.解 (1)联立⎩⎪⎨⎪⎧y =kx -4,y 2=4x ,消去y ,得k 2x 2-(8k +4)x +16=0, 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=8k +4k2,x 1x 2=16k2,所以d =x 1+x 22=4k +2k 2=2⎝ ⎛⎭⎪⎫1k +12-2∈⎝ ⎛⎭⎪⎫52,6. (2)由于S 1S 2=|PA ||PB |=x 1x 2.由(1)可知S 1S 2+S 2S 1=x 1x 2+x 2x 1=(x 1+x 2)2-2x 1x 2x 1x 2=k 216·(8k +4)2k 4-2 =⎝ ⎛⎭⎪⎫1k +22-2∈⎝ ⎛⎭⎪⎫174,7. 由S 1S 2+S 2S 1>174,得4⎝ ⎛⎭⎪⎫S 1S 22-17·S 1S 2+4>0,解得S 1S 2>4或S 1S 2<14.因为0<S 1S 2<1,所以0<S 1S 2<14,由S 1S 2+S 2S 1<7,得⎝ ⎛⎭⎪⎫S 1S 22-7·S 1S 2+1<0,解得7-352<S 1S 2<7+352,因此7-352<S 1S 2<14.即S 1S 2的取值范围为⎝⎛⎭⎪⎫7-352,14. 热点二 定点、定值问题1.由直线方程确定定点,若得到了直线方程的点斜式:y -y 0=k (x -x 0),则直线必过定点(x 0,y 0);若得到了直线方程的斜截式:y =kx +m ,则直线必过定点(0,m ).2.解析几何中的定值问题是指某些几何量(线段的长度、图形的面积、角的度数、直线的斜率等)的大小或某些代数表达式的值等与题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值.例2 (2018·北京)已知抛物线C :y 2=2px 经过点P (1,2),过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围;(2)设O 为原点,QM →=λQO →,QN →=μQO →,求证:1λ+1μ为定值.(1)解 因为抛物线y 2=2px 过点(1,2), 所以2p =4,即p =2. 故抛物线C 的方程为y 2=4x .由题意知,直线l 的斜率存在且不为0. 设直线l 的方程为y =kx +1(k ≠0),由⎩⎪⎨⎪⎧y 2=4x ,y =kx +1,得k 2x 2+(2k -4)x +1=0.依题意知Δ=(2k -4)2-4×k 2×1>0, 解得k <0或0<k <1.又PA ,PB 与y 轴相交,故直线l 不过点(1,-2). 从而k ≠-3.所以直线l 的斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1). (2)证明 设A (x 1,y 1),B (x 2,y 2), 由(1)知x 1+x 2=-2k -4k 2,x 1x 2=1k2.直线PA 的方程为y -2=y 1-2x 1-1(x -1), 令x =0,得点M 的纵坐标为y M =-y 1+2x 1-1+2=-kx 1+1x 1-1+2.同理得点N 的纵坐标为y N =-kx 2+1x 2-1+2.由QM →=λQO →,QN →=μQO →,得λ=1-y M ,μ=1-y N . 所以1λ+1μ=11-y M +11-y N =x 1-1(k -1)x 1+x 2-1(k -1)x 2=1k -1·2x 1x 2-(x 1+x 2)x 1x 2=1k -1·2k 2+2k -4k 21k 2=2.所以1λ+1μ为定值.思维升华 (1)动直线过定点问题的两大类型及解法①动直线l 过定点问题,解法:设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k (x +m ),故动直线过定点(-m,0).②动曲线C 过定点问题,解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点. (2)求解定值问题的两大途径①由特例得出一个值(此值一般就是定值)→②先将式子用动点坐标或动线中的参数表示,再利用其满足的约束条件使其绝对值相等的正负项抵消或分子、分母约分得定值. 跟踪演练2 已知倾斜角为π4的直线经过抛物线Γ:y 2=2px (p >0)的焦点F ,与抛物线Γ相交于A ,B 两点,且|AB |=8. (1)求抛物线Γ的方程;(2)过点P (12,8)的两条直线l 1,l 2分别交抛物线Γ于点C ,D 和E ,F ,线段CD 和EF 的中点分别为M ,N .如果直线l 1与l 2的倾斜角互余,求证:直线MN 经过一定点. (1)解 由题意可设直线AB 的方程为y =x -p2,由⎩⎪⎨⎪⎧y =x -p 2,y 2=2px ,消去y 整理得x 2-3px +p 24=0,Δ=9p 2-4×p 24=8p 2>0,令A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=3p ,由抛物线的定义得|AB |=x 1+x 2+p =4p =8, ∴p =2.∴抛物线的方程为y 2=4x .(2)证明 设直线l 1,l 2的倾斜角分别为α,β, 由题意知,α,β≠π2.直线l 1的斜率为k ,则k =tan α. ∵直线l 1与l 2的倾斜角互余,∴tan β=tan ⎝ ⎛⎭⎪⎫π2-α=sin ⎝ ⎛⎭⎪⎫π2-αcos ⎝ ⎛⎭⎪⎫π2-α =cos αsin α=1sin αcos α=1tan α, ∴直线l 2的斜率为1k.∴直线CD 的方程为y -8=k (x -12), 即y =k (x -12)+8.由⎩⎪⎨⎪⎧y =k (x -12)+8,y 2=4x ,消去x 整理得ky 2-4y +32-48k =0, 设C (x C ,y C ),D (x D ,y D ), ∴y C +y D =4k,∴x C +x D =24+4k 2-16k,∴点M 的坐标为⎝⎛⎭⎪⎫12+2k2-8k ,2k .以1k代替点M 坐标中的k ,可得点N 的坐标为(12+2k 2-8k,2k ), ∴k MN =2⎝ ⎛⎭⎪⎫1k -k 2⎝ ⎛⎭⎪⎫1k 2-k 2-8⎝ ⎛⎭⎪⎫1k -k =11k+k -4.∴直线MN 的方程为y -2k =11k+k -4[x -(12+2k 2-8k )], 即⎝ ⎛⎭⎪⎫1k+k -4y =x -10, 显然当x =10时,y =0, 故直线MN 经过定点()10,0. 热点三 探索性问题1.解析几何中的探索性问题,从类型上看,主要是存在类型的相关题型,解决这类问题通常采用“肯定顺推法”,将不确定性问题明确化.其步骤为:假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在. 2.反证法与验证法也是求解存在性问题常用的方法.例3 已知椭圆C :y 2a 2+x 2b2=1(a >b >0)的上、下焦点分别为F 1,F 2,上焦点F 1到直线4x +3y +12=0的距离为3,椭圆C 的离心率e =12.(1)求椭圆C 的方程;(2)椭圆E :y 2a 2+3x 216b 2=1,设过点M (0,1),斜率存在且不为0的直线交椭圆E 于A ,B 两点,试问y 轴上是否存在点P ,使得PM →=λ⎝ ⎛⎭⎪⎪⎫PA →|PA →|+PB →|PB →|?若存在,求出点P 的坐标;若不存在,说明理由.解 (1)由已知椭圆C 的方程为y 2a 2+x 2b2=1(a >b >0),设椭圆的焦点F 1(0,c ),由F 1到直线4x +3y +12=0的距离为3, 得|3c +12|5=3, 又椭圆C 的离心率e =12,所以c a =12,又a 2=b 2+c 2,求得a 2=4,b 2=3. 椭圆C 的方程为y 24+x 23=1. (2)存在.理由如下:由(1)得椭圆E :x 216+y 24=1,设直线AB 的方程为y =kx +1(k ≠0),联立⎩⎪⎨⎪⎧y =kx +1,x 216+y24=1,消去y 并整理得(4k 2+1)x 2+8kx -12=0, Δ=(8k )2+4(4k 2+1)×12=256k 2+48>0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8k 4k 2+1,x 1x 2=-124k 2+1.假设存在点P (0,t )满足条件, 由于PM →=λ⎝ ⎛⎭⎪⎪⎫PA →|PA →|+PB →|PB →|, 所以PM 平分∠APB .所以直线PA 与直线PB 的倾斜角互补, 所以k PA +k PB =0. 即y 1-t x 1+y 2-tx 2=0, 即x 2(y 1-t )+x 1(y 2-t )=0.(*) 将y 1=kx 1+1,y 2=kx 2+1代入(*)式, 整理得2kx 1x 2+(1-t )(x 1+x 2)=0, 所以-2k ·124k 2+1+(1-t )×(-8k )4k 2+1=0, 整理得3k +k (1-t )=0,即k (4-t )=0, 因为k ≠0,所以t =4.所以存在点P (0,4),使得PM →=λ⎝ ⎛⎭⎪⎪⎫PA →|PA →|+PB →|PB →|. 思维升华 解决探索性问题的注意事项存在性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时,要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.(3)当条件和结论都不知,按常规方法解题很难时,要思维开放,采取另外的途径.跟踪演练3 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点M (2,2),且离心率为22.(1)求a ,b 的值,并写出椭圆C 的方程;(2)设A ,B 分别为椭圆C 的左、右顶点,在椭圆C 上有异于A ,B 的动点P ,若直线PA ,PB 与直线l :x =m (m 为常数)分别交于不同的两点M ,N ,则当点P 运动时,以MN 为直径的圆是否经过定点?解 (1)由题知,4a 2+2b 2=1,c a =22,a 2=b 2+c 2,解得a =22,b =2, ∴椭圆C 的方程为x 28+y 24=1.(2)由(1)知,A (-22,0),B (22,0), 设直线PA ,PB 的斜率分别为k 1,k 2,则直线PA ,PB 的方程分别为y =k 1(x +22),y =k 2(x -22),∴M (m ,k 1(m +22)),N (m ,k 2(m -22)),∴根据射影定理知,以MN 为直径的圆的方程为(x -m )2+[y -k 1(m +22)][y -k 2(m -22)]=0,即(x -m )2+y 2-[k 1(m +22)+k 2(m -22)]y +k 1k 2·(m 2-8)=0,设点P (x 0,y 0),则x 208+y 204=1,y 2=4⎝ ⎛⎭⎪⎫1-x 208,∴k 1k 2=y 0x 0+22·y 0x 0-22=y 20x 20-8=-12, ∴(x -m )2+y 2-[k 1(m +22)+k 2(m -22)]y -12(m 2-8)=0,由y =0,得(x -m )2-12(m 2-8)=0,∴(x -m )2=12(m 2-8).当m 2-8<0,即-22<m <22时,方程无实数解,该圆不经过定点.当m 2-8≥0,即m ≥22或m ≤-22时, 解得x =m ±22m 2-8, 即定点为⎝⎛⎭⎪⎫m ±22m 2-8,0.真题体验1.(2017·全国Ⅰ改编)已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A ,B 两点,直线l 2与C 交于D ,E 两点,则|AB |+|DE |的最小值为________.答案 16解析 因为F 为y 2=4x 的焦点,所以F (1,0).由题意知,直线l 1,l 2的斜率均存在且不为0,设l 1的斜率为k ,则l 2的斜率为-1k,故直线l 1,l 2的方程分别为y =k (x -1),y =-1k(x -1).由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x ,得k 2x 2-(2k 2+4)x +k 2=0,Δ=16k 2+16>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2k 2+4k2,x 1x 2=1,所以|AB |=1+k 2·|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2 =1+k 2·⎝ ⎛⎭⎪⎫2k 2+4k 22-4 =4(1+k 2)k2. 同理可得|DE |=4(1+k 2).所以|AB |+|DE |=4(1+k 2)k2+4(1+k 2) =4⎝ ⎛⎭⎪⎫1k 2+1+1+k 2=8+4⎝⎛⎭⎪⎫k 2+1k2≥8+4×2=16,当且仅当k 2=1k2,即k =±1时,取得等号.2.(2018·浙江)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上.(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆x 2+y 24=1(x <0)上的动点,求△PAB 面积的取值范围.(1)证明 设P (x 0,y 0),A ⎝ ⎛⎭⎪⎫14y 21,y 1,B ⎝ ⎛⎭⎪⎫14y 22,y 2. 因为PA ,PB 的中点在抛物线上,所以y 1,y 2为方程⎝ ⎛⎭⎪⎫y +y 022=4·14y 2+x 02, 即y 2-2y 0y +8x 0-y 20=0的两个不同的实根. 所以y 1+y 2=2y 0, 所以PM 垂直于y 轴. (2)解 由(1)可知⎩⎪⎨⎪⎧y 1+y 2=2y 0,y 1y 2=8x 0-y 20,所以|PM |=18(y 21+y 22)-x 0=34y 20-3x 0,|y 1-y 2|=22(y 20-4x 0).所以△PAB 的面积S △PAB =12|PM |·|y 1-y 2|=324(y 20-4x 0)32.因为x 2+y 204=1(-1≤x 0<0),所以y 20-4x 0=-4x 20-4x 0+4∈[4,5], 所以△PAB 面积的取值范围是⎣⎢⎡⎦⎥⎤62,15104.押题预测已知椭圆C 1:x 2a 2+y 23=1(a >0)与抛物线C 2:y 2=2ax 相交于A ,B 两点,且两曲线的焦点F 重合.(1)求C 1,C 2的方程;(2)若过焦点F 的直线l 与椭圆分别交于M ,Q 两点,与抛物线分别交于P ,N 两点,是否存在斜率为k (k ≠0)的直线l ,使得|PN ||MQ |=2?若存在,求出k 的值;若不存在,请说明理由.押题依据 本题将椭圆和抛物线联合起来设置命题,体现了对直线和圆锥曲线位置关系的综合考查.关注知识交汇,突出综合应用是高考的特色. 解 (1)因为C 1,C 2的焦点重合, 所以a 2-3=a2,所以a 2=4.又a >0,所以a =2.于是椭圆C 1的方程为x 24+y 23=1,抛物线C 2的方程为y 2=4x . (2)假设存在直线l 使得|PN ||MQ |=2,当l ⊥x 轴时,|MQ |=3,|PN |=4,不符合题意, ∴直线l 的斜率存在,∴可设直线l 的方程为y =k (x -1)(k ≠0),P (x 1,y 1),Q (x 2,y 2),M (x 3,y 3),N (x 4,y 4).由⎩⎪⎨⎪⎧y 2=4x ,y =k (x -1),可得k 2x 2-(2k 2+4)x +k 2=0,则x 1+x 4=2k 2+4k2,x 1x 4=1,且Δ=16k 2+16>0,所以|PN |=1+k 2·(x 1+x 4)2-4x 1x 4 =4(1+k 2)k2. 由⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x -1),可得(3+4k 2)x 2-8k 2x +4k 2-12=0,则x 2+x 3=8k 23+4k 2,x 2x 3=4k 2-123+4k 2,且Δ=144k 2+144>0,所以|MQ |=1+k 2·(x 2+x 3)2-4x 2x 3=12(1+k 2)3+4k2.若|PN ||MQ |=2,则4(1+k 2)k 2=2×12(1+k 2)3+4k 2, 解得k =±62. 故存在斜率为k =±62的直线l ,使得|PN ||MQ |=2.A 组 专题通关1.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =33,左、右焦点分别为F 1,F 2,且F 2与抛物线y2=4x 的焦点重合. (1)求椭圆的标准方程;(2)若过F 1的直线交椭圆于B ,D 两点,过F 2的直线交椭圆于A ,C 两点,且AC ⊥BD ,求|AC |+|BD |的最小值.解 (1)抛物线y 2=4x 的焦点坐标为(1,0),所以c =1,又因为e =c a =1a =33,所以a =3,所以b 2=2,所以椭圆的标准方程为x 23+y 22=1.(2)①当直线BD 的斜率k 存在且k ≠0时, 直线BD 的方程为y =k (x +1), 代入椭圆方程x 23+y 22=1,并化简得()3k 2+2x 2+6k 2x +3k 2-6=0.Δ=36k 4-4(3k 2+2)(3k 2-6)=48(k 2+1)>0恒成立. 设B (x 1,y 1),D (x 2,y 2),则x 1+x 2=-6k 23k 2+2,x 1x 2=3k 2-63k 2+2,|BD |=1+k 2·|x 1-x 2|=()1+k 2·[](x 1+x 2)2-4x 1x 2=43()k 2+13k 2+2. 由题意知AC 的斜率为-1k,所以|AC |=43⎝ ⎛⎭⎪⎫1k 2+13×1k2+2=43()k 2+12k 2+3. |AC |+|BD |=43()k 2+1⎝⎛⎭⎪⎫13k 2+2+12k 2+3=203()k 2+12()3k 2+2()2k 2+3≥203()k 2+12⎣⎢⎡⎦⎥⎤()3k 2+2+()2k 2+322=203()k 2+1225(k 2+1)24=1635. 当且仅当3k 2+2=2k 2+3,即k =±1时,上式取等号, 故|AC |+|BD |的最小值为1635.②当直线BD 的斜率不存在或等于零时,可得|AC |+|BD |=1033>1635.综上,|AC |+|BD |的最小值为1635.2.(2018·诸暨市适应性考试)已知F 是抛物线C :x 2=2py (p >0)的焦点,过F 的直线交抛物线C 于不同的两点A (x 1,y 1),B (x 2,y 2),且x 1x 2=-1. (1)求抛物线C 的方程;(2)过点B 作x 轴的垂线交直线AO (O 为坐标原点)于点D ,过点A 作直线DF 的垂线与抛物线C 的另一交点为E ,AE 的中点为G . ①求点D 的纵坐标; ②求|GB ||DG |的取值范围.解 (1)设AB :y =kx +p2,联立⎩⎪⎨⎪⎧y =kx +p 2,x 2=2py ,得x 2=2p ⎝⎛⎭⎪⎫kx +p 2,即x 2-2pkx -p 2=0, ∴x 1x 2=-p 2=-1,∴p =1, ∴抛物线C 的方程为x 2=2y . (2)①直线OA 的方程为y =y 1x 1x =x 12x ,∴D ⎝⎛⎭⎪⎫x 2,x 1x 22,即D ⎝⎛⎭⎪⎫x 2,-12, ∴点D 的纵坐标为-12.②∵k DF =-1x 2,∴k AE =x 2,即直线AE 的方程为y -y 1=x 2(x -x 1),联立⎩⎪⎨⎪⎧y -y 1=x 2(x -x 1),y =x 22,得x 22-x 2x -y 1-1=0,∴x E =2x 2-x 1,∴G (x 2,2y 2+y 1+1). ∴G ,B ,D 三点共线,∴|GB ||DG |=y 2+y 1+12y 2+y 1+32,∵y 1·y 2=14,∴|DG ||GB |=2-y 1+1214y 1+y 1+1=2-y 1y 1+12=2-11+12y 1∈(1,2),∴|GB ||DG |∈⎝ ⎛⎭⎪⎫12,1. 3.(2018·全国Ⅲ)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0). (1)证明:k <-12;(2)设F 为C 的右焦点,P 为C 上一点,且FP →+FA →+FB →=0.证明:|FA →|,|FP →|,|FB →|成等差数列,并求该数列的公差.(1)证明 设A (x 1,y 1),B (x 2,y 2), 则x 214+y 213=1,x 224+y 223=1. 两式相减,并由y 1-y 2x 1-x 2=k ,得x 1+x 24+y 1+y 23·k =0. 由题设知x 1+x 22=1,y 1+y 22=m ,于是k =-34m.①由题设得0<m <32,故k <-12.(2)解 由题意得F (1,0).设P (x 3,y 3),则 (x 3-1,y 3)+(x 1-1,y 1)+(x 2-1,y 2)=(0,0). 由(1)及题设得x 3=3-(x 1+x 2)=1,y 3=-(y 1+y 2)=-2m <0.又点P 在C 上,所以m =34,从而P ⎝ ⎛⎭⎪⎫1,-32,|FP →|=32, 于是|FA →|=(x 1-1)2+y 21=(x 1-1)2+3⎝ ⎛⎭⎪⎫1-x 214=2-x 12.同理|FB →|=2-x 22.所以|FA →|+|FB →|=4-12(x 1+x 2)=3.故2|FP →|=|FA →|+|FB →|,即|FA →|,|FP →|,|FB →|成等差数列.设该数列的公差为d ,则2|d |=||FB →|-|FA →||=12|x 1-x 2|=12(x 1+x 2)2-4x 1x 2.②将m =34代入①得k =-1,所以l 的方程为y =-x +74,代入C 的方程,并整理得7x 2-14x +14=0.故x 1+x 2=2,x 1x 2=128,代入②解得|d |=32128.所以该数列的公差为32128或-32128.4.(2018·嘉兴市、丽水市教学测试)点P (1,1)为抛物线y 2=x 上一定点,斜率为-12的直线与抛物线交于A ,B 两点.(1)求弦AB 中点M 的纵坐标;(2)点Q 是线段PB 上任意一点(异于端点),过Q 作PA 的平行线交抛物线于E ,F 两点,求证:|QE |·|QF |-|QP |·|QB |为定值. (1)解 k AB =y A -y B x A -x B =1y A +y B =-12,(*) 所以y A +y B =-2,y M =y A +y B2=-1.(2)证明 设Q (x 0,y 0),直线EF :x -x 0=t 1(y -y 0), 直线PB :x -x 0=t 2(y -y 0),联立方程组⎩⎪⎨⎪⎧x -x 0=t 1(y -y 0),y 2=x ,得y 2-t 1y +t 1y 0-x 0=0,所以y E +y F =t 1,y E ·y F =t 1y 0-x 0,|QE |·|QF |=1+t 21|y E -y 0|·1+t 21|y F -y 0| =(1+t 21)|y 20-x 0|.同理|QP |·|QB |=()1+t 22|y 20-x 0|.由(*)可知,t 1=1k EF =1k PA=y A +y P ,t 2=1k PB=y B +y P ,所以t 1+t 2=(y A +y B )+2y P =-2+2=0, 即t 1=-t 2⇒t 21=t 22,所以|QE |·|QF |=|QP |·|QB |, 即|QE |·|QF |-|QP |·|QB |=0为定值.B 组 能力提高5.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的上顶点为点D ,右焦点为F 2(1,0),延长DF 2交椭圆C 于点E ,且满足|DF 2|=3|F 2E |. (1)求椭圆C 的标准方程;(2)过点F 2作与x 轴不重合的直线l 和椭圆C 交于A ,B 两点,设椭圆C 的左顶点为点H ,且直线HA ,HB 分别与直线x =3交于M ,N 两点,记直线F 2M ,F 2N 的斜率分别为k 1,k 2,则k 1与k 2之积是否为定值?若是,求出该定值;若不是,请说明理由.解 (1)椭圆C 的上顶点为D ()0,b ,右焦点F 2(1,0),点E 的坐标为(x ,y ). ∵|DF 2|=3|F 2E |,可得DF 2→=3F 2E →, 又DF 2→=()1,-b ,F 2E →=()x -1,y , ∴⎩⎪⎨⎪⎧x =43,y =-b3,代入x 2a 2+y 2b2=1,可得⎝ ⎛⎭⎪⎫432a 2+⎝ ⎛⎭⎪⎫-b 32b 2=1,又a 2-b 2=1,解得a 2=2,b 2=1, 即椭圆C 的标准方程为x 22+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),H ()-2,0,M ()3,y M ,N ()3,y N .由题意可设直线AB 的方程为x =my +1,联立⎩⎪⎨⎪⎧x =my +1,x 22+y 2=1,消去x ,得()m 2+2y 2+2my -1=0, Δ=4m 2+4(m 2+2)>0恒成立.∴⎩⎪⎨⎪⎧y 1+y 2=-2m m 2+2,y 1y 2=-1m 2+2.根据H ,A ,M 三点共线,可得y M 3+2=y 1x 1+2, ∴y M =y 1()3+2x 1+2.同理可得y N =y 2()3+2x 2+2,∴M ,N 的坐标分别为⎝⎛⎭⎪⎫3,y 1()3+2x 1+2,⎝⎛⎭⎪⎫3,y 2()3+2x 2+2,∴k 1k 2=y M -03-1·y N -03-1=14y M y N =14·y 1()3+2x 1+2·y 2()3+2x 2+2 =y 1y 2(3+2)24()my 1+1+2()my 2+1+2=y 1y 2(3+2)24[]m 2y 1y 2+()1+2m ()y 1+y 2+()1+22=-11-62m 2+24⎣⎢⎡⎦⎥⎤-m 2m 2+2+-2()1+2m 2m 2+2+3+22=-11-62m 2+24×6+42m 2+2=42-98.∴k 1与k 2之积为定值,且该定值是42-98.6.已知平面上动点P 到点F ()3,0的距离与到直线x =433的距离之比为32,记动点P的轨迹为曲线E . (1)求曲线E 的方程;(2)设M ()m ,n 是曲线E 上的动点,直线l 的方程为mx +ny =1. ①设直线l 与圆x 2+y 2=1交于不同两点C ,D ,求|CD |的取值范围;②求与动直线l 恒相切的定椭圆E ′的方程,并探究:若M ()m ,n 是曲线Γ:Ax 2+By 2=1()A ·B ≠0上的动点,是否存在与直线l :mx +ny =1恒相切的定曲线Γ′?若存在,直接写出曲线Γ′的方程;若不存在,说明理由. 解 (1)设P (x ,y ),由题意,得()x -32+y2⎪⎪⎪⎪⎪⎪x -433=32. 整理,得x 24+y 2=1,∴曲线E 的方程为x 24+y 2=1.(2)①圆心到直线l 的距离d =1m 2+n 2,∵直线与圆有两个不同交点C ,D , ∴|CD |2=4⎝⎛⎭⎪⎫1-1m 2+n 2. 又∵m 24+n 2=1(m ≠0),∴|CD |2=4⎝ ⎛⎭⎪⎫1-43m 2+4.∵|m |≤2,∴0<m 2≤4, ∴0<1-43m 2+4≤34.∴|CD |2∈(]0,3,|CD |∈(]0,3,即|CD |的取值范围为(]0,3.②当m =0,n =1时,直线l 的方程为y =1; 当m =2,n =0时,直线l 的方程为x =12.根据椭圆对称性,猜想E ′的方程为4x 2+y 2=1. 下面证明:直线mx +ny =1()n ≠0与4x 2+y 2=1相切,其中m 24+n 2=1,即m 2+4n 2=4.由⎩⎪⎨⎪⎧4x 2+y 2=1,y =1-mx n ,消去y 得()m 2+4n 2x 2-2mx +1-n 2=0,即4x 2-2mx +1-n 2=0,∴Δ=4m 2-16()1-n 2=4()m 2+4n 2-4=0恒成立,从而直线mx +ny =1与椭圆E ′:4x 2+y 2=1恒相切.若点M ()m ,n 是曲线Γ:Ax 2+By 2=1()A ·B ≠0上的动点,则直线l :mx +ny =1与定曲线Γ′:x 2A +y 2B=1()A ·B ≠0恒相切.。
第3讲 大题专攻——圆锥曲线中的最值、范围、证明问题 2023高考数学二轮复习课件
当t∈(2,3)时,u′>0,u=4t3-t4单调递增,
当t∈(3,4)时,u′<0,u=4t3-t4单调递减,
所以当
t=3
时,u
取得最大值,则
S
也取得最大值,最大值为3 4
3.
目录
圆锥曲线中的范围问题
【例2】 已知抛物线E:x2=2py(p>0)的焦点为F,点P在抛物线E上,点P 的横坐标为2,且|PF|=2. (1)求抛物线E的标准方程; 解 法一:依题意得 F0,2p,设 P(2,y0),则 y0=2-p2,因为点 P 是抛 物线 E 上一点,所以 4=2p2-2p,即 p2-4p+4=0,解得 p=2.所以抛物 线 E 的标准方程为 x2=4y. 法二:依题意,设 P(2,y0),代入抛物线 E 的方程 x2=2py 可得 y0=2p,由 抛物线的定义可得|PF|=y0+p2,即 2=2p+p2,解得 p=2.所以抛物线 E 的 标准方程为 x2=4y.
4 1+k2· k2+b.
因为x2=4y,即y=x42,所以y′=x2,则抛物线在点A处的切线斜率为
x1 2
,在
点A处的切线方程为y-x421=x21(x-x1),即y=x21x-x421,
目录
同理得抛物线在点B处的切线方程为y=x22x-x422,
联立得yy= =xx2212xx--xx442212, ,则xy==xx114x+22=x2-=b2,k, 即P(2k,-b).
