大学物理高斯定理

合集下载

大学物理课件:磁场的高斯定理

大学物理课件:磁场的高斯定理

上页
下页
思考问题!!
求穿过旋转曲面的磁通量, 是否可以通过求穿过平面圆的
磁通量来求呢?
为什么?
BB
上页
下页
例1 在匀强磁场B中,有一半径为r的半球面S,S 边线所在平面的法线方向的单位矢量n和B的夹角为
,如图所示,则通过半球面S的磁通量为
-B r2cos
将半球面和圆面组成一个闭 合面,则由磁场的高斯定理知, 通过此闭合面的磁通量为零。
对闭合曲面来说,我们规定取向外的方向为法线的正方向。
这样:
磁力线穿入: 0 磁力线穿出: 0
上页
下页
二、.磁场的高斯定理
由于磁力线是闭合曲线,因此通过任一闭合曲 面磁通量的代数和(净通量)必为零,亦即
sB dS 0
——称为磁场的高斯定理。
在静电场中,由于自然界有单独存在的正、负电 荷,因此通过一闭合曲面的电通量可以不为零,这反 映了静电场是有源场。而在磁场中,磁力线的连续性 表明,像正、负电荷那样的磁单极是不存在的,磁场 是无源场。
3)磁力线不相交
上页
下页
2. 磁通量
磁场中,通过一给定曲面的磁力线数目,称为通过
该曲面的磁通量。
m
B dS
s
BdS cos
s
dS
B
在国际单位制中,磁通量的单位为韦伯(wb)。
说明
(1)对于有限曲面
B dS
dS
对于闭合曲面 SB dS
(2)磁通量是标量,其正负由角确定。与电场中一样,
磁场的高斯定理
一、.磁感应线 、磁通量
1.磁感应线(磁力线)
为了形线。
规定:1) 2)
大方小向::垂磁直力B线的磁切单感线位应方面强向积度为上B磁的穿感大过应小的强磁度力B线的条方数向为

大学物理 高斯定理

大学物理 高斯定理

第8章 静电场和稳恒电场
17
8-2 电通量 高斯定理
例8.6 均匀带电球面的电场强度 一半径为 R , 均匀带电 q 的球 求球面内外任意点的电场强度. 面 . 求球面内外任意点的电场强度
r
+ + 1+ + + +
S
O
v v ∫ E ⋅ dS = 0
S1
解(1) 0 < r < R )
r
R
+ + +
1 q d Φ e = E cos 0d S = dS 2 4π ε 0 r
qd S Φe = dΦe = ∫S ∫ S 4πε 0 r 2
=
=
r
+
v dS
q
4 πε 0r q
2

S
dS
ε0
Φ e 与r无关
第8章 静电场和稳恒电场
12
8-2 电通量 高斯定理
点电荷在任意闭合曲面内 点电荷在任意闭合曲面内
+ q 发出的 q / ε 0
条电力线不会中断, 条电力线不会中断,仍全 部穿出封闭曲面 S ,即:
+
Φe =
q
ε0
点电荷位于球面中心
Φe =
q
ε0
第8章 静电场和稳恒电场
13
8-2 电通量 高斯定理
点电荷在闭合曲面之外 点电荷在闭合曲面之外
r v d Φ1 = E 1 ⋅ d S 1 > 0 v v d Φ2 = E 2 ⋅ d S 2 < 0
6
8-2 电通量 高斯定理
带电平行板电容器的电力线 + + + + + + + + + + + +

大学物理 高斯定理

大学物理 高斯定理

引言概述:在大学物理中,高斯定理是一项重要的物理原理,它描述了电场和磁场的性质。

高斯定理由德国物理学家卡尔·弗里德里希·高斯于18世纪中叶提出,是电磁学的基础之一。

本文将介绍高斯定理的概念、原理及其在电场和磁场中的应用。

正文内容:1. 高斯定理的概念1.1 定义高斯定理是描述电场和磁场分布的一种数学工具,它通过计算电场或磁场通过一个闭合曲面(高斯面)的总通量来研究场的分布。

1.2 数学表达高斯定理可以用数学表达式表示为:∮E·dA = q/ε0,其中∮E·dA表示场在闭合曲面上的总通量,q表示闭合曲面内的电荷量,ε0为真空介电常数。

