《正负数数轴相反数绝对值》练习题

合集下载

数轴、相反数、绝对值专题练习(含答案)

数轴、相反数、绝对值专题练习(含答案)

数轴、相反数、绝对值专题训练1. 若上升5m 记作+5m ,则-8m 表示___________;如果-10元表示支出10元,那么+50元表示_____________;如果零上5℃记作5℃,那么零下2℃记作__________;太平洋中的马里亚纳海沟深达11 034m 11 034m(即低于海平面11 034m ),则比海平面高50m 的地方,它的高度记作海拔___________,比海平面低30m 的地方,它的高度记作海拔___________.2. 把下列各数填入它所在的集合里:-2,7,32-,0,2 013,0.618,3.14,-1.732,-5,+3①正数集合:{ …}②负数集合:{ …}③整数集合:{ …}④非正数集合:{ …}⑤非负整数集合:{ …}⑥有理数集合:{ …}3. a ,b 为有理数,在数轴上的位置如图所示,则下列关于a ,b ,0三者之间的大小关系,正确的是( )b 0aA .0<a <bB .a <0<bC .b <0<aD .a <b <04. 00.5121,小.5. 在数轴上大于-4.12的负整数有______________________.6. 到原点的距离等于3的数是____________.7. 数轴上表示-2和-101的两个点分别为A ,B ,则A ,B 两点间的距离是______________.8. 已知数轴上点A 与原点的距离为2,则点A 对应的有理数是____________ 点B 与点A 之间的距离为3,则点B 对应的有理数是________________.9. 在数轴上,点M 表示的数是-2,将它先向右移4.5个单位,再向左移5个单位到达点N ,则点N 表示的数是_________.10. 文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西 边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在( )A .玩具店B .文具店C .文具店西边40米D .玩具店东边-60米11. 如图是正方体的表面展开图,请你在其余三个空格内填入适当的数,使折成正方体后相对的面上的两个数互为相反数.0.5-3-1第11题图 第12题图 12. 上图是一个正方体盒子的展开图,请把-10,8,10,-3,-8,3这六个数字分别填入六个小正方形,使得折成正方体后相对的面上的数字互为相反数.13. 下列各组数中,互为相反数的是( )A .0.4与-0.41B .3.8与-2.9C .)8(--与8-D .)3(+-与(3)+-14. 下列化简不正确的是( )A.( 4.9) 4.9--=+ B .9.4)9.4(-=+- C .9.4)]9.4([+=-+- D .[( 4.9)] 4.9+-+=+15. 下列各数中,属于正数的是( )A .)2(-+B .-3的相反数C .)(a --D .-3的相反数的相反数16. a ,b 是有理数,它们在数轴上的对应点的位置如图所示,把a ,-a ,b ,-b 按照从小到大的顺序排列正确的是( )aA .-b <-a <a <bB .b >-a >a >-bC .-b <a <-a <bD .-b <b <-a <a17. 有理数的绝对值一定是( )A .正数B .整数C .正数或零D .非正数18. 下列各数中:-2,31+,3-,0,2-+,-(-2),2--,是正数的有_______________________________.19. 填空:5.3-=______; 21+=_______; 5--=_______;3+=_______; _______=1; _______=-2.20. 若x <0,则|-x |=_______;若m <n ,则|m -n |=________.21. 若|x |=-x ,则x 的取值范围是( )A .x =-1B .x =0C .x ≥0D .x ≤022. 若|a |=3,则a =______;若|3|=a ,则a =______;若|a |=2,a <0,则a =______.23. 若|a |=|b |,b =7,则a =______;若|a |=|b |,b =7,a ≠b , 则a =______.24. 填空:(1)311--=_______;(2)2.42.4--=____-____=_____;(3)53++-=___+____=____;(4)22--+=|_____-____|=_____;(5)3 6.2-⨯=____×____=_____;(6)21433-÷-=____÷____=____×____=_____. 25、化简下列各数的符号: (1)-(-173); (2)-(+233); (3)+(+3); (4)-[-(+9)]26、若|x|=4,则x=_______________;若|a-b|=1,则a-b=_________________;27、若-m>0,|m|=7,求m.28、若|a+b|+|b+z|=0,求a,b的值。

专题-正负数、数轴、相反数、绝对值强化练习测验题

专题-正负数、数轴、相反数、绝对值强化练习测验题

专题――正负数、数轴、相反数、绝对值强化练习1.|m+7|+2006地最小值为,此时m =.2.若)5(--=-x ,则=x ________,42=-x ,则=x ________3.若1<a <3,则=-+-a a 13__________4.若3=a ,5=b ,且ab <0,则=-b a ________5.已知|x |=3,y =2,且xy <0,则x +y =______6.若│x │=2,│y │=3,则│x+y │地值为( )7.已知|a|=3, |b |=5,且a<b,则a +b 等于( )8.与原点距离为2个单位地点有个,它们分别为.9.绝对值小于4且不小于2地整数是____10.给出两个结论:①a b b a -=-;②-21>-31.其中 .A.只有①正确B.只有②正确C.①②都正确D.①②都不正确11.下列说法中正确地是 . A.a -是正数 B.a -不是负数 C.-a -是负数 D.-a 不是正数12.已知a 、b 是不为0地有理数,且a a -=,b b =,a > b ,那么在使用数轴上地点来表示a 、b 时,应是.A B C D b5E2R 。

13.绝对值小于3地整数有在数轴上表示地数a 地点到原点地距离为2,则a+|-a|=.14..若|a|=2,|b|=5,则a+b=( )(A)±3; (B )±7; (C )3或7; (D )±3或±7.15.给出两个结论:①a b b a -=-;②-21>-31.其中 . 0b a 0a b 0b a 0a bA.只有①正确B.只有②正确C.①②都正确D.①②都不正确16.下列说法中正确地是 .A.a-是负数 D.-a不是正数-是正数 B.a-不是负数 C.-a17.绝对值小于10地所有整数之和为( )18.绝对值小于100地所有整数之和为( )19.如果两个数地绝对值相等,那么这两个数是( )20.在数轴上距2.5有3.5个单位长度地点所表示地数是( )21.在数轴上,表示与2-地点距离为3地数是_________.22.在数轴上,表示与-15地点距离为10地数是_____地点地距离为5个单位长度地点所表示地数为 23.数轴上与表示124______________.24.如果-x=-(-12),那么x= __________25.化简:| 3.14 -π|= _________-3与3之间地整数有_____26.有理数a,b在数轴上地位置如下图所示:b a 0则将a,b,-a,-b按照从小到大地排列顺序为_______27.若a+b=0,则有理数a、b一定【】A.都是0B.至少有一个是0C.两数异号D.互为相反数28.若∣x-1│=2,则x=29.一只蚂蚁在数轴上从原点O出发,先沿正方向爬行5个单位,再回头向左爬行8个单位,这时蚂蚁所在地点表示地数是_____.p1Ean。