+ 2, 圆心O(0,0)到MN的距离d= m22+1=1⇒m2=1.
联立xx= 2+m3yy+2=32,⇒(m2+3)y2+2 2my-1=0⇒4y2+2 2my-1=0,
|MN|=
1+m2·
8m2+16= 4
高考数学大二轮复习 层级二 专题五 解析几何 第3讲 圆锥曲线的综合应用教学案-人教版高三全册数学教
第3讲 圆锥曲线的综合应用[考情考向·高考导航]1.圆锥曲线中的定点与定值、最值与X 围问题是高考必考的问题之一,主要以解答题形式考查,往往作为试卷的压轴题之一.2.以椭圆或拋物线为背景,尤其是与条件或结论相关存在性开放问题.对考生的代数恒等变形能力、计算能力有较高的要求,并突出数学思想方法考查.[真题体验]1.(2019·卷)已知椭圆C :x 2a 2+y 2b2=1的右焦点为(1,0),且经过点A (0,1).(1)求椭圆C 的方程;(2)设O 为原点,直线l :y =kx +t (t ≠±1)与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N .若|OM |·|ON |=2,求证:直线l 经过定点.解析:(1)因为椭圆的右焦点为(1,0),c =1;因为椭圆经过点A (0,1),所以b =1,所以a 2=b 2+c 2=2,故椭圆的方程为x 22+y 2=1.(2)设P (x 1,y 1),Q (x 2,y 2)联立⎩⎪⎨⎪⎧x 22+y 2=1y =kx +t t ≠1得(1+2k 2)x 2+4ktx +2t 2-2=0,Δ>0,x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-21+2k 2,y 1+y 2=k (x 1+x 2)+2t =2t 1+2k2,y 1y 2=k 2x 1x 2+kt (x 1+x 2)+t 2=t 2-2k 21+2k2.直线AP :y -1=y 1-1x 1x ,令y =0得x =-x 1y 1-1, 即|OM |=⎪⎪⎪⎪⎪⎪-x 1y 1-1; 同理可得|ON |=⎪⎪⎪⎪⎪⎪-x 2y 2-1.因为|OM ||ON |=2,所以⎪⎪⎪⎪⎪⎪-x 1y 1-1⎪⎪⎪⎪⎪⎪-x 2y 2-1=⎪⎪⎪⎪⎪⎪x 1x 2y 1y 2-y 1+y 2+1=2;⎪⎪⎪⎪⎪⎪t 2-1t 2-2t +1=1,解之得t =0,所以直线方程为y =kx ,所以直线l 恒过定点(0,0). 答案:(1)x 22+y 2=1 (2)见解析2.(2018·全国Ⅰ卷)设抛物线C :y 2=2x ,点A (2,0),B (-2,0),过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:∠ABM =∠ABN .解:(1)当l 与x 轴垂直时,l 的方程为x =2,可得M 的坐标为(2,2)或(2,-2). 所以直线BM 的方程为y =12x +1或y =-12x -1.(2)当l 与x 轴垂直时,AB 为MN 的垂直平分线,所以∠ABM =∠ABN .当l 与x 轴不垂直时,设l 的方程为y =k (x -2)(k ≠0),M (x 1,y 1),N (x 2,y 2),则x 1>0,x 2>0.由⎩⎪⎨⎪⎧y =k x -2,y 2=2x得ky 2-2y -4k =0,可知y 1+y 2=2k,y 1y 2=-4.直线BM ,BN 的斜率之和为k BM +k BN =y 1x 1+2+y 2x 2+2=x 2y 1+x 1y 2+2y 1+y 2x 1+2x 2+2.①将x 1=y 1k +2,x 2=y 2k+2及y 1+y 2,y 1y 2的表达式代入①式分子,可得x 2y 1+x 1y 2+2(y 1+y 2)=2y 1y 2+4k y 1+y 2k=-8+8k=0.所以k BM +k BN =0,可知BM ,BN 的倾斜角互补,所以∠ABM =∠ABN . 综上,∠ABM =∠ABN .[主干整合]1.有关弦长问题有关弦长问题,应注意运用弦长公式及根与系数的关系,“设而不求”;有关焦点弦长问题,要重视圆锥曲线定义的运用,以简化运算.(1)斜率为k 的直线与圆锥曲线交于两点P 1(x 1,y 1),P 2(x 2,y 2),则所得弦长|P 1P 2|=1+k 2|x 2-x 1|或|P 1P 2|=1+1k2|y 2-y 1|(k ≠0),其中求|x 2-x 1|与|y 2-y 1|时通常使用根与系数的关系,即作如下变形:|x 2-x 1|=x 1+x 22-4x 1x 2, |y 2-y 1|=y 1+y 22-4y 1y 2.(2)当斜率k 不存在时,可求出交点坐标,直接运算(利用两点间距离公式). 2.圆锥曲线中的最值 (1)椭圆中的最值F 1,F 2为椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点,P 为椭圆的任意一点,B 为短轴的一个端点,O 为坐标原点,则有:①|OP |∈[b ,a ]; ②|PF 1|∈[a -c ,a +c ]; ③|PF 1|·|PF 2|∈[b 2,a 2]; ④∠F 1PF 2≤∠F 1BF 2. (2)双曲线中的最值F 1,F 2为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,P 为双曲线上的任一点,O 为坐标原点,则有:①|OP |≥a ;②|PF 1|≥c -a . (3)拋物线中的最值点P 为拋物线y 2=2px (p >0)上的任一点,F 为焦点,则有: ①|PF |≥p2;②A (m ,n )为一定点,则|PA |+|PF |有最小值. 3.拋物线焦点弦的几个重要结论直线AB 过拋物线y 2=2px (p >0)的焦点,交拋物线于A (x 1,y 1),B (x 2,y 2)两点,如图. (1)y 1y 2=-p 2,x 1x 2=p 24.(2)|AB |=x 1+x 2+p ,x 1+x 2≥2x 1x 2=p ,即当x 1=x 2时,弦长最短为2p . (3)1|AF |+1|BF |为定值2p . (4)弦长|AB |=2psin 2α(α为AB 的倾斜角). (5)以AB 为直径的圆与准线相切.热点一 圆锥曲线中的X 围、最值问题数学 运算 素养数学运算——圆锥曲线问题的核心素养以圆锥曲线问题为载体,借助相关知识,通过式的变形考查运算求解能力,体现了数学运算的核心素养.构造函数求最值[例1-1] (2019·全国Ⅱ卷)已知点A (-2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为-12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线.(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连接QE 并延长交C 于点G .①证明:△PQG 是直角三角形; ②求△PQG 面积的最大值.[审题指导] (1)利用斜率公式及k AM ·k BM =-12求动点M 的轨迹方程.(2)①根据点P 在第一象限的特征,画出满足题意的几何图形,初步判断出△PQG 中∠QPG 是直角.设出直线PQ 的斜率和方程,再结合x E =x P 及点P ,Q 关于原点对称,求出直线QG 的斜率和方程,联立直线QG 和曲线C 的方程,求出点G 的坐标,最后求出直线PG 的斜率,即可证明k PQ ·k PG =-1.②根据△PQG 是直角三角形,建立S △PQG 关于直线PQ 的斜率k 的关系式求最值. [解析] (1)由题设得yx +2·y x -2=-12, 化简得x 24+y 22=1(|x |≠2),所以C 为中心在坐标原点,焦点在x 轴上的椭圆,不含左右顶点. (2)①证明:设直线PQ 的斜率为k ,则其方程为y =kx (k >0).由⎩⎪⎨⎪⎧y =kx ,x 24+y22=1得x =±21+2k2.设u =21+2k2,则P (u ,uk ),Q (-u ,-uk ),E (u,0).于是直线QG 的斜率为k 2,方程为y =k2(x -u ).由⎩⎪⎨⎪⎧y =k2x -u ,x 24+y 22=1,得(2+k 2)x 2-2uk 2x +k 2u 2-8=0. 设G (x G ,y G ),则-u 和x G 是方程①的解,故x G =u 3k 2+22+k 2,由此得y G =uk 32+k 2,从而直线PG 的斜率为uk 32+k 2-uk u 3k 2+22+k2-u =-1k. 所以PQ ⊥PG ,即△PQG 是直角三角形. ②由①得|PQ |=2u 1+k 2,|PG |=2uk k 2+12+k2, 所以△PQG 的面积S =12|PQ ||PG |=8k 1+k 21+2k 22+k 2=8⎝ ⎛⎭⎪⎫1k +k 1+2⎝ ⎛⎭⎪⎫1k+k 2. 设t =k +1k,则由k >0得t ≥2,当且仅当k =1时取等号. 因为S =8t1+2t2在[2,+∞)单调递减,所以当t =2,即k =1,S 取得最大值,最大值为169.因此,△PQG 面积的最大值为169.最值问题的2种基本解法几何法 根据已知的几何量之间的相互关系、平面几何和解析几何知识加以解决的(如拋物线上的点到某个定点和焦点的距离之和、光线反射问题等在选择题、填空题中经常考查)代数法建立求解目标关于某个(或两个)变量的函数,通过求解函数的最值解决的(普通方法、基本不等式方法、导数方法)(如本例)等寻找不等关系解X 围问题[例1-2] (2018·全国Ⅲ卷,节选)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0).证明:k <-12.[审题指导] 利用点差法将k 转化为含m 的表达式,求解m 的取值X 围,进而证明结论.[证明] 设A (x 1,y 1),B (x 2,y 2),则x 214+y 213=1,x 224+y 223=1.两式相减,并由y 1-y 2x 1-x 2=k 得 x 21-x 224+y 21-y 223=0 由题设知x 1+x 22=1,y 1+y 22=m ,于是k =-34m①由题设得0<m <32,故k <-12.解决圆锥曲线中的X 围问题的常用解法(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值X 围. (2)利用已知参数的X 围,求新参数的X 围,关键是建立两个参数之间的等量关系. (3)利用隐含的不等关系(如:点在椭圆内)建立不等式,从而求出参数的取值X 围. (4)利用求函数的值域或求函数定义域的方法将待求量表示为其他变量的函数或其他变量的自变量,从而确定参数的取值X 围.(2020·山师附中模拟)已知点A (0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程. 解析:(1)设F (c,0),由条件知,2c =233,得c = 3.又ca =32,所以a =2,b 2=a 2-c 2=1. 故E 的方程为x 24+y 2=1.(2)当l ⊥x 轴时不合题意,故设l :y =kx -2,P (x 1,y 1),Q (x 2,y 2). 将y =kx -2代入x 24+y 2=1,得(1+4k 2)x 2-16kx +12=0. 当Δ=16(4k 2-3)>0,即k 2>34时,x 1,2=8k ±24k 2-34k 2+1. 从而|PQ |=k 2+1|x 1-x 2|=4k 2+1·4k 2-34k 2+1. 又点O 到直线PQ 的距离d =2k 2+1.所以△OPQ 的面积S △OPQ =12d ·|PQ |=44k 2-34k 2+1. 设4k 2-3=t ,则t >0,S △OPQ =4t t 2+4=4t +4t. 因为t +4t ≥4,当且仅当t =2,即k =±72时等号成立,且满足Δ>0.所以,当△OPQ 的面积最大时,l 的方程为y =72x -2或y =-72x -2. 热点二 圆锥曲线中的定点、定值问题巧妙消元证定值[例2-1] (2019·某某三模)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,以椭圆的短轴为直径的圆与直线x -y +6=0相切.(1)求椭圆E 的方程.(2)设椭圆过右焦点F 的弦为AB 、过原点的弦为CD ,若CD ∥AB ,求证:|CD |2|AB |为定值.[审题指导] (1)要求椭圆方程,只要由原点到直线的距离等于半短轴长,求b 即可. (2)要证明|CD |2|AB |为定值,只要利用弦长公式计算化简即可.[解析] (1)依题意,原点到直线x -y +6=0的距离为b , 则有b =612+-12= 3.由a 2-b 2a =12,得a 2=43b 2=4.所以椭圆E 的方程为x 24+y 23=1.(2)①当直线AB 的斜率不存在时,易求|AB |=3,|CD |=23, 则|CD |2|AB |=4. ②当直线AB 的斜率存在时,设直线AB 的斜率为k ,依题意k ≠0,则直线AB 的方程为y =k (x -1),直线CD 的方程为y =kx . 设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4),由⎩⎪⎨⎪⎧x 24+y 23=1,y =k x -1,得(3+4k 2)x 2-8k 2x +4k 2-12=0,则x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2,|AB |=1+k 2|x 1-x 2| =1+k 2· ⎝ ⎛⎭⎪⎫8k 23+4k 22-4⎝ ⎛⎭⎪⎫4k 2-123+4k 2 =121+k 23+4k2.由⎩⎪⎨⎪⎧x 24+y 23=1,y =kx ,整理得x 2=123+4k2, 则|x 3-x 4|=433+4k2.|CD |=1+k 2|x 3-x 4|=4 31+k23+4k2. 所以|CD |2|AB |=481+k 23+4k2·3+4k2121+k2=4. 综合①②,|CD |2|AB |=4为定值.解答圆锥曲线的定值问题的策略定值问题就是证明一个量与其中的变化因素无关,这些因素可能是直线的斜率、截距,也可能是动点的坐标等,这类问题的一般解法是使用变化的量表示求证目标,通过运算求证目标的取值与变化的量无关.巧引参数寻定点[例2-2] (2020·某某模拟)已知以点C (0,1)为圆心的动圆C 与y 轴负半轴交于点A ,其弦AB 的中点D 恰好落在x 轴上.(1)求点B 的轨迹E 的方程;(2)过直线y =-1上一点P 作曲线E 的两条切线,切点分别为M ,N .探究直线MN 是否过定点?请说明理由.[审题指导] (1)利用直接法求轨迹方程.(2)设P 点坐标(6,-1),先求M 、N 处的切线方程再建立直线MN 的方程(用参数t 表示),从而求定点.[解析] (1)设B (x ,y ),y >0,则AB 的中点D ⎝ ⎛⎭⎪⎫x2,0, ∵C (0,1),连接DC ,∴DC →=⎝ ⎛⎭⎪⎫-x 2,1,DB →=⎝ ⎛⎭⎪⎫x 2,y .在⊙C 中,DC ⊥DB ,∴DC →·DB →=0,∴-x 24+y =0,即x 2=4y (y >0),∴点B 的轨迹E 的方程为x 2=4y (y >0). (2)由(1)可得曲线E 的方程为x 2=4y (y >0). 设P (t ,-1),M (x 1,y 1),N (x 2,y 2), ∵y =x 24,∴y ′=x2,∴过点M ,N 的切线方程分别为y -y 1=x 12(x -x 1),y -y 2=x 22(x -x 2),由4y 1=x 21,4y 2=x 22,上述切线方程可化为2(y +y 1)=x 1x,2(y +y 2)=x 2x .∵点P 在这两条切线上,∴2(y 1-1)=tx 1,2(y 2-1)=tx 2,即直线MN 的方程为2(y -1)=tx ,故直线MN 过定点C (0,1).过定点问题的常用解法(1)动直线l 过定点问题,解法:设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,其代入直线方程y =k (x +m ),故动直线过定点(-m,0).(2)动曲线C 过定点问题,解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.(3)从特殊位置入手,找出定点,再证明该点符合题意.(2019·全国Ⅰ卷)已知点A ,B 关于坐标原点O 对称,|AB |=4,⊙M 过点A ,B 且与直线x +2=0相切.(1)若A 在直线x +y =0上,求⊙M 的半径.(2)是否存在定点P ,使得当A 运动时,|MA |-|MP |为定值?并说明理由.解:(1)因为⊙M 过点A ,B ,所以圆心M 在AB 的垂直平分线上,由已知A 在直线x +y =0上,且A ,B 关于坐标原点O 对称,所以M 在直线y =x 上,故可设M (a ,a ).因为⊙M 与直线x +2=0相切,所以⊙M 的半径为r =|a +2|.由已知得|AO |=2,又MO →⊥AO →,故可得2a 2+4=(a +2)2,解得a =0或a =4. 故⊙M 的半径r =2或r =6.(2)存在定点P (1,0),使得|MA |-|MP |为定值, 理由如下:设M (x ,y ),由已知得⊙M 的半径为r =|x +2|,|AO |=2,由于MO →⊥AO →,故可得x 2+y 2+4=(x +2)2,化简得M 的轨迹方程为y 2=4x ,因为曲线C :y 2=4x 是以点P (1,0)为焦点,以直线x =-1为准线的抛物线,所以|MP |=x +1.因为|MA |-|MP |=r -|MP |=x +2-(x +1)=1,所以存在满足条件的定点P .限时60分钟 满分60分解答题(本大题共5小题,每小题12分,共60分)1.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点M (2,1),且离心率e =32.(1)求椭圆C 的方程;(2)设A ,B 分别是椭圆C 的上顶点、右顶点,点P 是椭圆C 在第一象限内的一点,直线AP ,BP 分别交x 轴,y 轴于点M ,N ,求四边形ABMN 面积的最小值.解析:本题主要考查椭圆的标准方程、椭圆的基本性质以及直线方程,考查考生分析问题、解决问题的能力,考查的核心素养是数学运算.(1)由离心率及c 2=a 2-b 2得a ,b 的关系,再把已知点代入即可求出标准方程;(2)设出点P 的坐标,得到直线AP ,BP 的方程,从而表示出点M ,N 的坐标,进而得到|AN |·|BM |,最后利用S 四边形ABMN=S △OMN -S △OAB 及基本不等式求面积的最小值.(1)由椭圆的离心率为32得,c a =32,又c 2=a 2-b 2,∴a =2b .又椭圆C 经过点(2,1),∴44b 2+1b2=1,解得b 2=2, ∴椭圆C 的方程为x 28+y 22=1.(2)由(1)可知,A (0,2),B (22,0),设P (x 0,y 0)(0<x 0<22,0<y 0<2),则直线AP :y =y 0-2x 0x +2,从而M ⎝⎛⎭⎪⎫-2x 0y 0-2,0. 直线BP :y =y 0x 0-22(x -22),从而N ⎝ ⎛⎭⎪⎫0,-22y 0x 0-22.∵x 208+y 202=1,∴|AN |·|BM |=⎝ ⎛⎭⎪⎫2+22y 0x 0-22·⎝ ⎛⎭⎪⎫22+2x 0y 0-2=2x 0+2y 0-222x 0-22y 0-2=2x 20+4y 20+4x 0y 0-42x 0-82y 0+8x 0y 0-2x 0-22y 0+4=8.∴S 四边形ABMN =S △OMN -S △OAB =12(|OM |·|ON |-|OA |·|OB |) =12(2|BM |+22|AN |+8) =22(|BM |+2|AN |)+4 ≥4+22·22|AN |·|BM | =4+42(O 为坐标原点),当且仅当|BM |=4,|AN |=2时取得最小值.2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,上顶点M 到直线3x +y +4=0的距离为3.(1)求椭圆C 的方程;(2)设直线l 过点(4,-2),且与椭圆C 相交于A ,B 两点,l 不经过点M ,证明:直线MA 的斜率与直线MB 的斜率之和为定值.解:本题主要考查椭圆与直线的交汇,考查考生的数形结合能力、推理论证能力以及运算求解能力,考查的核心素养是直观想象、逻辑推理、数学运算.(1)由题意可得,⎩⎪⎨⎪⎧e =c a =32|b +4|2=3a 2=b 2+c2,解得⎩⎪⎨⎪⎧a =4b =2,所以椭圆C 的方程为x 216+y 24=1.(2)易知直线l 的斜率恒小于0,设直线l 的方程为y +2=k (x -4),k <0且k ≠-1,A (x 1,y 1),B (x 2,y 2),联立得⎩⎪⎨⎪⎧y +2=k x -4x 216+y24=1,得(1+4k 2)x 2-16k (2k +1)x +64k (k +1)=0,则x 1+x 2=16k2k +11+4k 2,x 1x 2=64k k +11+4k2, 因为k MA +k MB =y 1-2x 1+y 2-2x 2=kx 1-4k -4x 2+kx 2-4k -4x 1x 1x 2, 所以k MA +k MB =2k -(4k +4)×x 1+x 2x 1x 2=2k -4(k +1)×16k 2k +164k k +1=2k -(2k +1)=-1(为定值).3.(2019·某某三模)已知椭圆C :y 2a 2+x 2b 2=1(a >b >0)的离心率为63,直线4x +3y -5=0与以坐标原点为圆心,椭圆的短半轴长为半径的圆相切.(1)求椭圆C 的标准方程;(2)若A 为椭圆C 的下顶点,M ,N 为椭圆C 上异于A 的两点,直线AM 与AN 的斜率之积为1.①求证:直线MN 恒过定点,并求出该定点的坐标; ②若O 为坐标原点,求OM →·ON →的取值X 围. 解析:(1)由题意可得离心率e =c a =63, 又直线4x +3y -5=0与圆x 2+y 2=b 2相切, 所以b =|-5|42+32=1,结合a 2-b 2=c 2,解得a =3, 所以椭圆C 的标准方程为y 23+x 2=1.(2)①设M (x 1,y 1),N (x 2,y 2),由题意知A (0,-3),又直线AM 与AN 的斜率之积为1,所以y 1+3x 1·y 2+3x 2=1, 即有x 1x 2=y 1y 2+3(y 1+y 2)+3, 由题意可知直线MN 的斜率存在且不为0, 设直线MN :y =kx +t (k ≠0),代入椭圆方程,消去y 可得(3+k 2)x 2+2ktx +t 2-3=0,所以x 1x 2=t 2-33+k 2,x 1+x 2=-2kt3+k2,y 1+y 2=k (x 1+x 2)+2t =2t -2k 2t 3+k 2=6t3+k2,y 1y 2=k 2x 1x 2+kt (x 1+x 2)+t 2=k 2·t 2-33+k 2+kt ⎝ ⎛⎭⎪⎫-2kt 3+k 2+t 2=3t 2-3k 23+k 2,所以t 2-33+k 2=3t 2-3k 23+k 2+3⎝ ⎛⎭⎪⎫6t 3+k 2+3, 化简得t 2+33t +6=0,解得t =-23(-3舍去), 则直线MN 的方程为y =kx -23,即直线MN 恒过定点,该定点的坐标为(0,-23).②由①可得OM →·ON →=x 1x 2+y 1y 2=t 2-33+k 2+3t 2-3k 23+k 2=4t 2-3-3k 23+k 2=45-3k 23+k2,由(3+k 2)x 2+2ktx +t 2-3=0,可得Δ=4k 2t 2-4(t 2-3)(3+k 2)=48k 2-36(3+k 2)>0,解得k 2>9.令3+k 2=m ,则m >12,且k 2=m -3, 所以45-3k 23+k 2=45-3m -3m =54m -3, 由m >12,可得-3<54m -3<32.则OM →·ON →的取值X 围是⎝ ⎛⎭⎪⎫-3,32.4.(2019·某某卷)如图,已知点F (1,0)为抛物线y 2=2px (p >0)的焦点.过点F 的直线交抛物线于A ,B 两点,点C 在抛物线上,使得ΔABC 的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记△AFG ,△CQG 的面积分别为S 1,S 2.(1)求p 的值及抛物线的准线方程; (2)求S 1S 2的最小值及此时点G 的坐标. 解:(1)由题意得p2=1,即p =2.所以,抛物线的准线方程为x =-1.(2)设A (x A ,y A ),B (x B ,y B ),C (x c ,y c ),重心G (x G ,y G ).令y A =2t ,t ≠0,则x A =t 2.由于直线AB 过F ,故直线AB 的方程为x =t 2-12t y +1,代入y 2=4x ,得y 2-2t 2-1ty-4=0,故2ty B =-4,即y B =-2t,所以B ⎝ ⎛⎭⎪⎫1t 2,-2t .又由于x G =13(x A +x B +x C ),y G =13(y A +y B +y C )及重心G 在x 轴上,故2t -2t +y C =0,得C ⎝ ⎛⎭⎪⎫⎝ ⎛⎭⎪⎫1t -t 2,2⎝ ⎛⎭⎪⎫1t -t ,G ⎝ ⎛⎭⎪⎫2t 4-2t 2+23t 2,0. 所以,直线AC 的方程为y -2t =2t (x -t 2),得Q (t 2-1,0). 由于Q 在焦点F 的右侧,故t 2>2.从而 S 1S 2=12|FG |·|y A |12|QG |·|y c | =⎪⎪⎪⎪⎪⎪2t 4-2t 2+23t 2-1·|2t |⎪⎪⎪⎪⎪⎪t 2-1-2t 4-2t 2+23t 2·⎪⎪⎪⎪⎪⎪2t -2t =2t 4-t 2t 4-1=2-t 2-2t 4-1. 令m =t 2-2,则m >0,S 1S 2=2-m m 2+4m +3=2-1m +3m+4≥2-12 m ·3m+4=1+32.当m =3时,S 1S 2取得最小值1+32,此时G (2,0). 5.(2019·卷)已知拋物线C :x 2=-2py 经过点(2,-1). (1)求拋物线C 的方程及其准线方程;(2)设O 为原点,过拋物线C 的焦点作斜率不为0的直线l 交拋物线C 于两点M ,N ,直线y =-1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.解析:本题主要考查抛物线方程的求解与准线方程的确定,直线与抛物线的位置关系,圆的方程的求解及其应用等知识,意在考查学生的转化能力和计算求解能力.