2. 高斯定理的原理2.1 高斯面的选择高斯定理中的高斯面是根据具体问题选择的,一般情况下我们选择对称性较高的闭合曲面,以简化计算。

2.2 电场线的特性高斯定理的基础是电场线的性质,电场线从正电荷流向负电荷,且与介质边界垂直,通过一个封闭曲面的电场线数目与该封闭曲面内的电荷量有关。

2.3 通量与电场强度高斯定理中的总通量与电场强度呈正相关关系,通过计算总通量可以得到闭合曲面内的电场强度大小。

3. 高斯定理在电场中的应用3.1 点电荷的场分布高斯定理可以用来研究点电荷周围的电场分布,通过选择以点电荷为中心的球面作为高斯面,可以计算出球面内外的电场强度大小。

3.2 均匀带电球壳的场分布对于均匀带电球壳,可以通过选择以球壳为中心的闭合曲面来计算球壳内外的电场分布,根据高斯定理可以得到球壳内外的电场强度大小。

4. 高斯定理在磁场中的应用4.1 磁场的总通量类似于电场,磁场也可以使用高斯定理来描述,通过计算磁场通过闭合曲面的总通量可以了解磁场的分布情况。

4.2 磁场的磁感应强度高斯定理在磁场中的应用可以得到磁场的磁感应强度大小,通过选择合适的闭合曲面,可以计算出曲面内外的磁感应强度。

5. 高斯定理的实际应用5.1 高斯定理在电容器中的应用电容器是电子器件中常见的元件,根据高斯定理,可以计算电容器两极板之间的电场强度,进而了解电容器的性能。

大学物理高斯定理公式

大学物理高斯定理公式

大学物理高斯定理公式大学物理中的高斯定理公式是一种关于电场和电流分布的基本定律。

高斯定理可以用于描述物体电场和电流分布,同时可以用于计算一般电场和电流分布情况下的电容量和电侵蚀率。

这里介绍几种常用的高斯定理公式。

一、单点电荷的高斯定理公式通常情况,单一的常规的静电场的电荷分布是具有点特征的,此时只需要考虑一个点电荷的作用,可以根据高斯定理,给出点电荷产生的电场的表达式:$$E(r)=\frac{q}{4\pi \epsilon_0 r^2}$$其中,$E$ 是点电荷$q$所产生的电场,$\epsilon_0$是空气介电常数,$r$是测量点相较于点电荷的距离。

二、多点电荷组合的高斯定理公式当考虑多点电荷时,就没有简单地表达式了,首先根据高斯定理,给出多点电荷产生的电场的概念的表达式:$$E(r, t)=\sum\limits_{i=1}^n \frac{q_i}{4\pi \epsilon_0 r_i^2}$$其中,$E(r,t)$是测量点相较于多点电荷源的电场强度,$q_i$表示第i个点电荷,$\epsilon_0$是空气介电常数,$r_i$是测量点和第i个点电荷的距离,n表示点电荷的数量。

有时,我们可以使用梯度运算来分析多点电荷组合作用下的电场,即:$$\nabla E(r, t)=\sum\limits_{i=1}^n \frac{q_i \cdot \nabla r_i}{4\pi\epsilon_0 r_i^3}$$三、静电场介电体上的高斯定理公式静电场介电体的电场分布可以根据高斯定理给出:$$E(r, t)=\sum\limits_{i=1}^n \frac{q_i \cdot \nabla r_i}{4\pi \epsilon(r)r_i^2}$$其中,$E(r,t)$是测量点相较于多点电荷源的介电体静电场强度,$q_i$表示第i个点电荷,$\epsilon(r)$是介电体在多点电荷源处的介电常数,$r_i$是测量点和第i个点电荷的距离,n表示点电荷的数量。

大学物理高斯定理

大学物理高斯定理


第11章 静电场
11-4 高斯定理
2 点电荷在任意形状的高斯面内 通过球面 S 的电场线也必通 过任意曲面S‘ ,即它们的电 通量相等。 为 q / o
S'
S +
q E Φ E d dS e e SS o
第11章 静电场
11-4 高斯定理
3 电荷q在闭合曲面以外
0
dV E d S 若电荷连续分布,则为 e: E d S s V
0
第11章 静电场
11-4 高斯定理
讨论
1 闭合面内、外电荷 对
S
E 都有贡献
对电通量 E dS 的贡献有差别
只有闭合面内的电量对电通量有贡献 2 静电场性质的基本方程
非匀强电场
E
dS
en
Φ dΦ S E dS
第11章 静电场
11-4 高斯定理
讨论
1
dΦ E dS 的正、负取决于面元的法线方向与
电场强度方向的关系
如图所示: 若面元法向相反:
E dS 0
E dS ' 0
E
dS
dS '
第11章 静电场
11-4 高斯定理
11-4 高斯定理
描述电场的两种方法:电力线和电通量。 11.4.1 电场线 1 曲线上各点的切线方向都与该点处的场强方向一致 2 电场线密度
EP
dN E dS
第11章 静电场
EQ
Q
P
dN
dS
11-4 高斯定理
电场线的性质: 电场线起自于正电荷或无穷远,止于负电荷或无穷 远 ,没有电荷处不中断。 对于静电场不可能出现单一绕向的闭合电力线。 两条电场线不会相交,不能相切。

