mos讲义管有源电阻和无源器件

合集下载

二章MOS器件物理基础共45页

二章MOS器件物理基础共45页

线性区,Vgs >VTH VDS< Vgs - VTH
ID=nC 2o L xW(VGS-VTH)2
饱和区,Vgs >VTH VDS >Vgs - VTH
MOS管饱和的判断条件
d
g
g
d
NMOS饱和条件:Vgs>VTN;Vd≥Vg-VTHN PMOS饱和条件: Vgs<VTP ;Vd≤Vg+| VTP | 判断MOS管是否工作在饱和区时,不必考虑Vs
1.MOSFET的基本结构
MOS管所有pn结必须反偏: *N-SUB必须接最高电位VDD! *P-SUB必须接最低电位VSS! *阱中MOSFET衬底常接源极S
2.MOS的阈值电压
NMOS器件的阈值电压VTH
(a)栅压控制的MOSFET (c)反型的开始
(b)耗尽区的形成 (d)反型层的形成
NMOS管VGS>VT、VDS=0时的示意图
Qd(x)接近于0,即反 型层将在X≤L处终止 ,沟道被夹断。
V 'D SV G SV TH(Pi no)cffh
IDnC oW x (VG SVT)H 2
2L
NMOS管的电流公式
ID 0 截至区,Vgs<VTH
ID=n C 2o L xW [2(V G S-V T H )V D S-V D S2]
Q d=W Cox(VG S-VTH)
Q d (x )= W C o x (V G S -V (x )-V T H )
Qd:沟道电荷密度
Cox:单位面积栅电容
WCox:MOSFET单位长度的总电容 Qd(x):沿沟道点x处的电荷密度 V(x):沟道x点处的电势 V(x)|x=0=0, V(x)|x=L=VDS

MOS管学习简介

MOS管学习简介

(4)转移特征 漏源电压Vds一定旳条件下,栅源电压Vgs对漏极电流id旳控制特征。
可根据输出特征曲线作出移特征曲线。 例:作Vds =10V旳一条转移特征曲线
i D (mA)
4 3
2 1
uGS=6V
uGS =5V uGS =4V uGS=3V
10V
i D (mA)
4
3
2
1
u
DS
(V)
UT
2 46
开关管导通时,驱动电路应能提供足够大旳充电电流使栅源电压上升 到需要值,确保开关管迅速开通且不存在上升沿旳高频震荡。
开关管导通期间驱动电路能确保MOSFET栅源间电压保持稳定使其可 靠导通。
关断瞬间驱动电路能提供一种低阻抗通路供MOSFET栅源间电压迅速 泻放,确保开关管能迅速关断。
关断期间驱动电路能够提供一定旳负电压防止受到干扰产生误导通。 驱动电路构造尽量简朴,最佳有隔离 。
形成导电沟道,MOS管处于截止状态。
N+
N+
(2) Vgs≥ VGS(th) ,出现N沟道
栅源之间加正向电压 由栅极指向P型衬 底旳电场 将接近栅极下方旳空穴向下排 斥 形成耗尽层
再增长Vgs 纵向电场
P衬底
b
将P区少子(电子)汇集到P区表面
形成源漏极间旳N型导电沟道 假如此时加有漏源电压,就能够形成漏 极电流id
Qgs:栅源充电电量。
Qgd:栅漏充电电量。
Ciss:输入电容,将漏源短接,用交流信号测得旳栅极和源极之间旳电容 。Ciss= CGD + CGS 。对器件旳开启和关断延时有直接旳影响。
Coss:输出电容,将栅源短接,用交流信号测得旳漏极和源极之间旳电容 。Coss = CDS +CGD 。

《mos管工作原理》ppt课件

《mos管工作原理》ppt课件
电路符号
用一个箭头表示一个mos管,箭头的一端是源极(s),另一端是漏极(d) ,中间是控制极(g)。
Mos管的开关原理
导通状态
当在控制极上加正电压时,氧化层下方的半导体层中的电子被排斥,形成一条从 源极到漏极的导电通道,电流可以通过这个通道流动。
关断状态
当在控制极上加负电压时,氧化层下方的半导体层中的电子被吸引,导电通道被 切断,电流无法通过。
《Mos管工作原理》ppt课件
2023-10-27
contents
目录
• Mos管简介 • Mos管的结构与原理 • Mos管的特性与参数 • Mos管的驱动与控制 • Mos管的应用实例 • Mos管的未来发展与趋势 • 总结与展望
01
Mos管简介
Mos管的概念
Mos管是金属氧化物半导体管的缩写,是一种具有极高开关 速度和低功耗的半导体器件。
Mos管在马达驱动中的应用
1 2
直流马达驱动
Mos管在直流马达驱动中作为开关器件,通过 控制电流的方向和大小来驱动马达运转。
步进马达驱动
步进马达驱动中,Mos管作为开关器件,控制 电流的方向和大小来驱动马达运转。
3
伺服马达驱动
伺服马达驱动中,Mos管作为开关器件,控制 电流的方向和大小来驱动马达运转。
集成元件控制电路
02
使用集成元件(如运算放大器、比较器等)构成开关控制电路