(1)将点(2,-1)代入抛物线方程:22=2p ×(-1)可得:p =-2, 故抛物线方程为:x 2=-4y ,其准线方程为:y =1. (2)很明显直线l 的斜率存在,焦点坐标为(0,-1),设直线方程为y =kx -1,与抛物线方程x 2=-4y 联立可得:x 2+4kx -4=0.故:x 1+x 2=-4k ,x 1x 2=-4.设M ⎝ ⎛⎭⎪⎫x 1,-x 214,N ⎝ ⎛⎭⎪⎫x 2,-x 224,则k OM =-x 14, k ON =-x 24,直线OM 的方程为y =-x 14x ,与y =-1联立可得:A ⎝ ⎛⎭⎪⎫4x 1,-1,同理可得B ⎝ ⎛⎭⎪⎫4x 2,-1, 易知以AB 为直径的圆的圆心坐标为:⎝ ⎛⎭⎪⎫2x 1+2x 2,-1,圆的半径为:⎪⎪⎪⎪⎪⎪2x 1-2x 2,且:2x 1+2x 2=2x 1+x 2x 1x 2=2k ,⎪⎪⎪⎪⎪⎪2x 1-2x 2=2×x 1+x 22-4x 1x 2|x 1x 2|=2k 2+1,则圆的方程为:(x -2k )2+(y +1)2=4(k 2+1),令x =0整理可得:y 2+2y -3=0,解得:y 1=-3,y 2=1, 即以AB 为直径的圆经过y 轴上的两个定点(0,-3),(0,1).高考解答题·审题与规X(五) 解析几何类考题重在“巧设”思维流程1.解析几何部分知识点多,运算量大,能力要求高,在高考试题中大都是在压轴题的位置出现,是考生“未考先怕”的题型之一,不是怕解题无思路,而是怕解题过程中繁杂的运算.2.在遵循“设——列——解”程序化运算的基础上,应突出解析几何“设”的重要性,以克服平时重思路方法、轻运算技巧的顽疾,突破如何避繁就简这一瓶颈.真题案例审题指导审题方法 (12分)(2019·全国Ⅲ卷)已知曲线C :y =x 22,D 为直线y =-12上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点;(2)若以E ⎝ ⎛⎭⎪⎫0,52为圆的圆与直线AB 相切,切点为线段AB 的中点,求四边形ABCD 的面积.(1)设点D 的坐标为⎝ ⎛⎭⎪⎫t ,-12,根据导数的几何意义确定切线DA ,DB 的斜率,利用方程的同解性得出直线AB 的方程,进而证明直线过定点.(2)联立直线AB 与拋物线的方程,求出AB 的弦长及点D ,E 到直线AB 的距离,建立四边形ADBE 的面积表达式,再利用直线与圆相切的条件求出参数的值,进而可求四边形ADBE 的面积. 审方法 数学思想是问题的主线,方法是解题的手段.审视方法,选择适当的解题方法,往往使问题的解决事半功倍.审题的过程还是一个解题方法的抉择过程,开拓的解题思路能使我们心涌如潮,适宜的解题方法则帮助我们事半功倍.规X 解答评分细则[解析] (1)设D ⎝ ⎛⎭⎪⎫t ,-12,A (x 1,y 1),则x 21=2y 1.1分①由y ′=x ,所以切线DA 的斜率为x 1,故y 1+12x 1-t=x 1.整理得2tx 1-2y 1+1=0.2分②设B (x 2,y 2),同理可得2tx 2-2y 2+1=0.3分③ 故直线AB 的方程为2tx -2y +1=0.4分④所以直线AB 过定点⎝ ⎛⎭⎪⎫0,125分⑤(2)由(1)得直线AB 的方程为y =tx +12.由⎩⎪⎨⎪⎧y =tx +12,y =x 22可得x2-2tx -1=0.6分⑥于是x 1+x 2=2t ,x 1x 2=-1,y 1+y 2=t (x 1+x 2)+1=2t 2+1, |AB |=1+t 2|x 1-x 2|=1+t 2×x 1+x 22-4x 1x 2=2(t 2+1).7分⑦设d 1,d 2分别为点D ,E 到直线AB 的距离,则d 1=t 2+1,d 2=2t 2+1. 因此,四边形ADBE 的面积S =12|AB |(d 1+d 2)=(t 2+3)t 2+1.9分⑧ 设M 为线段AB 的中点,则M ⎝⎛⎭⎪⎫t ,t 2+12. 由于EM →⊥AB →,而EM →=(t ,t 2-2),AB →与向量(1,t )平行,所以t +(t 2-2)t =0.解得t =0或t =±1.11分⑨当t =0时,S =3;当t =±1时,S =4 2. 因此,四边形ADBE 的面积为3或4 2.12分⑩。
高二数学《圆锥曲线的综合应用》解析几何教案
高二数学《圆锥曲线的综合应用》解析几何教案一、引言在高中数学中,解析几何是一个重要的分支,而圆锥曲线是解析几何中的重要内容之一。
本教案旨在通过几个实例和应用问题,帮助学生深入理解圆锥曲线的概念、性质和应用,提升他们的解析几何解题能力。
二、教学目标1. 熟练掌握椭圆、双曲线和抛物线的定义和标准方程;2. 理解椭圆、双曲线和抛物线的性质和特点;3. 学会利用圆锥曲线解决实际问题。
三、教学内容与方法1. 椭圆的定义和性质根据椭圆的定义,并结合图形示例,引导学生理解椭圆的定义和性质。
通过绘制平面直角坐标系,演示如何确定椭圆的标准方程,并讨论椭圆的离心率与形状的关系。
2. 双曲线的定义和性质引导学生通过观察双曲线的图形,根据焦点和准线的位置关系,理解双曲线的定义和性质。
通过演示如何确定双曲线的标准方程,让学生掌握双曲线的判别条件和参数对图形的影响。
3. 抛物线的定义和性质以实例引导学生理解抛物线的定义和性质,关注其对称性和焦点的位置。
通过绘制平面直角坐标系,让学生学会确定抛物线的标准方程,重点掌握参数对抛物线形状的影响。
4. 圆锥曲线的应用问题通过一些实际问题,让学生运用所学知识解决与圆锥曲线相关的问题。
包括但不限于:抛物线的反射性质、椭圆/双曲线的焦点问题等。
引导学生运用所学知识分析问题,建立方程,并用图像或计算验证解的合理性。
四、教学过程1. 理论讲解与示例分析引入椭圆的定义和性质,通过示例分析演示如何确定椭圆的标准方程。
带领学生一起讨论离心率的影响,并解答学生提出的问题。
同样的方式,介绍双曲线和抛物线的定义和性质,并通过示例讲解标准方程的确定方法。
2. 练习与巩固让学生自主完成一些练习题,检验他们对所学内容的掌握情况。
可分组进行解题竞赛,激发学生的学习兴趣,提高解题速度和准确率。
3. 应用问题解析给学生提供一些实际问题,引导他们运用所学知识解决问题。
可以采用小组合作形式,让学生通过讨论、推理,找到解决问题的方法和策略。
高考数学二轮复习 第二层提升篇 专题五 解析几何 第3讲 圆锥曲线的综合问题讲义-高三全册数学教案
第3讲 圆锥曲线的综合问题[全国卷3年考情分析]解析几何是数形结合的典范,是高中数学的主要知识板块,是高考考查的重点知识之一,在解答题中一般会综合考查直线、圆、圆锥曲线等.试题难度较大,多以压轴题出现.解答题的热点题型有:(1)直线与圆锥曲线位置关系;(2)圆锥曲线中定点、定值、最值及范围的求解;(3)圆锥曲线中的判断(与证明)及探究问题.第1课时 圆锥曲线中的定值、定点、证明问题[例1] (2018·全国卷Ⅰ)设椭圆C :2+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:∠OMA =∠OMB . [解] (1)由已知得F (1,0),l 的方程为x =1. 则点A 的坐标为⎝ ⎛⎭⎪⎫1,22或⎝ ⎛⎭⎪⎫1,-22. 又M (2,0),所以直线AM 的方程为y =-22x +2或y =22x -2, 即x +2y -2=0或x -2y -2=0.(2)证明:当l 与x 轴重合时,∠OMA =∠OMB =0°. 当l 与x 轴垂直时,OM 为AB 的垂直平分线, 所以∠OMA =∠OMB .当l 与x 轴不重合也不垂直时,设l 的方程为y =k (x -1)(k ≠0),A (x 1,y 1),B (x 2,y 2),则x 1<2,x 2<2,直线MA ,MB 的斜率之和为k MA +k MB =y 1x 1-2+y 2x 2-2.由y 1=kx 1-k ,y 2=kx 2-k ,得k MA +k MB =2kx 1x 2-3k (x 1+x 2)+4k(x 1-2)(x 2-2).将y =k (x -1)代入x 22+y 2=1,得(2k 2+1)x 2-4k 2x +2k 2-2=0, 所以x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-22k 2+1.则2kx 1x 2-3k (x 1+x 2)+4k =4k 3-4k -12k 3+8k 3+4k2k 2+1=0. 从而k MA +k MB =0, 故MA ,MB 的倾斜角互补. 所以∠OMA =∠OMB . 综上,∠OMA =∠OMB 成立.[题后悟通] 几何证明问题的解题策略(1)圆锥曲线中的证明问题,主要有两类:一是证明点、直线、曲线等几何元素中的位置关系,如:某点在某直线上、某直线经过某个点、某两条直线平行或垂直等;二是证明直线与圆锥曲线中的一些数量关系(相等或不等).(2)解决证明问题时,主要根据直线、圆锥曲线的性质、直线与圆锥曲线的位置关系等,通过相关的性质应用、代数式的恒等变形以及必要的数值计算等进行证明.[跟踪训练]设椭圆E 的方程为x 2a 2+y 2b2=1(a >b >0),点O 为坐标原点,点A 的坐标为(a ,0),点B 的坐标为(0,b ),点M 在线段AB 上,满足|BM |=2|MA |,直线OM 的斜率为510. (1)求E 的离心率e ;(2)设点C 的坐标为(0,-b ),N 为线段AC 的中点,证明:MN ⊥AB .解:(1)由题设条件知,点M 的坐标为⎝ ⎛⎭⎪⎫23a ,13b , 又k OM =510,从而b 2a =510. 进而得a =5b ,c =a 2-b 2=2b ,故e =c a =255.(2)证明:由N 是AC 的中点知,点N 的坐标为⎝ ⎛⎭⎪⎫a2,-b 2,可得NM ―→=⎝ ⎛⎭⎪⎫a 6,5b 6.又AB ―→=(-a ,b ),从而有AB ―→·NM ―→=-16a 2+56b 2=16(5b 2-a 2).由(1)可知a 2=5b 2,所以AB ―→·NM ―→=0,故MN ⊥AB .[例2] (2019·福建五校第二次联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,上顶点M 到直线3x +y +4=0的距离为3.(1)求椭圆C 的方程;(2)设直线l 过点(4,-2),且与椭圆C 相交于A ,B 两点,l 不经过点M ,证明:直线MA 的斜率与直线MB 的斜率之和为定值.[解] (1)由题意可得⎩⎪⎨⎪⎧e =c a =32,|b +4|2=3,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a =4,b =2,所以椭圆C 的方程为x 216+y24=1.(2)证明:易知直线l 的斜率恒小于0,设直线l 的方程为y +2=k (x -4),k <0且k ≠-1,A (x 1,y 1),B (x 2,y 2),联立得⎩⎪⎨⎪⎧y +2=k (x -4),x 216+y 24=1,得(1+4k 2)x 2-16k (2k +1)x +64k (k +1)=0, 则x 1+x 2=16k (2k +1)1+4k 2,x 1x 2=64k (k +1)1+4k 2, 因为k MA +k MB =y 1-2x 1+y 2-2x 2=(kx 1-4k -4)x 2+(kx 2-4k -4)x 1x 1x 2, 所以k MA +k MB =2k -(4k +4)×x 1+x 2x 1x 2=2k -4(k +1)×16k (2k +1)64k (k +1)=2k -(2k +1)=-1(为定值).[题后悟通]求解定值问题的2大途径[跟踪训练]已知椭圆方程为x 24+y 23=1,右焦点为F ,若直线l 与椭圆C 相切,过点F 作FQ ⊥l ,垂足为Q ,求证:|OQ |为定值(其中O 为坐标原点).证明:①当直线l 的斜率不存在时,l 的方程为x =±2,点Q 的坐标为(-2,0)或(2,0),此时|OQ |=2;②当直线l 的斜率为0时,l 的方程为y =±3,点Q 的坐标为(1,-3)或(1,3),此时|OQ |=2;③当直线l 的斜率存在且不为0时,设直线l 的方程为y =kx +m (k ≠0). 因为FQ ⊥l ,所以直线FQ 的方程为y =-1k(x -1).由⎩⎪⎨⎪⎧y =kx +m ,x 24+y 23=1消去y ,可得(3+4k 2)x 2+8kmx +4m 2-12=0.因为直线l 与椭圆C 相切,所以Δ=(8km )2-4×(3+4k 2)×(4m 2-12)=0, 整理得m 2=4k 2+3. (*)由⎩⎪⎨⎪⎧y =kx +m ,y =-1k (x -1)得Q ⎝ ⎛⎭⎪⎫1-km k 2+1,k +m k 2+1, 所以|OQ |=⎝ ⎛⎭⎪⎫1-km k 2+12+⎝ ⎛⎭⎪⎫k +m k 2+12=1+k 2m 2+k 2+m2(k 2+1)2, 将(*)式代入上式,得|OQ |=4(k 4+2k 2+1)(k 2+1)2=2. 综上所述,|OQ |为定值,且定值为2.[例3] (2019·北京高考)已知椭圆C :x a 2+y b2=1的右焦点为(1,0),且经过点A (0,1).(1)求椭圆C 的方程;(2)设O 为原点,直线l :y =kx +t (t ≠±1)与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N .若|OM |·|ON |=2,求证:直线l 经过定点.[解] (1)由题意,得b 2=1,c =1, 所以a 2=b 2+c 2=2.所以椭圆C 的方程为x 22+y 2=1.(2)证明:设P (x 1,y 1),Q (x 2,y 2), 则直线AP 的方程为y =y 1-1x 1x +1. 令y =0,得点M 的横坐标x M =-x 1y 1-1.又y 1=kx 1+t ,从而|OM |=|x M |=⎪⎪⎪⎪⎪⎪x 1kx 1+t -1.同理,|ON |=⎪⎪⎪⎪⎪⎪x 2kx 2+t -1.由⎩⎪⎨⎪⎧y =kx +t ,x 22+y 2=1得(1+2k 2)x 2+4ktx +2t 2-2=0, 则x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-21+2k 2.所以|OM |·|ON |=⎪⎪⎪⎪⎪⎪x 1kx 1+t -1·⎪⎪⎪⎪⎪⎪x 2kx 2+t -1=⎪⎪⎪⎪⎪⎪x 1x 2k 2x 1x 2+k (t -1)(x 1+x 2)+(t -1)2=⎪⎪⎪⎪⎪⎪2t 2-21+2k2k 2·2t 2-21+2k 2+k (t -1)·⎝ ⎛⎭⎪⎫-4kt 1+2k 2+(t -1)2=2⎪⎪⎪⎪⎪⎪1+t 1-t .又|OM |·|ON |=2,所以2⎪⎪⎪⎪⎪⎪1+t 1-t =2.解得t =0,所以直线l 经过定点(0,0). [题后悟通] 直线过定点问题的解题模型[跟踪训练](2019·重庆市七校联合考试)已知O 为坐标原点,抛物线C :y 2=4x ,点A (-2,0),设直线l 与C 交于不同的两点P ,Q .(1)若直线l ⊥x 轴,求直线PA 的斜率的取值范围;(2)若直线l 不垂直于x 轴,且∠PAO =∠QAO ,证明:直线l 过定点. 解:(1)当点P 在第一象限时,设P (t ,2t ),则k PA =2t -0t +2=2t +2t≤222=22, ∴k PA ∈⎝ ⎛⎦⎥⎤0,22,同理,当点P 在第四象限时,k PA ∈⎣⎢⎡⎭⎪⎫-22,0. 综上所述,直线PA 的斜率k PA ∈⎣⎢⎡⎭⎪⎫-22,0∪⎝⎛⎦⎥⎤0,22. (2)证明:设直线l 的方程为y =kx +b (k ≠0),联立方程得⎩⎪⎨⎪⎧y =kx +b ,y 2=4x ,得ky 2-4y +4b=0,Δ=16-16kb >0,设P (x 1,y 1),Q (x 2,y 2),则y 1+y 2=4k ,y 1·y 2=4bk,∵∠PAO =∠QAO , ∴k AP +k AQ =y 1x 1+2+y 2x 2+2=y 1(x 2+2)+y 2(x 1+2)(x 1+2)(x 2+2)=4y 1y 2(y 2+y 1)+32(y 1+y 2)y 21y 22+8(y 21+y 22)+64=4b +8kb 2+4k 2-4kb +8=0,∵b =-2k ,∴y =kx -2k =k (x -2),直线l 恒过定点(2,0). [专题过关检测]大题专攻强化练1.(2019·全国卷Ⅲ)已知曲线C :y =x 22,D 为直线y =-12上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点.(2)若以E ⎝ ⎛⎭⎪⎫0,52为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程.解:(1)证明:设D ⎝ ⎛⎭⎪⎫t ,-12,A (x 1,y 1),则x 21=2y 1.由于y ′=x ,所以切线DA 的斜率为x 1,故y 1+12x 1-t=x 1.整理得2tx 1-2y 1+1=0.设B (x 2,y 2),同理可得2tx 2-2y 2+1=0. 故直线AB 的方程为2tx -2y +1=0.所以直线AB 过定点⎝ ⎛⎭⎪⎫0,12. (2)由(1)得直线AB 的方程为y =tx +12.由⎩⎪⎨⎪⎧y =tx +12,y =x 22可得x 2-2tx -1=0.于是x 1+x 2=2t ,y 1+y 2=t (x 1+x 2)+1=2t 2+1. 设M 为线段AB 的中点,则M ⎝⎛⎭⎪⎫t ,t 2+12.由于EM ―→⊥AB ―→,而EM ―→=(t ,t 2-2),AB ―→与向量(1,t )平行, 所以t +(t 2-2)t =0.解得t =0或t =±1.当t =0时,|EM ―→|=2,所求圆的方程为x 2+⎝ ⎛⎭⎪⎫y -522=4;当t =±1时,|EM ―→|=2,所求圆的方程为x 2+⎝ ⎛⎭⎪⎫y -522=2.2.(2019·济南市学习质量评估)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,右焦点为F ,且该椭圆过点⎝ ⎛⎭⎪⎫1,-32. (1)求椭圆C 的方程;(2)当动直线l 与椭圆C 相切于点A ,且与直线x =433相交于点B 时,求证:△FAB 为直角三角形.解:(1)由题意得c a =32,1a 2+34b2=1,又a 2=b 2+c 2,所以b 2=1,a 2=4,即椭圆C 的方程为x 24+y 2=1.(2)证明:由题意可得直线l 的斜率存在,设l :y =kx +m ,联立得⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1, 得(4k 2+1)x 2+8kmx +4m 2-4=0,判别式Δ=64k 2m 2-16(4k 2+1)(m 2-1)=0,得m 2=4k 2+1>0.设A (x 1,y 1),则x 1=-8km 2(4k 2+1)=-8km 2m 2=-4k m ,y 1=kx 1+m =-4k 2m +m =1m,即A ⎝ ⎛⎭⎪⎫-4k m ,1m .易得B ⎝⎛⎭⎪⎫433,433k +m ,F (3,0),则FA ―→=⎝ ⎛⎭⎪⎫-4k m -3,1m ,FB ―→=⎝ ⎛⎭⎪⎫33,433k +m , FA ―→·FB ―→=33⎝ ⎛⎭⎪⎫-4k m -3+1m ⎝ ⎛⎭⎪⎫433k +m =-43k 3m -1+43k 3m +1=0, 所以FA ―→⊥FB ―→,即△FAB 为直角三角形,得证.3.如图,设点A ,B 的坐标分别为(-3,0),(3,0),直线AP ,BP相交于点P ,且它们的斜率之积为-23.(1)求点P 的轨迹方程;(2)设点P 的轨迹为C ,点M ,N 是轨迹C 上不同的两点,且满足AP ∥OM ,BP ∥ON ,求证:△MON 的面积为定值.解:(1)设点P 的坐标为(x ,y ),由题意得,k AP ·k BP =y x +3·y x -3=-23(x ≠±3),化简得,点P 的轨迹方程为x 23+y 22=1(x ≠±3).(2)证明:由题意可知,M ,N 是轨迹C 上不同的两点,且AP ∥OM ,BP ∥ON , 则直线OM ,ON 的斜率必存在且不为0,k OM ·k ON =k AP ·k BP =-23.①当直线MN 的斜率为0时,设M (x 0,y 0),N (-x 0,y 0),则⎩⎪⎨⎪⎧y 20x 20=23,x 203+y202=1,得⎩⎪⎨⎪⎧|x 0|=62,|y 0|=1, 所以S △MON =12|y 0||2x 0|=62.②当直线MN 的斜率不为0时,设直线MN 的方程为x =my +t ,代入x 23+y 22=1,得(3+2m 2)y 2+4mty +2t 2-6=0, (*)设M (x 1,y 1),N (x 2,y 2),则y 1,y 2是方程(*)的两根, 所以y 1+y 2=-4mt 3+2m 2,y 1y 2=2t 2-63+2m 2,又k OM ·k ON =y 1y 2x 1x 2=y 1y 2m 2y 1y 2+mt (y 1+y 2)+t 2=2t 2-63t 2-6m2, 所以2t 2-63t 2-6m 2=-23,即2t 2=2m 2+3,满足Δ>0.又S △MON =12|t ||y 1-y 2|=|t |-24t 2+48m 2+722(3+2m 2), 所以S △MON =26t 24t 2=62. 综上,△MON 的面积为定值,且定值为62. 4.(2019·福州市质量检测)已知抛物线C 1:x 2=2py (p >0)和圆C 2:(x +1)2+y 2=2,倾斜角为45°的直线l 1过C 1的焦点,且l 1与C 2相切.(1)求p 的值;(2)动点M 在C 1的准线上,动点A 在C 1上,若C 1在A 点处的切线l 2交y 轴于点B ,设MN ―→=MA ―→+MB ―→,求证:点N 在定直线上,并求该定直线的方程.解:(1)依题意,设直线l 1的方程为y =x +p2,因为直线l 1与圆C 2相切,所以圆心C 2(-1,0)到直线l 1:y =x +p2的距离d =⎪⎪⎪⎪⎪⎪-1+p 212+(-1)2= 2. 即⎪⎪⎪⎪⎪⎪-1+p 22=2,解得p =6或p =-2(舍去).所以p =6.(2)法一:依题意设M (m ,-3),由(1)知抛物线C 1的方程为x 2=12y ,所以y =x 212,所以y ′=x6,设A (x 1,y 1),则以A 为切点的切线l 2的斜率为k =x 16,所以切线l 2的方程为y =16x 1(x -x 1)+y 1.令x =0,则y =-16x 21+y 1=-16×12y 1+y 1=-y 1,即B 点的坐标为(0,-y 1),所以MA ―→=(x 1-m ,y 1+3), MB ―→=(-m ,-y 1+3),所以MN ―→=MA ―→+MB ―→=(x 1-2m ,6), 所以ON ―→=OM ―→+MN ―→=(x 1-m ,3). 设N 点坐标为(x ,y ),则y =3, 所以点N 在定直线y =3上. 法二:设M (m ,-3),由(1)知抛物线C 1的方程为x 2=12y ,①设l 2的斜率为k ,A ⎝ ⎛⎭⎪⎫x 1,112x 21,则以A 为切点的切线l 2的方程为y =k (x -x 1)+112x 21,②联立①②得,x 2=12⎣⎢⎡⎦⎥⎤k (x -x 1)+112x 21,因为Δ=144k 2-48kx 1+4x 21=0,所以k =x 16,所以切线l 2的方程为y =16x 1(x -x 1)+112x 21.令x =0,得B 点坐标为⎝ ⎛⎭⎪⎫0,-112x 21,所以MA ―→=⎝ ⎛⎭⎪⎫x 1-m ,112x 21+3,MB ―→=⎝ ⎛⎭⎪⎫-m ,-112x 21+3,所以MN ―→=MA ―→+MB ―→=(x 1-2m ,6), 所以ON ―→=OM ―→+MN ―→=(x 1-m ,3), 所以点N 在定直线y =3上.第2课时 圆锥曲线中的最值、范围、探索性问题[例1] (2019·广州市综合检测(一))已知椭圆C 的中心在原点,焦点在坐标轴上,直线y =32x 与椭圆C 在第一象限内的交点是M ,点M 在x 轴上的射影恰好是椭圆C 的右焦点F 2,椭圆C 的另一个焦点是F 1,且MF 1―→·MF 2―→=94.(1)求椭圆C 的方程;(2)若直线l 过点(-1,0),且与椭圆C 交于P ,Q 两点,求△F 2PQ 的内切圆面积的最大值.[解] (1)设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0),∵点M 在直线y =32x 上,且点M 在x 轴上的射影恰好是椭圆C 的右焦点F 2(c ,0),∴点M ⎝⎛⎭⎪⎫c ,3c 2.∵MF 1―→·MF 2―→=⎝ ⎛⎭⎪⎫-2c ,-32c ·⎝ ⎛⎭⎪⎫0,-32c =94,∴c =1. ∴⎩⎪⎨⎪⎧1a 2+94b 2=1,a 2=b 2+1,解得⎩⎪⎨⎪⎧a 2=4,b 2=3,∴椭圆C 的方程为x 24+y 23=1.(2)由(1)知,F 1(-1,0),过点F 1(-1,0)的直线与椭圆C 交于P ,Q 两点,则△F 2PQ 的周长为4a =8,又S △F 2PQ =12·4a ·r (r 为△F 2PQ 的内切圆半径),∴当△F 2PQ 的面积最大时,其内切圆面积最大. 设直线l 的方程为x =ky -1,P (x 1,y 1),Q (x 2,y 2),则⎩⎪⎨⎪⎧x =ky -1,x 24+y23=1, 消去x 得(4+3k 2)y 2-6ky -9=0, ∴⎩⎪⎨⎪⎧y 1+y 2=6k3k 2+4,y 1y 2=-93k 2+4,∴S △F 2PQ =12·|F 1F 2|·|y 1-y 2|=12k 2+13k 2+4. 令k 2+1=t ,则t ≥1,∴S △F 2PQ =123t +1t, 令f (t )=3t +1t,则f ′(t )=3-1t2,当t ∈ [1,+∞)时,f ′(t )>0,f (t )=3t +1t在[1,+∞)上单调递增,∴S △F 2PQ =123t +1t≤3,当t =1时取等号,即当k =0时,△F 2PQ 的面积取得最大值3, 结合S △F 2PQ =12·4a ·r ,得r 的最大值为34,∴△F 2PQ 的内切圆面积的最大值为916π.[题后悟通] 最值问题的2种基本解法[跟踪训练](2019·河北省九校第二次联考)已知抛物线C :y 2=2px (p >0)的焦点为F ,若过点F 且斜率为1的直线与抛物线相交于M ,N 两点,且|MN |=8.(1)求抛物线C 的方程;(2)设直线l 为抛物线C 的切线,且l ∥MN ,P 为l 上一点,求PM ―→·PN ―→的最小值.