大学物理电通量高斯定理

大学物理电通量高斯定理

高斯定理的应用范围
在静电场中,高斯定理广泛应用 于电荷分布和电场关系的分析。
在恒定磁场中,高斯定理可以用 来分析磁通量与电流之间的关系

高斯定理是解决物理问题的重要 工具之一,尤其在计算电场分布 、求解电势、分析带电体的相互
作用等方面具有广泛应用。
02
电通量和高斯定理的关系来自 电通量的定义和性质总结词
大学物理电通量高斯定理
汇报人: 202X-01-04
contents
目录
• 高斯定理的概述 • 电通量和高斯定理的关系 • 高斯定理的证明 • 高斯定理的应用实例
01
高斯定理的概述
高斯定理的内容
总结了电荷分布与电场之间的关系, 指出在空间中任一封闭曲面内的电荷 量与该封闭曲面上的电场通量之间存 在正比关系。
利用电场线证明高斯定理
总结词:直观明了
详细描述:通过电场线的闭合曲线围成的面积的电通量与该闭合曲线所包围的电荷量的关系,证明高 斯定理。
利用高斯公式证明高斯定理
总结词:数学严谨
详细描述:利用高斯公式,将空间分成无数小的体积元,再通过求和得到整个空间的电场分布,从而证明高斯定理。
利用微积分证明高斯定理
详细描述
高斯定理是描述电通量与电荷分布关系的定理,它指出在任意闭合曲面内的电荷量等于该闭合曲面所包围的体积 内电场线的总条数。这个定理表明,电荷分布与电场线数之间存在一定的关系,即电荷分布影响电场线的分布。
电通量和高斯定理的推导过程
总结词
通过数学推导,我们可以证明高斯定理的正确性。首先,我们定义电场线密度为电场强 度与垂直于曲面的面积之比,然后利用微积分原理和格林公式,推导出高斯定理的表达
公式表达为:∮E·dS = 4πkQ,其中 ∮E·dS表示封闭曲面上的电场通量,Q 表示曲面内的电荷量。

2.大学物理-高斯定理

2.大学物理-高斯定理
q1 q2
曲面上各点处电场强度: 曲面上各点处电场强度:
E = E1 + E2 + + En
S
所有电荷的贡献. 包括 S 内,S 外,所有电荷的贡献. 穿过 S 的电通量: 的电通量:
φe = ∫ E dS = ∫ E1 dS + ∫ E2 dS + + ∫ En dS
s
= φe1 + φe 2 + + φen =
r
ρ 均匀 r′ R oρ ρ 非均匀
S
dV = 4πr dr
2
r ≥ R: r ≤ R:
∑ q内 = ∫ ρ( r ) dV = q
0
R
∑ q内 = ∫ ρ( r ) dV = qr
0
r
ρ 均匀 ≠ ρ V ρ 非均匀 = ρ V ρ 均匀
= ρ V
≠ ρ Vr ρ 非均匀
r
[例二] 例二]
n = en
(各面元一致) 各面元一致)
开放面:双向,任指定一向为正. 开放面:双向,任指定一向为正. 封闭面:单向,已规定向外为正. 封闭面:单向,已规定向外为正. 向外为正
2.概念 流量为例 2.概念 以流量为例 面元的流量 (1)通过面元的流量: )通过面元的流量:
vdt

dS⊥ dS vn
λr E= 2πε0 R2
R
λL 2
讨论: 讨论:
1. 无限长均匀带电柱面的电场分布 对称性分析: 对称性分析:视 为无限长均匀带 电直线的集合; 电直线的集合; 选高斯面; 选高斯面;同轴 圆柱面
R
λ
o o
r
r
P
dE
由高斯定理计算