正负数、数轴、相反数、绝对值、倒数专题训练

正负数、数轴、相反数、绝对值、倒数专题训练

有理数第一讲 正负数、数轴、相反数、绝对值、倒数一、梳理知识0⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数负整数有理数正分数分数负分数 注意:小数和百分数可看成分数,有理数中的小数是指有限小数或无限循环小数,π不是有理数,任何分数都是有理数.最小的正整数是____,最小的自然数是 ,最大的负整数是数轴的三要素: 原点、正方向和单位长度.相反数:只有符号不同的两个数叫做互为相反数.相反数的意义:相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.绝对值:数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作a(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩有理数的绝对值都是非负数倒数:乘积是1的两个数互为倒数.有理数大小比较的法则:① 正数都大于0;② 负数都小于0;③ 正数大于一切负数;④两个负数,绝对值大的其值反而小.二、例题例1 把下列数分类23.14020140.3 1.2136910%3π--L , , ,, , , , -1,正数:整数:负分数:有理数:正整数:自然数:例2 (1)有理数,a b 在数轴上的位置如图所示,化简a b a b +++的结果是( )20A a b B b C D a + .2 .2 . . 2(2)有理数,a b 在数轴上的对应点如图所示,则下面式子中正确的是( )①b <0<a ; ②|b|<|a|; ③0ab >; ④a b a b ->+A B C D .1个 . 2个 .3个 . 4个课堂练习:1、有理数a 、b 在数轴上的对应的位置如图所示: 则( ) 0-11a bA .a + b <0B .a + b >0;C .a -b = 0D .a -b >02、有理数,a b 在数轴上的对应点位置如图所示,则,,,a b a b -的大小关系为()例3 (1)在数轴上把-3对应的点移动5个单位长度后,所得到的对应点表示的数是( )A B C D .2 . -8 .2或-8 .不能确定(2)一个数在数轴上所对应的点向左平移6个单位后,得到它的相反数的点,则这个数为( )A B C D .3 . -3 .6 . -6课堂练习:1、在数轴上与-3的距离等于5个单位的点表示的数是( )2、绝对值大于2而小于6的所有整数的和( )A B C D .0 . -12 .12 . 243、下列说法正确的有( )①最大的负整数是1-; ②相反数是本身的数是正数; ③有理数分为正有理数和负有理数; ④在数轴上表示a -的点一定在原点的左边; ⑤ 在数轴上7与9之间的整数是8.A B C D .2个 . 3个 .4个 . 5个例4 (1)若2,1a b ==,那么a b ⋅的值有( )A B C D .1个 . 2个 .3个 . 4个(2)若m 为有理数,则m m -的值为( )A B C D .大于0 . 大于等于0 .小于0 . 小于等于0A B C D .2 . -2 .2和-2 . -8和21、若4,3a b ==,则a b -等于( )A B C D ± .7 . 1 .1 . 1或72、若3=2a -,则+3a 的值为( )A B C D .5 . 8 .5或1 . 8或4例5 (1) 用“>”连接032,,---正确的是 ( )A 、032>-->-B 、302-->>-C 、023<-<--D 、203-<<--(2)有理数,,a b c 的大小关系为0c b a <<<,则下面的判断正确的是( )11000A abc a b c a c b<->-> . B. C.< D. (3)若0ab ≠,则等式a b a b +=+成立的条件是( )0,0000A a b B ab C a b D ab ><<+=> . . . .课堂练习:1、若a b >,则下列各式正确的为( )A a bB a bC a bD a b ><>> . . . .2、已知m 是正整数,则1,,m m m-的大小关系是( ) 1111A B C D m m m m≤≤ .-m<<m . -m<m< .-m<m . -m<m 例6 (1)若a b 与互为相反数,c 的绝对值为2,,m n 互为倒数,则243a b c mn ++-的值为( )13A B C D .1 . .0 . 无法确定 (2)若a 、b 互为相反数,c 、d 互为倒数,则2a+3cd+2b=(3)如果 1.210a b ++-=,那么()()1 1.8a b +-+-+的值为(4)已知,a b 互为相反数,,c d 互为倒数,x 且的绝对值是5, 试求:()3x a b cd a b cd -+++++-1、若a b 与互为倒数,当3a =时,代数式2()b ab a -的值为( ) 23983289A B C D . . . . 2、若a b 与互为倒数,,x y 互为相反数,则()()a b x y ab ++-的值为( )A B C D .0 . 1 .-1 . 无法确定3、若320x y -++=,则x y +的值为4、绝对值不小于1而小于3的整数的和为5、如果0ab ≠,则a ba b +的值不可能为( )2A B C D -、0 、1 、2 、作业1、3-的倒数为( )1133A B C D . . - .3 . -32、如图所示,根据有理数a 、b 、c 在数轴上的位置,下列关系正确的是()3、有理数123,,555---的大小顺序是()4、已知,a b 为有理数,且a >0,b <0,a <|b|,则,,,a b a b --的大小顺序是( ).A b a a b <-<<- .a a b b -<<-<B .a b a b -<<<-C .b a a b -<<-<D 5、6、如果5x+3与-2x+9是互为相反数,则x -2的值是7、数轴上表示互为相反数的两个点之间的距离是243,则这两个数是 8、绝对值大于2且小于5的所有整数的和是( )A .0B .7C .14D .289、已知a 、b 互为相反数,m 、n 互为倒数,求mn m n b a -+)(的值。

数轴、相反数、绝对值及综合练习

数轴、相反数、绝对值及综合练习

数轴、相反数和绝对值的综合练习一、选择题(每小题3分, 共24分)1.如图, 数轴上点A表示数a, 则-a表示的数是( )A. -1B. 0C. 1D. 22. 在0, 1, -, -1四个数中, 最小的数是( )A. 0B. 1C. -D. -13. 如图, 若|a|=|b|, 则该数轴的原点可能为( )A. A点B. B点C. C点D. D点4. 下列各对数中, 相等的是( )A. -(-)和-0.75B. +(-0.2)和-(+)C. -(+)和-(-0.01)D. -(-)和-(+)5. 一个数的相反数比它的本身小, 则这个数是( )A. 正数B. 负数C. 正数和零D. 负数和零6. 下列说法正确的是( )A. 绝对值等于3的数是-3B. 绝对值小于2的数有±2, ±1, 0C.若|a|=-a, 则a≤0D. 一个数的绝对值一定大于这个数的相反数7. 有理数m, n在数轴上的对应点如图所示, 则下列各式子正确的是( )A. m>nB. -n>|m|C. -m>|n|D. |m|<|n|8. 若a, b是两个有理数, 则下列结论: ①如果a=b, 那么|a|=|b|;②如果|a|=|b|, 那么a=b;③如果a≠b, 那么|a|≠|b|;④如果|a|≠|b|, 那么a≠b.其中一定正确的有( )A. 1个B. 2个C. 3个D. 4个二、填空题(每小题4分, 共32分)9. 计算: |-20|=.10. 若a+=0, 则a=.11. 数轴上点A表示-1, 点B表示2, 则A.B两点间的距离是.12. 将-3, -|+2|, -, -1按从小到大的顺序, 用“<”连接应当是.13. 一只小虫在数轴上先向右爬3个单位, 再向左爬7个单位, 正好停在-2的位置, 则小虫的起始位置所表示的数是.14.如图, 在数轴上点B表示的数是, 那么点A表示的数是.15. 当a=时, |a-1|+5的值最小, 最小值为.16.在数轴上点A对应的数为-2, 点B是数轴上的一个动点, 当动点B到原点的距离与到点A的距离之和为6时, 则点B对应的数为.三、解答题(共44分)17. (6分)根据如图所示的数轴, 解答下面的问题:(1)请你根据图中A, B两点的位置, 分别写出它们所表示的有理数A: ,B: ;(2分)(2)观察数轴, 与点A的距离为4的点表示的数是;(4分)(3)若将数轴折叠, 使得A点与-3对应的点重合, 则B点与数对应的点重合.(6分)18. (8分)把下列各数表示在数轴上, 并用“<”连接起来:, -(-5), -0.5, 0, -|-3|, , -(+2).19. (8分)如图, 图中数轴的单位长度为1.请回答下列问题:(1)如果点A.B表示的数是互为相反数, 那么点C.D表示的数是多少?(2)如果点D.B表示的数是互为相反数, 那么点C.D表示的数分别是多少?20. (10分)(1)已知|a|=8, |b|=5, 且a<b, 试求a, b的值;(2)已知|a-3|+|2b-6|=0, 试求a-b的值.21. (12分)随着网购的快速发展, 相关的快递送达范围也越来越广泛, 惠及乡村. 某快递公司快递员骑摩托车从某快递点出发, 先向东骑行2 km到达A村, 继续向东骑行3 km到达B村, 然后向西骑行9 km到C村, 最后回到快递点.(1)以该快递点为原点, 以向东方向为正方向, 用1个单位长度表示1 km画数轴, 并在该数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有多远?(3)已知摩托车行驶100 km耗油2.5升, 完成此次任务, 摩托车耗油多少升?数轴、相反数和绝对值的六种常见题型1. 在-1, , 0.618, 0, -5%, 2 021, 0.5中, 整数有________个, 分数有________个.2.有五个有理数(不能重复), 同时满足下列三个条件:(1)其中三个数是非正数;(2)其中三个数是非负数;(3)必须有质数和分数.请写出这五个数.3. 下列说法正确的是()A. 有理数是指整数、分数、正有理数、零、负有理数这五类数B. 有理数不是正数就是负数C. 有理数不是整数就是分数D. 有理数不是正数就是分数4. 把下列各数填在相应的大括号里:15, -, 0.81, -3, , -3.1, -2 022, 171, 0, 3.14.正数: { …};负数: { …};正整数: { …};负整数: { …};有理数: {…}.5. 下列说法正确的是()A. 所有的有理数都可以用数轴上的点来表示B. 数轴上的点都用来表示有理数C.正数可用原点右边的点表示, 负数可用原点左边的点表示, 零不能在数轴上表示D. 数轴上一个点可以表示不止一个有理数6. 根据如图所示的数轴, 解答下面的问题:(1)请你根据图中A, B两点的位置, 分别写出它们所表示的有理数: ____________;(2)观察数轴, 写出与点A的距离为4的点表示的数:______________;(3)若将数轴折叠, 使得点A与数-3对应的点重合, 则点B与数________对应的点重合;(4)若数轴上M, N两点间的距离为2 022(M在N的左侧), 且M, N两点经过(3)中折叠后互相重合, 求M, N两点表示的数.7. 如图, 已知A, B, C, D四个点在一条没有标明原点的数轴上.(1)若点A和点C表示的数互为相反数, 则原点为点________;(2)若点B和点D表示的数互为相反数, 则原点为点________;(3)若点A和点D表示的数互为相反数, 请在数轴上标出原点O的位置.8. 如图, 一个单位长度表示2, 观察图形, 回答问题:(1)若B与D所表示的数互为相反数, 则点D所表示的数为多少?(2)若A与D所表示的数互为相反数, 则点D所表示的数为多少?(3)若B与F所表示的数互为相反数, 则点D所表示的数的相反数为多少?9. 下列说法不正确的有()①互为相反数的两个数一定不相等;②如果两个数的绝对值相等, 那么这两个数必定相等;③有理数的绝对值一定大于0;④有理数的绝对值不是负数.A. 1个B. 2个C. 3个D. 4个10. 如图, 数轴的单位长度为1, 请回答下列问题:(1)如果点A, B表示的数互为相反数, 那么点C表示的数是多少?(2)如果点D, B表示的数互为相反数, 那么点C表示的数是正数还是负数?图中所示的5个点中, 哪一个点表示的数的绝对值最小, 最小的绝对值是多少?11. 如图, A, B为数轴上的两个点, A点表示的数为-10, B点表示的数为90.(1)请写出与A, B两点距离相等的M点表示的数;(2)电子蚂蚁P从B点出发, 以3个单位长度/s的速度向左运动, 同时另一只电子蚂蚁Q从A点出发, 以2个单位长度/s的速度向右运动, 经过多长时间这两只电子蚂蚁在数轴上相距35个单位长度?12. 情境问题某工厂负责生产一批螺帽, 根据产品质量要求, 螺帽的内径可以有0.02 mm的误差.抽查5个螺帽, 超过规定内径的毫米数记作正数, 不足规定内径的毫米数记作负数, 检查结果如下表:螺帽编号①②③④⑤内径/mm +0.030 -0.018 +0.026 -0.025 +0.015(1)指出哪些产品是合乎要求的(即在误差范围内);(2)指出合乎要求的产品中哪个质量好一些(即最接近标准);拓展延伸:(3)如果对两个螺帽进行上述检查, 检查的结果分别为a和b, 请利用学过的绝对值知识指出哪个螺帽的质量好一些.。