解:(1)由题意可知F ⎝ ⎛⎭⎪⎫p 2,0,则直线MN 的方程为y =x -p2,代入y 2=2px (p >0)得x 2-3px +p 24=0,设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=3p ,∵|MN |=8,∴x 1+x 2+p =8,即3p +p =8,解得p =2, ∴抛物线C 的方程为y 2=4x .(2)设直线l 的方程为y =x +b ,代入y 2=4x ,得x 2+(2b -4)x +b 2=0, ∵直线l 为抛物线C 的切线,∴Δ=0,解得b =1, ∴l :y =x +1.由(1)可知,x 1+x 2=6,x 1x 2=1,设P (m ,m +1),则PM ―→=(x 1-m ,y 1-(m +1)),PN ―→=(x 2-m ,y 2-(m +1)), ∴PM ―→·PN ―→=(x 1-m )(x 2-m )+ [y 1-(m +1)][y 2-(m +1)]=x 1x 2-m (x 1+x 2)+m 2+y 1y 2-(m +1)(y 1+y 2)+(m +1)2,(y 1y 2)2=16x 1x 2=16,∴y 1y 2=-4,y 21-y 22=4(x 1-x 2),∴y 1+y 2=4×x 1-x 2y 1-y 2=4, PM ―→·PN ―→=1-6m +m 2-4-4(m +1)+(m +1)2=2(m 2-4m -3)=2[(m -2)2-7]≥-14,当且仅当m =2,即点P 的坐标为(2,3)时,PM ―→·PN ―→取得最小值-14.[例2] (2019·安徽五校联盟第二次质检)已知椭圆C :a 2+y 2b2=1(a >b >0)的焦点坐标分别为F 1(-1,0),F 2(1,0),P 为椭圆C 上一点,满足3|PF 1|=5|PF 2|且cos ∠F 1PF 2=35.(1)求椭圆C 的标准方程;(2)设直线l :y =kx +m 与椭圆C 交于A ,B 两点,点Q ⎝ ⎛⎭⎪⎫14,0,若|AQ |=|BQ |,求k 的取值范围.[解] (1)由题意设|PF 1|=r 1,|PF 2|=r 2,则3r 1=5r 2,又r 1+r 2=2a ,∴r 1=54a ,r 2=34a . 在△PF 1F 2中,由余弦定理得,cos ∠F 1PF 2=r 21+r 22-|F 1F 2|22r 1r 2=⎝ ⎛⎭⎪⎫54a 2+⎝ ⎛⎭⎪⎫34a 2-222×54a ×34a =35, 解得a =2,∵c =1,∴b 2=a 2-c 2=3,∴椭圆C 的标准方程为x 24+y 23=1.(2)联立方程,得⎩⎪⎨⎪⎧x 24+y 23=1,y =kx +m ,消去y 得(3+4k 2)x 2+8kmx +4m 2-12=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km 3+4k 2,x 1x 2=4m 2-123+4k 2,且Δ=48(3+4k 2-m 2)>0,①设AB 的中点为M (x 0,y 0),连接QM ,则x 0=x 1+x 22=-4km 3+4k 2,y 0=kx 0+m =3m3+4k2, ∵|AQ |=|BQ |,∴AB ⊥QM ,又Q ⎝ ⎛⎭⎪⎫14,0,M 为AB 的中点,∴k ≠0,直线QM 的斜率存在,∴k ·k QM =k ·3m3+4k 2-4km 3+4k 2-14=-1,解得m =-3+4k24k,②把②代入①得3+4k 2>⎝ ⎛⎭⎪⎫-3+4k 24k 2,整理得16k 4+8k 2-3>0,即(4k 2-1)(4k 2+3)>0,解得k >12或k <-12,故k 的取值范围为⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫12,+∞.[题后悟通] 范围问题的解题策略解决有关范围问题时,先要恰当地引入变量(如点的坐标、角、斜率等),寻找不等关系,其方法有:(1)利用判别式来构造不等式,从而确定所求范围(如本例);(2)利用已知参数的取值范围,求新参数的范围,解这类问题的核心是在两个参数之间建立相等关系;(3)利用隐含的不等关系,从而求出所求范围; (4)利用已知不等关系构造不等式,从而求出所求范围; (5)利用函数值域的求法,确定所求范围;(6)利用已知,将条件转化为几个不等关系,从而求出参数的范围(如本例).[跟踪训练](2018·浙江高考)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上.(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆x 2+y 24=1(x <0)上的动点,求△PAB 面积的取值范围.解:(1)证明:设P (x 0,y 0),A ⎝ ⎛⎭⎪⎫14y 21,y 1,B ⎝ ⎛⎭⎪⎫14y 22,y 2. 因为PA ,PB 的中点在抛物线上, 所以y 1,y 2为方程⎝ ⎛⎭⎪⎫y +y 022=4·14y 2+x 02,即y 2-2y 0y +8x 0-y 20=0的两个不同的实根. 所以y 1+y 2=2y 0, 因此PM 垂直于y 轴.(2)由(1)可知⎩⎪⎨⎪⎧y 1+y 2=2y 0,y 1y 2=8x 0-y 20, 所以|PM |=18(y 21+y 22)-x 0=34y 20-3x 0,|y 1-y 2|=22(y 20-4x 0).因此△PAB 的面积S △PAB =12|PM |·|y 1-y 2|=324(y 20-4x 0)32.因为x 2+y 204=1(x 0<0),所以y 20-4x 0=-4x 20-4x 0+4∈[4,5], 所以△PAB 面积的取值范围是⎢⎡⎥⎤62,15104.[例3] (2019·石家庄市质量检测)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且经过点⎝ ⎛⎭⎪⎫-1,32. (1)求椭圆C 的方程.(2)过点(3,0)作直线l 与椭圆C 交于不同的两点A ,B ,试问在x 轴上是否存在定点Q ,使得直线QA 与直线QB 恰关于x 轴对称?若存在,求出点Q 的坐标;若不存在,说明理由.[解] (1)由题意可得c a =32,1a 2+34b2=1, 又a 2-b 2=c 2,所以a 2=4,b 2=1. 所以椭圆C 的方程为x 24+y 2=1.(2)存在定点Q ⎝⎛⎭⎪⎫433,0,满足直线QA 与直线QB 恰关于x 轴对称. 设直线l 的方程为x +my -3=0,与椭圆C 的方程联立得⎩⎪⎨⎪⎧x +my -3=0,x 24+y 2=1,整理得,(4+m 2)y 2-23my -1=0.设A (x 1,y 1),B (x 2,y 2),定点Q (t ,0)(依题意t ≠x 1,t ≠x 2). 由根与系数的关系可得,y 1+y 2=23m 4+m 2,y 1y 2=-14+m2.直线QA 与直线QB 恰关于x 轴对称,则直线QA 与直线QB 的斜率互为相反数, 所以y 1x 1-t +y 2x 2-t=0,即y 1(x 2-t )+y 2(x 1-t )=0.又x 1+my 1-3=0,x 2+my 2-3=0,所以y 1(3-my 2-t )+y 2(3-my 1-t )=0,整理得,(3-t )(y 1+y 2)-2my 1y 2=0, 从而可得,(3-t )·23m 4+m 2-2m ·-14+m2=0,即2m (4-3t )=0,所以当t =433,即Q ⎝ ⎛⎭⎪⎫433,0时,直线QA 与直线QB 恰关于x 轴对称.特别地,当直线l 为x 轴时,Q ⎝⎛⎭⎪⎫433,0也符合题意. 综上所述,在x 轴上存在定点Q ⎝ ⎛⎭⎪⎫433,0,使得直线QA 与直线QB 恰关于x 轴对称.[题后悟通] 探索性问题的解题策略探索性问题,先假设存在,推证满足条件的结论,若结论正确,则存在,若结论不正确,则不存在.(1)当条件和结论不唯一时,要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.(3)当条件和结论都不知,按常规方法解题很难时,要思维开放,采取另外的途径.[跟踪训练]如图,由部分抛物线y 2=mx +1(m >0,x ≥0)和半圆x 2+y 2=r 2(x ≤0)所组成的曲线称为“黄金抛物线C ”,若“黄金抛物线C ”经过点(3,2)和⎝ ⎛⎭⎪⎫-12,32. (1)求“黄金抛物线C ”的方程;(2)设P (0,1)和Q (0,-1),过点P 作直线l 与“黄金抛物线C ”交于A ,P ,B 三点,问是否存在这样的直线l ,使得QP 平分∠AQB ?若存在,求出直线l 的方程;若不存在,请说明理由.解:(1)因为“黄金抛物线C ”过点(3,2)和⎝ ⎛⎭⎪⎫-12,32,所以r 2=⎝ ⎛⎭⎪⎫-122+⎝ ⎛⎭⎪⎫322=1,4=3m +1,解得m =1. 所以“黄金抛物线C ”的方程为y 2=x +1(x ≥0)和x 2+y 2=1(x ≤0). (2)假设存在这样的直线l ,使得QP 平分∠AQB . 显然直线l 的斜率存在且不为0,结合题意可设直线l 的方程为y =kx +1(k ≠0),A (x A ,y A ),B (x B ,y B ),不妨令x A <0<x B .由⎩⎪⎨⎪⎧y =kx +1,y 2=x +1(x ≥0),消去y 并整理,得k 2x 2+(2k -1)x =0, 所以x B =1-2k k 2,y B =1-k k ,即B ⎝ ⎛⎭⎪⎫1-2k k 2,1-k k ,由x B>0知k <12,所以直线BQ 的斜率为k BQ =k1-2k.由⎩⎪⎨⎪⎧y =kx +1,x 2+y 2=1(x ≤0),消去y 并整理,得(k 2+1)x 2+2kx =0, 所以x A =-2k k 2+1,y A =1-k 2k 2+1,即A ⎝ ⎛⎭⎪⎫-2k k 2+1,1-k 2k 2+1,由x A <0知k >0,所以直线AQ 的斜率为k AQ =-1k.因为QP 平分∠AQB ,且直线QP 的斜率不存在,所以k AQ +k BQ =0, 即-1k +k 1-2k =0,由0<k <12,可得k =2-1.所以存在直线l :y =(2-1)x +1,使得QP 平分∠AQB . [专题过关检测]大题专攻强化练1.(2019·全国卷Ⅰ)已知点A ,B 关于坐标原点O 对称,|AB |=4,⊙M 过点A ,B 且与直线x +2=0相切.(1)若A 在直线x +y =0上,求⊙M 的半径.(2)是否存在定点P ,使得当A 运动时,|MA |-|MP |为定值?并说明理由.解:(1)因为⊙M 过点A ,B ,所以圆心M 在AB 的垂直平分线上.由已知A 在直线x +y =0上,且A ,B 关于坐标原点O 对称,所以M 在直线y =x 上,故可设M (a ,a ).因为⊙M 与直线x +2=0相切,所以⊙M 的半径为r =|a +2|. 连接MA ,由已知得|AO |=2.又MO ―→⊥AO ―→,故可得2a 2+4=(a +2)2, 解得a =0或a =4. 故⊙M 的半径r =2或r =6.(2)存在定点P (1,0),使得|MA |-|MP |为定值.理由如下:设M (x ,y ),由已知得⊙M 的半径为r =|x +2|,|AO |=2.由于MO ⊥AO ,故可得x 2+y 2+4=(x +2)2,化简得M 的轨迹方程为y 2=4x .因为曲线C :y 2=4x 是以点P (1,0)为焦点,以直线x =-1为准线的抛物线,所以|MP |=x +1.因为|MA |-|MP |=r -|MP |=x +2-(x +1)=1, 所以存在满足条件的定点P .2.(2019·武汉部分学校调研)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,且长轴长为8,T 为椭圆C 上异于A ,B 的点,直线TA ,TB 的斜率之积为-34.(1)求椭圆C 的方程;(2)设O 为坐标原点,过点M (8,0)的动直线与椭圆C 交于P ,Q 两点,求△OPQ 面积的最大值.解:(1)设T (x ,y )(x ≠±4),则直线TA 的斜率为k 1=y x +4,直线TB 的斜率为k 2=yx -4. 于是由k 1k 2=-34,得y x +4·y x -4=-34,整理得x 216+y212=1(x ≠±4),故椭圆C 的方程为x 216+y 212=1.(2)由题意设直线PQ 的方程为x =my +8,由⎩⎪⎨⎪⎧x =my +8,x 216+y 212=1得(3m 2+4)y 2+48my +144=0, Δ=(48m )2-4×144×(3m 2+4)=12×48(m 2-4)>0,即m 2>4,y P +y Q =-48m 3m 2+4,y P y Q =1443m 2+4. |PQ |=m 2+13m 2+4·Δ=24(m 2+1)(m 2-4)3m 2+4, 点O 到直线PQ 的距离d =8m 2+1.故S△OPQ=12×|PQ |×d =96m 2-43m 2+4=963m 2-4+16m 2-4≤43⎝ ⎛⎭⎪⎫当且仅当m 2=283时等号成立,且满足m 2>4, 故△OPQ 面积的最大值为4 3.3.(2019·湖南省湘东六校联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =12,点A (b ,0),B ,F 分别为椭圆的上顶点和左焦点,且|BF |·|BA |=2 6.(1)求椭圆C 的方程.(2)若过定点M (0,2)的直线l 与椭圆C 交于G ,H 两点(G 在M ,H 之间),设直线l 的斜率k >0,在x 轴上是否存在点P (m ,0),使得以PG ,PH 为邻边的平行四边形为菱形?如果存在,求出m 的取值范围;如果不存在,请说明理由.解:(1)设椭圆的焦距为2c ,由离心率e =12得a =2c .①由|BF |·|BA |=26,得a ·b 2+b 2=26,∴ab =2 3.②a 2-b 2=c 2,③由①②③可得a 2=4,b 2=3, ∴椭圆C 的方程为x 24+y 23=1.(2)设直线l 的方程为y =kx +2(k >0),由⎩⎪⎨⎪⎧y =kx +2(k >0),x 24+y 23=1得(3+4k 2)x 2+16kx +4=0,可知Δ>0,∴k >12.设G (x 1,y 1),H (x 2,y 2),则x 1+x 2=-16k 4k 2+3,PG ―→+PH ―→=(x 1+x 2-2m ,k (x 1+x 2)+4),GH ―→=(x 2-x 1,y 2-y 1)=(x 2-x 1,k (x 2-x 1)).∵菱形的对角线互相垂直,∴(PG ―→+PH ―→)·GH ―→=0, ∴(1+k 2)(x 1+x 2)+4k -2m =0,得m =-2k 4k 2+3,即m =-24k +3k,∵k >12,∴-36≤m <0⎝ ⎛⎭⎪⎫当且仅当3k =4k 时,等号成立. ∴存在满足条件的实数m ,m 的取值范围为⎣⎢⎡⎭⎪⎫-36,0. 4.(2019·郑州市第二次质量预测)椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,A 为椭圆上一动点(异于左、右顶点),△AF 1F 2的周长为4+23,且面积的最大值为 3.(1)求椭圆C 的方程;(2)设B 是椭圆上一动点,线段AB 的中点为P ,OA ,OB (O 为坐标原点)的斜率分别为k 1,k 2,且k 1k 2=-14,求|OP |的取值范围.解:(1)由椭圆的定义及△AF 1F 2的周长为4+23,可得2(a +c )=4+23, ∴a +c =2+ 3.①当A 在上(或下)顶点时,△AF 1F 2的面积取得最大值,即bc =3,② 由①②及a 2=c 2+b 2,得a =2,b =1,c =3, ∴椭圆C 的方程为x 24+y 2=1.(2)当直线AB 的斜率不存在时,k 1=-k 2,∵k 1k 2=-14,∴k 1=±12,不妨取k 1=12,则直线OA 的方程为y =12x ,不妨取点A ⎝ ⎛⎭⎪⎫2,22,则B ⎝⎛⎭⎪⎫2,-22,P (2,0),∴|OP |= 2. 当直线AB 的斜率存在时,设直线AB 的方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +m ,x 2+4y 2=4可得(1+4k 2)x 2+8kmx +4m 2-4=0, Δ=64k 2m 2-4(4k 2+1)(4m 2-4)=16(4k 2+1-m 2)>0,③∴x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-41+4k 2.∵k 1k 2=-14,∴4y 1y 2+x 1x 2=0,∴4(kx 1+m )(kx 2+m )+x 1x 2=(4k 2+1)x 1x 2+4km (x 1+x 2)+4m 2=4m 2-4-32k 2m 21+4k2+4m 2=0,化简得2m 2=1+4k 2(满足③式),∴m 2≥12.设P (x 0,y 0),则x 0=x 1+x 22=-4km 1+4k 2=-2k m ,y 0=kx 0+m =12m. ∴|OP |2=x 20+y 20=4k 2m 2+14m 2=2-34m 2∈⎣⎢⎡⎭⎪⎫12,2,∴|OP |∈⎣⎢⎡⎭⎪⎫22,2. 综上,|OP |的取值范围为⎣⎢⎡⎦⎥⎤22,2.[思维流程——找突破口][技法指导——迁移搭桥]圆锥曲线解答题的常见类型是:第(1)小题通常是根据已知条件,求曲线方程或离心率,一般比较简单.第(2)小题往往是通过方程研究曲线的性质——弦长问题、中点弦问题、动点轨迹问题、定点与定值问题、最值问题、相关量的取值范围问题等等,这一小题综合性较强,可通过巧设“点”“线”,设而不求.在具体求解时,可将整个解题过程分成程序化的三步: 第一步,联立两个方程,并将消元所得方程的判别式与根与系数的关系正确写出;第二步,用两个交点的同一类坐标的和与积,来表示题目中涉及的位置关系和数量关系;第三步,求解转化而来的代数问题,并将结果回归到原几何问题中.在求解时,要根据题目特征,恰当的设点、设线,选用恰当运算方法,合理地简化运算.[典例] 已知圆(x +3)2+y 2=16的圆心为M ,点P 是圆M 上的动点,点N (3,0),点G 在线段MP 上,且满足(GN ―→+GP ―→)⊥(GN ―→-GP ―→).(1)求点G 的轨迹C 的方程;(2)过点T (4,0)作斜率不为0的直线l 与轨迹C 交于A ,B 两点,点A 关于x 轴的对称点为D ,连接BD 交x 轴于点Q ,求△ABQ 面积的最大值.[快审题] 求什么 想什么 求轨迹方程,想到求轨迹方程的方法.求三角形面积的最值,想到表示出三角形面积的式子. 给什么给出向量垂直关系,用数量积转化为线段相等.[稳解题](1)因为(GN ―→+GP ―→)⊥(GN ―→-GP ―→),所以(GN ―→+GP ―→)·(GN ―→-GP ―→)=0,即GN ―→2-GP ―→2=0, 所以|GP |=|GN |,所以|GM |+|GN |=|GM |+|GP |=|MP |=4>23=|MN |, 所以点G 在以M ,N 为焦点,长轴长为4的椭圆上,设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),则2a =4,2c =23,即a =2,c =3,所以b 2=a 2-c 2=1, 所以点G 的轨迹C 的方程为x 24+y 2=1.(2)法一:依题意可设直线l :x =my +4.由⎩⎪⎨⎪⎧x =my +4,x 24+y 2=1消去x ,得(m 2+4)y 2+8my +12=0. 设A (x 1,y 1),B (x 2,y 2),由Δ=64m 2-4×12×(m 2+4)=16(m 2-12)>0,得m 2>12. ① 且y 1+y 2=-8mm 2+4, y 1y 2=12m 2+4. ② 因为点A 关于x 轴的对称点为D , 所以D (x 1,-y 1), 可设Q (x 0,0), 所以k BD =y 2+y 1x 2-x 1=y 2+y 1m (y 2-y 1), 所以BD 所在直线的方程为y -y 2=y 2+y 1m (y 2-y 1)(x -my 2-4).令y =0,得x 0=2my 1y 2+4(y 1+y 2)y 1+y 2. ③将②代入③, 得x 0=24m -32m -8m =1,所以点Q 的坐标为(1,0). 因为S △ABQ =|S △TBQ -S △TAQ |= 12|QT ||y 2-y 1|= 32(y 1+y 2)2-4y 1y 2=6m 2-12m 2+4, 令t =m 2+4,结合①得t >16, 所以S △ABQ =6t -16t=6-16t 2+1t=6-16⎝ ⎛⎭⎪⎫1t -1322+164.当且仅当t =32,即m =±27时,(S △ABQ )max =34.所以△ABQ 面积的最大值为34.法二:依题意知直线l 的斜率存在,设其方程为y =k (x -4),A (x 1,y 1),B (x 2,y 2),Q (x 0,0).由对称性知D (x 1,-y 1),由⎩⎪⎨⎪⎧y =k (x -4),x 24+y 2=1消去y , 得(4k 2+1)x 2-32k 2x +64k 2-4=0. 由Δ=(-32k 2)2-4(4k 2+1)(64k 2-4)>0,得k 2<112, ①且x 1+x 2=32k 24k 2+1,x 1x 2=64k 2-44k 2+1. ②BQ ―→=(x 0-x 2,-y 2),DQ ―→=(x 0-x 1,y 1) 由B ,D ,Q 三点共线知BQ ―→∥DQ ―→,故(x 0-x 2)y 1+y 2(x 0-x 1)=0,即(x 0-x 2)·k (x 1-4)+k (x 2-4)(x 0-x 1)=0. 整理得x 0=2x 1x 2-4(x 1+x 2)x 1+x 2-8. ③将②代入③,得x 0=1,所以点Q 的坐标为(1,0). 因为点Q (1,0)到直线l 的距离为d =3|k |k 2+1, |AB |=1+k 2·(x 1+x 2)2-4x 1x 2 =41+k 2·1-12k 24k 2+1, 所以S △ABQ =12|AB |·d =6k 2-12k44k 2+1. 令t =4k 2+1,则k 2=t -14,结合①得1<t <43,所以S △ABQ =6-34t 2+74t -1t =3-4t 2+7t-3=3-4⎝ ⎛⎭⎪⎫1t -782+116.当且仅当1t =78,即k =±714时,(S △ABQ )max =34.所以△ABQ 面积的最大值为34.[题后悟道]解决直线与圆锥曲线位置关系问题的步骤[针对训练]已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点P ⎝⎛⎭⎪⎫1,22,且离心率为22.(1)求椭圆C 的方程;(2)设F 1,F 2分别为椭圆C 的左、右焦点,不经过F 1的直线l 与椭圆C 交于两个不同的点A ,B .如果直线AF 1,l ,BF 1的斜率依次成等差数列,求焦点F 2到直线l 的距离d 的取值范围.解:(1)由题意,知⎩⎪⎨⎪⎧1a 2+24b2=1,c a =22,结合a 2=b 2+c 2得a 2=2,b 2=1,c 2=1.所以椭圆C 的方程为x 22+y 2=1. (2)易知直线l 的斜率存在且不为0,设直线l 的方程为y =kx +m (k ≠0).由⎩⎪⎨⎪⎧y =kx +m ,x 22+y 2=1消去y 并整理,得(1+2k 2)x 2+4kmx +2(m 2-1)=0. 则Δ=(4km )2-8(1+2k 2)(m 2-1)>0,即2k 2>m 2-1.①设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-4km 1+2k 2,x 1x 2=2(m 2-1)1+2k 2. 因为F 1(-1,0),所以k AF 1=y 1x 1+1,k BF 1=y 2x 2+1.由题意可得2k =y 1x 1+1+y 2x 2+1,且y 1=kx 1+m ,y 2=kx 2+m ,所以(m -k )(x 1+x 2+2)=0.因为直线l :y =kx +m 不过焦点F 1(-1,0),所以m -k ≠0, 所以x 1+x 2+2=0,从而-4km 1+2k 2+2=0,即m =k +12k .② 由①②得2k 2>⎝ ⎛⎭⎪⎫k +12k 2-1,化简得|k |>22.焦点F 2(1,0)到直线l :y =kx +m 的距离d =|k +m |1+k2=⎪⎪⎪⎪⎪⎪2k +12k 1+k2=2+12k21k2+1. 令t =1k2+1,由|k |>22知t ∈(1,3),所以d =t 2+32t =12⎝ ⎛⎭⎪⎫t +3t , 由函数f (t )=12⎝ ⎛⎭⎪⎫t +3t 在(1,3)上单调递减知,f (3)<d <f (1),解得3<d <2,于是焦点F 2到直线l 的距离d 的取值范围为(3,2).。
高考数学二轮复习第2部分专题5解析几何第3讲圆锥曲线中的综合问题课件理
切入点:(1)直接套用斜率公式,并借助-12<x<32求其范围; (2)先分别计算|PA|、|PQ|的长,再建立|PA|·|PQ|的函数,进而借 助导数求其最值.
[解](1)设直线AP的斜率为k,k=xx2+-1214=x-12, 因为-12<x<32, 所以-1<x-12<1, 即直线AP斜率的取值范围是(-1,1).
(与向量交汇直线过定点问题)设M点为圆C:x2+y2=4上的动 点,点M在x轴上的投影为N.动点P满足2 P→N = 3 M→N ,动点P的轨迹 为E.
(1)求E的方程; (2)设E的左顶点为D,若直线l:y=kx+m与曲线E交于A,B两 点(A,B不是左、右顶点),且满足| D→A + D→B |=| D→A - D→B |,求证:直 线l恒过定点,并求出该定点的坐标.
第二部分 讲练篇
专题五 解析几何 第3讲 圆锥曲线中的综合问题
研考题 举题固法
求圆锥曲线中的最值范围问题(5年2考) 考向1 构造不等式求最值或范围
[高考解读] 以直线与圆锥曲线的位置关系为载体,融函数与 方程,均值不等式、导数于一体,重在考查学生的数学建模、数学 运算能力和逻辑推理及等价转化能力.
[解](1)设点M(x0,y0),P(x,y),由题意可知N(x0,0), ∵2P→N= 3M→N,∴2(x0-x,-y)= 3(0,-y0), 即x0=x,y0= 23y, 又点M在圆C:x2+y2=4上,∴x20+y20=4, 将x0=x,y0= 23y代入得x42+y32=1, 即轨迹E的方程为x42+y32=1.
设C(p,q),由2qpp=+q21,-2=0
得p=q=2,所以C(2,2).