数字信号控制电路
03
使用数字信号(如TTL、CMOS等)构成开关控制电路。
Mos管的保护电路
过电压保护电路
当Mos管承受过电压时,保护电路可以保护Mos管不被损坏。
过电流保护电路
当Mos管承受过电流时,保护电路可以保护Mos管不被损坏。

有源光器件和无源光器件课件

有源光器件和无源光器件课件

e2[g()]LR1R21
2、活性介质只能在很小的波长范围内提供增益( λ<hc/E)。谐振器和活性介 质共同作用的结果,只有几个落在增益曲线内的谐振波长才能被激射。
P peak
有源光器件和无源光器件
λ (nm)
相邻两个纵模的间隔λN –λN+1 ≈ λ2/2 n L
当谐振器的L=0.4mm, n=1,工作在λ= 1300 nm 附近时,计算出λN –λN+1≈ 2.1 nm ,假设 增益曲线的线宽等于7nm,则这种活性介质可支持3个纵模。
Ep =hν( 3.1.3-1 )
h是普朗克常数(h=6.626 ×10-34 J • S),而ν是光子的频率。
原子从高能级→低能级,对应于光子的辐射;原子从低能级→高能级,对应于光子的吸收。
有源光器件和无源光器件
3.1.3 自发辐射 受激辐射和受激吸收
3.1.4 .1 自发辐射(spontaneous radiation)
即若 E2 > E 1,则两能级上的原子数目之比
N2
E2E1
e kT
1
N2
N1
k=1.38×10-23J/K
N1
为玻耳兹曼常量
有源光器件和无源光器件
粒子数反转(N2 >N1)是实现激光放大的必要条件。
N2
N1
为了实现粒子数反转,就需要大量电子跃迁到导带,为此,需要泵浦为跃迁提 供能量。 此外,还需要亚稳态能级使激发的电子保持一段时间,形成粒子数反转。
3.1.1 玻尔的能级假说
能量最低的原子能级称为基态能级,其它能量较高的原子能级 称为激发态能级。
h E2 E1
h =6.6261×10-34 Js

无源器件和有源器件概念及常见分类技术

无源器件和有源器件概念及常见分类技术

无源器件和有源器件概念及常见分类天缘博客有硬件应用这个栏目,但是很少有硬件知识总结,今天再来一篇,不知道天缘网友有多少做过硬件设计的,当然了硬件里还分数字和模拟,在大公司里还要细分,比如模拟还分高低频、前端后端模块、布板等,数字还分DSP、逻辑CPLD等等,实际上硬件比软件更有意思,对硬件感兴趣的网友可以看看,天缘博客今后一段时间仍会以系统、软件应用为重点,穿插一些硬件基础文章,必要的时候,也会跟网友一同关注硬件设计。天缘之前写过一篇关于dB知识的文章《dB、dBm、dBc、dBi、dBd 单位的区别与比较》,本文似乎算是第二篇纯硬件类,从整体上介绍一下硬件器件的常见分类:有源和无源知识。一、无源器件和有源器件概念无源器件(Passive Device)是指工作时不需要外部能量源(Source Energy)的器件。有源器件(Active Device)则是指工作时需要外部能量源(Source Energy)的器件,该器件有个输出,并且是输入信号的一个函数。备注:1、有源器件和无源器件都是翻译名称,实际上从英文名称更好理解,Active表示活跃、主动、可变之意,而Passive器件则有被动、消极等意思。2、以上说的能量源并不只是指电源,也可能指光、波等,都是天缘根据自己理解下的定义,跟网上的一些说法可能有所出入。二、常见有源器件分立器件:LED二极管(LED)、三极管(Transistor)、场效应管(Field Effective Transistor,FET)、可控硅(SCR)等。模拟集成电路:模拟乘法器(Analog multiplier)、模拟除法器(Analog divider)、模拟开关(Analog Switches)、比较器(Comparator)、控制电源(Controlled Power)、指数放大器(Index Amplifier)、集成运放(Integrated Operational Amplifier)、对数放大器(Logarithmic Amplifier)、稳压器(Regulators)、功率放大器(Power Amplifier,PA)、锁相环(Phase Lock Loop,PLL)、发射器(Transmitter)、波形发生器(Waveform Generator)等。数字集成电路:编码器(Encoder)、比较器(Comparator)、计数器(Counter)、译码器(Decoder)、驱动器(Driver)、逻辑门(Logic Gate)、触发器(Trigger)、寄存器(Register)、可编程逻辑器件(PLD)、单片机(Single-Chip Microcomputer ,SCM)、DSP(Digital Signal Processor,DSP)等。三、常见无源器件电路器件:蜂鸣器(Buzzer)、电容(Capacitor)、理想二极管(Diode)、电阻器(Resistor)、电感(Inductor)、按键(Key)、无源滤波器(Passive Filter)、排阻(Resistor Arrays)、继电器(Relay)、变压器(Transformer)、扬声器(Speaker)、开关(Switch)等。连接器件:连接器(Connector)、电线电缆(Wire)、光纤(Optical Fiber)、印刷电路板(PCB)、插座(Socket)等。四、补充微波类有源和无源器件微波有源器件有:低噪放、移相器、混频器、倍频器、有源滤波器等。微波无源器件有:隔离器、双工器、环行器、耦合器、滤波器、避雷器、功分器、合路器、功率负载等。——由于职业、专业关系,光器件类除了普通的收发模块和单多模光纤、传输距离等几个概念,其它的暂时了解不多,如幸遇到光学专业的网友欢迎赐教。。