大学物理高斯定理课件

大学物理高斯定理课件

复分析
在复分析中,高斯定理可以用于研究复函数的积分和全纯函数的空间性质。
THANKS
感谢观看
微分情势和积分公式
高斯定理的推导过程中需要用到微分 情势和积分公式,这些是微分几何的 重要概念和工具。
03
高斯定理的证明
证明的思路
01
引入高斯定理的背 景和意义
阐述高斯定理在电场和磁场中的 重要性,说明证明高斯定理的必 要性。
02
确定证明方法
03
构建证明框架
介绍使用微积分和向量场的方法 来证明高斯定理,说明其公道性 和可行性。
01
多重积分情势
高斯定理可以通过多重积分的情势进行 推广,以处理更复杂的几何形状和场散 布。
02
03
广义高斯定理
广义高斯定理将高斯定理的应用范围 扩大到非保守场,例如电磁场和引力 场。
高斯定理在其他物理领域的应用
01
02
03
电动力学
高斯定理在电动力学中用 于计算电场和电荷散布的 关系,以及电磁波的传播 。
相对论物理
在相对论物理中,高斯定 理可以应用于计算引力场 的能量密度和压力。
粒子物理学
在粒子物理学中,高斯定 理可以用于计算粒子在强 磁场中的运动轨迹和能量 。
高斯定理在其他数学领域的应用
微积分学
高斯定理是微积分学中的重要概念,可以用于 解决一系列积分问题。
实分析
实分析中,高斯定理可用于研究函数的积分性 质和可积性。
04
高斯定理的应用实例
电场中的应用
计算电场散布
高斯定理可以用来计算给定电荷散布 的电场散布,特别是在处理点电荷、 均匀带电球体等简单电荷散布时,高 斯定理提供了简洁的解决方案。

大学物理高斯定理

大学物理高斯定理

大学物理高斯定理简介大学物理中,高斯定理(也称为电通量定理)是电学领域中的一个重要定理,它描述了电场通过一个封闭曲面的总电通量与该曲面内的电荷量之间的关系。

高斯定理的数学表达式是一个面积分,通过对电场和曲面的特性进行积分计算,我们可以计算得到相应的电通量。

定理表述高斯定理可以用数学公式表述如下:其中, - 表示对封闭曲面 S 的面积分; - 表示电场的向量;- 表示面元矢量; - 是真空中的介电常数(气体中也可近似使用该值); - 表示电荷密度在封闭曲面内的体积分。

解读根据高斯定理,电通量与环绕其的电荷量成正比。

如果电场线密集,表示电通量会相应增大,而如果电场线稀疏,表示电通量相应减少。

因此,高斯定理为我们提供了一种计算电场分布和电荷分布之间关系的方法。

高斯定理的背后思想是通过找到一个适当的曲面,使得计算曲面上的电场更加容易,从而求得电场的总电通量。

这个曲面可以是球面、柱面、立方体等等,具体选择曲面要与问题的几何特征和对称性相匹配。

应用举例例子1:均匀带电球考虑一个均匀带电球体,电荷密度为,半径为。

我们想通过高斯定理计算球内外的电场。

在这种情况下,由于球具有球对称性,我们选择一个以球心为中心的球面作为高斯曲面。

根据球对称性,球的电场在球面上处处相等,并且与球面的法线垂直。

因此,和在点积后等于,其中是球面上的电场强度。

曲面的面积元等于球的表面积元。

因此,高斯定理可简化为:等式的右边是整个球的表面积,用!表示。

由于电场是球对称的,且垂直于球面,所以电场与面积元相乘的结果在整个球面上是相等的。

由于曲面上的电场都是相等的,整个球面的面积元乘以电场强度后等于电场强度乘以整个球面的面积,所以可以简化为:解得:其中,为球内的总电荷量。

例子2:无限长均匀带电线考虑一个无限长均匀带电线,线密度为。

我们想通过高斯定理计算线外的电场。

在这种情况下,由于线具有柱对称性,我们选择一个以线为轴的柱面作为高斯曲面。

我们将柱面的两个底面分别设为 A 和 B,其中 A 的面积为,B 的面积为。

大学物理Ⅱ 高斯定理

大学物理Ⅱ 高斯定理

P
l
e
E dS S
E dS
侧 E dS 上底 E dS 下底 E dS
侧 EdS E 侧 dS E 2r l
根据高斯定理得 E 2r l 1 l 0
E 2 0 r
用高斯定理求场强小结:
1 . 对称性分析
电荷分布对称性→场强分布对称性
点电荷 球对称性 均匀带电球面
均匀带电球壳
球体
轴对称性 柱对称
无限带电直线
无限带电圆柱 无限圆柱面 无限同轴圆柱面
无限大平面 面对称性 无限大平板
若干无限大平面
2. 高斯面的选择
①高斯面必须通过所求的场强的点。
②高斯面上各点场强大小处处相等,方向处处与该 面元线平行;或者使一部分高斯面的法线与场强方 向垂直;或者使一部分场强为零。
+ q+ +
+
0
R
r
高斯定理的应用
例2 均匀带电球体的电场。球半径为R,带电为q。
解:电场分布也应有球对称性,方向沿径向。
作同心且半径为r的高斯面
1)r R时 ,
E ds E ds
E 4r2
s
s
r
q
0
4 r3
3
0
q
4 R3
4 r3330E qr4 0R3
R
高斯面
高斯定理的应用
Φe前 Φe后 Φe下
s
E
dS
0
y
P
N
en
o
zM
en
E
en
Q
Rx
Φe左
s左
E
dS
ES左
cosπ
ES左
Φe右 s右E dS ES右 cos ES左