《数轴、相反数、绝对值》专题练习(含答案)

《数轴、相反数、绝对值》专题练习(含答案)

《数轴、相反数、绝对值》专题练习(时间:90分钟 满分:100分)一、选择题(每小题3分,共30分)1.-5的绝对值为 ( )A .-5B .5C .-15D .152.-18的相反数是 ( )A .-8B .18 C .0.8 D .83.在下面所画的数轴中,你认为正确的数轴是 ( )4.下列说法正确的是 ( )A .正数与负数互为相反数B .符号不同的两个数互为相反数C .数轴上原点两旁的两个点所表示的数互为相反数D .任何一个有理数都有它的相反数5.数轴上的点A ,B 位置如图所示,则线段AB 的长度为 ( )A .-3B .5C .6D .76.若a =7,b =5,则a -b 的值为 ( )A .2B .12C .2或12D .2或12或-12或-27.实数a ,b 在数轴上的位置如图所示,以下说法正确的是( )A .44-=B .1122= C .00= D . 1.5 1.5-=-9.如果有理数a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,d是倒数等于它本身的数,那么式子a-b+c2-d的值是( )A.-2 B.-1 C.0 D.110.如果abcd<0,a+b=0,cd>0,那么这四个数中的负因数至少有( )A.4个B.3个C.2个D.1个二、填空题(每小题3分,共24分)11.数轴上最靠近-2且比-2大的负整数是______.12.-112的相反数是______;-2是______的相反数;_______与110互为倒数.13.数轴上表示-2的点离原点的距离是______个单位长度;表示+2的点离原点的距离是______个单位长度;数轴上与原点的距离是2个单位长度的点有______个,它们表示的数分别是______.14.绝对值小于π的非负整数是_______.15.数轴上,若A,B表示互为相反数的两个点,并且这两点的距离为8,则这两点所表示的数分别是______和_______.16.写出一个x的值,使1x =x-1成立,你写出的x的值是______.17.若x,y是两个负数,且x<y,那么x_______y.18.如图,数轴上的A,B,C三点所表示的数分别是a,b,c,其中AB=BC,若a>b>c,则该数轴的原点O的位置应该在______.三、解答题(共46分)19.(5分)分别写出下列各数的绝对值:-135,-(+6.3),+(-32),12,312.20.(5分)(1)如图,根据数轴上各点的位置,写出它们所表示的数:(2)用数轴上的点表示下列各数,并用“<”号把下列各数连接起来.-132,4,2.5,0,1,-(-7),-5,-112.21.(6分)七(4)班在一次联欢活动中,把全班分成5个队参加活动,游戏结束后,5个队的得分如下:A队:-50分;B队:150分;C队:-300分;D队:0分;E队:100分.(1)将5个队按由低分到高分的顺序排序;(2)把每个队的得分标在数轴上,并标上代表该队的字母;(3)从数轴上看A队与B队相差多少分?C队与E队呢?22.(6分)如图是一个长方体纸盒的展开图,请把-5,3,5,-1,-3,1分别填入六个长方形中,使得按虚线折成长方体后,相对面上的两数互为相反数.23.(8分)在数轴上,表示数x 的点与表示数1的点的距离等于1,其几何意义可表示为:1x -=1,这样的数x 可以是0或2.(1)等式2x -=2的几何意义可仿上解释为:在数轴上____________________________,其中x 的值可以是______________.(2)等式3x +=2的几何意义可仿上解释为:在数轴上____________________________,其中x 的值可以是______________.(3)在数轴上,表示数x 的点与表示数5的点的距离等于6,其中x 的值可以是_______,其几何意义可以表示为_______.24.(8分)(1)5的相反数是-5,-5的相反数是5,那么-x 的相反数是_______,m +12n 的相反数是_______.(2)数轴上到点2和点6距离相等的点表示的数是4,有这样的关系4=12(2+6),那么到点100和到点999距离相等的点表示的数是_______;到点m 和点-n 距离相等的点表示的数是_______.(3)数轴上点4和点9之间的距离为5个单位,有这样的关系5=9-4,那么点10和点-3之间的距离是_______;点m 和点n 之间的距离是_______.25.(6分)设0a b c ++=,0abc >,求b c c a a b a b c+++++的值。