高考数学二轮复习专题五解析几何第3讲圆锥曲线中的综合问题教案140
第3讲 圆锥曲线中的综合问题“ 构造法”求最值(范围)[典型例题](·高考浙江卷)如图,已知点F (1,0)为抛物线y 2=2px (p >0)的焦点.过点F 的直线交抛物线于A ,B 两点,点C 在抛物线上,使得△ABC 的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记△AFG ,△CQG 的面积分别为S 1,S 2.(1)求p 的值及抛物线的准线方程;(2)求S 1S 2的最小值及此时点G 的坐标. 【解】 (1)由题意得p 2=1,即p =2. 所以抛物线的准线方程为x =-1.(2)设A (x A ,y A ),B (x B ,y B ),C (x C ,y C ),重心G (x G ,y G ).令y A =2t ,t ≠0,则x A =t 2.由于直线AB 过点F ,故直线AB 的方程为x =t 2-12ty +1,代入y 2=4x ,得 y 2-2(t 2-1)t y -4=0,故2ty B =-4,即y B =-2t ,所以B ⎝ ⎛⎭⎪⎪⎫1t 2,-2t . 又由于x G=13(x A +x B +x C ),y G =13(y A +y B +y C )及重心G 在x 轴上,故2t -2t+y C =0, 得C ⎝ ⎛⎭⎪⎪⎫⎝ ⎛⎭⎪⎪⎫1t -t 2,2⎝ ⎛⎭⎪⎪⎫1t -t ,G ⎝ ⎛⎭⎪⎪⎫2t 4-2t 2+23t 2,0. 所以直线AC 的方程为y -2t =2t (x -t 2),得Q (t 2-1,0). 由于Q 在焦点F 的右侧,故t 2>2.从而S 1S 2=12|FG |·|y A |12|QG |·|y C |=⎪⎪⎪⎪⎪⎪⎪⎪2t 4-2t 2+23t 2-1·|2t |⎪⎪⎪⎪⎪⎪⎪⎪t 2-1-2t 4-2t 2+23t 2·⎪⎪⎪⎪⎪⎪⎪⎪2t -2t =2t 4-t 2t 4-1=2-t 2-2t 4-1. 令m =t 2-2,则m >0,S 1S 2=2-m m 2+4m +3=2-1m +3m +4≥2-12m ·3m +4=1+32. 所以当m =3时,S 1S 2取得最小值1+32,此时G (2,0)..解决最值(范围)问题的常用方法解决有关范围、最值问题时,先要恰当地引入变量(如点的坐标、角、斜率等),建立目标函数,然后利用函数的有关知识和方法求解.(1)构建函数法:先引入变量构建以待求量为因变量的函数,再求其值域.(2)构建不等式法:利用已知或隐含的不等关系,构建以待求量为元的不等式求解.(3)数形结合法:利用待求量的几何意义,确定出极端位置后,数形结合求解.[对点训练](2018·高考浙江卷)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上.(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆x 2+y 24=1(x <0)上的动点,求△PAB 面积的取值范围.解:(1)证明:设P (x 0,y 0),A ⎝ ⎛⎭⎪⎪⎫14y 21,y 1,B ⎝ ⎛⎭⎪⎪⎫14y 22,y 2. 因为PA ,PB 的中点在拋物线上,所以y 1,y 2为方程⎝ ⎛⎭⎪⎪⎫y +y 022=4·14y 2+x 02, 即y 2-2y 0y +8x 0-y 20=0的两个不同的实根.所以y 1+y 2=2y 0,因此,PM 垂直于y 轴.(2)由(1)可知⎩⎪⎨⎪⎧y 1+y 2=2y 0,y 1y 2=8x 0-y 20,所以|PM |=18(y 21+y 22)-x 0=34y 20-3x 0, |y 1-y 2|=22(y 20-4x 0).因此,△PAB 的面积S △PAB =12|PM |·|y 1-y 2|=324(y 20-4x 0)32.因为x 20+y 204=1(x 0<0),所以y 20-4x 0=-4x 20-4x 0+4∈[4,5], 因此,△PAB 面积的取值范围是⎣⎢⎢⎡⎦⎥⎥⎤62,15104“ 转化法”求定点、定值[典型例题]已知椭圆C :x 2a 2+y 2b2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3(-1,32),P 4(1,32)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A与直线P 2B 的斜率的和为-1,证明:l 过定点.【解】 (1)由于P 3,P 4两点关于y 轴对称,故由题设知C 经过P 3,P 4两点.又由1a 2+1b 2>1a 2+34b 2知,C 不经过点P 1,所以点P 2在C 上. 因此⎩⎪⎨⎪⎧1b 2=1,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1. 故C 的方程为x 24+y 2=1. (2)证明:设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2.如果l 与x 轴垂直,设l :x =t ,由题设知t ≠0,且|t |<2,可得A ,B 的坐标分别为⎝ ⎛⎭⎪⎪⎫t ,4-t 22,⎝ ⎛⎭⎪⎪⎫t ,-4-t 22. 则k 1+k 2=4-t 2-22t -4-t 2+22t=-1,得t =2,不符合题设.从而可设l :y =kx +m (m ≠1).将y =kx +m 代入x 24+y 2=1得(4k 2+1)x 2+8kmx +4m 2-4=0.由题设可知Δ=16(4k 2-m 2+1)>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1.而k 1+k 2=y 1-1x 1+y 2-1x 2=kx 1+m -1x 1+kx 2+m -1x 2=2kx 1x 2+(m -1)(x 1+x 2)x 1x 2. 由题设k 1+k 2=-1,故(2k +1)x 1x 2+(m -1)(x 1+x 2)=0.即(2k +1)·4m 2-44k 2+1+(m -1)·-8km 4k 2+1=0. 解得k =-m +12.当且仅当m >-1时,Δ>0,于是l :y =-m +12x +m , 即y +1=-m +12(x -2),所以l 过定点(2,-1).(1)动直线过定点问题的解法①动直线l 过定点问题,解法:设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =km ,得y =k (x +m ),故动直线过定点(-m ,0).②动曲线C 过定点问题,解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.(2)求解定值问题的两大途径①首先由特例得出一个值(此值一般就是定值)然后证明定值:即将问题转化为证明待证式与参数(某些变量)无关.②先将式子用动点坐标或动直线中的参数表示,再利用其满足的约束条件使其绝对值相等的正负项抵消或分子、分母约分得定值.[注] 对于此类问题可先根据特殊情况确定定点、定值,再进行一般性证明的方法就是由特殊到一般的方法.[对点训练]已知抛物线C :y 2=2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N .(1)求直线l 的斜率的取值范围;(2)设O 为原点,QM →=λQO →,QN →=μQO →,求证:1λ+1μ为定值. 解:(1)因为抛物线y 2=2px 过点P (1,2),所以2p =4,即p =2.故抛物线C 的方程为y 2=4x .由题意知,直线l 的斜率存在且不为0.设直线l 的方程为y =kx +1(k ≠0).由⎩⎪⎨⎪⎧y 2=4x ,y =kx +1得k 2x 2+(2k -4)x +1=0. 依题意Δ=(2k -4)2-4×k 2×1>0,解得k <0或0<k <1. 又PA ,PB 与y 轴相交,故直线l 不过点(1,-2).从而k ≠-3.所以直线l 斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1).(2)证明:设A (x 1,y 1),B (x 2,y 2).由(1)知x 1+x 2=-2k -4k 2,x 1x 2=1k 2.直线PA 的方程为y -2=y 1-2x 1-1(x -1). 令x =0,得点M 的纵坐标为y M =-y 1+2x 1-1+2=-kx 1+1x 1-1+2. 同理得点N 的纵坐标为y N =-kx 2+1x 2-1+2. 由QM →=λQO →,QN →=μQO →得λ=1-y M ,μ=1-y N. 所以1λ+1μ=11-y M +11-y N=x 1-1(k -1)x 1+x 2-1(k -1)x 2=1k -1·2x 1x 2-(x 1+x 2)x 1x 2=1k -1·2k 2+2k -4k 21k 2=2. 所以1λ+1μ为定值.“ 肯定顺推法”求解探究性问题[典型例题](·温州市高考数学二模)已知椭圆x 2a 2+y 2b2=1(a >b >0)的两个焦点为F 1,F 2,焦距为2,设点P (a ,b )满足△PF 1F 2是等腰三角形.(1)求该椭圆方程;(2)过x 轴上的一点M (m ,0)作一条斜率为k 的直线l ,与椭圆交于点A ,B 两点,问是否存在常数k ,使得|MA |2+|MB |2的值与m 无关?若存在,求出这个k 的值;若不存在,请说明理由.【解】 (1)因为椭圆x 2a 2+y 2b2=1(a >b >0)的两个焦点为F 1,F 2,焦距为2,设点P (a ,b )满足△PF 1F 2是等腰三角形,所以根据题意,有⎩⎪⎨⎪⎧2c =2(a -1)2+b 2=4, 解得⎩⎪⎨⎪⎧a =2b =3, 故所求椭圆方程为x 24+y 23=1. (2)联立方程⎩⎪⎨⎪⎧y =k (x -m )x 24+y 23=1,整理得: (3+4k 2)x 2-8k 2mx +4k 2m 2-12=0.在Δ>0的情况下有⎩⎪⎨⎪⎧x 1+x 2=8k 2m3+4k 2x 1x 2=4k 2m 2-123+4k 2, |MA |2+|MB |2=(1+k 2)[(x 1-m )2+(x 2-m )2]=(1+k 2)[(x 1+x 2)2-2x 1x 2-2m (x 1+x 2)+2m 2]=1+k 2(3+4k 2)2[(-24k 2+18)m 2+96k 2+72], 令-24k 2+18=0,得k 2=34,即k =±32. 此时|MA |2+|MB |2=7与m 无关符合题意.探索性问题的求解方法(1)处理这类问题,一般要先对结论作出肯定的假设,然后由此假设出发,结合已知条件进行推理论证,若推出与已知、定理或公理相符的结论,则存在性得到肯定;若导致矛盾,则否定存在性.若证明某结论不存在,也可以采用反证法.(2)采用特殊化思想求解,即根据题目中的一些特殊关系,归纳出一般结论,然后进行证明,得出结论.[对点训练](·丽水市高考数学模拟)如图,已知抛物线C :x 2=4y ,直线l 1与C 相交于A ,B 两点,线段AB 与它的中垂线l 2交于点G (a ,1)(a ≠0).(1)求证:直线l 2过定点,并求出该定点坐标;(2)设l 2分别交x 轴,y 轴于点M ,N ,是否存在实数a ,使得A ,M ,B ,N 四点在同一个圆上,若存在,求出a 的值;若不存在,请说明理由.解:(1)设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧x 21=4y 1x 22=4y 2, 两式相减可得(x 1+x 2)(x 1-x 2)=4(y 1-y 2),可得k AB =y 1-y 2x 1-x 2=x 1+x 24=2a 4=12a ,由两直线垂直的条件可得直线l 2的斜率为-2a;即有直线l 2:y =-2a(x -a )+1,可得l 2:y =-2ax +3过定点(0,3).(2)l 2:y =-2a x +3过M ⎝⎛⎭⎪⎪⎫3a 2,0,N (0,3), 假设存在实数a ,使得A ,M ,B ,N 四点在同一个圆上, 由中垂线的性质可得∠MAN =∠MBN ,可得∠MAN =90°,即有|AG |2=|MG ||NG |,由⎩⎪⎨⎪⎧y =a 2(x -a )+1x 2=4y,可得x 2-2ax +2a 2-4=0, x 1+x 2=2a ,x 1x 2=2a 2-4,由弦长公式可得|AB |=1+a 244a 2-4(2a 2-4)=1+a 2416-4a 2,即有|MG ||NG |=1+a 244+a2=⎝ ⎛⎭⎪⎪⎫|AB |22=⎝ ⎛⎭⎪⎪⎫1+a 24(4-a 2),所以⎝⎛⎭⎪⎪⎫1+a 24(4-a 2)=12(a 2+4),所以a 2=2,解得a =± 2. 故存在这样的实数a ,且为± 2.专题强化训练1.已知方程x 22-k +y 22k -1=1表示焦点在y 轴上的椭圆,则实数k 的取值范围是( )A.⎝⎛⎭⎪⎪⎫12,2 B .(1,+∞)C .(1,2)D.⎝⎛⎭⎪⎪⎫12,1 解析:选C.由题意可得,2k -1>2-k >0,即⎩⎪⎨⎪⎧2k -1>2-k ,2-k >0,解得1<k <2,故选C. 2.(·浙江高考冲刺卷)已知F 为抛物线4y 2=x 的焦点,点A ,B 都是抛物线上的点且位于x 轴的两侧,若OA →·OB →=15(O 为原点),则△ABO 和△AFO 的面积之和的最小值为( )A.18B.52C.54D.652 解析:选D.设直线AB 的方程为:x =ty +m ,A (x 1,y 1),B (x 2,y 2),直线AB 与x 轴的交点为M (m ,0),⎩⎪⎨⎪⎧4y 2=x x =ty +m,可得4y 2-ty -m =0, 根据根与系数的关系有y 1·y 2=-m4,因为OA→·OB →=15, 所以x 1·x 2+y 1·y 2=15,从而16(y 1·y 2)2+y 1·y 2-15=0, 因为点A ,B 位于x 轴的两侧, 所以y 1·y 2=-1,故m =4.不妨令点A 在x 轴上方,则y 1>0,如图所示.又F (116,0),所以S △ABO +S △AFO =12×4×(y 1-y 2)+12×116y 1=6532y 1+2y 1≥265y 132×2y 1=652, 当且仅当6532y 1=2y 1,即y 1=86565时,取“=”号,所以△ABO与△AFO 面积之和的最小值是652,故选D.3.(·绍兴市柯桥区高考数学二模)已知l 是经过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的焦点F 且与实轴垂直的直线,A ,B 是双曲线C 的两个顶点,若在l 上存在一点P ,使∠APB =60°,则双曲线的离心率的最大值为( )A.233B. 3 C .2 D .3解析:选A.设双曲线的焦点F (c ,0),直线l :x =c , 可设点P (c ,n ),A (-a ,0),B (a ,0), 由两直线的夹角公式可得tan ∠APB =⎪⎪⎪⎪⎪⎪⎪⎪k PA -k PB 1+k PA ·k PB =⎪⎪⎪⎪⎪⎪⎪⎪n c +a -nc -a 1+n 2c 2-a 2=2a |n |n 2+(c 2-a 2)=2a |n |+c 2-a 2|n | =tan 60°=3,由|n |+c 2-a 2|n |≥2|n |·c 2-a 2|n |=2c 2-a 2,可得3≤a c 2-a2,化简可得3c 2≤4a 2,即c ≤233a ,即有e =c a ≤233.当且仅当n =±c 2-a 2,即P (c ,±c 2-a 2),离心率取得最大值233.故选A.4.(·福州质量检测)已知抛物线C :y 2=4x 的焦点为F ,准线为l .若射线y =2(x -1)(x ≤1)与C ,l 分别交于P ,Q 两点,则|PQ ||PF |=( )A. 2 B .2 C. 5 D .5解析:选C.由题意知,抛物线C :y 2=4x 的焦点F (1,0),准线l :x =-1与x 轴的交点为F 1.过点P 作直线l 的垂线,垂足为P 1,由⎩⎪⎨⎪⎧x =-1y =2(x -1),x ≤1,得点Q 的坐标为(-1,-4),所以|FQ |=2 5.又|PF |=|PP 1|,所以|PQ ||PF |=|PQ ||PP 1|=|QF ||FF 1|=252=5,故选C.5.(·鄞州中学期中)已知椭圆C 1:x 2a 21+y 2b 21=1(a 1>b 1>0)与双曲线C 2:x 2a 22-y 2b 22=1(a 2>0,b 2>0)有相同的焦点F 1,F 2,点P 是两曲线的一个公共点,且PF 1⊥PF 2,e 1,e 2分别是两曲线C 1,C 2的离心率,则9e 21+e 22的最小值是( )A .4B .6C .8D .16解析:选C.设焦距为2c ,椭圆长轴长为2a 1,双曲线实轴长为2a 2,取椭圆与双曲线在一象限内的交点为P ,由椭圆和双曲线的定义分别有|PF 1|+|PF 2|=2a 1①,|PF 1|-|PF 2|=2a 2②,因为PF 1⊥PF 2,所以|PF 1|2+|PF 2|2=4c 2③,①2+②2,得|PF 1|2+|PF 2|2=2a 21+2a 22④,将④代入③得a 21+a 22=2c 2,则9e 21+e 22=9c 2a 21+c 2a 22=5+9a 222a 21+a 212a 22≥8,故9e 21+e 22的最小值为8.6.(·金华十校二模)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的实轴长为42,虚轴的一个端点与抛物线x 2=2py (p >0)的焦点重合,直线y =kx -1与抛物线相切且与双曲线的一条渐近线平行,则p =( )A .4B .3C .2D .1 解析:选A.抛物线x 2=2py的焦点为⎝⎛⎭⎪⎪⎫0,p 2,所以可得b =p2,因为2a =42⇒a =22,所以双曲线的方程为x 28-4y 2p2=1,可求得渐近线方程为y =±p 42x ,不妨设y =kx -1与y =p42x 平行,则有k =p 42.联立⎩⎪⎨⎪⎧y =p 42x -1x 2=2py⇒x 2-p 222x +2p =0,所以Δ=⎝ ⎛⎭⎪⎪⎫-p 2222-8p =0,解得p =4. 7.(·浙江“七彩阳光”联盟高三联考)已知椭圆的方程为x 29+y 24=1,过椭圆中心的直线交椭圆于A ,B 两点,F 2是椭圆右焦点,则△ABF 2的周长的最小值为________,△ABF 2的面积的最大值为________.解析:连接AF 1,BF 1,则由椭圆的中心对称性可得C △ABF 2=AF 2+BF 2+AB =AF 1+AF 2+AB =6+AB ≥6+4=10,S △ABF 2=S △AF 1F 2≤12·25·2=2 5.答案:10 258.(·东阳二中改编)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右顶点为A ,经过原点的直线l 交椭圆C 于P ,Q 两点,若|PQ |=a ,AP ⊥PQ ,则椭圆C 的离心率为________.解析:不妨设点P 在第一象限,O 为坐标原点,由对称性可得|OP |=|PQ |2=a 2,因为AP ⊥PQ ,所以在Rt △POA 中,cos ∠POA =|OP ||OA |=12,故∠POA =60°,易得P ⎝ ⎛⎭⎪⎪⎫a 4,3a 4,代入椭圆方程得116+3a 216b 2=1,故a 2=5b 2=5(a 2-c 2),所以椭圆C 的离心率e =255.答案:2559.已知中心在坐标原点的椭圆与双曲线有公共焦点,且左、右焦点分别为F 1,F 2,这两条曲线在第一象限的交点为P ,△PF 1F 2是以PF 1为底边的等腰三角形.若|PF 1|=10,椭圆与双曲线的离心率分别为e 1,e 2,则e 1e 2的取值范围是________.解析:设椭圆的长轴长为2a ,双曲线的实轴长为2m ,则2c =|PF 2|=2a -10,2m =10-2c ,所以a =c +5,m =5-c ,所以e 1e 2=c c +5×c 5-c =c 225-c 2=125c2-1,又由三角形的性质知2c +2c >10,由已知2c <10,c <5,所以52<c <5,1<25c 2<4,0<25c2-1<3,所以e 1e 2=125c2-1>13.答案:⎝⎛⎭⎪⎪⎫13,+∞ 10.(·杭州市高考数学二模)抛物线y 2=2px (p >0)的焦点为F ,点A ,B 在抛物线上,且∠AFB =120°,过弦AB 中点M 作准线l 的垂线,垂足为M 1,则|MM 1||AB |的最大值为________.解析:设|AF |=a ,|BF |=b ,连接AF 、BF , 由抛物线定义,得|AF |=|AQ |,|BF |=|BP |, 在梯形ABPQ 中,2|MM 1|=|AQ |+|BP |=a +b . 由余弦定理得,|AB |2=a 2+b 2-2abcos 120°=a 2+b 2+ab , 配方得,|AB |2=(a +b )2-ab ,又因为ab ≤⎝ ⎛⎭⎪⎪⎫a +b 22,所以(a +b )2-ab ≥(a +b )2-14(a +b )2=34(a+b )2,得到|AB |≥32(a +b ).所以|MM 1||AB |≤12(a +b )32(a +b )=33,即|MM 1||AB |的最大值为33.答案:3311.(·衢州市教学质量检测)已知椭圆G :x 2a 2+y 2b2=1(a >b >0)的长轴长为22,左焦点F (-1,0),若过点B (-2b ,0)的直线与椭圆交于M ,N 两点.(1)求椭圆G 的标准方程;(2)求证:∠MFB +∠NFB =π; (3)求△FMN 面积S 的最大值.解:(1)因为椭圆x 2a 2+y 2b2=1(a >b >0)的长轴长为22,焦距为2,即2a =22,2c =2,所以2b =2,所以椭圆的标准方程为x 22+y 2=1.(2)证明:∠MFB +∠NFB =π,即证:k MF +k NF =0, 设直线方程MN 为y =k (x +2),代入椭圆方程得: (1+2k 2)x 2+8k 2x +8k 2-2=0,其中Δ>0,所以k 2<12.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2= -8k 21+2k 2,x 1x 2=8k 2-21+2k2, k MF +k NF =y 1x 1+1+y 2x 2+1=k (x 1+2)x 1+1+k (x 2+2)x 2+1=k [2+x 1+x 2+2(x 1+1)(x 2+1)]=0.故∠MFB +∠NFB =π.(3)S =12·FB |y 1-y 2|=12|k ||x 1-x 2|=128(1-2k 2)k 2(1+2k 2)2.令t =1+2k 2,则S =2-t 2+3t -22t 2=-2⎝ ⎛⎭⎪⎪⎫1t -342+18, 当k 2=16(满足k 2<12)时,S 的最大值为24.12.(·浙江金华十校第二期调研)已知抛物线C :y =x 2,点P (0,2),A ,B 是抛物线上两个动点,点P 到直线AB 的距离为1.(1)若直线AB 的倾斜角为π3,求直线AB 的方程;(2)求|AB |的最小值.解:(1)设直线AB 的方程:y =3x +m ,则|m -2|1+⎝⎛⎭⎫32=1,所以m =0或m =4,所以直线AB 的方程为y =3x 或y =3x +4.(2)设直线AB 的方程为y =kx +m ,则|m -2|1+k 2=1,所以k 2+1=(m -2)2.由⎩⎪⎨⎪⎧y =kx +m y =x2,得x 2-kx -m =0,所以x 1+x 2=k ,x 1x 2=-m ,所以|AB |2=()1+k 2[()x 1+x 22-4x 1x 2]=()1+k 2()k 2+4m =()m -22()m 2+3,记f (m )=()m -22(m 2+3),所以f ′(m )=2(m-2)(2m 2-2m +3),又k 2+1=()m -22≥1,所以m ≤1或m ≥3,当m ∈(]-∞,1时,f ′(m )<0,f (m )单调递减,当m ∈[)3,+∞时,f ′(m )>0,f (m )单调递增,f (m )min =f (1)=4,所以|AB |min =2.13.(·宁波市高考模拟)已知椭圆方程为x 24+y 2=1,圆C :(x -1)2+y 2=r 2.(1)求椭圆上动点P 与圆心C 距离的最小值;(2)如图,直线l 与椭圆相交于A 、B 两点,且与圆C 相切于点M ,若满足M 为线段AB 中点的直线l 有4条,求半径r 的取值范围.解:(1)设P (x ,y ),|PC |=(x -1)2+y 2=34x 2-2x +2=34(x -43)2+23, 由-2≤x ≤2,当x =43时,|PC |min =63.(2)当直线AB 斜率不存在且与圆C 相切时,M 在x 轴上,故满足条件的直线有2条;当直线AB 斜率存在时,设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),由⎩⎪⎨⎪⎧x 214+y 21=1x224+y 22=1,整理得:y 1-y 2x 1-x 2=-14×x 1+x2y 1+y 2,则k AB =-x 04y 0,k MC =y 0x 0-1,k MC ×k AB =-1,则k MC ×k AB =-x 04y 0×y 0x 0-1=-1,解得:x 0=43,由M 在椭圆内部,则x 204+y 2<1,解得:y 20<59,由:r 2=(x 0-1)2+y 20=19+y 20,所以19<r 2<23,解得:13<r <63.所以半径r 的取值范围为(13,63) .14.(·严州中学月考改编)椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为35,P (m ,0)为C 的长轴上的一个动点,过P 点且斜率为45的直线l 交C 于A ,B 两点.当m =0时,PA →·PB →=-412.(1)求椭圆C 的方程;(2)证明:|PA |2+|PB |2为定值. 解:(1)因为离心率为35,所以b a =45.当m =0时,l 的方程为y =45x ,代入x 2a 2+y 2b 2=1并整理得x 2=a22.设A (x 0,y 0),则B (-x 0,-y 0),PA →·PB →=-x 20-y 20=-4125x 20=-4125·a 22.又因为PA →·PB →=-412,所以a 2=25,b 2=16,椭圆C 的方程为x 225+y 216=1. (2)证明:将l 的方程为x =54y +m ,代入x 225+y 216=1,并整理得25y 2+20my +8(m 2-25)=0. 设A (x 1,y 1),B (x 2,y 2),则|PA |2=(x 1-m )2+y 21=4116y 21,同理|PB |2=4116y 22.则|PA |2+|PB |2=4116(y 21+y 22)=4116[(y 1+y 2)2-2y 1y 2]=4116·⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎪⎫-4m 52-16(m 2-25)25 =41.所以|PA |2+|PB |2为定值.15.(·温州十五校联合体联考)如图,已知抛物线C 1:y 2=2px (p >0),直线l 与抛物线C 1相交于A 、B 两点,且当倾斜角为60°的直线l 经过抛物线C 1的焦点F 时,有|AB |=13.(1)求抛物线C 1的方程;(2)已知圆C 2:(x -1)2+y 2=116,是否存在倾斜角不为90°的直线l ,使得线段AB 被圆C 2截成三等分?若存在,求出直线l 的方程;若不存在,请说明理由.解:(1)当倾斜角为60°的直线l 经过抛物线C 1的焦点F 时,直线l 的方程为y =3(x -p2),联立方程组⎩⎪⎨⎪⎧y =3(x -p 2)y 2=2px,即3x 2-5px +34p 2=0,所以|AB |=5p 3+p =13,即p =18,所以抛物线C 1的方程是y 2=14x .(2)假设存在直线l ,使得线段AB 被圆C 2截成三等分,令直线l 交圆C 2于C ,D ,设直线l 的方程为x =my +b ,A (x 1,y 1),B (x 2,y 2),由题意知,线段AB 与线段CD 的中点重合且有|AB |=3|CD |,联立方程组⎩⎪⎨⎪⎧4y 2=x x =my +b,即4y 2-my -b =0,所以y 1+y 2=m 4,y 1y 2=-b 4,x 1+x 2=m 24+2b ,所以线段AB 中点的坐标M 为(m 28+b ,m8),即线段CD 的中点为(m 28+b ,m8),又圆C 2的圆心为C 2(1,0),所以kMC 2=m8m 28+b -1=-m ,所以m 2+8b -7=0,即b =78-m28,又因为|AB |=1+m 2·m 216+b =141+m 2·14-m 2,因为圆心C 2(1,0)到直线l 的距离d =|1-b |1+m2,圆C 2的半径为14, 所以3|CD |=6116-(1-b )21+m 2=343-m 2(m 2<3), 所以m 4-22m 2+13=0,即m 2=11±63, 所以m =±11-63,b =33-24,故直线l 的方程为x =±11-63y +33-24.。
2021高考数学(理)二轮专题复习【统考版】课件:2.5.3 圆锥曲线中的证明、定点及定值问题
所以直线 AB 的方程为 y=kx-k-2=k(x-1)-2.易知直线 AB
过定点(1,-2).
当直线 AB 的斜率不存在时,设其方程为 x=m,A(m,y3),B(m, y4),
则y3- m 2+y4- m 2=y3+my4-4=-4, 易知 y3,y4 互为相反数,所以 y3+y4=0, 所以 m=1,可知直线 x=1 也过定点(1,-2).
6ktx+3t2-12=0, 则 Δ=(6kt)2-4(3k2+2)(3t2-12)>0,即 6k2-t2+4>0, x1+x2=-3k62k+t 2,x1x2=33tk22-+122.
由 l1 与 l2 的斜率之和为-4,可得y1x-1 2+y2x-2 2=-4,
又 y1=kx1+t,y2=kx2+t, 所以y1x-1 2+y2x-2 2=kx1+x1t-2+kx2+x2t-2=2k+t-2x1xx12+x2 =2k+t-32t2-·3-k1226+kt2=-4,化简得 t=-k-2(t=2 舍去).
以 xD=52,
因为 MG 中点的横坐标为52,所以 D 为线段 MG 的中点,
所以|MD|=|DG|.
考点二 定点问题
解析几何中的定点问题一般是指与解析几何有关的直线或圆 (其他曲线过定点太复杂,高中阶段一般不涉及)过定点的问题,其 实质是:当动直线或动圆变化时,这些直线或圆相交于一点,即这 些直线或圆绕着定点在转动,这类问题的求解一般分为以下三步:
(2)若 AC⊥l1,垂足为 C,直线 BC 交 x 轴于点 D,证明:|MD| =|DG|.