《大学物理》高斯定理知识点

《大学物理》高斯定理知识点

(2)库仑定律只适用于静电场,高斯定理不 但适用于静电场, 对变化电场也是适用的。
第六章 静电场
6 - 2 高斯定理
四 高斯定理应用举例
面内例部1和外设部有任一意半点径的为电R场, 均强匀度带E 电。为Q
分析:
的球面。求球
E
解: r R q 0
R S1 Q
E d S E 4 r2 0 S E 0 (r R)
第六章 静电场
6 - 2 高斯定理
高斯定理的应用
能用高斯定理求解的静电场必须具有一定的对称性。 其步骤为
对称性分析:轴对称、面对称、球对称。
根据对称性选择合适的高斯面:
·高斯面上所有点的场强都相等;
·高斯面上的部分面上各点的场强都相等,另一 些面上场强与该面的法线相垂直;
应用高斯定理计算:
一般高斯面会分为几部分,要分别计算出各面上 的电通量;求出高斯面内包围的净电荷量;计算待求 电场强度。
拓展:若为一半径为R的均匀带电球体,所带电荷量为Q。 则其球内外的电场如何分布?
第六章 静电场
6 - 2 高斯定理
例2 设有一无限大的均匀带电平面,单位面积上所
带的电荷即电荷面密度为 。求距离该平面为 r 处某点
的电场强度。
分析:
E
E E
E
S
解:根据高斯定理
2ES S 0
第六章 静电场
E
e E cos dS E cos dS E cos dS
S
底面1
底面2
E cos dS 0 0 E 2 rl 2 Rl
侧面
0
l
所以场强:E R
令圆柱面每单位长度的电0r量为λ,则有λ =σ2πR・1。
则: 2R

大学物理静电场的高斯定理

大学物理静电场的高斯定理

高斯定理的数学表达形式简洁明了,是解决静电场问题的重要
03
工具。
高斯定理在物理中的重要性
高斯定理在物理学中具有广泛 的应用,不仅限于静电场。
它可用于分析恒定磁场、时 变电磁场以及相对论性电磁
场中的问题。
高斯定理是电磁学理论体系中 的重要基石,对于深入理解电 磁场的本质和规律具有不可替
代的作用。
THANKS FOR WATCHING
高斯定理的重要性
总结词
高斯定理是静电场理论中的基本定理之一,它揭示了电场与电荷之间的内在联 系。
详细描述
高斯定理的重要性在于它提供了一种计算电场分布的方法,特别是对于电荷分 布未知的情况。同时,它也揭示了电场线总是从正电荷出发,终止于负电荷, 或者穿过不带电的区域。
高斯定理的历史背景
总结词
高斯定理的发现和证明经历了漫长而曲折的历史过程。
VS
按空间位置分类
静电场可分为点电荷产生的电场、线电荷 产生的电场、面电荷产生的电场等类型。 这些不同类型的电场具有不同的分布规律 和性质。
05
高斯定理的推导过程
利用高斯定理推导电场强度与电通量的关系
总结词
通过高斯定理,我们可以推导出电场强度与 电通量之间的关系,即电场线穿过任意闭合 曲面的电通量等于该闭合曲面所包围的电荷 量与真空电容率的乘积。
静电场的电场强度与电势具有相对独立性
电场强度与电势之间没有直接关系,改变电场中某点的电势,不会影响该点的电场强度。
静电场的分类
按产生方式分类
静电场可分为感应起电和接触起电两种 方式。感应起电是由于带电体在接近导 体时,导体内部电荷重新分布而产生电 场;接触起电是两个不同物体相互接触 时,由于电子的转移而产生电场。

大学物理高斯定理

大学物理高斯定理
磁高斯定理、安培环路定理
14-3-1 磁通量
(Magnetic Flux)
1. 叠加原理
(1)磁场的源-------运动的电荷或电流
(2)叠加原理
2. 磁感应线( 线)
在磁场中画出一簇曲线,每一条曲线上的每一点的切向就是该点磁感应强度的方向。
感谢观赏
添加副标题
演讲人姓名
202X.00.00
单层、密绕
多层?
不密绕?
4、载流螺绕环
I(current), R (radius) , N (total number of turns)
(a toroid with current)
(Single layer; closed-packed)
(1) Condition: 单层、密绕 且R>> d=R2- R1
.
.
.
.
.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
N, L
I
定义:匝数密度
(Density of number of turns)
(1)条件: 单层、密绕, 忽略边缘效应
(a solenoid with current)
(2) Solution: 理想密绕螺线管,管内的磁场是均匀的,管外的磁场为 0 ;
⑤ 与所有的电流有关!
⑥ 别忘μ0!
⑦ 阐明磁场的性质:
磁场是有旋场!
⑧ 比较
Electric Field
Magnetic Field