考试卷正负数相反数绝对值练习试卷

考试卷正负数相反数绝对值练习试卷

七年级有理数(正负数、相反数、绝对值)数学练习试卷一、选择题(共8小题;共24分)1. 检查个篮球的质量,把超过标准质量的克数记为正数,不足标准质量的克数记为负数,检查的结果如下表:则质量较好的篮球的编号是A. 号B. 号C. 号D. 号2. 下列说法正确的个数为① 是整数;② 是负分数;③ 不是正数;④自然数一定是正数.A. B. C. D.3. 如图,数轴上有,,,四个点,其中表示互为相反数的点是A. 点与点B. 点与点C. 点与点D. 点与点4. 把四个数,,,,从大到小用“ ”连接起来,正确的是?( )A. B.C. D.5. 如果海平面的高度为米,用负数表示低于海平面某处的高度,一潜水艇在海平面下米处航行,一条鲨鱼在潜水艇上方米处游动,那么鲨鱼所在的高度是?( )A. 米B. 米C. 米D. 米6. 下列说法正确的是A. 在有理数中,的意义仅表示没有B. 一个有理数,它不是正数就是负数C. 正有理数和负有理数组成有理数集合D. 是自然数7. 如图,数轴上有,,,四个点,其中表示绝对值相等的两个实数的点是A. 点与点B. 点与点C. 点与点D. 点与点8. 如图,数轴上的,,三点所表示的数分别为,,,其中,如果,那么该数轴的原点的位置应该在?( )A. 点的左边B. 点与点之间C. 点与点之间D. 点的右边二、填空题(共12小题;共36分)9. 在,,,这四个有理数中,整数有 ?.10. ?, ?, ?.11. 在下列横线上填上适当的词,使前后构成具有相反意义的量:(1)收入元, ? 元;(2) ? 米,下降米;(3)向北前进米, ? 米.12. 表示 ? 的相反数,即 ?;表示 ? 的相反数,即?.13. 比较大小: ? (填“”,“”或“”).14. 在数轴上到原点的距离等于的点所表示的数是 ?.15. 如图,数轴上表示的点是点 ?,表示的点是点 ?,它们到原点的距离 ?,所以与是 ?.16. 已知数轴上有,两点,,之间的距离为,点与原点的距离为,则所有满足条件的点与原点的距离的和为 ?.17. 一跳蚤在一直线上从点开始,第次向右跳个单位长度,紧接着第次向左跳个单位长度,第次向右跳个单位长度,第次向左跳个单位长度,,依此规律跳下去,当它跳第次落下时,落点处离点的距离是 ? 个单位长度.18. 观察下面一列数的规律并填空:,,,,,,则它的第个数是 ?,第个数是 ?.19. 一般地,我们把研究对象统称为元素,把一些元素组成的总体称为集合.一个给定集合中的元素是互不相同的,也就是说,集合中的元素是不重复出现的.如一组数,,,,就可以构成一个集合,记为.类比有理数有加法运算,集合也可以"相加".定义:集合与集合中的所有元素组成的集合称为集合与集合的和,记为.若,,则 ?.20. 如图,数轴上,点的初始位置表示的数为,现点做如下移动:第次点向左移动个单位长度至,第次点向右移动个单位长度至,第次从点向左移动个单位长度至,,按照这种移动方式进行下去,点表示的数是 ?,如果点与原点的距离不小于,那么的最小值是 ?.三、解答题(共6小题;共60分)21. 去掉中的绝对值符号.22. 把下列各数填人它属于的集合圈内:,,,,,,,,,,.23. 分别写出,,的相反数,在数轴上表示出各数及它们的相反数,并说明各对数在数轴上的位置特点.24. 张大妈在超市买了一袋食盐,发现包装上标有字样“净重:”,怎么也看不明白是什么意思,你能给她解释清楚吗?25. 已知数轴上三点,,对应的数分别为,,,点为数轴上任意一点,其对应的数为.Ⅰ如果点到点、点的距离相等,那么的值是 ?;Ⅱ数轴上是否存在点,使点到点、点的距离之和是;如果存在,求出的值;如果不存在,请说明理由;Ⅲ如果点以每秒钟个单位长度的速度从点向右运动时,点和点分别以每秒钟个单位长度和每秒钟个单位长度的速度也向右运动,且三点同时出发,那么经过几秒钟,点到点、点的距离相等.26. 请阅读下面材料:已知点,在数轴上分别表示有理数,,,两点之间的距离表示为.当,两点中有一点在原点时,不妨设点在原点,如图所示,.当,两点都不在原点时:()如图所示,点,都在原点右边,;()如图所示,点,都在原点左边,;()如图所示,点,在原点两边,.综上所述,数轴上,两点之间的距离表示为.回答下列问题:Ⅰ数轴上表示和两点之间的距离是 ?,数轴上表示和两点之间的距离是 ?.Ⅱ数轴上表示和两点和之间的距离是 ?;如果,那么 ?.Ⅲ当代数式取最小值时,的取值范围是 ?.答案第一部分1. D2. B3. B4. C5. A6. D7. C8. C第二部分9. ;10. ;;11. (1)支出;(2)上升;(3)向南前进12. ;;;13.14.15. ;;相等;相反数16.17.18. ;19. (注:各元素的排列顺序可以不同)20. ;第三部分21. (1)当时,,;(2)当时,,;(3)当时,,.22.23. ,,的相反数分别是,,.在数轴上表示如图所示:各对数在数轴上的位置特点是到原点的距离相等.24. “净重:”的意思是这袋食盐的净重在到的范围内,即的范围内.25. (1)??????(2),点在不在线段上.当点在点的左侧时,.解得 .当点在点的右侧时,.解得.存在点,使点到点、点的距离之和是,此时或.??????(3)设经过秒点到点、点的距离相等.点表示的数是,点表示的数是,点表示的数是,由题意,得...26. (1);??????(2);或??????(3)。