解析:(1)因为椭圆 E 的焦距为 2 3,所以 c= 3, 所以 a2-b2=3,①
当 l2 垂直于 x 轴时.|MG|=3,因为△ABG 的面积为32 3,
2021届高考数学二轮复习专题五解析几何第3讲圆锥曲线中的热点问题学案理
第3讲 圆锥曲线中的热点问题高考定位 1.圆锥曲线中的定点与定值、最值与范围问题是高考必考的问题之一,主要以解答题形式考察,往往作为试卷的压轴题之一;2.以椭圆或抛物线为背景,尤其是与条件或结论相关存在性开放问题.对考生的代数恒等变形能力、计算能力有较高的要求,并突出数学思想方法考察.真 题 感 悟1.(2021·浙江卷)点P (0,1),椭圆x 24+y 2=m (m >1)上两点A ,B 满足AP →=2PB →,那么当m =________时,点B 横坐标的绝对值最大.解析 设A (x 1,y 1),B (x 2,y 2),由AP →=2PB →,得⎩⎪⎨⎪⎧-x 1=2x 2,1-y 1=2〔y 2-1〕,即x 1=-2x 2,y 1=3-2y 2.因为点A ,B 在椭圆上,所以⎩⎪⎨⎪⎧4x 224+〔3-2y 2〕2=m ,x 224+y 22=m ,得y 2=14m +34,所以x 22=m -(3-2y 2)2=-14m 2+52m -94=-14(m -5)2+4≤4,所以当m =5时,点B 横坐标的绝对值最大,最大值为2. 答案 52.(2021·北京卷)抛物线C :y 2=2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围;(2)设O 为原点,QM →=λQO →,QN →=μQO →,求证:1λ+1μ为定值.(1)解 因为抛物线y 2=2px 过点(1,2), 所以2p =4,即pC 的方程为y 2=4x . 由题意知,直线l 的斜率存在且不为0. 设直线l 的方程为y =kx +1(k ≠0).由⎩⎪⎨⎪⎧y 2=4x ,y =kx +1得k 2x 2+(2k -4)x +1=0.依题意Δ=(2k -4)2-4×k 2×1>0, 解得k <1,又因为k ≠0,故k <0或0<k <1. 又PA ,PB 与y 轴相交,故直线l 不过点(1,-2). 从而k ≠-3.所以直线l 斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1). (2)证明 设A (x 1,y 1),B (x 2,y 2). 由(1)知x 1+x 2=-2k -4k 2,x 1x 2=1k2.直线PA 的方程为y -2=y 1-2x 1-1(x -1).令x =0, 得点M 的纵坐标为y M =-y 1+2x 1-1+2=-kx 1+1x 1-1+2.同理得点N 的纵坐标为y N =-kx 2+1x 2-1+2. 由QM →=λQO →,QN →=μQO →得λ=1-y M ,μ=1-y N . 所以1λ+1μ=11-y M +11-y N =x 1-1〔k -1〕x 1+x 2-1〔k -1〕x 2=1k -1·2x 1x 2-〔x 1+x 2〕x 1x 2=1k -1·2k 2+2k -4k 21k 2=2. 所以1λ+1μ=2为定值.3.(2021·全国Ⅰ卷)椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3⎝ ⎛⎭⎪⎫-1,32,P 4⎝ ⎛⎭⎪⎫1,32中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,BP 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.(1)解 由于点P 3,P 4关于y 轴对称,由题设知C 必过P 3,P 4.又由1a 2+1b 2>1a 2+34b 2知,椭圆C不经过点P 1, 所以点P 2在椭圆C 上.因此⎩⎪⎨⎪⎧1b 2=1,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.故C 的方程为x 24+y 2=1.(2)证明 设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2. 如果直线l 的斜率不存在,l 垂直于x 轴. 设l :x =m ,A (m ,y A ),B (m ,-y A ),k 1+k 2=y A -1m +-y A -1m =-2m=-1,得m =2,此时l 过椭圆右顶点,不存在两个交点,故不满足. 从而可设l :y =kx +m (m ≠1).将y =kx +m 代入x 24+y 2=1得(4k 2+1)x 2+8kmx +4m 2-4=0.由题设可知Δ=16(4k 2-m 2+1)>0.设A (x 1,y 1),B (x 2,y 2),那么x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1.那么k 1+k 2=y 1-1x 1+y 2-1x 2=kx 1+m -1x 1+kx 2+m -1x 2 =2kx 1x 2+〔m -1〕〔x 1+x 2〕x 1x 2.由题设k 1+k 2=-1,故(2k +1)x 1x 2+(m -1)(x 1+x 2)=0. ∴(2k +1)·4m 2-44k 2+1+(m -1)·-8km4k 2+1=0.解之得m =-2k -1,此时Δ=32(m +1)>0,方程有解, ∴当且仅当m >-1时,Δ>0,∴直线l 的方程为y =kx -2k -1,即y +1=k (x -2). 所以l 过定点(2,-1).考 点 整 合1.圆锥曲线中的范围、最值问题,可以转化为函数的最值问题(以所求式子或参数为函数值),或者利用式子的几何意义求解.温馨提醒 圆锥曲线上点的坐标是有范围的,在涉及到求最值或范围问题时注意坐标范围的影响.2.定点、定值问题(1)定点问题:在解析几何中,有些含有参数的直线或曲线的方程,不管参数如何变化,其都过某定点,这类问题称为定点问题.假设得到了直线方程的点斜式:y -y 0=k (x -x 0),那么直线必过定点(x 0,y 0);假设得到了直线方程的斜截式:y =kx +m ,那么直线必过定点(0,m ).(2)定值问题:在解析几何中,有些几何量,如斜率、距离、面积、比值等根本量和动点坐标或动直线中的参变量无关,这类问题统称为定值问题. 3.存在性问题的解题步骤:(1)先假设存在,引入参变量,根据题目条件列出关于参变量的方程(组)或不等式(组). (2)解此方程(组)或不等式(组),假设有解那么存在,假设无解那么不存在. (3)得出结论.热点一 圆锥曲线中的最值、范围【例1】 (2021·西安质检)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =32,直线x +3y -1=0被以椭圆C 的短轴为直径的圆截得的弦长为 3. (1)求椭圆C 的方程;(2)过点M (4,0)的直线l 交椭圆于A ,B 两个不同的点,且λ=|MA |·|MB |,求λ的取值范围.解 (1)原点到直线x +3y -1=0的距离为12,由题得⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫322=b 2(b >0),解得b =1.又e 2=c 2a 2=1-b 2a 2=34,得a =2.所以椭圆C 的方程为x 24+y 2=1.(2)当直线l 的斜率为0时,λ=|MA |·|MB |=12.当直线l 的斜率不为0时,设直线l :x =my +4,点A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧x =my +4,x 24+y 2=1,消去x 得(m 2+4)y 2+8my +12=0. 由Δ=64m 2-48(m 2+4)>0,得m 2>12, 所以y 1y 2=12m 2+4. λ=|MA |·|MB |=m 2+1|y 1|·m 2+1|y 2|=(m 2+1)|y 1y 2|=12〔m 2+1〕m 2+4=12⎝ ⎛⎭⎪⎫1-3m 2+4. 由m 2>12,得0<3m 2+4<316,所以394<λ<12.综上可得:394<λ≤12,即λ∈⎝ ⎛⎦⎥⎤394,12. 探究提高 求圆锥曲线中范围、最值的主要方法:(1)几何法:假设题目中的条件和结论能明显表达几何特征和意义,那么考虑利用图形性质数形结合求解.(2)代数法:假设题目中的条件和结论能表达一种明确的函数关系,或者不等关系,或者参数与新参数之间的等量关系等,那么利用代数法求参数的范围. 【训练1】 (2021·浙江卷)如图,点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上. (1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)假设P 是半椭圆x 2+y 24=1(x <0)上的动点,求△PAB 面积的取值范围.(1)证明 设P (x 0,y 0),A ⎝ ⎛⎭⎪⎫14y 21,y 1,B ⎝ ⎛⎭⎪⎫14y 22,y 2. 因为PA ,PB 的中点在抛物线上,所以y 1,y 2为方程⎝ ⎛⎭⎪⎫y +y 022=4·14y 2+x 02,即y 2-2y 0y +8x 0-y 20=0的两个不同的实根. 所以y 1+y 2=2y 0,因此,PM 垂直于y 轴.(2)解 由(1)可知⎩⎪⎨⎪⎧y 1+y 2=2y 0,y 1y 2=8x 0-y 20, 所以|PM |=18(y 21+y 22)-x 0=34y 20-3x 0,|y 1-y 2|=22〔y 20-4x 0〕.因此,△PAB 的面积S △PAB =12|PM |·|y 1-y 2|=324(y 20-4x 0)32.因为x 2+y 204=1(x 0<0),所以y 20-4x 0=-4x 20-4x 0+4∈[4,5], 因此,△PAB 面积的取值范围是⎣⎢⎡⎦⎥⎤62,15104.热点二 定点、定值问题 考法1 圆锥曲线中的定值【例2-1】 (2021·烟台二模)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦距为23,斜率为12的直线与椭圆交于A ,B 两点,假设线段AB 的中点为D ,且直线OD 的斜率为-12.(1)求椭圆C 的方程;(2)假设过左焦点F 斜率为k 的直线l 与椭圆交于M ,N 两点,P 为椭圆上一点,且满足OP ⊥MN ,问:1|MN |+1|OP |2是否为定值?假设是,求出此定值;假设不是,说明理由.解 (1)由题意可知c =3,设A (x 1,y 1),B (x 2,y 2),那么x 21a 2+y 21b 2=1,x 22a 2+y 22b2=1,两式相减并整理得,y 1-y 2x 1-x 2·y 1+y 2x 1+x 2=-b 2a 2,即k AB ·k OD =-b 2a2.又因为k AB =12,k OD =-12,代入上式得,a 2=4b 2.又a 2=b 2+c 2,c 2=3,所以a 2=4,b 2=1, 故椭圆的方程为x 24+y 2=1.(2)由题意可知,F (-3,0), 当MN 为长轴时,OP 为短半轴, 那么1|MN |+1|OP |2=14+1=54,否那么,可设直线l 的方程为y =k (x +3),联立⎩⎪⎨⎪⎧x 24+y 2=1,y =k 〔x +3〕,消y 得,(1+4k 2)x 2+83k 2x +12k 2-4=0, 那么有x 1+x 2=-83k 21+4k 2,x 1x 2=12k 2-41+4k 2,所以|MN |=1+k 2|x 1-x 1| =1+k2⎝ ⎛⎭⎪⎫-83k 21+4k 22-4⎝ ⎛⎭⎪⎫12k 2-41+4k 2=4+4k 21+4k 2,设直线OP 方程为y =-1kx ,联立⎩⎪⎨⎪⎧x 24+y 2=1,y =-1k x ,根据对称性不妨令P ⎝⎛⎭⎪⎫-2kk 2+4,2k 2+4, 所以|OP |=⎝⎛⎭⎪⎫-2kk 2+42+⎝ ⎛⎭⎪⎫2k 2+42=4+4k2k 2+4. 故1|MN |+1|OP |2=1+4k24+4k2+1⎝⎛⎭⎪⎫4+4k 2k 2+42=1+4k 24+4k 2+k 2+44+4k 2=54, 综上所述,1|MN |+1|OP |2为定值54.探究提高 1.求定值问题常见的方法有两种: (1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.2.定值问题求解的根本思路是使用参数表示要解决的问题,然后证明与参数无关,这类问题选择消元的方向是非常关键的.【训练2】 椭圆C :x 2a 2+y 2b2=1过点A (2,0),B (0,1)两点.(1)求椭圆C 的方程及离心率;(2)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值.(1)解 由题意知a =2,b x 24+y 2=1,又c =a 2-b 2= 3.所以椭圆离心率e =c a =32. (2)证明 设P 点坐标为(x 0,y 0)(x 0<0,y 0<0), 那么x 20+4y 20=4,由B 点坐标(0,1)得直线PB 方程为:y -1=y 0-1x 0(x -0), 令y =0,得x N =x 01-y 0,从而|AN |=2-x N =2+x 0y 0-1,由A 点坐标(2,0)得直线PA 方程为y -0=y 0x 0-2(x -2),令x =0,得y M =2y 02-x 0,从而|BM |=1-y M =1+2y 0x 0-2,所以S 四边形ABNM =12|AN |·|BM |=12⎝ ⎛⎭⎪⎫2+x 0y 0-1⎝ ⎛⎭⎪⎫1+2y 0x 0-2 =x 20+4y 20+4x 0y 0-4x 0-8y 0+42〔x 0y 0-x 0-2y 0+2〕=2x 0y 0-2x 0-4y 0+4x 0y 0-x 0-2y 0+2=2. 即四边形ABNM 的面积为定值2. 考法2 圆锥曲线中的定点问题【例2-2】 (2021·衡水中学质检)两点A (-2,0),B (2,0),动点P 在y 轴上的投影是Q ,且2PA →·PB →=|PQ →|2. (1)求动点P 的轨迹C 的方程;(2)过F (1,0)作互相垂直的两条直线交轨迹C 于点G ,H ,M ,N ,且E 1,E 2分别是GH ,MN 的中点.求证:直线E 1E 2恒过定点.(1)解 设点P 坐标为(x ,y ),∴点Q 坐标为(0,y ). ∵2PA →·PB →=|PQ →|2,∴2[(-2-x )(2-x )+y 2]=x 2, 化简得点P 的轨迹方程为x 24+y 22=1.(2)证明 当两直线的斜率都存在且不为0时,设l GH :y =k (x -1),G (x 1,y 1),H (x 2,y 2),l MN :y =-1k (x -1),M (x 3,y 3),N (x 4,y 4),联立⎩⎪⎨⎪⎧x 24+y22=1,y =k 〔x -1〕,消去y 得(2k 2+1)x 2-4k 2x +2k 2-4=0. 那么Δ>0恒成立.∴x 1+x 2=4k 22k 2+1,且x 1x 2=2k 2-42k 2+1.∴GH 中点E 1坐标为⎝ ⎛⎭⎪⎫2k22k 2+1,-k 2k 2+1,同理,MN 中点E 2坐标为⎝ ⎛⎭⎪⎫2k 2+2,k k 2+2,∴kE 1E 2=-3k2〔k 2-1〕, ∴lE 1E 2的方程为y =-3k 2〔k 2-1〕⎝ ⎛⎭⎪⎫x -23,∴过点⎝ ⎛⎭⎪⎫23,0,当两直线的斜率分别为0和不存在时,lE 1E 2的方程为y =0,也过点⎝ ⎛⎭⎪⎫23,0,综上所述,lE 1E 2过定点⎝ ⎛⎭⎪⎫23,0. l 过定点问题.设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k (x +m ),故动直线过定点(-m ,0)CC 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.【训练3】 曲线C :y 2=4x ,曲线M :(x -1)2+y 2=4(x ≥1),直线l 与曲线C 交于A ,B 两点,O 为坐标原点.(1)假设OA →·OB →=-4,求证:直线l 恒过定点;(2)假设直线l 与曲线M 相切,求PA →·PB →(点P 坐标为(1,0))的最大值. 解 设l :x =my +n ,A (x 1,y 1),B (x 2,y 2). 由⎩⎪⎨⎪⎧x =my +n ,y 2=4x ,得y 2-4my -4n =0.∴y 1+y 2=4m ,y 1y 2=-4n . ∴x 1+x 2=4m 2+2n ,x 1x 2=n 2. (1)证明 由OA →·OB →=-4,得x 1x 2+y 1y 2=n 2-4n =-4,解得n =2. ∴直线l 方程为x =my +2, ∴直线l 恒过定点(2,0).(2)∵直线l 与曲线M :(x -1)2+y 2=4(x ≥1)相切, ∴|1-n |1+m2=2,且n ≥3,整理得4m 2=n 2-2n -3(n ≥3).① 又点P 坐标为(1,0),∴由及①,得 PA →·PB →=(x 1-1,y 1)·(x 2-1,y 2) =(x 1-1)(x 2-1)+y 1y 2 =x 1x 2-(x 1+x 2)+1+y 1y 2 =n 2-4m 2-2n +1-4n =n 2-4m 2-6n +1=4-4n .又y =4-4n (n ≥3)是减函数,∴当n =3时,y =4-4n 取得最大值-8. 故PA →·PB →的最大值为-8. 热点三 圆锥曲线中的存在性问题【例3】 (2021·江南名校联考)设椭圆M :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为A (-1,0),B (1,0),C 为椭圆M 上的点,且∠ACB =π3,S △ABC =33.(1)求椭圆M 的标准方程;(2)设过椭圆M 右焦点且斜率为k 的动直线与椭圆M 相交于E ,F 两点,探究在x 轴上是否存在定点D ,使得DE →·DF →为定值?假设存在,试求出定值和点D 的坐标;假设不存在,请说明理由.解 (1)在△ABC 中,由余弦定理AB 2=CA 2+CB 2-2CA ·CB ·cos C =(CA +CB )2-3CA ·CB =4. 又S △ABC =12CA ·CB ·sin C =34CA ·CB =33,∴CA ·CB =43,代入上式得CA +CB =2 2.椭圆长轴2a =22,焦距2c =AB =2. 所以椭圆M 的标准方程为x 22+y 2=1.(2)设直线方程y =k (x -1),E (x 1,y 1),F (x 2,y 2),联立⎩⎪⎨⎪⎧x 22+y 2=1,y =k 〔x -1〕,消去y 得(1+2k 2)x 2-4k 2x +2k 2-2=0,Δ=8k 2+8>0, ∴x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-21+2k2.假设x 轴上存在定点D (x 0,0),使得DE →·DF →为定值. ∴DE →·DF →=(x 1-x 0,y 1)·(x 2-x 0,y 2) =x 1x 2-x 0(x 1+x 2)+x 20+y 1y 2=x 1x 2-x 0(x 1+x 2)+x 20+k 2(x 1-1)(x 2-1) =(1+k 2)x 1x 2-(x 0+k 2)(x 1+x 2)+x 20+k 2=〔2x 20-4x 0+1〕k 2+〔x 20-2〕1+2k2要使DE →·DF →为定值,那么DE →·DF →的值与k 无关, ∴2x 20-4x 0+1=2(x 20-2),解得x 0=54,此时DE →·DF →=-716为定值,定点为⎝ ⎛⎭⎪⎫54,0. 探究提高 1.此类问题一般分为探究条件、探究结论两种.假设探究条件,那么可先假设条件成立,再验证结论是否成立,成立那么存在,不成立那么不存在;假设探究结论,那么应先求出结论的表达式,再针对其表达式进展讨论,往往涉及对参数的讨论.2.求解步骤:假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,假设方程组有实数解,那么元素(点、直线、曲线或参数)存在,否那么,元素(点、直线、曲线或参数)不存在.【训练4】 椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且过点P ⎝ ⎛⎭⎪⎫1,32,F 为其右焦点.(1)求椭圆C 的方程;(2)设过点A (4,0)的直线l 与椭圆相交于M ,N 两点(点M 在A ,N 两点之间),是否存在直线l 使△AMF 与△MFN 的面积相等?假设存在,试求直线l 的方程;假设不存在,请说明理由.解 (1)因为c a =12,所以a =2c ,b =3c ,设椭圆方程x 24c 2+y 23c2=1,又点P ⎝ ⎛⎭⎪⎫1,32在椭圆上,所以14c 2+34c 2=1, 解得c 2=1,a 2=4,b 2=3,所以椭圆方程为x 24+y 23=1.(2)易知直线l 的斜率存在,设l 的方程为y =k (x -4),由⎩⎪⎨⎪⎧y =k 〔x -4〕,x 24+y 23=1,消去y 得(3+4k 2)x 2-32k 2x +64k 2-12=0,由题意知Δ=(32k 2)2-4(3+4k 2)(64k 2-12)> 0, 解得-12<k <12.设M (x 1,y 1),N (x 2,y 2), 那么x 1+x 2=32k23+4k 2,①x 1x 2=64k 2-123+4k2.②因为△AMF 与△MFN 的面积相等, 所以|AM |=|MN |,所以2x 1=x 2+4.③ 由①③消去x 2得x 1=4+16k23+4k2.④将x 2=2x 1-4代入②,得x 1(2x 1-4)=64k 2-123+4k 2⑤将④代入到⑤式,整理化简得36k 2=5. ∴k =±56,经检验满足题设 故直线l 的方程为y =56(x -4)或y =-56(x -4).1.解答圆锥曲线的定值、定点问题,从三个方面把握:(1)从特殊开场,求出定值,再证明该值与变量无关:(2)直接推理、计算,在整个过程中消去变量,得定值;(3)在含有参数的曲线方程里面,把参数从含有参数的项里面别离出来,并令其系数为零,可以解出定点坐标.(1)几何法:假设题目的条件和结论能明显表达几何特征和意义,那么考虑利用图形性质来解决;(2)代数法:假设题目的条件和结论能表达一种明确的函数关系,那么可首先建立起目标函数,再求这个函数的最值.(1)思路:先假设存在,推证满足条件的结论,假设结论正确,那么存在;假设结论不正确,那么不存在.(2)策略:①当条件和结论不唯一时要分类讨论;②当给出结论而要推导出存在的条件时,先假设成立,再推出条件.一、选择题x 2λ-y 21-λ=1(0<λ<1)的离心率e ∈(1,2),那么实数λ的取值范围为( ) A.⎝ ⎛⎭⎪⎫12,1 B.(1,2) C.(1,4)D.⎝ ⎛⎭⎪⎫14,1解析 易c =1,a =λ,且e ∈(1,2),∴1<1λ<2,得14<λ<1.答案 DP 为抛物线y =2x 2上的动点,F 为抛物线的焦点,那么|PF |的最小值为( )A.2B.12C.14D.18解析 根据题意,抛物线y =2x 2上,设P 到准线的距离为d ,那么有|PF |=d ,抛物线的方程为y =2x 2,即x 2=12y ,其准线方程为y =-18,∴当点P 在抛物线的顶点时,d 有最小值18,即|PF |min =18.答案 D3.(2021·北京东城区调研)圆M :(x -2)2+y 2=1经过椭圆C :x 2m +y 23=1的一个焦点,圆M与椭圆C 的公共点为A ,B ,点P 为圆M 上一动点,那么P 到直线AB 的距离的最大值为( ) 10-5 10-4 10-1110-10解析 易知圆M 与x 轴的交点为(1,0),(3,0),∴m -3=1或m -3=9,那么m =4或mm =12时,圆M 与椭圆C 无交点,舍去.∴m ⎩⎪⎨⎪⎧〔x -2〕2+y 2=1,x 24+y 23=1,得x 2-16x +24=0.∵x ≤2,∴x =8-210.故点P 到直线AB 距离的最大值为3-(8-210)=210-5. 答案 A4.(2021·全国Ⅲ卷)设F 1,F 2是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,OF 2作C 的一条渐近线的垂线,垂足为P .假设|PF 1|=6|OP |,那么C 的离心率为( ) A. 5B.2C. 3D. 2解析 不妨设一条渐近线的方程为y =b a x ,那么F 2到y =b ax 的距离d =|bc |a 2+b 2=b ,在Rt △F 2PO 中,|F 2O |=c ,所以|PO |=a ,所以|PF 1|=6a ,又|F 1O |=c ,所以在△F 1PO 与Rt △F 2PO中,根据余弦定理得cos ∠POF 1=a 2+c 2-〔6a 〕22ac=-cos ∠POF 2=-a c ,那么3a 2+c 2-(6a )2=0,得3a 2=c 2,所以e =c a= 3.答案 C 二、填空题C :x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线与抛物线y 2=x 的一个交点的横坐标为x 0,假设x 0>1,那么双曲线C 的离心率e 的取值范围是________.解析 双曲线C :x 2a 2-y 2b 2=1的一条渐近线为y =bax ,联立⎩⎪⎨⎪⎧y 2=x ,y =b ax 消去y ,得b 2a 2x 2=x .由x 0>1,知b 2a 2<1,b 2<a 2.∴e 2=c 2a 2=a 2+b 2a2<2,因此1<e < 2.答案 (1,2)6.(2021·武汉模拟)抛物线y 2=4x ,过焦点F 的直线与抛物线交于A ,B 两点,过A ,B 分别作x 轴,y 轴垂线,垂足分别为C ,D ,那么|AC |+|BD |的最小值为________. 解析 不妨设A (x 1,y 1)(y 1>0),B (x 2,y 2)(y 2<0).那么|AC |+|BD |=x 2+y 1=y 224+y 1.又y 1y 2=-p 2=-4.∴|AC |+|BD |=y 224-4y 2(y 2<0).设g (x )=x 24-4x,在(-∞,-2)递减,在(-2,0)递增.∴当x =-2,即y 2=-2时,|AC |+|BD |的最小值为3. 答案 3 三、解答题M 恒过点(0,1),且与直线y =-1相切.(1)求动圆心M 的轨迹方程;(2)动直线l 过点P (0,-2),且与点M 的轨迹交于A ,B 两点,点C 与点B 关于y 轴对称,求证:直线AC 恒过定点.(1)解 由题意得点M 与点(0,1)的距离等于点M 与直线y =-1的距离.由抛物线定义知圆心M 的轨迹为以点(0,1)为焦点,直线y =-1为准线的抛物线,那么p2=1,p =2.∴圆心M 的轨迹方程为x 2=4y .(2)证明 由题意知直线l 的斜率存在,设直线l :y =kx -2,A (x 1,y 1),B (x 2,y 2),那么C (-x 2,y 2),由⎩⎪⎨⎪⎧x 2=4y ,y =kx -2得x 2-4kx +8=0, Δ=16k 2-32>0得k 2>2,∴x 1+x 2=4k ,x 1x 2=8.k AC =y 1-y 2x 1+x 2=x 214-x 224x 1+x 2=x 1-x 24,直线AC 的方程为y -y 1=x 1-x 24(x -x 1).即y =y 1+x 1-x 24(x -x 1)=x 1-x 24x -x 1〔x 1-x 2〕4+x 214=x 1-x 24x +x 1x 24,∵x 1x 2=8,∴y =x 1-x 24x +2,那么直线AC 恒过点(0,2).xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b ≥1)过点P (2,1),且离心率e =32.(1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A ,B 两点,求△PAB 面积的最大值.解 (1)∵e 2=c 2a 2=a 2-b 2a 2=34,∴a 2=4b 2.又4a 2+1b2=1,∴a 2=8,b 2=2.故所求椭圆C 的方程为x 28+y 22=1.(2)设l 的方程为y =12x +m ,点A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =12x +m ,x 28+y 22=1,消去y 得x 2+2mx +2m 2-4=0,判别式Δ=16-4m 2>0,即m 2<4. 又x 1+x 2=-2m ,x 1·x 2=2m 2-4, 那么|AB |=1+14×〔x 1+x 2〕2-4x 1x 2 =5〔4-m 2〕,点P 到直线l 的距离d =|m |1+14=2|m |5. 因此S △PAB =12d |AB |=12×2|m |5×5〔4-m 2〕=m 2〔4-m 2〕≤m 2+〔4-m 2〕2=2,当且仅当m 2=2即m =±2时上式等号成立,故△PAB 面积的最大值为2.C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-1,0),F 2(1,0),点A ⎝⎛⎭⎪⎫1,22在椭圆C 上. (1)求椭圆C 的标准方程;(2)是否存在斜率为2的直线,使得当该直线与椭圆C 有两个不同交点M ,N 时,能在直线y =53上找到一点P ,在椭圆C 上找到一点Q ,满足PM →=NQ →?假设存在,求出直线的方程;假设不存在,说明理由.解 (1)设椭圆C 的焦距为2c ,那么c =1, 因为A ⎝ ⎛⎭⎪⎫1,22在椭圆C 上,所以2a =|AF 1|+|AF 2|=22,那么a =2,b 2=a 2-c 2=1. 故椭圆C 的方程为x 22+y 2=1.(2)不存在满足条件的直线,理由如下:设直线的方程为y =2x +t ,设M (x 1,y 1),N (x 2,y 2),P ⎝⎛⎭⎪⎫x 3,53,Q (x 4,y 4),MN 的中点为D (x 0,y 0),由⎩⎪⎨⎪⎧y =2x +t ,x 22+y 2=1,消去x 得9y 2-2ty +t 2-8=0, 所以y 1+y 2=2t 9,且Δ=4t 2-36(t 2-8)>0,故y 0=y 1+y 22=t9,且-3<t <3. 由PM →=NQ →得⎝ ⎛⎭⎪⎫x 1-x 3,y 1-53=(x 4-x 2,y 4-y 2),所以有y 1-53=y 4-y 2,y 4=y 1+y 2-53=29t -53.又-3<t <3,所以-73<y 4<-1,与椭圆上点的纵坐标的取值范围是[-1,1]矛盾. 因此不存在满足条件的直线.10.(2021·惠州调研)在平面直角坐标系xOy 中,过点C (2,0)的直线与抛物线y 2=4x 相交于A ,B 两点,设A (x 1,y 1),B (x 2,y 2). (1)求证:y 1y 2为定值;(2)是否存在平行于y 轴的定直线被以AC 为直径的圆截得的弦长为定值?如果存在,求出该直线的方程和弦长,如果不存在,说明理由.(1)证明 法一 当直线AB 垂直于x 轴时,不妨取y 1=22,y 2=-22, 所以y 1y 2=-8(定值). 当直线AB 不垂直于x 轴时, 设直线AB 的方程为y =k (x -2),由⎩⎪⎨⎪⎧y =k 〔x -2〕,y 2=4x得ky 2-4y -8k =0, 所以y 1y 2=-8.综上可得,y 1y 2=-8为定值. 法二 设直线AB 的方程为my =x -2. 由⎩⎪⎨⎪⎧my =x -2,y 2=4x得y 2-4my -8=0,所以y 1y 2=-8.因此有y 1y 2=-8为定值. (2)解 存在.理由如下:设存在直线l :x =a 满足条件,那么AC 的中点E ⎝⎛⎭⎪⎫x 1+22,y 12,|AC |=〔x 1-2〕2+y 21,因此以AC 为直径的圆的半径r =12|AC |=12〔x 1-2〕2+y 21=12x 21+4, 点E 到直线x =a 的距离d =⎪⎪⎪⎪⎪⎪x 1+22-a ,所以所截弦长为2r 2-d 2=214〔x 21+4〕-⎝⎛⎭⎪⎫x 1+22-a 2 =x 21+4-〔x 1+2-2a 〕2=-4〔1-a 〕x 1+8a -4a 2, 当1-a =0,即a =1时,弦长为定值2,这时直线的方程为x =1.11.(2021·西安模拟)如图,椭圆C :x 2a 2+y 2b2=1(a >b >0)的左右焦点分别为F 1,F 2,左右顶点分别为A ,B ,P 为椭圆C 上任一点(不与A ,B 重合).△PF 1F 2的内切圆半径的最大值为2-2,椭圆C 的离心率为22. (1)求椭圆C 的方程;(2)直线l 过点B 且垂直于x 轴,延长AP 交l 于点N ,以BN 为直径的圆交BP 于点M ,求证:O ,M ,N 三点共线.解 (1)由题意知,c a =22,∴c =22a . 又b 2=a 2-c 2, ∴b =22a . 设△PF 1F 2的内切圆半径为r ,那么S △PF 1F 2=12(|PF 1|+|PF 2|+|F 1F 2|)·r ,=12(2a +2c )·r =(a +c )r , 故当△PF 1F 2面积最大时,r 最大, 即P 点位于椭圆短轴顶点时,r =2-2, ∴(a +c )(2-2)=bc , 把c =22a ,b =22a 代入,解得a =2,b =2, ∴椭圆方程为x 24+y 22=1.(2)由题意知,直线AP 的斜率存在,设为k , 那么AP 所在直线方程为y =k (x +2),联立⎩⎪⎨⎪⎧y =k 〔x +2〕,x 24+y 22=1,消去y ,得(2k 2+1)x 2+8k 2x +8k 2-4=0, 那么有x P ·(-2)=8k 2-42k 2+1,∴x P =2-4k 22k 2+1,y P =k (x P +2)=4k2k 2+1,得BP →=⎝ ⎛⎭⎪⎫-8k 22k 2+1,4k 2k 2+1,又N (2,4k ),∴ON →=(2,4k ).那么ON →·BP →=-16k22k 2+1+16k 22k 2+1=0,∴ON ⊥BP ,而M 在以BN 为直径的圆上, ∴MN ⊥BP ,∴O ,M ,N 三点共线.。