大学物理——高斯定理

大学物理——高斯定理

(2) 电通量是代数量
0θ 2
θ 2
de de
为正 为负
5
三、高斯定理
K.F.Gauss——德国物理学家、数学家、天文学家
定理:真空中的静电场内,通过任意封闭曲面的
电通量等于曲面内所包围的电荷电量的代数和除
以真空介电常数。
e
E dS
S
1
0
Qi
分立
高斯
1
0
dQ
连续
说明:对 有贡献的仅是面内电荷 e E 面上各点的 却是在场的全部电荷的贡献
7
高斯定律的用途:
当电荷分布具有某种对称性时,可用高斯定律求 出该电荷系统的电场的分布。比用库仑定律简便。
当已知场强分布时,可用高斯定律求出任一区域 的电荷、电位分布。 开文迪许就是用高斯定律来证明库仑定律的平方 反比关系。这说明它们不是相互独立的定律,而 是用不同形式表示的电场与场源电荷关系的同一 客观规律。
18
上节回顾 1、 电场力的功 2、静电场的环路定理
L E dl 0
3. 电势的计算
A
qq0
4
0
1 r1
1 r2
dq
V
Q 4 0r
1
4-3 高斯定理
一、电场线(电力线)
1.画法要求:电场中假想的曲线 2.几种电场的电场线:
疏密——表征场强的大小(穿 过单位垂直截面的电场线数= 附近的场强大小) E N
12
例4. 求均匀带电圆柱面的电场分布。 已知沿轴线方向单位长度带电量为,半径为R
解:场具有轴对称 高斯面:圆柱面
(1) r <R
e E dS E dS E dS E dS
s
上底

大学物理-电通量--高斯定理

大学物理-电通量--高斯定理

Φe
q
0
点电荷在闭合曲面之外
只有与闭合曲面S相切的锥 体范围内的电力线才通过闭
合曲面S,每一条电力线从
某处穿入必从另一处穿出, q
一进一出正负抵消,总电通 +
量为零.
rrq
Ñ E dS 0
仍成立
14
S
E
多个点电荷的情况
vv
nv v
Ñ Ñ Φe
E dS
S
(
S
Ei ) dS
i 1
v nv
外侧. 因此,从曲面上
穿出的电力线,电通量
为正值;穿入曲面的电
力线,电通量为负值。
9
r
r
例:一电场强度为 E 的均匀电场 ,E 的方向与x轴正方
向平行,则通过图中一半径为R的半球面的电通量为 D
A、πR2E
B、πR2E/ 2
C、2πR2E
O
x
D、0
B
10
三 高斯定理
通过真空中的静电场中任一闭合面的电通量 Φe
例8.6 均匀带电球面的电场强度
一半径为 R, 均匀带电+ q 的球
面 . 求球面内外任意点的电场强度.
解:电荷分布具有球对称性,所以 空间场强分布为球对称性,即
+ +S1+
r +
+O
+ +
+R +
+++
与球心距离相等的球面各点
场强大小相等,方向沿半径
呈辐射状。
取过场点P的同心球面为高斯面,半径为r
均匀电场 ,E 垂直平面
Φe ES
均匀电场 ,E 与平面法线 夹角为

大学物理之高斯定理

大学物理之高斯定理
• 2、(静电场中)电场线不是闭合曲线,在静电场中,电场线起 始于正电荷(或无穷远处),终止于负电荷(或无穷远处),不 形成闭合曲线。
• 3、电场线的每一点的切线方向都跟该点的场强方向一致。 • 4、电场线的疏密与电场强弱的关系:电场线的疏密程度与场强
大小有关,电场线密处电场强,电场线疏处电场弱。 • 5、电场线在空间不相交、不相切、不闭合。
(2)电当当通0θ量><θ2是< 时代2 ,数时量, e<:0。e e>0;E S COS E S
三、高斯定理
1、高斯定理定义
• 定义:在真空中的任意静电场中,通过任一闭合曲
面S的电通量Φe,等于该闭合曲面所包围电荷电量
的代数和除以 0,而与闭合曲面(高斯面)外的
电荷无关。