1.2 数轴、相反数与绝对值

1.2  数轴、相反数与绝对值

1.2 数轴、相反数和绝对值1.2.1 数轴要点感知1 在直线上取一点O ,这个点叫做______;通常把直线上从原点向右的方向规定为______,从原点向左的方向规定为________;选取适当的长度为________.像这样,规定了_____、______和________的直线叫做数轴. 预习练习1-1 下列各图中,所画数轴正确的是( )要点感知2 数轴上原点右边的点表示______数,左边的点表示______数,任何有理数都可以用_____上唯一的一个点来表示.预习练习2-1 如图,在数轴上点A 表示( )A.-2B.2C.±2D.02-2 在下面数轴上,A ,B ,C ,D ,E 各点分别表示什么数?知识点1 数轴的概念 1.下列说法正确的是( )A.规定了正方向和单位长度的射线叫做数轴B.规定了原点、单位长度的线段叫做数轴C.有正方向和单位长度的直线叫做数轴D.规定了原点、正方向和单位长度的直线叫做数轴 知识点2 在数轴上表示有理数2.在数轴上,表示-2.75的点最可能是( )A.E 点B.F 点C.G 点D.H 点3.指出数轴上A ,B ,C ,D 各点分别表示的有理数.4.在数轴上表示出下列各有理数:-0.7,-3,-213,0,112,2.知识点3 数轴上的点与有理数之间的关系 5.下列四个有理数中,在原点左边的是( )A.-2 014B.0C.15.8D.1 20006.数轴上原点及原点左边的点表示( )A.正数B.负数C.非正数D.非负数7.在数轴上距原点2 013个单位长度的点表示的数是( )A.2 013B.-2 013C.2 013或-2 013D.1 006.5或-1 006.58.下列说法中正确的是( )A.所有的有理数都可以用数轴上的点来表示B.数轴表示-2的点有两个C.数轴上的点表示的数不是正数就是负数D.数轴上原点两边的点可以表示同一个数9.在数轴上,-1和1之间的有理数有( )A.1个B.2个C.3个D.无数个10.在数轴上,在原点的左边,距原点6个单位长度的点表示的数为_______.11.写出距离原点小于或等于4个单位的所有整数,并在数轴上表示出来.12.下列所画数轴正确的个数有( )A.0个B.1个C.2个D.3个13.(2012·新疆)如图,点M表示的数是( )A.2.5B.-1.5C.-2.5D.1.514.下列语句中,错误的是( )A.数轴上,原点位置的确定是任意的B.数轴上,正方向可以是从原点向右,也可以是从原点向左C.数轴上,单位长度1的长度的确定,可根据需要任意选取D.数轴上,与原点的距离等于8的点有两个15.如图,在数轴上表示到原点的距离为3个单位的点有( )A.D点B.A点C.A点和D点D.B点和C点16.若数轴上的点A表示+3,点B表示-4.2,点C表示-1,则点A和点B中离点C较远的是_____.17.(2012·泰州)如图,数轴上的点P表示的数是-1,将点P向右移动3个单位长度得到点P′,则点P′表示的数是________.18.如图,点A表示的数是-4.(1)在数轴上表示出原点O;(2)指出点B表示的数;(3)在数轴上找一点C,使它与B点的距离为2个单位长度,那么C点表示什么数.19.在数轴上,一只蚂蚁从原点出发,它先向右爬了4个单位长度到达点A,再向右爬了2个单位长度到达点B,然后又向左爬了10个单位长度到达点C.(1)在数轴上标出A,B,C三点;(2)写出A,B,C三点表示的数;(3)根据点C在数轴上的位置,C点可以看作是蚂蚁从原点出发,向哪个方向爬了几个单位长度得到的?挑战自我20.小明、小兵、小颖三人的家和学校在同一条东西走向的大街上,星期天老师到这三家进行家访,从学校出发先向东走250米到小明家,后又向东走350米到小兵家,再向西行800米到小颖家,最后又回到学校.(1)以学校为原点,向东为正方向,用一个单位长度表示100米,你能在数轴上表示出小明、小兵、小颖三人家的位置吗?(2)小明家距离小颖家多远?(3)这次家访,老师共行了多少千米的路程?21.(1)借助数轴,回答下列问题.①从-1到1有3个整数,分别是____________;②从-2到2有5个整数,分别是_______________________;③从-3到3有______个整数,分别是___________________;④从-200到200有_______个整数.(2)根据以上事实,请直接写出:从-2.9到2.9有______个整数,从-10.1到10.1有______个整数;(3)在单位长度是1厘米的数轴上随意画出一条长为1 000厘米的线段AB,直接写出线段AB能盖住的整数点的个数.参考答案课前预习要点感知1原点正方向负方向单位长度原点正方向单位长度预习练习1-1 D要点感知2正负数轴预习练习2-1 A2-2 A,B,C,D,E各点分别表示-3,-1.5,0,0.5,3.当堂训练1.D2.D3.点A表示0,点B表示1.5,点C表示-2,点D表示3.4.5.A6.C7.C8.A9.D 10.-611.距原点小于或者等于4个单位的所有整数是:-4,-3,-2,-1,0,1,2,3,4.在数轴上表示为:课后作业12.B 13.C 14.B 15.C 16.点A 17.218.(1)原点在点A的右侧距A点4个单位长度.在数轴上表示略.(2)点B表示3.(3)C点表示1或5.19. (1)如图所示:(2)A点表示4,B点表示6,C点表示-4.(3)向左爬行4个单位长度.20.(1)如图所示.(2)小明家距离小颖家450米.(3)这次家访,老师共行了250+350+800+200=1 600(米).21.(1)①-1,0,1 ②-2,-1,0,1,2 ③7-3,-2,-1,0,1,2,3 ④401(2)5 21(3)1 000个或1 001个.1.2.2 相反数要点感知1如果两个数只有______不同,那么其中的一个数叫做另一个数的相反数,也称这两个数_________. 预习练习1-1下列各组数中,互为相反数的是( )A.-4和14B.4和-4C.-4和-14D.14和4要点感知2数a的相反数记做_____.一个正数的相反数是______,一个负数的相反数是______,0的相反数是____.表示互为相反数的两个数的点,在数轴上分别位于原点的______,并且与原点的距离______.预习练习2-1 (2013·济南)-6的相反数是( )A.-16B.16C.-6D.6要点感知3 把多重符号化成单一符号由“-”的个数来定,若“-”个数为偶数个时,化简结果为_____;若“-”个数为奇数个时,化简结果为_____.预习练习3-1 化简-(-3)的结果是______.知识点1 相反数的意义1.下列各组数中互为相反数的是( )A.2与-3B.-3与-13C.2 014与-2 013D.-0.25与142.(2013·恩施)-13的相反数是( )A.13B.-13C.3D.-33.如图所示,表示互为相反数的两个数的点是( )A.A和CB.A和DC.B和CD.B和D4.下列说法中:①-2是相反数;②2是相反数;③-2是2的相反数;④-2和2互为相反数.其中正确的有( )A.1个B.2个C.3个D.4个5.下列判断正确的是( )A.符号不同的两个数互为相反数B.互为相反数的两个数一定是一正一负C.相反数等于本身的数只有零D.在数轴上和原点距离相等的两个点表示的数不互为相反数6.如图,数轴上表示数-2的相反数的点是______.7.写出下列各数的相反数,并在数轴上表示出来:2,-1,-3.5,12,-212.知识点2 多重符号的化简8.-(+2)的相反数是( )A.2B.12C.-12D.-29.化简下列各数:(1)-(+4);(2)-(-6);(3)-(+3.9);(4)-(-3 4 ).10.(2013·义乌)在2,-2,8,6这四个数中,互为相反数的是( )A.-2与2B.2与8C.-2与6D.6与811.如图,数轴单位长度为1,如果点A,B到原点的距离相等,那么点A,B表示数( )A.-4和4B.-3和3C.-2.5和2.5D.-2和212.已知x的相反数是-57,则x是( )A.-57B.±57C.57D.-7513.化简-{-[-…-(-2 013)]},在2 013前面有2 012个负号,则化简的结果为( )A.2 013B.-2 013C.2 012D.-2 01214.一个数在数轴上所对应的点向左移2 014个单位后,得到它的相反数对应的点,则这个数是( )A.2 014B.-2 014C.1 007D.-1 00715.相反数等于本身的数是_____.16.若a=3.5,则-a=______;若-x=-(-10),则x=_____;若m=-m,则m=______.17.写出下列各数的相反数,并将这些数连同它们的相反数在数轴上表示出来:-6,-534,+38,-2.8,7,+5.18.若a和b互为相反数,表示数a的点在表示数b的点的左侧,且两点的距离是8.4,求a和b这两个数.19.如图,图中数轴的单位长度为1.请回答下列问题:(1)如果点A,B表示的数是互为相反数,那么点C表示的数是多少?(2)如果点D,B表示的数是互为相反数,那么点C表示的数是正数还是负数,图中表示的5个点中,哪一个点离原点的距离最近?挑战自我20.数轴上点A表示的数为-5,B,C两点所表示的数互为相反数,且点B到点A的距离为4,求B,C两点对应的数分别是什么?21.(1)小李在做题时,画了一条数轴,在数轴上原有一点A,其表示的数是-3,由于粗心,把数轴的原点标错了位置,使点A正好落在-3的相反数的位置,想一想,要把数轴画正确,原点要向哪个方向移动几个单位长度?(2)如图是具有互为相反数的三角形数阵,当最下面一行的两个数为多少时,这两个数以及它们上面的数的总个数为2 013个?参考答案课前预习要点感知1符号互为相反数预习练习1-1 B要点感知2-a 负数正数0 两侧相等预习练习2-1 D要点感知3 正 负 预习练习3-1 3 当堂训练1.D2.A3.C4.B5.C6.点P7.各数的相反数分别是-2,1,3.5,-21,221.在数轴上表示略. 8.A9.(1)-4. (2)6. (3) -3.9. (4)43. 课后作业10.A 11.C 12.C 13.A 14.C 15.0 16.-3.5 -100 17.各数的相反数分别为:6,543,-83,2.8,-7,-5.在数轴上表示略. 18.a=-4.2,b=4.2.19.(1)因为点A ,B 表示的数是互为相反数,原点就应该是线段AB 的中点,即在C 点右边一格,C 点表示数-1; (2)如果点D ,B 表示的数是互为相反数,那么原点在线段BD 的中点,即C 点左边半格,点C 表示的数是正数; 在图中表示的5个点中,点C 离原点的距离最近.20.因为点A 表示的数为-5,点B 到点A 的距离为4,所以点B 表示的数为-9或-1.又因为B ,C 两点所表示的数互为相反数,所以当点B 表示-9时,点C 表示9;当点B 表示-1时,点C 表示的数为1. 21.(1)向右平移6个单位长度. (2)-1 007,1 007.1.2.3 绝对值要点感知1 正数的绝对值是____;负数的绝对值是_______;0的绝对值是______.互为相反数的两个数的绝对值_____.预习练习1-1 (2013·临沂)-2的绝对值是( ) A.2 B.-2 C.12 D.-12要点感知2 一个数的绝对值等于数轴上表示这个数的点与原点的_____.一般地,数a 的绝对值记做|a|.当a 是正数时,|a|=____;当a=0时,|a|=_____;当a 是负数时,|a|=____,即|a|是一个_______. 预习练习2-1 数轴上一个点到原点的距离为2.3,则这个点表示的数的绝对值是_______. 2-2 求下列各数的绝对值:-32,6,-3,0,54.知识点1 绝对值的意义1.在数轴上表示-2的点到原点的距离等于( ) A.2 B.-2 C.±2 D.42.如图,点A ,B ,C ,D 所表示的数中,绝对值相等的两个点是( )A.点A 和点CB.点B 和点CC.点A 和点DD.点B 和点D 3.(2013·娄底)|-2 013|的值是( )A.12013 B.-12013C.2 013D.-2 013知识点2 绝对值的计算4.(2013·盘锦)-|-2|的值为( ) A.-2 B.2 C.12 D.-125.下列各式中,错误的是( )A.|-11|=11B.-|11|=-|-11|C.|-11|=|11|D.-|-11|=116.计算:|-3.7|=_____,-(-3.7)=______,-|-3.7|=______,-|+3.7|=______.7.计算:(1)|-21|+|-6|; (2)|-2 014|-|+2 013|; (3)|+223|×|-9|; (4)|-34|÷|-178|.知识点3 绝对值的性质 8.若|a|=8,则a 的值是( ) A.-8 B.8 C.±8 D.±189.在有理数中,绝对值等于它本身的数有( ) A.一个 B.两个 C.三个 D.无数个 10.下面关于绝对值的说法正确的是( )A.一个数的绝对值一定是正数B.一个数的相反数的绝对值一定是正数C.一个数的绝对值的相反数一定是负数D.一个数的绝对值一定是非负数11.(1)①正数:|+5|=____,|12|=_____;②负数:|-7|=______,|-15|=______;③零:|0|=_____; (2)根据(1)中的规律发现:不论正数、负数和零,它们的绝对值一定是______,即|a|____0. 12.若|a|+|b|=0,则a=____,b=_____.13.(2013·宁波)-5的绝对值为( ) A.-5 B.5 C.-15 D.1514.(2012·东营)13的相反数是( ) A.13 B.-13C.3D.-3 15.(2012·丽水)如图,数轴的单位长度为1,如果点A ,B 表示的数的绝对值相等,那么点A 表示的数是( )A.-4B.-2C.0D.416.(2013·菏泽)如图,数轴上的A ,B ,C 三点所表示的数分别为a ,b ,c ,其中AB=BC ,如果|a|>|c|>|b|,那么该数轴的原点O 的位置应该在( )A.点A 的左边B.点A 与点B 之间C.点B 与点C 之间D.点C 的右边17.如果|x|=712,那么x=____,|-x|=_____. 如果|-2.5|=|-a|,那么a=____.18.按规定,食品包装袋上都应标明袋内装食品有多少克,下表是几种饼干的检验结果,“+”和“-”号分别表示比标准重量多和少,用绝对值判断最符合标准的一种食品是_______.19.化简:(1)-|-3|;(2)-|-(-7.5)|.20.已知x=-30,y=-4,求|x|-3|y|.21.在数轴上表示下列各数:(1)|-113|;(2)|0|;(3)绝对值是1.2的负数;(4)绝对值是412的有理数.挑战自我22.已知|a-2|+|b-3|+|c-4|=0,求式子a+b+c的值.23.已知a,b,c为有理数,且它们在数轴上的位置如图所示.(1)试判断a,b,c的正负性;(2)在数轴上标出a,b,c的相反数的位置;(3)根据数轴化简:①|a|=______,②|b|=_____,③|c|=______,④|-a|=_____,⑤|-b|=_____,⑥|-c|=_____;(4)若|a|=5.5,|b|=2.5,|c|=5,求a,b,c的值.参考答案课前预习要点感知1 它本身 它的相反数 0 相等 预习练习1-1 A要点感知2 距离a 0 -a 非负数预习练习2-1 2.3 2-2它们的绝对值分别为:23,6,3,0,45. 当堂训练1.A2.C3.C4.A5.D6.3.7 3.7 -3.7 -3.77.(1)原式=21+6=27.(2)原式=2 014-2 013=1. (3)原式=223×9=24. (4)原式=34÷178=25.8.C 9.D 10.D 11.(1)5 12 7 15 0(2)非负数 ≥ 12.0 0 课后作业13.B 14.B 15.B 16.C 17.±721 721±2.5 18.酥脆 19.(1)原式=-3.(2)原式=-7.5.20.|x|-3|y|=30-3×4=18. 21.(1)|-131|=131; (2)|0|=0;(3)绝对值是1.2的负数是-1.2; (4)绝对值是421的有理数是±421.在数轴表示为:22.由题意,得a=2,b=3,c=4,所以a+b+c=2+3+4=9.23.(1)a 为负,b 为正,c 为正. (2)图略.(3)①-a ②b ③c ④-a ⑤b ⑥c (4)a=-5.5,b=2.5,c=5.。