mos管的单元放大电路 辅导讲义

mos管的单元放大电路  辅导讲义
图1.12使用电容负载的源极跟随器
2.交流通路和小信号等效电路
图1.13电容负载源极跟随器交流小信号等效电路图
1.3.2单级共漏放大电路的主要关系式和参数
1.输出电压与输入电压之间的关系(说明详细推导过程,画出二者之间的关系曲线并进行分析);
电路的直流传输特性曲线如图1.14所示。当输入电压很低时,M1管关断,偏置电流为0,输出电平也为0.当M1栅极电压上升,M2进入线性区,偏置电流快速增大。当M1和M2都进人饱和区后,随着M1栅极电平的上升,因为漏极电流基本不变,所以M1源极电平跟着上升,这就是电压跟随效应。由于M2管的输出阻抗有限,所以即使在饱和区,漏极电流ID也将随My管栅极电压的上升而有所增加。而M1管的背栅效应将起到和M2管的沟道长度调制效应相反的作用,在M1管栅极电压上升时,使漏极电流下降。总的来说,由于两种效应的存在,使得源极跟随器的直流电压跟随效果受到影响。而且为了使两个MOS管都工作在饱和区,电路输入和输出直流电平的幅度范围都有一定的限制。
1.2.2单级共栅放大电路的主要关系式和参数8
1.3单级共漏放大电路11
1.3.1单级共漏放大电路组成和原理11
1.3.2单级共漏放大电路的主要关系式和参数12
2其它形式的MOS管放大电路14
2.1源极反馈的共源放大电路14
2.1.1电路组成和原理14
2.1.2主要关系式和参数15
2.1.3源极反馈的共源放大电路的特点和应用18
源极跟随器的电路图如图1.12所示,其中NMOS管M1是输入管,信号从栅极输入,从源极输出,漏极是公共交流地,所以也叫做共漏放大器。在使用P衬底的MOS工艺中,所有NMOS管的衬底都接在最低电位。所以源极跟随器的衬底电位低于源极的电位,将会出现背栅效应。M1管源极下的M2管作为电流源,为M1提供一直流电流通路。

通俗易懂讲解MOS管

通俗易懂讲解MOS管

通俗易懂讲解MOS管什么是MOS管?MOS管的英文全称叫MOSFET(Metal Oxide Semiconductor Field Effect Transistor),即金属氧化物半导体型场效应管,属于场效应管中的绝缘栅型。

因此,MOS管有时被称为绝缘栅场效应管。

在一般电子电路中,MOS管通常被用于放大电路或开关电路。

1、MOS管的构造在一块掺杂浓度较低的P型半导体硅衬底上,用半导体光刻、扩散工艺制作两个高掺杂浓度的N+区,并用金属铝引出两个电极,分别作为漏极D和源极S。

然后在漏极和源极之间的P型半导体表面复盖一层很薄的二氧化硅(Si02)绝缘层膜,在再这个绝缘层膜上装上一个铝电极,作为栅极G。

这就构成了一个N沟道(NPN型)增强型MOS管。

显然它的栅极和其它电极间是绝缘的。

图1-1所示 A 、B分别是它的结构图和代表符号。

同样用上述相同的方法在一块掺杂浓度较低的N型半导体硅衬底上,用半导体光刻、扩散工艺制作两个高掺杂浓度的P+区,及上述相同的栅极制作过程,就制成为一个P沟道(PNP型)增强型MOS 管。