其数学表达式为 e
的电荷无关。
---高斯定理

数学表达式为 e
E dS
s
1
0
qi
3、关于高斯定律的注意点
(1)关于闭合曲线的说明
通过球面的电通量与球面半径无关,即以点电荷q 为中心的任一球面,不论半径大小如何,通过球面的电 通量都相等。
若q不位于球面中心,电通量不变。 若封闭面不是球面,电通量不变。
(2)电通量:穿出为正,穿进为负。
s
E dS
1
0
qi
• 注意: E是高斯面上任一点的电场强度,该E与所 有产生电场的场源有关。
2、高斯定理的验证---以点电荷为例
• 已知 E q ------q为场源点电荷的带电量
4 0r 2
• (1) q位于闭合球面S的中心
dSn
e
E dS
S
q dS

大学物理-高斯定理

大学物理-高斯定理
复习 库仑定律
电场强度的计算
F
1
4 0
q1q2 r2
r0
电场强度
E
F
q0
(1) 点电荷的场强
E
1 4πε0
q r2
r0
(2) 场强叠加原理
E E1 E2 En
(3) 电荷连续分布的 带电体的电场
电 荷
E dE
dq
r
(q)
(q) 4 0r 3
分 布
dq ρdV (体 分 布) dq σdS (面 分 布) dq λdl (线 分 布)
q2 A P*
s
q2 B
q1
在点电荷 和q 的q静电场中,做如下的三个闭合面
求通过各闭合S面1 ,的S电2 ,通S量3。,
Φe1
E dS
q
S1
0
Φe2 0
Φe3
q
0
q
q
S1
S2
S3
例:一点电荷位于边长为 a 的立方体的顶角上, 求:通过该立方体表面总的电通量。
解: 顶角所在的三个面上的通量为零。 其余三个面上直接计算困难
(3) 天文学和大地测量学中:如小行星轨道的计算,地球大 小和形状的理论研究等。统计 理论和误差理论,发明了最小二乘法,引入高斯误差曲线。
(5) 高斯还创立了电磁量的绝对单位制。
一、电通量 1、电场线 ( Electric Field Line ) (电场的几何描述)
E
n
dS
E
S E cos dS
Φe
E dS
S
为通过 S 面的电通量。
dS 有两个法线方向,dφ 可正可负。
S为封闭曲面
规定:闭合面上各面元的外法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