《正负数 数轴 相反数 绝对值》测试

《正负数 数轴 相反数 绝对值》测试

一.选择题(在四个选项中选出唯一正确的选项,每题3分,共30分)1. 有一种记分法,80分以上如85分记为+5分.某学生得分为72分,则应记为( )A .72分B .+8分C .-8分D .-72分2.一个数在数轴上所对应的点向右移动5个单位长度后得到它的相反数对应的点,则这个数是( )A .-52B .-5C .52D .+5 3.一个数的相反数大于它本身,这个数是( )A.. 正数B. 负数C. 0D. 非负数4. 用-m 表示的数一定是( )A .负数B .负数或正数C .负整数D .以上都不对5. M 点在数轴上表示-4,N 点离M 的距离是3,那么N 点表示( )A. -1 B . -7 C . -1或-7 D. -1或16.下列说法中正确的是( )A. - a 不是正数B. -a -是负数C. a -不是负数D. a -是正数7.若|a |=2,|b |=5,则a +b = ( )A. ±3或±7B. ±3;C. ±7; D . 3或7;8.若a +b =0,则有理数a 、b 一定( )A .都是0B .互为相反数C .两数异号D .至少有一个是09.以下关系一定成立的是( )A.. 若|a |=|b |,则a =bB. 若|a |=a ,则a >0C. 若|a |+a =0,则a ≤0D. 若 a >b , 则|a |>|b |.10.下列语句:①一个数的绝对值一定是正数;②-a 一定是一个负数;③ 没有绝对值为-3的数;④若a =a ,则a 是一个正数;⑤离原点左边越远的数就越小.正确的有( )个.A. 0B. 3C. 2D. 4二.填空题(每题3分,共30分)11.与原点距离为2个单位的点对应的有理数为 .12.相反数是它本身的数是 ;绝对值是它本身的数是 .13.数轴上表示-5和表示-14的两点之间的距离是 . 14.若4a =,5b =,且ab <0,则a b -= .15.|m +7|+2011的最小值为 ,此时m = .16.数轴上与表示124的点的距离为5个单位长度的点所表示的数为 . 17.若a =3,则42a a -+-= . 18. 计算:111134232323+-----= 19.已知a =2010,b =2011,且a <b ,则a 、b 的值分别是 .三.解答题(每题8分,共40分)20.已知:a >0,b <0,且∣a │<∣b │,请你借助数轴比较a 、b 、-a 、-b 四个数的大小。

第一章 正负数、相反数、绝对值练习题

第一章 正负数、相反数、绝对值练习题

. 正负数、数轴、相反数、绝对值一、填空题1.如果全班某次数学测试的平均成绩为80分,某同学考了85分,记作+5分,得分90分和80分应分别记作______.2.如果以每月生产180个零件为准,超过的零件数记作正数,不足的零件数记作负数,那么1月生产160 个零件记作 个 ,2月生产200个零件记作_____3.某粮店出售三种品牌的面粉,袋上分别标有质量为(50±0.1)kg 、(50±0.2)kg 、(50±0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相差 .4某种药品的说明书上标明保存温度是(20±2)℃,由此可知在__℃~__℃范围内保存才合适。

5.一个数的绝对值越小,则该数在数轴上所对应的点,离原点越_____.6.在数轴上A 点表示-31,B 点表示21,则离原点较近的点是__ _点. 7.数轴上离表示-3的点的距离等于3个单位长度的点表示数是 . 8.在数轴上点M 表示212,那么与M 点相距4个单位长度的点表示的数是___________。

9、已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3,那么所有满足条件的点B 与原点O 的距离之和等于 。

(北京市“迎春杯”竞赛题)二、选择题1、负数是指( )A.把某个数的前边加上“-”号 B.不大于0的数 C.除去正数的其他数 D.小于0的数2、向东行进-30米表示的意义是()A 、向东行进30米 B 、向东行进-30米C 、向西行进30米 D 、向西行进-30米3. 小明设计了一个游戏规则:先向南走5米,再向南走—10米,最后向北走5米,则结果是( )A. 向南走10米B. 向北走5米C. 回到原地D. 向北走10米4.校、家、书店依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家北边100米,张明同学从家里出发,向北走了50米,接着又向北走了-70米,此时张明的位置在A. 在家B. 在学校C. 在书店D. 不在上述地方5.点A 为数轴上表示-2的动点,当点A 沿数轴移动4个单位长到B 时,点B 所表示的实数是 ( )A 1B -6 C 2或-6 D 不同于以上答案6.在一次数学测试中,七(2)班的平均分为85分,把高于平均分的高出部分数记为正数,老师将某一小组的美美、多多、田田、乐乐四位同学的成绩记为+7,-4,-11,+13,则这四位同学实际成绩最高的是( )A .美美B 。