下图所示分别是N沟道和P沟道MOS管道结构图和代表符号。

2、MOS管的工作原理增强型MOS管的漏极D和源极S之间有两个背靠背的PN结。

当栅-源电压VGS=0时,即使加上漏-源电压VDS,总有一个PN结处于反偏状态,漏-源极间没有导电沟道(没有电流流过),所以这时漏极电流ID=0。

此时若在栅-源极间加上正向电压,即VGS>0,则栅极和硅衬底之间的SiO2绝缘层中便产生一个栅极指向P型硅衬底的电场,由于氧化物层是绝缘的,栅极所加电压VGS无法形成电流,氧化物层的两边就形成了一个电容,VGS等效是对这个电容充电,并形成一个电场,随着VGS逐渐升高,受栅极正电压的吸引,在这个电容的另一边就聚集大量的电子并形成了一个从漏极到源极的N型导电沟道,当VGS大于管子的开启电压VT(一般约为 2V)时,N沟道管开始导通,形成漏极电流ID,我们把开始形成沟道时的栅-源极电压称为开启电压,一般用VT表示。

MOS管介绍概要PPT课件

MOS管介绍概要PPT课件

预夹断点开始, ID基本不随VDS
极电流。
增加而变化。
.
18
增强型MOSFET的工作原理
.
19
MOSFET的特性曲线
1.漏极输出特性曲线
V V V
DS
GS T
.
20
2.转移特性曲线— VGS对ID的控制特性
ID=f(VGS)VDS=常数 转移特性曲线的斜 率 gm 的大小反映了栅 源电压对漏极电流的控 制作用。 其量纲为 mA/V,称gm为跨导。
VGD=VGS-VDS,比源端耗尽 层所受的反偏电压VGS 大,(如:VGS=-2V, VDS =3V, VP=-9V,则漏端耗尽层受反 偏当V电DS压继续为增-5加V时,,源预端夹耗断尽点向层
受源极反方偏向电伸压长为为预-2夹V断),使区靠。由近于
漏预夹端断的区耗电尽阻层很比大,源使端主厚要,VD沟S 道降落比在源该端区窄,,由此故产VD生S对的强沟电道场
用途:做无触点的、 接通状态的电子开关。
条件:整个沟道都夹断
V V
GS
P
击穿区
当漏源电压增大到
V V 时,漏端PN结
DS
(BR)DS
发生雪崩击穿,使iD 剧增的区域。其值一般为
(20— 50)V之间。由于VGD=VGS-VDS, 故vGS越负,
对应的VP就越小。管子不能在. 击穿区工作。
9
i ②转移特性曲线 Df(VGS)VDSC
输入电压VGS对输出漏极电流ID的控制
iD / v G Q S d D /d iG Q v S g m m s
.
10
结型场效应管的特性小结
N 沟 道 耗
结尽 型型

效P 应沟 管道

有源和无源的区别

有源和无源的区别

1).简单地讲就是需能(电)源的器件叫有源器件,无需能(电)源的器件就是无源器件。

有源器件一般用来信号放大、变换等,无源器件用来进行信号传输,或者通过方向性进行“信号放大”。

容、阻、感都是无源器件,IC、模块等都是有源器件。

(通俗的说就是需要电源才能显示其特性的就是有源元件,如三极管。

而不用电源就能显示其特性的就叫无源元件)2.)1. 无源器件的简单定义如果电子元器件工作时,其部没有任何形式的电源,则这种器件叫做无源器件。

从电路性质上看,无源器件有两个基本特点:(1)自身或消耗电能,或把电能转变为不同形式的其他能量。

(2)只需输入信号,不需要外加电源就能正常工作。

2. 有源器件的基本定义如果电子元器件工作时,其部有电源存在,则这种器件叫做有源器件。

从电路性质上看,有源器件有两个基本特点:(1)自身也消耗电能。

(2)除了输入信号外,还必须要有外加电源才可以正常工作。

由此可知,有源器件和无源器件对电路的工作条件要求、工作方式完全不同,这在电子技术的学习过程中必须十分注意。

一.常见的无源电子器件电子系统中的无源器件可以按照所担当的电路功能分为电路类器件、连接类器件。

1.电路类器件(1)二极管(diode)(2)电阻器(resistor)(3)电阻排(resistor network)(4)电容器(capacitor)(5)电感(inductor)(6)变压器(transformer)(7)继电器(relay)(8)按键(key)(9)蜂鸣器、喇叭(speaker)(10)开关(switch)2.连接类器件(1)连接器(connector)(2)插座(shoket)(3)连接电缆(line)(4)印刷电路板(pcb)二.常见的有源电子器件有源器件是电子电路的主要器件,从物理结构、电路功能和工程参数上,有源器件可以分为分立器件和集成电路两大类。