球对称分布:包括 均匀带电的球面, 球体和多层同心球 壳等
轴对称分布:包 括无限长均匀带 电的直线,圆柱 面大,学物圆理高柱斯壳定理等;
无限大平面电荷: 包括无限大的均 匀带电平面,平 板等。
步骤:
1.进行对称性分析,即由电荷分布的对称性,分 析场强分布的对称性,判断能否用高斯定理来求 电场强度的分布(常见的对称性有球对称性、轴 对称性、面对称性等); 2.根据场强分布的特点,作适当的高斯面,要求:
静电场的性质与计算 6-3 电场线 高斯定理
大学物理高斯定理
6-3 电场线 高斯定理
一、电场线
1、定义
在电场中画一组带箭头的曲线,
这些曲线与电场强度 E 之间具有
E
以下关系:
①电场线上任一点的切线方向给出了该点电场 强度的方向;
②某点处电场线密度与该点电场强度的大小相 等。
大学物理高斯定理
电场线密度:经过电场中任一点, 作一面积元dS,并使它与该点的 场强垂直,若通过dS面的电场线 条数为dN,则电场线密度
大学物理高斯定理
高斯定理的应用
例1. 求球面半径为R,带电为q的均匀带电球面的电场的
空间分布。
解: 电场分布也应有球对称性,方向沿径向。
作同心且半径为r的高斯面.
S E dS
E 4r2
q
0
q
E 40 r 2
+ +
+ +
+
R
+
r
+q + +
+
rR时,高斯面无电荷,
E=0
+
+
+++ +
大学物理高斯定理
对于包围点电荷q的任意封闭曲面
可在外或内作一以点电荷为中 心的同心球面 S ,使 S 内只有点 电荷,如图所示。
由电场线的连续性可知,穿 过 S的电场线都穿过同心球 面 S ,故两者的电通量相等, 均为 q ε 0 。
结论说明,单个点电荷包围 在任意闭合曲面内时,穿过 该闭曲面的电通量与该点电 荷在闭曲面内的位置无关。
•非闭合曲面: 电通量的结果可正可负,完全取决于 面元 与d S 间的E 夹角 :
2时 , e0 2时 , e0
•闭合曲面:规定取外法线方向 (自内向外) 为正。因此有: 电场线由内向外穿出: e 0,为正 电场线由外向内穿入: e 0,为负
整个闭合曲面的电通量为
en
en
en
E
e=SEdS 大学物理高斯定理
E= dN dS
可见,电场线密集处电场强度大,电场线稀疏处电 场强度小
大学物理高斯定理
2、几种典型的电场线分布 负点电荷
正点电荷
+
+
大学物理高斯定理
等量异号点电荷
+2q q
++ ++ + + + + +
不等量异号点电荷的电场线 带电平行板电容器的电场
大学物理高斯定理
3、电场线的性质 •电场线总是起始于正电荷(或来自于无穷远), 终止于负电荷(或终止于无穷远) •任何两条电场线都不能相交。 •非闭合曲线
三、高斯定理
高斯简介
1、内容
静电场中通过一个任意闭合曲面的电通量值等于该
曲面所包围的所有电荷电量的代数和 q i 除以 ε0 ,
与闭曲面外的电荷无关.
1
数学表达式: e SEdS0 i qi
2、静电场高斯定理的验证 ①包围点电荷的同心球面S的电通量都等于 q ε 0 ②包围点电荷的任意闭合曲面S的电通量都等于q ε 0
①待求场强的场点应在此高斯面上,
②穿过该高斯面的电通量容易计算。
一般地,高斯面各面元的法线矢量n与E平行或垂直, n与E平行时,E的大小要求处处相等,使得E能提到 积分号外面;
3.计算电通量和高斯面内所包围的电荷的代数和, 最后由高斯定理求出场强。
大学物理高斯定理
高斯定理的应用
高斯定理的应用举例
条件: 电荷分布具有较高的空间对称性 1. 均匀带电球面的电场 2. 均匀带电球体的电场 3. 均匀带电无限大平面的电场 4.均匀带电无限长直线的电场 5. 均匀带电无限长圆柱面的电场 6. 均匀带电球体空腔部分的电场
e=ES
E与平面S 有夹角θ时
引入面积矢量
SSen
e=EScos
Φ=E S e
大学物理高斯定理
E
en
S
S
(2)非均匀电场的电通量
面元dS d eEdS
e EdS
S
n
dS
E
S
将曲面分割为无限多个面元 d S, ,
大学物理高斯定理
2、电通量的正负
4、关于电场线的几点说明 •电场线是人为画出的,在实际电场中并不存在; •电场线可以形象地、直观地表现电场的总体情况; •电场线图形可以用实验演示出来。
大学物理高斯定理
二、电场强度通量
1、定义 在电场中穿过任意曲面的电场线的总条数称 为穿过该面的电通量,用 e 表示。
(1)匀强电场中的电通量
E与平面S垂直时
同时面外也有多个电荷qk+1-qn 利用场强叠加原理
n
E = E 大学物理i 高斯定理 i1
S
q k1 q k2
q2
q
q1
k
qn
通过闭合曲面S的电通量为
n
e=SEdSSEi dS i1
根据③,不包围在闭合曲面内的点电荷对闭合曲 面的电通量恒为0,所以
k
e
i1
k
SEi dS
qi
i1 0
当把上述点电荷换成连续带电体时
S 大学物理高斯定理
S
q •
S
电场线
S'
q+
r
③不包围点电荷q的任意闭合曲面S的电通量恒为零.
由于电场线的连续性可知,穿 入与穿出任一闭合曲面的电通 量应该相等。所以当闭合曲面 无电荷时,电通量为零。
q
④点电荷系的电通量等于在高斯 面内的点电荷单独存在时电通量 的代数和。
设 闭合曲面S包围多个电荷q1-qk,
•高斯定理中的电场强度是封闭曲面内和曲面外的电荷共同产
生的,并非只有曲面内的电荷确定;
•当闭合曲面上各点 E =时0,通过闭合曲面的电通量
不一定成立.
反之e , 0
•高斯定理中所说的闭合曲面,通常称为高斯面。
大学物理电高斯通定理量计算
四、高斯定律应用举例
当场强分布具有某种特殊的对称性时,应用高斯定 理能比较方便求出场强。求解的关键是选取适当的 高斯面。常见的具有对称性分布的源电荷有:
e
E
dS
dq
0
大学物理高斯定理
3、关于高斯定理的说明
•高斯定理是反映静电场性质(有源性)的一条基本定理; •高斯定理是在库仑定律的基础上得出的,但它的应用范围比 库仑定律更为广泛;
•通过任意闭合曲面的总通量只取决于面内电荷的代数和,而
与面外电荷无关,也与电荷如何分布无关.但电荷的空间分布
会影响闭合面上各点处的场强大小和方向;
相关文档
最新文档