正负数、数轴、相反数、绝对值

正负数、数轴、相反数、绝对值

《正、负数、相反数、绝对值》综合复习一、自主学习:(回顾并完善)1、 正数与负数:(1)含义: 叫正数; 叫负数; 既不是正数也不是负数。

(2)表示方法: 可以写也可以省略不写; 必须写上;2、相反意义的量:(1) 数和 数是一对相反意义的量;(2)在一对相反意义的量中,若 ,则 ;若 ,则 ;3、有理数的的概念及分类:(1) 统称有理数;(2)①按定义分: ⎧⎧⎪⎪⎨⎪⎪⎪⎪⎩⎨⎧⎪⎪⎪⎨⎪⎪⎪⎩⎩( )( )( )( )有理数( )( )( ) ②按正负性分: ⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩( )( )( )有理数( )( )( )( )(3)注: 实质上是 ;非负数是指 ;非正数是指 ;4、数轴:(1)规定了 的 叫数轴, 、 、是数轴的三要素;(2) 都可以用数轴上的点表示; 末必都是有理数;(3)常见的不规范的数轴作法:( )( )( )( )( )120-11-115、相反数:(1) 互为相反数; 特例,0的相反数是 ;(2)注:①两个互为相反数的数在数轴上所表示的两个点分别在 的 ,并且与原点的 ;②一般地说,数a 的相反数是 ;这里的a 表示 ;它可以是 ;③求一个数的相反数就是;④在任意一个数前加“-”,所得的数是;(3)若a、b互为相反数,则可转化为以下几种关系:①a b+=;②b;③a b-、b a-;④abba= ;(0;0a b≠≠)6、绝对值:(1)叫做a的绝对值;记作:读作:;(2)绝对值规律:①;②;③;可见一个数的绝对值一定是;即(绝对值非负性);a= ( ) ( ) ( )(3)求一个数的绝对值首先判断;然后根据求出;7、有理数的大小比较:(1)数轴上不同的两个点表示的数,;(2)负数0,0 正数,负数正数;两个负数比较大小,;8、最小的正整数是,最大的负整数是,绝对值最小的数是;相反数等于本身的数是,绝对值等于本身的数是;二、合作探究:1、某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入。