高三数学第二轮复习教案第5讲解析几何问题
第5讲 解析几何问题的题型与方法(二)五、注意事项1.( 1)直线的斜率是一个非常重要的概念,斜率 k 反映了直线相对于 x轴的倾斜程度。
当斜率 k 存在时,直线方 程通常用点斜式或斜截式表示,当斜率不存在时,直线方程为x=a (a € R )。
因此,利用直线的点斜式或斜截式方程解题时,斜率k 存在与否,要分别考虑。
(2)直线的截距式是两点式的特例, a 、b 分别是直线在x 轴、y 轴上的截距,因为 a工0, b 工0,所以当直线平行 于x 轴、平行于y 轴或直线经过原点,不能用截距式求出它的方程,而应选择其它形式求解。
(3) 求解直线方程的最后结果,如无特别强调,都应写成一般式。
(4) 当直线h 或*的斜率不存在时,可以通过画图容易判定两条直线是否平行与垂直(5) 在处理有关圆的问题,除了合理选择圆的方程,还要注意圆的对称性等几何性质的运用,这样可以简化计算。
2. (1)用待定系数法求椭圆的标准方程时,要分清焦点在 x 轴上还是y 轴上,还是两种都存在。
(2)注意椭圆定义、性质的运用,熟练地进行 a 、b 、c 、e 间的互求,并能根据所给的方程画出椭圆。
(3) 求双曲线的标准方程 应注意两个问题:(1)正确判断焦点的位置;(2)设出标准方程后,运用待定系数法 求解。
k ,其中k 是一个不为零的常数。
要注意这里的a 、b 、c 及它们之间的关系与椭圆中的异同。
(6)求抛物线的标准方程,要线根据题设判断抛物线的标准方程的类型,再求抛物线的标准方程,要线根据题设判 断抛物线的标准方程的类型,再由条件确定参数 p 的值。
同时,应明确抛物线的标准方程、焦点坐标、准线方程三者相依并存,知道其中抛物线的标准方程、焦点坐标、准线方程三者相依并存,知道其中一个,就可以求出其他两个。
六、范例分析例1、求与直线3x+4y+12=0平行,且与坐标轴构成的三角形面积是24的直线I 的方程。
2 x (4)双曲线 2 a2爲 1的渐近线方程为b 2bx或表示为a2爲 0。
最新高考数学二轮复习 专题四 解析几何 第3讲 圆锥曲线的综合问题学案(考试必备)
第3讲 圆锥曲线的综合问题[考情考向分析] 1.圆锥曲线的综合问题一般以直线和圆锥曲线的位置关系为载体,以参数处理为核心,考查范围、最值问题,定点、定值问题,探索性问题.2.试题解答往往要综合应用函数与方程、数形结合、分类讨论等多种思想方法,对计算能力也有较高要求,难度较大.热点一 范围、最值问题圆锥曲线中的范围、最值问题,可以转化为函数的最值问题(以所求式子或参数为函数值),或者利用式子的几何意义求解.例1 (2018·浙江省稽阳联谊学校联考)已知离心率为32的椭圆C :x 2a 2+y2b2=1(a >b >0)过点P ⎝ ⎛⎭⎪⎫1,32,与坐标轴不平行的直线l 与椭圆C 交于A ,B 两点,其中M 为A 关于y 轴的对称点,N (0,2),O 为坐标原点.(1)求椭圆C 的方程;(2)分别记△PAO ,△PBO 的面积为S 1,S 2,当M ,N ,B 三点共线时,求S 1·S 2的最大值. 解 (1)∵c a =32,a 2=b 2+c 2,∴a =2b . 把点P ⎝ ⎛⎭⎪⎫1,32代入椭圆方程可得1a 2+34b 2=1, 解得a =2,b =1,∴椭圆方程为x 24+y 2=1.(2)设点A 坐标为(x 1,y 1),点B 坐标为(x 2,y 2), 则M 为(-x 1,y 1),设直线l 的方程为y =kx +b ,联立椭圆方程可得(4k 2+1)x 2+8kbx +4b 2-4=0, ∴x 1+x 2=-8kb 4k 2+1,x 1x 2=4b 2-44k 2+1,Δ>0,∵M ,N ,B 三点共线,∴k MN =k BN , 即y 1-2x 1+y 2-2x 2=0, 化简得8k (1-2b )=0, 解得b =22或k =0(舍去). 设A ,B 两点到直线OP 的距离分别为d 1,d 2. 直线OP 的方程为3x -2y =0,|OP |=72, ∴S 1·S 2=116|(3x 1-2y 1)(3x 2-2y 2)|,化简可得S 1·S 2=116|(2k -3)2x 1x 2+2(2k -3)(x 1+x 2)+2|=⎪⎪⎪⎪⎪⎪-14+3k 4k 2+1. 又3k 4k 2+1∈⎣⎢⎡⎭⎪⎫-34,0∪⎝⎛⎦⎥⎤0,34, ∴当k =-12时,S 1·S 2的最大值为3+14.思维升华 解决范围问题的常用方法(1)数形结合法:利用待求量的几何意义,确定出极端位置后,利用数形结合法求解. (2)构建不等式法:利用已知或隐含的不等关系,构建以待求量为元的不等式求解. (3)构建函数法:先引入变量构建以待求量为因变量的函数,再求其值域.跟踪演练1 (2018·绍兴市柯桥区模拟)已知抛物线C :y 2=4x 的焦点为F ,直线l :y =kx -4(1<k <2)与y 轴、抛物线C 相交于点P ,A ,B (自下而上),记△PAF ,△PBF 的面积分别为S 1,S 2.(1)求AB 中点M 到y 轴的距离d 的取值范围; (2)求S 1S 2的取值范围.解 (1)联立⎩⎪⎨⎪⎧y =kx -4,y 2=4x ,消去y ,得k 2x 2-(8k +4)x +16=0, 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=8k +4k2,x 1x 2=16k2,所以d =x 1+x 22=4k +2k 2=2⎝ ⎛⎭⎪⎫1k +12-2∈⎝ ⎛⎭⎪⎫52,6. (2)由于S 1S 2=|PA ||PB |=x 1x 2.由(1)可知S 1S 2+S 2S 1=x 1x 2+x 2x 1=(x 1+x 2)2-2x 1x 2x 1x 2=k 216·(8k +4)2k 4-2 =⎝⎛⎭⎪⎫1k +22-2∈⎝⎛⎭⎪⎫174,7. 由S 1S 2+S 2S 1>174,得4⎝ ⎛⎭⎪⎫S 1S 22-17·S 1S 2+4>0,解得S 1S 2>4或S 1S 2<14.因为0<S 1S 2<1,所以0<S 1S 2<14,由S 1S 2+S 2S 1<7,得⎝ ⎛⎭⎪⎫S 1S 22-7·S 1S 2+1<0,解得7-352<S 1S 2<7+352,因此7-352<S 1S 2<14.即S 1S 2的取值范围为⎝⎛⎭⎪⎫7-352,14. 热点二 定点、定值问题1.由直线方程确定定点,若得到了直线方程的点斜式:y -y 0=k (x -x 0),则直线必过定点(x 0,y 0);若得到了直线方程的斜截式:y =kx +m ,则直线必过定点(0,m ).2.解析几何中的定值问题是指某些几何量(线段的长度、图形的面积、角的度数、直线的斜率等)的大小或某些代数表达式的值等与题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值.例2 (2018·北京)已知抛物线C :y 2=2px 经过点P (1,2),过点Q (0,1)的直线l 与抛物线C有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围;(2)设O 为原点,QM →=λQO →,QN →=μQO →,求证:1λ+1μ为定值.(1)解 因为抛物线y 2=2px 过点(1,2), 所以2p =4,即p =2. 故抛物线C 的方程为y 2=4x .由题意知,直线l 的斜率存在且不为0. 设直线l 的方程为y =kx +1(k ≠0),由⎩⎪⎨⎪⎧y 2=4x ,y =kx +1,得k 2x 2+(2k -4)x +1=0.依题意知Δ=(2k -4)2-4×k 2×1>0, 解得k <0或0<k <1.又PA ,PB 与y 轴相交,故直线l 不过点(1,-2). 从而k ≠-3.所以直线l 的斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1). (2)证明 设A (x 1,y 1),B (x 2,y 2), 由(1)知x 1+x 2=-2k -4k 2,x 1x 2=1k2.直线PA 的方程为y -2=y 1-2x 1-1(x -1), 令x =0,得点M 的纵坐标为y M =-y 1+2x 1-1+2=-kx 1+1x 1-1+2.同理得点N 的纵坐标为y N =-kx 2+1x 2-1+2.由QM →=λQO →,QN →=μQO →,得λ=1-y M ,μ=1-y N . 所以1λ+1μ=11-y M +11-y N =x 1-1(k -1)x 1+x 2-1(k -1)x 2=1k -1·2x 1x 2-(x 1+x 2)x 1x 2=1k -1·2k 2+2k -4k 21k =2.所以1λ+1μ为定值.思维升华 (1)动直线过定点问题的两大类型及解法①动直线l 过定点问题,解法:设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k表示为t =mk ,得y =k (x +m ),故动直线过定点(-m,0).②动曲线C 过定点问题,解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点. (2)求解定值问题的两大途径①由特例得出一个值(此值一般就是定值)→②先将式子用动点坐标或动线中的参数表示,再利用其满足的约束条件使其绝对值相等的正负项抵消或分子、分母约分得定值. 跟踪演练2 已知倾斜角为π4的直线经过抛物线Γ:y 2=2px (p >0)的焦点F ,与抛物线Γ相交于A ,B 两点,且|AB |=8. (1)求抛物线Γ的方程;(2)过点P (12,8)的两条直线l 1,l 2分别交抛物线Γ于点C ,D 和E ,F ,线段CD 和EF 的中点分别为M ,N .如果直线l 1与l 2的倾斜角互余,求证:直线MN 经过一定点. (1)解 由题意可设直线AB 的方程为y =x -p2,由⎩⎪⎨⎪⎧y =x -p 2,y 2=2px ,消去y 整理得x 2-3px +p 24=0,Δ=9p 2-4×p 24=8p 2>0,令A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=3p ,由抛物线的定义得|AB |=x 1+x 2+p =4p =8, ∴p =2.∴抛物线的方程为y 2=4x .(2)证明 设直线l 1,l 2的倾斜角分别为α,β, 由题意知,α,β≠π2.直线l 1的斜率为k ,则k =tan α. ∵直线l 1与l 2的倾斜角互余,∴tan β=tan ⎝ ⎛⎭⎪⎫π2-α=sin ⎝ ⎛⎭⎪⎫π2-αcos ⎝ ⎛⎭⎪⎫π2-α=cos αsin α=1sin αcos α=1tan α, ∴直线l 2的斜率为1k.∴直线CD 的方程为y -8=k (x -12), 即y =k (x -12)+8.由⎩⎪⎨⎪⎧y =k (x -12)+8,y 2=4x ,消去x 整理得ky 2-4y +32-48k =0, 设C (x C ,y C ),D (x D ,y D ), ∴y C +y D =4k,∴x C +x D =24+4k 2-16k,∴点M 的坐标为⎝⎛⎭⎪⎫12+2k2-8k ,2k .以1k代替点M 坐标中的k ,可得点N 的坐标为(12+2k 2-8k,2k ), ∴k MN =2⎝ ⎛⎭⎪⎫1k -k 2⎝ ⎛⎭⎪⎫1k -k 2-8⎝ ⎛⎭⎪⎫1k -k =11k+k -4.∴直线MN 的方程为y -2k =11k+k -4[x -(12+2k 2-8k )], 即⎝ ⎛⎭⎪⎫1k+k -4y =x -10, 显然当x =10时,y =0, 故直线MN 经过定点()10,0. 热点三 探索性问题1.解析几何中的探索性问题,从类型上看,主要是存在类型的相关题型,解决这类问题通常采用“肯定顺推法”,将不确定性问题明确化.其步骤为:假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在. 2.反证法与验证法也是求解存在性问题常用的方法.例3 已知椭圆C :y 2a 2+x 2b2=1(a >b >0)的上、下焦点分别为F 1,F 2,上焦点F 1到直线4x +3y +12=0的距离为3,椭圆C 的离心率e =12.(1)求椭圆C 的方程;(2)椭圆E :y 2a 2+3x 216b 2=1,设过点M (0,1),斜率存在且不为0的直线交椭圆E 于A ,B 两点,试问y 轴上是否存在点P ,使得PM →=λ⎝ ⎛⎭⎪⎪⎫PA →|PA →|+PB →|PB →|?若存在,求出点P 的坐标;若不存在,说明理由.解 (1)由已知椭圆C 的方程为y 2a 2+x 2b2=1(a >b >0),设椭圆的焦点F 1(0,c ),由F 1到直线4x +3y +12=0的距离为3, 得|3c +12|5=3, 又椭圆C 的离心率e =12,所以c a =12,又a 2=b 2+c 2,求得a 2=4,b 2=3. 椭圆C 的方程为y 24+x 23=1. (2)存在.理由如下:由(1)得椭圆E :x 216+y 24=1,设直线AB 的方程为y =kx +1(k ≠0),联立⎩⎪⎨⎪⎧y =kx +1,x 216+y24=1,消去y 并整理得(4k 2+1)x 2+8kx -12=0, Δ=(8k )2+4(4k 2+1)×12=256k 2+48>0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8k 4k 2+1,x 1x 2=-124k 2+1.假设存在点P (0,t )满足条件, 由于PM →=λ⎝ ⎛⎭⎪⎪⎫PA →|PA →|+PB →|PB →|, 所以PM 平分∠APB .所以直线PA 与直线PB 的倾斜角互补, 所以k PA +k PB =0. 即y 1-t x 1+y 2-tx 2=0, 即x 2(y 1-t )+x 1(y 2-t )=0.(*) 将y 1=kx 1+1,y 2=kx 2+1代入(*)式, 整理得2kx 1x 2+(1-t )(x 1+x 2)=0, 所以-2k ·124k 2+1+(1-t )×(-8k )4k 2+1=0, 整理得3k +k (1-t )=0,即k (4-t )=0, 因为k ≠0,所以t =4.所以存在点P (0,4),使得PM →=λ⎝ ⎛⎭⎪⎪⎫PA →|PA →|+PB →|PB →|. 思维升华 解决探索性问题的注意事项存在性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时,要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.(3)当条件和结论都不知,按常规方法解题很难时,要思维开放,采取另外的途径.跟踪演练3 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点M (2,2),且离心率为22.(1)求a ,b 的值,并写出椭圆C 的方程;(2)设A ,B 分别为椭圆C 的左、右顶点,在椭圆C 上有异于A ,B 的动点P ,若直线PA ,PB 与直线l :x =m (m 为常数)分别交于不同的两点M ,N ,则当点P 运动时,以MN 为直径的圆是否经过定点?解 (1)由题知,4a 2+2b 2=1,c a =22,a 2=b 2+c 2,解得a =22,b =2, ∴椭圆C 的方程为x 28+y 24=1. (2)由(1)知,A (-22,0),B (22,0), 设直线PA ,PB 的斜率分别为k 1,k 2,则直线PA ,PB 的方程分别为y =k 1(x +22),y =k 2(x -22),∴M (m ,k 1(m +22)),N (m ,k 2(m -22)),∴根据射影定理知,以MN 为直径的圆的方程为(x -m )2+[y -k 1(m +22)][y -k 2(m -22)]=0,即(x -m )2+y 2-[k 1(m +22)+k 2(m -22)]y +k 1k 2·(m 2-8)=0,设点P (x 0,y 0),则x 208+y 204=1,y 2=4⎝ ⎛⎭⎪⎫1-x 208,∴k 1k 2=y 0x 0+22·y 0x 0-22=y 20x 20-8=-12, ∴(x -m )2+y 2-[k 1(m +22)+k 2(m -22)]y -12(m 2-8)=0,由y =0,得(x -m )2-12(m 2-8)=0,∴(x -m )2=12(m 2-8).当m 2-8<0,即-22<m <22时,方程无实数解,该圆不经过定点.当m 2-8≥0,即m ≥22或m ≤-22时, 解得x =m ±22m 2-8, 即定点为⎝⎛⎭⎪⎫m ±22m 2-8,0.真题体验1.(2017·全国Ⅰ改编)已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A ,B 两点,直线l 2与C 交于D ,E 两点,则|AB |+|DE |的最小值为________.答案 16解析 因为F 为y 2=4x 的焦点,所以F (1,0).由题意知,直线l 1,l 2的斜率均存在且不为0,设l 1的斜率为k ,则l 2的斜率为-1k,故直线l 1,l 2的方程分别为y =k (x -1),y =-1k(x -1).由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x ,得k 2x 2-(2k 2+4)x +k 2=0,Δ=16k 2+16>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2k 2+4k2,x 1x 2=1,所以|AB |=1+k 2·|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2 =1+k 2·⎝ ⎛⎭⎪⎫2k 2+4k 22-4 =4(1+k 2)k2. 同理可得|DE |=4(1+k 2).所以|AB |+|DE |=4(1+k 2)k2+4(1+k 2) =4⎝ ⎛⎭⎪⎫1k 2+1+1+k 2=8+4⎝⎛⎭⎪⎫k 2+1k2≥8+4×2=16,当且仅当k 2=1k2,即k =±1时,取得等号.2.(2018·浙江)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上.(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆x 2+y 24=1(x <0)上的动点,求△PAB 面积的取值范围.(1)证明 设P (x 0,y 0),A ⎝ ⎛⎭⎪⎫14y 21,y 1,B ⎝ ⎛⎭⎪⎫14y 22,y 2. 因为PA ,PB 的中点在抛物线上,所以y 1,y 2为方程⎝ ⎛⎭⎪⎫y +y 022=4·14y 2+x 02,即y 2-2y 0y +8x 0-y 20=0的两个不同的实根. 所以y 1+y 2=2y 0, 所以PM 垂直于y 轴.(2)解 由(1)可知⎩⎪⎨⎪⎧y 1+y 2=2y 0,y 1y 2=8x 0-y 20,所以|PM |=18(y 21+y 22)-x 0=34y 20-3x 0,|y 1-y 2|=22(y 20-4x 0).所以△PAB 的面积S △PAB =12|PM |·|y 1-y 2|=324(y 20-4x 0)32.因为x 2+y 204=1(-1≤x 0<0),所以y 20-4x 0=-4x 20-4x 0+4∈[4,5], 所以△PAB 面积的取值范围是⎣⎢⎡⎦⎥⎤62,15104.押题预测已知椭圆C 1:x 2a 2+y 23=1(a >0)与抛物线C 2:y 2=2ax 相交于A ,B 两点,且两曲线的焦点F 重合.(1)求C 1,C 2的方程;(2)若过焦点F 的直线l 与椭圆分别交于M ,Q 两点,与抛物线分别交于P ,N 两点,是否存在斜率为k (k ≠0)的直线l ,使得|PN ||MQ |=2?若存在,求出k 的值;若不存在,请说明理由.押题依据 本题将椭圆和抛物线联合起来设置命题,体现了对直线和圆锥曲线位置关系的综合考查.关注知识交汇,突出综合应用是高考的特色. 解 (1)因为C 1,C 2的焦点重合, 所以a 2-3=a2,所以a 2=4. 又a >0,所以a =2.于是椭圆C 1的方程为x 24+y 23=1,抛物线C 2的方程为y 2=4x . (2)假设存在直线l 使得|PN ||MQ |=2,当l ⊥x 轴时,|MQ |=3,|PN |=4,不符合题意,∴直线l 的斜率存在,∴可设直线l 的方程为y =k (x -1)(k ≠0),P (x 1,y 1),Q (x 2,y 2),M (x 3,y 3),N (x 4,y 4).由⎩⎪⎨⎪⎧y 2=4x ,y =k (x -1),可得k 2x 2-(2k 2+4)x +k 2=0,则x 1+x 4=2k 2+4k2,x 1x 4=1,且Δ=16k 2+16>0,所以|PN |=1+k 2·(x 1+x 4)2-4x 1x 4 =4(1+k 2)k2. 由⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x -1),可得(3+4k 2)x 2-8k 2x +4k 2-12=0,则x 2+x 3=8k 23+4k 2,x 2x 3=4k 2-123+4k 2,且Δ=144k 2+144>0,所以|MQ |=1+k 2·(x 2+x 3)2-4x 2x 3=12(1+k 2)3+4k2.若|PN ||MQ |=2,则4(1+k 2)k 2=2×12(1+k 2)3+4k 2, 解得k =±62. 故存在斜率为k =±62的直线l ,使得|PN ||MQ |=2.A 组 专题通关1.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =33,左、右焦点分别为F 1,F 2,且F 2与抛物线y2=4x 的焦点重合. (1)求椭圆的标准方程;(2)若过F 1的直线交椭圆于B ,D 两点,过F 2的直线交椭圆于A ,C 两点,且AC ⊥BD ,求|AC |+|BD |的最小值.解 (1)抛物线y 2=4x 的焦点坐标为(1,0),所以c =1,又因为e =c a =1a =33,所以a =3,所以b 2=2,所以椭圆的标准方程为x 23+y 22=1.(2)①当直线BD 的斜率k 存在且k ≠0时, 直线BD 的方程为y =k (x +1), 代入椭圆方程x 23+y 22=1,并化简得()3k 2+2x 2+6k 2x +3k 2-6=0.Δ=36k 4-4(3k 2+2)(3k 2-6)=48(k 2+1)>0恒成立. 设B (x 1,y 1),D (x 2,y 2),则x 1+x 2=-6k 23k 2+2,x 1x 2=3k 2-63k 2+2,|BD |=1+k 2·|x 1-x 2|=()1+k 2·[](x 1+x 2)2-4x 1x 2=43()k 2+13k 2+2. 由题意知AC 的斜率为-1k,所以|AC |=43⎝ ⎛⎭⎪⎫1k 2+13×1k2+2=43()k 2+12k 2+3. |AC |+|BD |=43()k 2+1⎝⎛⎭⎪⎫13k 2+2+12k 2+3=203()k 2+12()3k 2+2()2k 2+3≥203()k 2+12⎣⎢⎡⎦⎥⎤()3k 2+2+()2k 2+322=203()k 2+1225(k 2+1)24=1635. 当且仅当3k 2+2=2k 2+3,即k =±1时,上式取等号, 故|AC |+|BD |的最小值为1635.②当直线BD 的斜率不存在或等于零时, 可得|AC |+|BD |=1033>1635.综上,|AC |+|BD |的最小值为1635.2.(2018·诸暨市适应性考试)已知F 是抛物线C :x 2=2py (p >0)的焦点,过F 的直线交抛物线C 于不同的两点A (x 1,y 1),B (x 2,y 2),且x 1x 2=-1.(1)求抛物线C 的方程;(2)过点B 作x 轴的垂线交直线AO (O 为坐标原点)于点D ,过点A 作直线DF 的垂线与抛物线C 的另一交点为E ,AE 的中点为G . ①求点D 的纵坐标; ②求|GB ||DG |的取值范围.解 (1)设AB :y =kx +p2,联立⎩⎪⎨⎪⎧y =kx +p 2,x 2=2py ,得x 2=2p ⎝⎛⎭⎪⎫kx +p 2,即x 2-2pkx -p 2=0, ∴x 1x 2=-p 2=-1,∴p =1, ∴抛物线C 的方程为x 2=2y . (2)①直线OA 的方程为y =y 1x 1x =x 12x ,∴D ⎝⎛⎭⎪⎫x 2,x 1x 22,即D ⎝⎛⎭⎪⎫x 2,-12, ∴点D 的纵坐标为-12.②∵k DF =-1x 2,∴k AE =x 2,即直线AE 的方程为y -y 1=x 2(x -x 1),联立⎩⎪⎨⎪⎧y -y 1=x 2(x -x 1),y =x 22,得x 22-x 2x -y 1-1=0,∴x E =2x 2-x 1,∴G (x 2,2y 2+y 1+1). ∴G ,B ,D 三点共线,∴|GB ||DG |=y 2+y 1+12y 2+y 1+32,∵y 1·y 2=14,∴|DG ||GB |=2-y 1+1214y 1+y 1+1=2-y 1y 1+12=2-11+12y 1∈(1,2),∴|GB ||DG |∈⎝ ⎛⎭⎪⎫12,1. 3.(2018·全国Ⅲ)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0). (1)证明:k <-12;(2)设F 为C 的右焦点,P 为C 上一点,且FP →+FA →+FB →=0.证明:|FA →|,|FP →|,|FB →|成等差数列,并求该数列的公差.(1)证明 设A (x 1,y 1),B (x 2,y 2), 则x 214+y 213=1,x 224+y 223=1. 两式相减,并由y 1-y 2x 1-x 2=k ,得x 1+x 24+y 1+y 23·k =0. 由题设知x 1+x 22=1,y 1+y 22=m ,于是k =-34m.①由题设得0<m <32,故k <-12.(2)解 由题意得F (1,0).设P (x 3,y 3),则 (x 3-1,y 3)+(x 1-1,y 1)+(x 2-1,y 2)=(0,0). 由(1)及题设得x 3=3-(x 1+x 2)=1,y 3=-(y 1+y 2)=-2m <0.又点P 在C 上,所以m =34,从而P ⎝ ⎛⎭⎪⎫1,-32,|FP →|=32, 于是|FA →|=(x 1-1)2+y 21=(x 1-1)2+3⎝ ⎛⎭⎪⎫1-x 214=2-x 12. 同理|FB →|=2-x 22.所以|FA →|+|FB →|=4-12(x 1+x 2)=3.