1.分立器件(1)双极型晶体三极管(bipolar transistor),一般简称三极管,bjt(2)场效应晶体管(field effective transistor)(3)晶闸管(thyristor),也叫可控硅(4)半导体电阻与电容——用集成技术制造的电阻和电容,用于集成电路中。

HSPICE讲义--整理版

HSPICE讲义--整理版
efghxxxncncgainvalue源控源有关说明hspice中具有的四种电压和电流控制元件通称为ef在hspice中用这些控制元件能够模拟mos晶体管双极型晶体管隧道二极管和可控硅整流器此外还能对一些功能块诸如运放加法器比较器压控振荡器调制解调器和开关电容电路等进行模拟
HSPICE讲义
知识结构
5
电路及仿真
集成电路设计流程
功能定义
想法及 规划
1.电路功能 2.操作速度 3.接口温度 4.功率消耗 5电路整体构架 6.划分功能模块
6
集成电路设计流程
功能定义
行为设计
验证 想法
仿真工具:VHDL,Verilog等硬件描述语言
7
集成电路设计流程
功能定义
行为设计 逻辑设计
逻辑仿真 门级的设计
8
• 标题语句和结束语句中间语句无任何先后次序;
• 续行用“+”表示。 • 分隔符可以为: tab键,空格,逗号,等号,括号 • 元件的属性用冒号来分割,例如 M1:beta • 用句点来表示隶属关系,例如X1.A1.V”表示电路X1的子电路A1的节 点V
14
节点
• 结点名可以由以下任何字符打头:# _ ! %
15
数值及比例因子
• 数字表示:
– – – – 数字可以用整数,如12,-5; 浮点数,如2.3845,5.98601; 整数或浮点数后面跟整数指数,如6E-14,3.743E+3; 在整数或浮点数后面跟比例因子,如10.18k
• 比例因子:为了使用方便,它们用特殊符号表 示不同的数量级:
– T=1E+12,G=1E+9,MEG=1E+6,K=1E+3,M=1E-3, U=1E-6,N=1E-9,P=1E-12,F=1E-15,DB=20lg10 , MIL=25.4E-6(千分之一英寸)

MOS器件物理(3)

MOS器件物理(3)

无源器件
在模拟集成电路中的无源器件主要是指 电阻、电容等,精密的电阻、电容是 电阻、电容等,精密的电阻、电容是MOS模 模 拟电路设计所要求的主要基本元件,电阻或电 拟电路设计所要求的主要基本元件, 容在电路应用中最关键的是要提供精确的元件 值,但在大多数情况下,电阻或电容的绝对值 但在大多数情况下, 不如它们的比值那么重要。 不如它们的比值那么重要。
有源电阻
2)考虑衬底偏置效应 ) 如果考虑体效应,如下图( )所示, 如果考虑体效应,如下图(a)所示,由于衬底接地电 则有: =-V, =-V, 位,则有:V1=- ,Vbs=- ,其等效电路如下图 (b)所示。 )所示。
(a)
(b)
有源电阻
根据KCL定理,由上图(b)可以得到: 定理,由上图( )可以得到: 根据 定理
有源电阻
1)漏输出,源极交流接地 )漏输出,
VGS是固定的,当MOS管的漏源电压大于栅极的 是固定的, 管的漏源电压大于栅极的 过驱动电压时, 管工作于饱和区, 过驱动电压时,MOS管工作于饱和区,忽略沟道 管工作于饱和区 调制效应时,其阻值为无穷大, 调制效应时,其阻值为无穷大,但实际阻值应考 虑沟道调制效应,可用饱和萨氏方程求出: 虑沟道调制效应,可用饱和萨氏方程求出:
MOS管交流小信号模型 高频 管交流小信号模型---高频 管交流小信号模型
在高频应用时, 在高频应用时,MOS管的分布电容就不能 管的分布电容就不能 忽略。 忽略。即在考虑高频交流小信号工作时必须 考虑MOS管的分布电容对电路性的影响, 管的分布电容对电路性的影响, 考虑 管的分布电容对电路性的影响 所以MOS管的高频小信号等效电路可以在 管的高频小信号等效电路可以在 所以 其低频小信号等效电路的基础上加入MOS 其低频小信号等效电路的基础上加入 管的级间电容实现,如图所示。 管的级间电容实现,如图所示。

mos管有源电阻和无源器件

mos管有源电阻和无源器件

无源器件
在模拟集成电路中的无源器件主要是指电阻、 电容等,精密的电阻、电容是MOS模拟电路设计 所要求的主要基本元件,电阻或电容在电路应用 中最关键的是要提供精确的元件值,但在大多数 情况下,电阻或电容的绝对值不如它们的比值那 么重要。
无源器件
电阻
• 电阻是模拟电路的最基本的元件,在集成电路中 有多种设计和制造方法,并有无源电阻与有源电 阻之分。电阻的大小一般以方块数来表示,电阻 的绝对值为:
MOS器件物理
MOS管交流小信号模型
MOS管低频小信号模型 • 小信号是指对偏置的影响非常小的信号。 • 由于在很多模拟电路中,MOS管被偏置在饱和
区,所以主要推导出在饱和区的小信号模型。 • 在饱和区时MOS管的漏极电流是栅源电压的函
数,即为一个压控电流源,电流值为gmVGS, 且由于栅源之间的低频阻抗很高,因此可得到 一个理想的MOS管的小信号模型,如图所示。
无源器件-电容
多晶与体硅之间的电容(PIS)
• NMOS与CMOS多晶硅栅(金属栅)工艺实现,需要额外一次离
子注入来形成底板的n+重掺杂区,以多晶硅为上极板,二氧化硅
为介质,n+为下极板构成电容。
多晶硅
金属
n+
n+
薄热氧化层
n+重掺杂
p
• 衬底必须接一个固定电位,此时多晶与体硅间的电容可认为是一
gm 2K NVDS
gd 2KN (VGS Vth ) 2 KN I DS • 所以此时的输出电阻值较小。
有源电阻
• 总之,当MOS管在电路中作有源电阻时, 一般栅接固定电位(接漏是一种特例), 这时根据栅电压大小来判定MOS管的工作 区域(饱和区与三极管区),另外,输出 的端口是源端或是漏端,其呈现的阻抗也 不同。

《MOS管教程》课件

《MOS管教程》课件
利用两个或多个MOS管的 串并联,可以实现与逻辑 功能。
OR门
利用两个或多个MOS管的 串并联,可以实现或逻辑 功能。
NOT门
通过一个MOS管可以实现 非逻辑功能。
04
MOS管的驱动与保护
驱动电路
栅极驱动电路
提供合适的栅极电压,使MOS管正常工作。
源极驱动电路
控制源极的电压,使MOS管在正确的状态下工作。
音频放大
音频功率放大
利用MOS管的放大特性,可以用于音 频信号的功率放大,广泛应用于音响 设备中。
耳机驱动
音频信号处理
在音频信号处理电路中,MOS管可以 作为运算放大器或比较器使用,实现 音频信号的滤波、均衡等处理。
通过控制MOS管的导通和截止,可以 实现耳机的音量控制和音源切换。
数字逻辑门
AND门
漏极驱动电路
控制漏极的电流,使MOS管在合适的电流下工作。
保护电路
01
过流保护电路
当电流过大时,自动切断电源, 防止MOS管烧毁。
02
过压保护电路
03
欠压保护电路
当电压过高时,自动切断电源, 防止MOS管损坏。
当电压过低时,自动切断电源, 防止MOS管工作异常。
安全工作区
电压安全工作区
确保MOS管在正常工作电压范围内工作,避免过压或欠压。
预防措施
在电路设计时,应充分考虑导通电阻的影响,并留有一定的余量。
开关噪声
总结词
开关过程中产生的噪声
详细描述
MOS管在开关过程中会产生噪声,这种噪 声可能会对周围电路产生干扰。
解决方案
预防措施
采用低噪声的MOS管产品,并合理设计电 路布局和布线,减小电磁干扰。