故2|FP →|=|FA →|+|FB →|,即|FA →|,|FP →|,|FB →|成等差数列.设该数列的公差为d ,则2|d |=||FB →|-|FA →||=12|x 1-x 2|=12(x 1+x 2)2-4x 1x 2.②将m =34代入①得k =-1,所以l 的方程为y =-x +74,代入C 的方程,并整理得7x 2-14x +14=0.故x 1+x 2=2,x 1x 2=128,代入②解得|d |=32128.所以该数列的公差为32128或-32128.4.(2018·嘉兴市、丽水市教学测试)点P (1,1)为抛物线y 2=x 上一定点,斜率为-12的直线与抛物线交于A ,B 两点.(1)求弦AB 中点M 的纵坐标;(2)点Q 是线段PB 上任意一点(异于端点),过Q 作PA 的平行线交抛物线于E ,F 两点,求证:|QE |·|QF |-|QP |·|QB |为定值. (1)解 k AB =y A -y B x A -x B =1y A +y B =-12,(*) 所以y A +y B =-2,y M =y A +y B2=-1.(2)证明 设Q (x 0,y 0),直线EF :x -x 0=t 1(y -y 0), 直线PB :x -x 0=t 2(y -y 0), 联立方程组⎩⎪⎨⎪⎧x -x 0=t 1(y -y 0),y 2=x ,得y 2-t 1y +t 1y 0-x 0=0,所以y E +y F =t 1,y E ·y F =t 1y 0-x 0,|QE |·|QF |=1+t 21|y E -y 0|·1+t 21|y F -y 0| =(1+t 21)|y 20-x 0|.同理|QP |·|QB |=()1+t 22|y 20-x 0|.由(*)可知,t 1=1k EF =1k PA=y A +y P ,t 2=1k PB=y B +y P ,所以t 1+t 2=(y A +y B )+2y P =-2+2=0,即t 1=-t 2⇒t 21=t 22,所以|QE |·|QF |=|QP |·|QB |, 即|QE |·|QF |-|QP |·|QB |=0为定值.B 组 能力提高5.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的上顶点为点D ,右焦点为F 2(1,0),延长DF 2交椭圆C 于点E ,且满足|DF 2|=3|F 2E |. (1)求椭圆C 的标准方程;(2)过点F 2作与x 轴不重合的直线l 和椭圆C 交于A ,B 两点,设椭圆C 的左顶点为点H ,且直线HA ,HB 分别与直线x =3交于M ,N 两点,记直线F 2M ,F 2N 的斜率分别为k 1,k 2,则k 1与k 2之积是否为定值?若是,求出该定值;若不是,请说明理由.解 (1)椭圆C 的上顶点为D ()0,b ,右焦点F 2(1,0),点E 的坐标为(x ,y ). ∵|DF 2|=3|F 2E |,可得DF 2→=3F 2E →, 又DF 2→=()1,-b ,F 2E →=()x -1,y ,∴⎩⎪⎨⎪⎧x =43,y =-b3,代入x 2a 2+y 2b2=1,可得⎝ ⎛⎭⎪⎫432a 2+⎝ ⎛⎭⎪⎫-b 32b 2=1,又a 2-b 2=1,解得a 2=2,b 2=1, 即椭圆C 的标准方程为x 22+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),H ()-2,0,M ()3,y M ,N ()3,y N .由题意可设直线AB 的方程为x =my +1,联立⎩⎪⎨⎪⎧x =my +1,x 22+y 2=1,消去x ,得()m 2+2y 2+2my -1=0, Δ=4m 2+4(m 2+2)>0恒成立.∴⎩⎪⎨⎪⎧y 1+y 2=-2mm 2+2,y 1y 2=-1m 2+2.根据H ,A ,M 三点共线,可得y M 3+2=y 1x 1+2,∴y M =y 1()3+2x 1+2.同理可得y N =y 2()3+2x 2+2,∴M ,N 的坐标分别为⎝⎛⎭⎪⎫3,y 1()3+2x 1+2,⎝ ⎛⎭⎪⎫3,y 2()3+2x 2+2,∴k 1k 2=y M -03-1·y N -03-1=14y M y N =14·y 1()3+2x 1+2·y 2()3+2x 2+2 =y 1y 2(3+2)24()my 1+1+2()my 2+1+2=y 1y 2(3+2)24[]m 2y 1y 2+()1+2m ()y 1+y 2+()1+22=-11-62m 2+24⎣⎢⎡⎦⎥⎤-m 2m 2+2+-2()1+2m 2m 2+2+3+22=-11-62m 2+24×6+42m 2+2=42-98.∴k 1与k 2之积为定值,且该定值是42-98.6.已知平面上动点P 到点F ()3,0的距离与到直线x =433的距离之比为32,记动点P的轨迹为曲线E . (1)求曲线E 的方程;(2)设M ()m ,n 是曲线E 上的动点,直线l 的方程为mx +ny =1. ①设直线l 与圆x 2+y 2=1交于不同两点C ,D ,求|CD |的取值范围;②求与动直线l 恒相切的定椭圆E ′的方程,并探究:若M ()m ,n 是曲线Γ:Ax 2+By 2=1()A ·B ≠0上的动点,是否存在与直线l :mx +ny =1恒相切的定曲线Γ′?若存在,直接写出曲线Γ′的方程;若不存在,说明理由. 解 (1)设P (x ,y ),由题意,得()x -32+y2⎪⎪⎪⎪⎪⎪x -433=32. 整理,得x 24+y 2=1,∴曲线E 的方程为x 24+y 2=1.(2)①圆心到直线l 的距离d =1m 2+n2,∵直线与圆有两个不同交点C ,D , ∴|CD |2=4⎝⎛⎭⎪⎫1-1m 2+n 2. 又∵m 24+n 2=1(m ≠0),∴|CD |2=4⎝ ⎛⎭⎪⎫1-43m 2+4.∵|m |≤2,∴0<m 2≤4, ∴0<1-43m 2+4≤34.∴|CD |2∈(]0,3,|CD |∈(]0,3,即|CD |的取值范围为(]0,3.②当m =0,n =1时,直线l 的方程为y =1; 当m =2,n =0时,直线l 的方程为x =12.根据椭圆对称性,猜想E ′的方程为4x 2+y 2=1. 下面证明:直线mx +ny =1()n ≠0与4x 2+y 2=1相切,其中m 24+n 2=1,即m 2+4n 2=4.由⎩⎪⎨⎪⎧4x 2+y 2=1,y =1-mx n ,消去y 得()m 2+4n 2x 2-2mx +1-n 2=0,即4x 2-2mx +1-n 2=0,∴Δ=4m 2-16()1-n 2=4()m 2+4n 2-4=0恒成立,从而直线mx +ny =1与椭圆E ′:4x 2+y 2=1恒相切.若点M ()m ,n 是曲线Γ:Ax 2+By 2=1()A ·B ≠0上的动点,则直线l :mx +ny =1与定曲线Γ′:x 2A +y 2B =1()A ·B ≠0恒相切.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3讲圆锥曲线的综合应用JIE TI CE LUE MING FANG XIANG解题策略·明方向⊙︱考情分析︱1.圆锥曲线中的定点与定值、最值与范围问题是高考必考的问题之一,主要以解答题形式考查,往往作为试卷的压轴题之一.2.以椭圆或抛物线为背景,尤其是与条件或结论相关存在性开放问题.对考生的代数恒等变形能力、计算能力有较高的要求,并突出数学思想方法考查.⊙︱真题分布︱(理科)年份卷别题号考查角度分值2020Ⅰ卷20椭圆的简单性质及方程思想、定点问题12 Ⅱ卷19椭圆离心率的求解,利用抛物线的定义求抛物线和椭圆的标准方程12 Ⅲ卷20椭圆标准方程和求三角形面积问题122019Ⅰ卷19直线与抛物线的性质的综合应用12 Ⅱ卷21求曲线的方程、直线与椭圆的位置关系、最值问题12 Ⅲ卷21直线过定点问题、直线与抛物线的相交弦问题、点到直线的距离及四边形的面积122018Ⅰ卷19直线的方程、直线与椭圆的位置关系、证明问题12 Ⅱ卷20点的轨迹问题、椭圆的方程、向量的数量积12 Ⅲ卷20直线与椭圆的位置关系、等差数列的证明12年份卷别题号考查角度分值2020Ⅰ卷21圆锥曲线的顶点问题12 Ⅱ卷19椭圆和抛物线的标准方程及其应用12Ⅲ卷21椭圆标准方程和求三角形面积问题,椭圆的离心率定义和数形结合求三角形面积,122019Ⅰ卷21直线与圆的位置关系,定值问题12 Ⅱ卷20椭圆的定义及其几何性质、参数的范围12 Ⅲ卷21直线与抛物线的位置关系、定点问题122018Ⅰ卷20直线的方程,直线与抛物线的位置关系、证明问题12Ⅱ卷 20 直线的方程,直线与抛物线的位置关系、圆的方程12 Ⅲ卷20直线与椭圆的位置关系、证明问题12KAO DIAN FEN LEI XI ZHONG DIAN考点分类·析重点考点一 圆锥曲线中的最值、范围问题典例悟通典例1 (2020·青海省玉树州高三联考)已知直线l :x -y +1=0与焦点为F 的抛物线C :y 2=2px (p >0)相切.(1)求抛物线C 的方程;(2)过点F 的直线m 与抛物线C 交于A ,B 两点,求A ,B 两点到直线l 的距离之和的最小值.【解析】 (1)将l :x -y +1=0与抛物线C :y 2=2px 联立得:y 2-2py +2p =0, ∵l 与C 相切,∴Δ=4p 2-8p =0,解得:p =2, ∴抛物线C 的方程为:y 2=4x .(2)由题意知,直线m 斜率不为0,可设直线m 方程为:x =ty +1,联立⎩⎪⎨⎪⎧y 2=4xx =ty +1得:y 2-4ty -4=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4t , ∴x 1+x 2=ty 1+1+ty 2+1=4t 2+2, ∴线段AB 中点M (2t 2+1,2t ).设A ,B ,M 到直线l 距离分别为d A ,d B ,d M , 则d A +d B =2d M=2·||2t 2-2t +22=22||t 2-t +1=22⎪⎪⎪⎪(t -12)2+34, ∵(t -12)2+34≥34,∴当t =12时,⎪⎪⎪⎪(t -12)2+34min =34, ∴A ,B 两点到直线l 的距离之和的最小值为:22×34=322.方法感悟求解范围、最值问题的五种方法(1)利用判别式构造不等式,从而确定参数的取值范围;(2)利用已知参数的取值范围,求新参数的范围,解这类问题的核心是在两个参数之间建立相等关系;(3)利用隐含的不等关系,求出参数的取值范围;(4)利用已知不等关系构造不等式,从而求出参数的取值范围; (5)利用求函数值域的方法,确定参数的取值范围.跟踪训练1.(2020·北京昌平区期末)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,点M (0,2)在椭圆C 上,焦点为F 1,F 2,圆O 的直径为F 1F 2.(1)求椭圆C 及圆O 的标准方程;(2)设直线l 与圆O 相切于第一象限内的点P ,且直线l 与椭圆C 交于A ,B 两点.记△OAB 的面积为S ,证明:S < 3.【解析】 (1)由题意,椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0).可得⎩⎪⎨⎪⎧c a =32,b =2,a 2=b 2+c2,解得⎩⎪⎨⎪⎧a 2=8,b 2=2,c 2=6.所以椭圆C 的方程为x 28+y 22=1.因为焦点在x 轴上,所以椭圆C 的焦点为F 1(-6,0),F 2(6,0). 所以直径为F 1F 2的圆O 的方程为x 2+y 2=6.(2)由题意知,直线l 与圆O 相切于第一象限内的点P , 设直线l 的斜截式方程为y =kx +m (k <0,m >0). 因为直线l 与圆O 相切,所以点O 到直线l 的距离为d =||m 1+k 2= 6.即m 2=6k 2+6.因为直线l 与椭圆C 相交于A ,B 两点,由⎩⎪⎨⎪⎧y =kx +m ,x 2+4y 2=8,整理得(1+4k 2)x 2+8kmx +4m 2-8=0, 设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-81+4k2,Δ>0.因为Δ=(8km )2-4×(1+4k 2)(4m 2-8)=16×(8k 2-m 2+2). 又m 2=6k 2+6, 所以Δ=32(k 2-2)>0. 所以k 2>2. 又因为k <0, 所以k <- 2. 因为||AB =1+k 2||x 1-x 2=421+k 2k 2-21+4k 2,所以S ΔOAB =12|AB |·d =12×42×1+k 2k 2-21+4k 2× 6=43×(1+k 2)(k 2-2)(1+4k 2)2.设1+4k 2=t ,则t >9,则 S ΔOAB =43×(t -9)(t +3)16t 2=3×-27t 2-6t+1. 令u =1t ,0<u <19.则S ΔOAB =3×-27u 2-6u +1.设h (u )=-27u 2-6u +1=-27⎝⎛⎭⎫u +192+43. 因为h (u )在⎝⎛⎭⎫0,19上单调递减, 所以h (u )<1. 所以S ΔOAB < 3.考点二 圆锥曲线中的定点、定值问题典例悟通考向1 定点问题典例2 (2020·韶关二模)在直角坐标系xOy 中,已知点A (-2,2),B (2,2),直线AM ,BM 交于M ,且直线AM 与直线BM 的斜率满足:k AM -k BM =-2.(1)求点M 的轨迹C 的方程;(2)设直线l 交曲线C 于P ,Q 两点,若直线AP 与直线AQ 的斜率之积等于-2,证明:直线l 过定点.【解析】 (1)设M (x ,y ),又A (-2,2),B (2,2), 则k AM -k BM =y -2x +2-y -2x -2=8-4yx 2-4=-2, 可得x 2=2y (x ≠±2),则M 的轨迹C 的方程为x 2=2y (x ≠±2). (2)证明:设P (m ,m 22),Q (n ,n 22),m ,n ≠±2,又A (-2,2),可得k AP ·k AQ =m 22-2m +2·n 22-2n +2=m -22·n -22=-2,即有mn -2(m +n )=-12,即mn =2(m +n )-12, 直线l 的斜率为k PQ =m 22-n 22m -n =m +n2,可得直线l 的方程为y -m 22=m +n2(x -m ),化为y =m +n 2x -mn2,可得y -6=m +n2(x -2),可得直线l 恒过定点(2,6).方法感悟直线过定点问题的两大类型及解法(1)动直线l 过定点问题的解法:设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k (x +m ),故动直线过定点(-m,0).(2)动曲线C 过定点问题的解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.考向2 定值问题典例3 (2020·辽宁三模)已知圆锥曲线x 2m +y 2n=1过点A (-1,2),且过抛物线x 2=8y 的焦点B .(1)求该圆锥曲线的标准方程;(2)设点P 在该圆锥曲线上,点D 的坐标为(||m ,0)点E 的坐标为(0,||n ),直线PD 与y 轴交于点M ,直线PE 与x 轴交于点N ,求证:|DN |·|EM |为定值.【解析】 (1)抛物线x 2=8y 的焦点B (0,2),将点A (-1,2),B (0,2)代入方程得:⎩⎨⎧1m +2n =10m +4n =1,解得⎩⎪⎨⎪⎧m =2n =4,∴圆锥曲线的标准方程为:x 22+y 24=1.(2)证明:由(1)可知,该圆锥曲线为椭圆,且D (2,0),E (0,2), 设椭圆上一点P (x 0,y 0),则直线PD :y =y 0x 0-2(x -2),令x =0,得y M =-2y 0x 0-2,∴|EM |=⎪⎪⎪⎪⎪⎪2+2y 0x 0-2;直线PE :y =y 0-2x 0x +2,令y =0,得x N =-2x 0y 0-2,∴|DN |=⎪⎪⎪⎪⎪⎪2+2x 0y 0-2.∴|DN |·|EM |=⎪⎪⎪⎪⎪⎪2+2x 0y 0-2·⎪⎪⎪⎪⎪⎪2+2y 0x 0-2=⎪⎪⎪⎪⎪⎪2y 0-22+2x 0y 0-2·⎪⎪⎪⎪⎪⎪2x 0-22+2y 0x 0-2=⎪⎪⎪⎪⎪⎪2y 0-22+2x 0y 0-2·2x 0-22+2y 0x 0-2=⎪⎪⎪⎪⎪⎪2(y 20+2x 20-4y 0-42x 0+22x 0y 0+4)x 0y 0-2x 0-2y 0+22.∵点P 在椭圆上,∴x 202+y 204=1,即y 20+2x 20=4. 代入上式得:|DN |·|EM |=⎪⎪⎪⎪⎪⎪2(4-4y 0-42x 0+22x 0y 0+4)x 0y 0-2x 0-2y 0+22=⎪⎪⎪⎪⎪⎪2(-4y 0-42x 0+22x 0y 0+8)x 0y 0-2x 0-2y 0+22=4 2.故|DN |·|EM |为定值.方法感悟 求解定值问题的两大途径(1)首先由特例得出一个值(此值一般就是定值),然后证明其是定值,即将问题转化为证明待证式与参数(某些变量)无关.(2)先将式子用动点坐标或动线中的参数表示,再利用其满足的条件得出参数之间满足的关系式,使正负项抵消或分子、分母约分得定值.跟踪训练2.(2019·内江三模)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,直线x +y -2=0与圆x 2+y 2=b 2相切.(1)求椭圆C 的方程;(2)设P ⎝⎛⎭⎫54,0,过点(1,0)的直线l 交椭圆C 于A ,B 两点,证明:P A →·PB →为定值. 【解析】 (1)∵椭圆C 的离心率为22,∴a =2c , ∵直线x +y -2=0与圆x 2+y 2=b 2相切, ∴b =|0+0-2|2=1,∴a =2c =2b =2,∴椭圆C 的方程为x 22+y 2=1.(2)证明:设A (x 1,y 1),B (x 2,y 2),当直线l 与x 轴不重合时,设l 的方程:x =my +1.由⎩⎪⎨⎪⎧x =my +1x 22+y 2=1得(m 2+2)y 2+2my -1=0,⎩⎪⎨⎪⎧y 1+y 2=-2mm 2+2y 1y 2=-1m 2+2,∴x 1+x 2=4m 2+2,x 1x 2=-3m 2m 2+2+1,P A →·PB →=⎝⎛⎭⎫x 1-54,y 1·⎝⎛⎭⎫x 2-54,y 2 =x 1x 2-54(x 1+x 2)+2516+y 1y 2=-3m 2-6m 2+2+4116=-716.当直线l 与x 轴重合时,P A →·PB →=⎝⎛⎭⎫2-54,0·⎝⎛⎭⎫-2-54,0=2516-2=-716. ∴故P A →·PB →为定值-716.考点三 圆锥曲线中的存在性问题典例悟通典例4 (2020·凉山州模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0),右顶点A (2,0),上顶点为B ,左右焦点分别为F 1,F 2,且∠F 1BF 2=60°,过点A 作斜率为k (k ≠0)的直线l 交椭圆于点D ,交y 轴于点E .(1)求椭圆C 的方程;(2)设P 为AD 的中点,是否存在定点Q ,对于任意的k (k ≠0)都有OP ⊥EQ ?若存在,求出点Q ;若不存在,请说明理由.【解析】 (1)由题意得:a =2, ∵∠F 1BF 2=60°,∴在Rt △OBF 2中,∠OBF 2=30°,|OB |=b ,|OF 2|=c , ∴|BF 2|=a ,∴cos 30°=b a ,∴32=b2,b =3,∴椭圆方程为x 24+y 23=1.(2)法一:设直线AD :y =k (x -2)(k ≠0),* 令x =0,则y =-2k ,∴E (0,-2k ), 将*代入x 24+y 23=1,整理得(3+4k 2)x 2-16k 2x +16k 2-12=0, 设D (x 0,y 0),则2+x D =16k 23+4k 2,∴x D =8k 2-63+4k 2,y D =k (8k 2-63+4k 2-2)=-12k3+4k 2,设P (x p ,y p ),∵P 为AD 的中点,∴x p =12⎝ ⎛⎭⎪⎫8k 2-63+4k 2+2=8k 23+4k 2,y p =12⎝ ⎛⎭⎪⎫-12k 3+4k 2=-6k3+4k 2, ∴OP →=⎝ ⎛⎭⎪⎫8k 23+4k 2,-6k 3+4k 2,设存在Q (x 0,y 0)使得OP ⊥EQ ,则EQ →=(x 0,y 0 +2k ),OP →·EQ →=0,∴8k 2x 03+4k 2-6ky 0+12k23+4k 2=0,即4k 2(2x 0-3)-6ky 03+4k 2=0对任意的k ≠0都成立, ∴⎩⎪⎨⎪⎧2x 0-3=0y 0=0,∴x 0=32,∴存在Q ⎝⎛⎭⎫32,0使得OP ⊥EQ .法二:设A (x 1,y 1),D (x 2,y 2),P (x 0,y 0), ∴x 214+y 213=1 (1),x 224+y 223=1 (2), 由(1)-(2),得(x 1-x 2)(x 1+x 2)4+(y 1+y 2)(y 1-y 2)3=0,∵P 为AD 中点,∴x 04×2+y 03×2·y 1-y 2x 1-x 2=0∵k AD =y 1-y 2x 1-x 2=k (k ≠0),∴14+y 03x 0·k =0,∵y 0x 0=k OP ,∴k OP =-34k , 设存在Q (x 3,y 3)使得OP ⊥EQ ,则y 3+2k x 3=-1k OP =4k 3,即2k (2x 3-3)-3y 3=0,对任意k ≠0都成立,即x 3=32,y 3=0,∴存在Q ⎝⎛⎭⎫32,0使得OP ⊥EQ .方法感悟 探索性问题的解题策略探索性问题,先假设存在,推证满足条件的结论,若结论正确,则存在,若结论不正确,则不存在.(1)当条件和结论不唯一时,要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.(3)当条件和结论都不知,按常规方法解题很难时,要思维开放,采取另外的途径.跟踪训练3.(2019·湛江二模)已知动圆P 过定点F ⎝⎛⎭⎫12,0,且和直线x =-12相切,动圆圆心P 形成的轨迹是曲线C ,过点Q (4,-2)的直线与曲线C 交于A ,B 两个不同的点.(1)求曲线C 的方程;(2)在曲线C 上是否存在定点N ,使得以AB 为直径的圆恒过点N ?若存在,求出N 点坐标;若不存在,说明理由.【解析】 (1)设动圆圆心P 到直线x =-12的距离为d ,根据题意,d =|PF |,∴动点P 形成的轨迹是以F ⎝⎛⎭⎫12,0为焦点, 以直线x =-12为准线的抛物线,∴抛物线方程为y 2=2x .(2)根据题意,设A (x 1,y 1),B (x 2,y 2),直线l AB 的方程为:x =n (y +2)+4,代入抛物线方程,整理得y 2-2ny -4n -8=0,Δ=4n 2+16(n +2)=4(n 2+4n +8)>0, y 1+y 2=2n ,y 1y 2=-4n -8,若假设抛物线上存在定点N ,使得以AB 为直径的圆恒过点N ,设N (x 0,y 0),则y 20=2x 0,k NA =y 1-y 0x 1-x0=y 1-y 0y 212-y 202=2y 1+y 0, 同理可得k NB =2y 2+y 0, k NA k NB =2y 1+y 0·2y 2+y 0=4y 1y 2+(y 1+y 2)y 0+y 20 =4-4n -8+2ny 0+y 20=-1, ∴(2y 0-4)n +y 20-4=0,∴⎩⎪⎨⎪⎧2y 0-4=0y 20-4=0解得y 0=2,x 0=2, ∴在曲线C 上存在定点N (2,2),使得以AB 为直径的圆恒过点N .YI CUO QING LING MIAN SHI WU易错清零·免失误1.忽视各变量间的制约条件致误典例1 已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率e =233,过点A (0,-b )和B (a,0)的直线与原点的距离为32,直线y =kx +m (k ≠0,m ≠0)与该双曲线交于不同两点C 、D ,且C 、D 两点都在以A 为圆心的圆上,求m 的取值范围.【错解】 由已知,得⎩⎪⎨⎪⎧ e 2=1+⎝⎛⎭⎫b a 2=43,ab a 2+b 2=32, 解之得a 2=3,b 2=1,所以双曲线方程为x 23-y 2=1. 将直线y =kx +m 代入双曲线方程,并整理得(1-3k 2)x 2-6kmx -3m 2-3=0,所以Δ=m 2+1-3k 2>0.①设CD 中点为P (x 0,y 0),则AP ⊥CD ,且易知:x 0=3km 1-3k 2,y 0=m 1-3k 2. 所以k AP =m 1-3k 2+13km 1-3k 2=-1k⇒3k 2=4m +1.② 将式②代入式①,得m 2-4m >0,解得m >4或m <0.故所求m 的范围是m ∈(-∞,0)∪(4,+∞).【剖析】 在减元过程中,忽视了元素之间的制约关系,将k 2=4m +13代入式①时,m 受k 的制约.【正解】 由已知,有⎩⎪⎨⎪⎧ e 2=1+⎝⎛⎭⎫b a 2=43,ab a 2+b 2=32,解之得a 2=3,b 2=1.所以双曲线方程为x 23-y 2=1. 将直线y =kx +m 代入双曲线方程,并整理得(1-3k 2)x 2-6kmx -3m 2-3=0,所以Δ=m 2+1-3k 2>0.①设CD 中点为P (x 0,y 0),则AP ⊥CD ,且易知:x 0=3km 1-3k 2,y 0=m 1-3k 2. 所以k AP =m 1-3k 2+13km 1-3k 2=-1k. ∴3k 2=4m +1.②将式②代入式①,得m 2-4m >0,解得m >4或m <0.因为k 2>0,所以m >-14. 故所求m 的范围应为m >4或-14<m <0. 2.求解圆锥曲线的综合问题时忽视“相交”的限制典例2 (2020·山西大同学情调研)椭圆x 2a 2+y 2b 2=1(a >b >0)两焦点分别为F 1、F 2,且离心率e =63. (1)设E 是直线y =x +2与椭圆的一个交点,求|EF 1|+|EF 2|取最小值时椭圆的方程;(2)已知N (0,1),是否存在斜率为k 的直线l 与(1)中的椭圆交于不同的两点A 、B ,使得点N 在线段AB 的垂直平分线上,若存在,求出直线l 在y 轴上截距的范围;若不存在,说明理由.【解析】 (1)e =63,∴b 2a 2=13,椭圆方程可化为x 23b 2+y 2b2=1,与y =x +2联立, 消去y 化简得4x 2+12x +12-3b 2=0,又由Δ=144-16×(12-3b 2)≥0,解得b 2≥1,此时|EF 1|+|EF 2|=23b ≥23,当且仅当b =1时,取“=”|EF 1|+|EF 2|取最小值23,所以椭圆方程为x 23+y 2=1. (2)设直线l 的方程为y =kx +t ,代入x 23+y 2=1,消去y 整理得: (1+3k 2)x 2+6ktx +3t 2-3=0,∵直线与椭圆交于不同的两点,∴Δ=(6kt )2-12(t 2-1)(1+3k 2)>0,即t 2<1+3k 2,设A (x 1,y 1),B (x 2,y 2),∴x 1+x 2=-6kt 1+3k 2,x 1x 2=3t 2-31+3k 2, 则AB 中点Q ⎝ ⎛⎭⎪⎫-3kt 1+3k 2,t 1+3k 2 所以当k ≠0时,t 1+3k 2-1-3kt1+3k 2=-1k , 化简得1+3k 2=-2t ,代入t 2<1+3k 2得-2<t <0;又-2t =1+3k 2>1,所以t <-12,故-2<t <-12; 当k =0时,-1<t <1.综上,k ≠0时,-2<t <-12;k =0时,-1<t <1. 【剖析】 在直线和圆锥曲线的位置关系的问题中,有一类是利用直线与圆锥曲线相交去探求参数的取值范围的问题,如本题(2),已知直线l :y =kx +t 与椭圆交于不同的两点A 、B ,需要我们由点N 在线段AB 的垂直平分线上去探求直线l 在y 轴上的截距的范围,因为直线y =kx +t 与椭圆有两个交点,在求解过程中,将直线的方程与椭圆有两个交点,在求解过程中,将直线的方程与椭圆的方程联立,把得到的方程组转化为关于x 的一元二次方程后,需要由Δ>0这个条件来制约参数k ,t 之间的关系.3.求解圆锥曲线的综合问题时不会由目标去逆推条件典例3 (2020·广东惠州第一次调研)已知定点A (-3,0),B (3,0),直线AM ,BM ,相交于点M ,且它们的斜率之积为-19,记动点M 的轨迹为曲线C . (1)求曲线C 的方程.(2)过点T (1,0)的直线l 与曲线C 交于P ,Q 两点,是否存在定点S (s,0),使得直线SP 与SQ 斜率之积为定值,若存在求出S 坐标;若不存在请说明理由.【解析】 (1)设动点M (x ,y ),则k MA =y x +3,k MB =y x -3(x ≠±3), ∵k MA ·k MB =-19,即y x +3·y x -3=-19, 化简得:x 29+y 2=1(x ≠±3), 故曲线C 的方程为x 29+y 2=1(x ≠±3). (2)由已知直线l 过点T (1,0),设l 的方程为x =my +1, 则联立方程组⎩⎪⎨⎪⎧x =my +1x 2+9y 2=9, 消去x 得(m 2+9)y 2+2my -8=0.设P (x 1,y 1),Q (x 2,y 2), 则⎩⎪⎨⎪⎧ y 1+y 2=-2m m 2+9y 1y 2=-8m 2+9,直线SP 与SQ 斜率分别为k SP=y1x1-s=y1my1+1-s,k SQ=y2x2-s=y2my2+1-s,k SP·k SQ=y1y2(my1+1-s)(my2+1-s)=y1y2m2y1y2+m(1-s)(y1+y2)+(1-s)2=-8(s2-9)m2+9(1-s)2,当s=3时,k SP·k SQ=-89(1-s)2=-29,当s=-3时,k SP·k SQ=-89(1-s)2=-118,所以存在定点S(±3,0),使得直线SP与SQ斜率之积为定值.【剖析】本题属于圆锥曲线综合问题,其中第(2)问探究“是否存在异于点T的顶点S(s,0),使得直线SP与SQ的斜率之积为定值”,对于这类探索性问题,求解时很难把握求解方向,破解的关键是由目标去逆推条件,即假定目标“k SP·k SQ=-8(s2-9)m2+9(1-s)2的定值”,求出s的值,这种方法适用于解析几何中探索定点、定值问题的求解.。