《MOS管原理非常详细》PPT课件讲义

《MOS管原理非常详细》PPT课件讲义
哪个脚是D(漏极)?
G(栅极)呢?
是P沟道还是N沟道MOS?
如果接入电路, D极和S极,哪一个该接输 入,哪个接输出? 你答对了吗?
电路符号 再来一个,试试看:
哪个脚是S(源极)?
哪个脚是D(漏极)?
G(栅极)呢?
是P沟道还是N沟道MOS? 依据是什么?
如果接入电路, D极和S极,哪一个该接输 入,哪个接输出?
看看我们常见的NMOS管4816:
请注意:不论NMOS管还是PMOS管,上述PIN脚的确定方法都是一样的。
假如MOS管表面磨损,或是无法辨认PIN1的标记圆点,你可以用什么 方法确认PIN1脚,以及G极,D极和S极? 拿出万用表,试试吧!
实物
再来看看相似的DFN封装MOS管:
外形上来看,DNF封装的MOS管仍旧有8个脚,但已经变成贴片形式, 节约了高度,散热性能更好些。 但其PIN脚极性还是一样排列。
S极
N沟道MOSFET
G极 箭头指向G极的是N沟道
D极
电路符号
S极
P沟道MOSFET
G极 箭头背向G极的是P沟道
D极
当然也可以先判断沟道类型,再判断三个脚极性。
电路符号
小测试: 先判断是什么沟道,再判断三个脚极性。
G极 1
S极 1
2 D极
D极 2
S极 3
P沟道MOSFET
3 G极
N沟道MOSFET
这次怎么样?
电路符号 1 三个极怎么判定 ?
MOS管符号上的三个脚的辨认要抓住关键地方 。
S极
G极,不用说比较好认。
S极,
G极
不论是P沟道还是N沟道,
两根线相交的就是;
D极,
D极

第三章 集成电路中的有源无源元件

第三章 集成电路中的有源无源元件

漏 - 源 极 电 流
MOSFET的特性伏安曲线
Ids 线性区
饱和区 击穿区
0
Vds
漏-源极压降
3.5.无源元件:电阻、电容
集成电阻电容优点: 集成电路中的电阻、电容制 作工艺与NPN(或MOS管)兼容,与元件间的匹 配及温度跟踪较好。 缺点:(1)精度低 (2)温度系数大 (3)可制作的范围有限,不能太大也不 能太小 (4)占用芯片面积大,成本高。
第三章 集成电路中的有源无源元件


集成电路中的有源元件包括:二极管、三 极管(双极型晶体管)、MOS管(单极型 晶体管)等 集成电路中的无源元件包括:互连线、电阻、 电容、电感、传输线等
本章主要内容: 1.二极管 2.三极管 3.肖特基势垒二极管(SBD)、肖特基箝位 晶体管(SCT) 4.MOS管(简介,以后章节将详细介绍) 5.无源元件:电阻、电容 6.寄生效应
阻值修正: 1)端头修正 2)拐角修正 3)横向扩散修正 4)薄层电阻值RS的修正
2.基区扩散电阻最小条宽 WR, min 的设计 1)由设计规则决定的最小条宽 2)由工艺水平和电阻精度要求所决定的最小条宽 3)由流经电阻最大电流决定的条宽
3.其他常用的集成电阻器(P55) 1)发射区扩散电阻 2)隐埋层电阻 3)基区沟道电阻 4)外延层电阻(体电阻) 5)离子注入电阻 6)MOS集成电路中常用电阻(P59) 多晶硅电阻 MOS管形成电阻
阻值范围:
其他电阻: 1)发射区扩散电阻:低阻 2)基区沟道电阻:高阻 3)离子注入电阻:高精度电阻
1.基区扩散电阻的结构:
利用集成晶体管的基区扩散层(P型扩散区)做成
P型扩散区
B
p
E
n+ n+ Buried Layer p-

MOS器件物理

MOS器件物理

有源器件-MOS管
MOS管的工作原理及表示符号(5)
NMOS D G S B G S PMOS D B G S NMOS D G D PMOS S G S NMOS D G S PMOS D G S NMOS D G D PMOS S
MOS管的高频小信号电容
MOS管的电容(1)
G S
Cbs
d
C1
的交叠电容记为Col):
包括栅源交叠电容C1=WdCol与栅漏交叠电容C4=WdCol: 由于是环状的电场线, C1与C4不能简单地写成WdCox, 需通过更复杂的计算才能得到,且它的值与衬底偏置有关。
MOS管的高频小信号电容
MOS管的电容(3):
源漏区与衬底间的结电容:Cbd、Cbs
即为漏源对衬底的PN结势垒电容,这种电容一般由两部分组成:一个 是垂直方向(即源漏区的底部与衬底间)的底层电容Cj,另一个是横 向即源漏的四周与衬底间构成的圆周电容Cjs,因为不同三极管的几何 尺寸会产生不同的源漏区面积和圆周尺寸值,一般分别定义Cj与Cjs为 单位面积的电容与单位长度的电容。而每一个单位面积PN结的势垒电 容为:
也存在导电沟道。
这两类MOS管的基本工作原理一致,都是利用 栅源电压的大小来改变半导体表面感生电荷的 多少,从而控制漏极电流的大小 。
有源器件-MOS管
MOS管的工作原理及表示符号(2):
当栅源电压VGS=0时,源区(n+型)、衬底(p型)和漏区(n+型)
形成两个背靠背的PN结,不管VDS的极性如何,其中总有一个PN结 是反偏的,所以源漏之间的电阻主要为PN结的反偏电阻,基本上无 电流流过,即漏电流ID为0,此时漏源之间的电阻很大,没有形成导 电沟道。 当栅源之间加上正向电压,则栅极和p型硅片之间构成了以二氧化硅 为介质的平板电容器,在正的栅源电压作用下,介质中便产生了一 个垂直于半导体表面的由栅极指向p型衬底的电场(由于绝缘层很薄, 即使只有几伏的栅源电压VGS,也可产生高达105~106V/cm数量 级的强电场),这个电场排斥空穴而吸引电子,因此,使栅极附近 的p型衬底中的空穴被排斥,留下不能移动的受主离子(负离子),

第三章MOS管ppt课件

第三章MOS管ppt课件
)
第3章
场效应管
饱和区(放大区)外加电压极性及数学模型
VDS 极性取决于沟道类型 N 沟道:VDS > 0, P 沟道:VDS < 0 VGS 极性取决于工作方式及沟道类型 增强型 MOS 管: VGS 与 VDS 极性相同。 耗尽型 MOS 管: VGS 取值任意。 饱和区数学模型与管子类型无关
第3章
场效应管
由于 MOS 管 COX 很小,因此当带电物体(或人)靠近 金属栅极时,感生电荷在 SiO2 绝缘层中将产生很大的电 压 VGS(= Q /COX),使绝缘层击穿,造成 MOS 管永久性损 坏。 MOS 管保护措施: 分立的 MOS 管:各极引线短接、烙铁外壳接地。 MOS 集成电路:
VGS
ID/mA
D N+
G
VUS = 0 -2V -4V
P
O
VGS /V
若| VUS | 阻挡层宽度 耗尽层中负离子数
因 VGS 不变(G 极正电荷量不变) 表面层中电子数 ID 根据衬底电压对 ID 的控制作用,又称 U 极为背栅极。
第3章
场效应管
P 沟道 EMOS 管
第3章
场效应管
3.1.3 四种 MOS 场效应管比较
电路符号及电流流向
D
ID
U G
D
ID
U G
D
ID
U G
D
ID
U
G
S NEMOS
S NDMOS
S PEMOS
S PDMOS
转移特性
ID ID
ID ID
O VGS(th)
VGS
VGS(th) O
VGS
VGS(th) O V GS

(完整word版)MOS管概述

(完整word版)MOS管概述

基本电子电路系列——MOS管MOS管学名是场效应管,是金属-氧化物-半导体型场效应管,英文:MOSFET(Metal Oxide Semiconductor Field Effect Transistor),属于绝缘栅型。

本文就结构构造、特点、实用电路等几个方面用工程师的话简单描述。

其结构示意图:解释1:沟道上面图中,下边的p型中间一个窄长条就是沟道,使得左右两块P型极连在一起,因此mos管导通后是电阻特性,因此它的一个重要参数就是导通电阻,选用mos管必须清楚这个参数是否符合需求。

解释2:n型上图表示的是p型mos管,读者可以依据此图理解n型的,都是反过来即可。

因此,不难理解,n型的如图在栅极加正压会导致导通,而p型的相反。

解释3:增强型相对于耗尽型,增强型是通过“加厚”导电沟道的厚度来导通,如图。

栅极电压越低,则p型源、漏极的正离子就越靠近中间,n衬底的负离子就越远离栅极,栅极电压达到一个值,叫阀值或坎压时,由p型游离出来的正离子连在一起,形成通道,就是图示效果。

因此,容易理解,栅极电压必须低到一定程度才能导通,电压越低,通道越厚,导通电阻越小。

由于电场的强度与距离平方成正比,因此,电场强到一定程度之后,电压下降引起的沟道加厚就不明显了,也是因为n型负离子的“退让”是越来越难的。

耗尽型的是事先做出一个导通层,用栅极来加厚或者减薄来控制源漏的导通。

但这种管子一般不生产,在市面基本见不到。

所以,大家平时说mos管,就默认是增强型的。

解释4:左右对称图示左右是对称的,难免会有人问怎么区分源极和漏极呢?其实原理上,源极和漏极确实是对称的,是不区分的。

但在实际应用中,厂家一般在源极和漏极之间连接一个二极管,起保护作用,正是这个二极管决定了源极和漏极,这样,封装也就固定了,便于实用。

我的老师年轻时用过不带二极管的mos管。

非常容易被静电击穿,平时要放在铁质罐子里,它的源极和漏极就是随便接。

解释5:金属氧化物膜图中有指示,这个膜是绝缘的,用来电气隔离,使得栅极只能形成电场,不能通过直流电,因此是用电压控制的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档