正数负数相反数数轴复习题

正数负数相反数数轴复习题

正数负数·数轴·相反数习题一.选择题(共16小题).m3.(2004•无为县)某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg﹣2;3;﹣;0;﹣(a2+1)A.1B.2C.3D.46.下列各数:﹣,﹣(﹣4)2,|﹣5|,﹣(﹣3)中,正数有()个A.0B.1C.2D.37.在+5,﹣4,﹣π,,22,﹣(﹣),(﹣6)3,﹣|﹣8|,﹣(﹣2)5,﹣(﹣5),﹣42,这几个数中,负①a﹣b>0;②a+b>0;③>;④b﹣a>0.①b﹣a>0 ②a﹣b>0 ③ab>0 ④a+b>0 ⑤|a|﹣|b|>0 ⑥b2﹣a2<0.A.3个B.4个C.5个D.6个点的位置()A.点A B.点B C.点C D.点D13.数轴上表示整数的点称为整点,某数轴的单位长度为1厘米,若在这条数轴上随意画出一条长为2012厘米的14.如图,在数轴上有六个点,且AB=BC=CD=DE=EF,则这条数轴的原点在()A.在点A,B之间B.在点B,C之间C.在点C,D之间D.在点D,E之间D.C.﹣17.如图,A、B是数轴上不同的两点,它们所对应的数分别是﹣4,2x,且点A、B到原点的距离相等,则x的值是_________.18.一个点从数轴的原点开始,向右移动5个单位长度,再向左移动8个单位长度,到达的终点表示的数是_________.19.一个机器人从数轴上的原点出发,沿数轴的正半轴方向,以每前进4步后退3步的程序运动,设该机器人每秒前进或后退1步,并且每步的距离为一个单位长度,x n表示第n秒机器人在数轴上的位置所对应的数(如x4=4,x5=3,x7=1),则x2007﹣x2011的结果为_________.20.(2007•长沙)如图,点A,B在数轴上对应的实数分别为m,n,则A,B间的距离是_________.(用含m,n的式子表示)三.解答题(共10小题)21.某检修小组乘一辆检测机车沿一条南北向铁路线检查铁道,约定向北走为正,某天从甲地出发到收工时,行驶记录为(长度:千米):+15,﹣3,+5,﹣2,+11,+4,﹣8,﹣7,+9.收工时,检修人员在甲地的哪一边?距甲地多远?22.剑川县电力公司某检修小组从县城出发,在214国道(南北方向)上检修线路,规定:向南行驶为正,向北行驶为负;某天行车里程(单位:千米)依先后次序记录如下:﹣4,+7,﹣9,+8,+6,﹣5,﹣2.(1)请问收工时检修小组离县城多远?在县城的什么方向?(2)若行车每千米耗油0.2升,请问这天行车共耗油多少升?23.阅读理解题;一点P从数轴上表示﹣2的点A开始移动,第一次先由点A向左移动1个单位,再向右移动2个单位;第二次先由点A向左移动2个单位,再向右移动4个单位;第三次先由点A向左移动3个单位,再向右移动6个单位….求:(1)写出第一次移动后点P在数轴上表示的数;(2)写出第二次移动后点P在数轴上表示的数;(3)写出第三次移动后点P在数轴上表示的数;(4)写出按上述规律第n次移动后点P在数轴上表示的数.24.数轴是一个非常重要的数学工具,通过它把数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.请利用数轴回答下列问题:(1)如果点A表示数﹣2,将点A向右移动5个单位长度到达点B,那么点B表示的数是_________,A、B 两点间的距离是_________;(2)如果点A表示数5,将点A先向左移动4个单位长度,再向右移动7个单位长度到达点B,那么点B表示的数是_________,A、B两点间的距离是_________;(3)一般的,如果点A表示的数为a,将点A先向左移动b个单位长度,再向右移动c个单位长度到达点B,那么点B表示的数是_________.25.某邮递员从邮局出发,先向西走2km到达A村,继续向西走3km到达B村,然后向东走9km到达C村,最后回到邮局.(1)以邮局为原点,向东方向为正方向,用1cm表示1km,画出数轴,并在数轴上表示出A、B、C三个村庄的位置;(2)求邮递员实际一共走了多少km.26.已知在纸面上有一数轴(如图),折叠纸面.(1)若1表示的点与﹣1表示的点重合,则﹣2表示的点与数_________表示的点重合;(2)若﹣1表示的点与3表示的点重合,回答以下问题:①5表示的点与数_________表示的点重合;②若数轴上A、B两点之间的距离为9(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少?﹣5_________4__________________3 __________________28.化简下列各数中的符号.(1);(2)﹣(+5);(3)﹣(﹣0.25);(4)﹣[﹣(+1)];(5)﹣(﹣a).29.(1)﹣(+5)和﹣(﹣5)分别表示什么意思?你能化简它们吗?(2)+(+5)和+(﹣5)分别表示什么意思?你能化简它们吗?(3)通过前两问的研究,你发现了什么规律?30.化简下列各数,并发现规律:(1)﹣(+3)=_________;+(﹣4)=_________;+(+2)=_________;﹣(﹣4)=_________.(2)﹣[﹣(﹣3)]=_________;﹣[+(﹣3.5)]=_________;+[﹣(﹣6)]=_________;﹣[﹣(+7)]=_________.(3)观察上述填空,你能发现什么规律?参考答案与试题解析一.选择题(共16小题).m3.(2004•无为县)某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg4.(2010•吉安二模)某项科学研究需要以30分钟为一个时间单位,并记研究那天上午10时为0,10时以前记为5.下列各数中负数的个数有()个﹣2;3;﹣;0;﹣(a2+1)不是负数.解:把各数化简即﹣2,3,﹣,0,﹣a2﹣1,即有﹣2,﹣,﹣a2﹣1共3个负数,故选C.点评:此题关键是理解正数和负数的概念.特别强调的是0既不是正数也不是负数.列各数:﹣,﹣(﹣4)2,|﹣5|,﹣(﹣3)中,正数有()个A.0B.1C.2D.3由题意根据正数和负数的定义进行求解.解:∵﹣<0,0=0,﹣(﹣4)2=﹣16<0,|﹣5|=5>0,﹣(﹣3)=3>0,∴负数有﹣,﹣(﹣4)2,共两个;故选C.此题主要考查正数和负数的性质,比较简单.7.在+5,﹣4,﹣π,,22,﹣(﹣),(﹣6)3,﹣|﹣8|,﹣(﹣2)5,﹣(﹣5),﹣42,这几个数中,负A.3.B.4C.5D.69.下列语句:①前面带有“+”的数一定是正数;②前面带有“﹣”的数一定是负数;③上升5米,再下降3米,实际上升①a﹣b>0;②a+b>0;③>;④b﹣a>0.对错.解:∵从数轴上可以看出a<b<0,(如a=﹣3,b=﹣1),∴a﹣b<0,a+b<0>,b﹣a>0,即①错误;②错误;③正确;④正确;正确的个数是2个,故选B.本题考查了数轴和有理数的大小比较,题目比较好,但是一道比较容易出错的题目,可采用特例(即举出①b﹣a>0 ②a﹣b>0 ③ab>0 ④a+b>0 ⑤|a|﹣|b|>0 ⑥b2﹣a2<0.12.如图,在单位长度为1的数轴上有A,B,C,D四点,分别表示整数a,b,c,d,且d﹣2a=10,请你找出原点的位置()14.如图,在数轴上有六个点,且AB=BC=CD=DE=EF,则这条数轴的原点在()根据图示,求得AF间的距离,然后由已知条件AB=BC=CD=DE=EF来确定条数轴的原点的大致位置.解:∵|11﹣(﹣5)|=16,AB=BC=CD=DE=EF,∴AB=BC=CD=DE=EF==3.2,∴这条数轴的原点在B与C之间.故选B.本题主要考查了数轴上对应点的几何意义.D.C.﹣17.如图,A、B是数轴上不同的两点,它们所对应的数分别是﹣4,2x,且点A、B到原点的距离相等,则x的值是2.18.一个点从数轴的原点开始,向右移动5个单位长度,再向左移动8个单位长度,到达的终点表示的数是﹣3.秒前进或后退1步,并且每步的距离为一个单位长度,x n表示第n秒机器人在数轴上的位置所对应的数(如x4=4,x5=3,x7=1),则x2007﹣x2011的结果为0.20.(2007•长沙)如图,点A,B在数轴上对应的实数分别为m,n,则A,B间的距离是n﹣m.(用含m,n的式子表示)三.解答题(共10小题)21.某检修小组乘一辆检测机车沿一条南北向铁路线检查铁道,约定向北走为正,某天从甲地出发到收工时,行驶记录为(长度:千米):+15,﹣3,+5,﹣2,+11,+4,﹣8,﹣7,+9.收工时,检修人员在甲地的哪一边?距甲地多远?22.剑川县电力公司某检修小组从县城出发,在214国道(南北方向)上检修线路,规定:向南行驶为正,向北行驶为负;某天行车里程(单位:千米)依先后次序记录如下:﹣4,+7,﹣9,+8,+6,﹣5,﹣2.(1)请问收工时检修小组离县城多远?在县城的什么方向?(2)若行车每千米耗油0.2升,请问这天行车共耗油多少升?23.阅读理解题;一点P从数轴上表示﹣2的点A开始移动,第一次先由点A向左移动1个单位,再向右移动2个单位;第二次先由点A向左移动2个单位,再向右移动4个单位;第三次先由点A向左移动3个单位,再向右移动6个单位….求:(1)写出第一次移动后点P在数轴上表示的数;(2)写出第二次移动后点P在数轴上表示的数;(3)写出第三次移动后点P在数轴上表示的数;(4)写出按上述规律第n次移动后点P在数轴上表示的数.24.数轴是一个非常重要的数学工具,通过它把数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.请利用数轴回答下列问题:(1)如果点A表示数﹣2,将点A向右移动5个单位长度到达点B,那么点B表示的数是3,A、B两点间的距离是5;(2)如果点A表示数5,将点A先向左移动4个单位长度,再向右移动7个单位长度到达点B,那么点B表示的数是8,A、B两点间的距离是3;(3)一般的,如果点A表示的数为a,将点A先向左移动b个单位长度,再向右移动c个单位长度到达点B,那么点B表示的数是a﹣b+c.25.某邮递员从邮局出发,先向西走2km到达A村,继续向西走3km到达B村,然后向东走9km到达C村,最后回到邮局.(1)以邮局为原点,向东方向为正方向,用1cm表示1km,画出数轴,并在数轴上表示出A、B、C三个村庄的位置;(2)求邮递员实际一共走了多少km.(2)根据题意列出算式|﹣2|+|﹣3|+|+9|+|9﹣5|,求出即可.解:(1)(2)邮递员实际一共走了|﹣2|+|﹣3|+|+9|+|9﹣5|=2+3+9+4=18(km),答:邮递员实际一共走了18km.本题考查了数轴和绝对值的应用,主要考查学生的理解能力和转化能力,即能把实际问题转化成数学问题.26.已知在纸面上有一数轴(如图),折叠纸面.(1)若1表示的点与﹣1表示的点重合,则﹣2表示的点与数2表示的点重合;(2)若﹣1表示的点与3表示的点重合,回答以下问题:①5表示的点与数﹣3表示的点重合;②若数轴上A、B两点之间的距离为9(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少?﹣5453﹣4﹣﹣5﹣4753﹣4﹣28.化简下列各数中的符号.(1);(2)﹣(+5);(3)﹣(﹣0.25);(4)﹣[﹣(+1)];(5)﹣(﹣a).根据多重符号的化简法则求解即可.解:(1)=;(2)﹣(+5)=﹣5;29.(1)﹣(+5)和﹣(﹣5)分别表示什么意思?你能化简它们吗?(2)+(+5)和+(﹣5)分别表示什么意思?你能化简它们吗?(3)通过前两问的研究,你发现了什么规律?30.化简下列各数,并发现规律:(1)﹣(+3)=﹣3;+(﹣4)=﹣4;+(+2)=2;﹣(﹣4)=4.(2)﹣[﹣(﹣3)]=﹣3;﹣[+(﹣3.5)]= 3.5;+[﹣(﹣6)]=6;﹣[﹣(+7)]=7.(3)观察上述填空,你能发现什么规律?。

有理数加减法相反数数轴绝对值综合练习(附答案)

有理数加减法相反数数轴绝对值综合练习(附答案)

有理数加减法相反数数轴绝对值综合练习一、单选题1.有理数,a b 在数轴上的位置如图所示,则a +b 的值( )A. 大于0B. 小于0C. 等于0D. 小于a2.下列不是具有相反意义的量的是( )A.前进5米和后退5米B.收入30元和支出10元C.向东走10米和向北走10米D.超过5克和不足2克 3.﹣8的相反数是( )A .﹣8B .18C .8D .18- 4.已知1a =,b 是2的相反数,则a b +的值为( )A.3-B.1-C.1-或3-D. 1或3-5.下列四种说法:(1)有理数的相反数都是正数;(2)有理数的绝对值都是正数;(3)有理数的绝对值都不会是负数;(4)整数中绝对值最小的数是0.其中正确的有( )A.0个B.1个C.2个D.3个 6.已知a ,b 是有理数,若a 在数轴上的对应点的位置如图所示, 0a b +<,有以下结论:① 0b <;② 0b a ->;③ a b ->-;④ 1b a<-,则所有正确的结论是( ) A.① ④ B.① ③ C.② ③ D.② ④7.在数轴上与原点的距离小于8的点对应的x 满足( )A .88x -<<B .8x <-或8x >C .8x >D .8x <8.一实验室检测,,,A B C D 四个元件的质量(单位:克),超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是( )A. B. C. D.9.检验4个工件,其中超过标准质量的克数记做正数,不足标准质量的克数记做负数,从轻重的角度看,下列选项中,最接近标准的是记为________的工件( )A.2-B.3-C.3D.510.计算74-+的结果是( )A .3B .-3C .11D .-11 11.已知()2230a b -++=,则下列式子值最小是( )A. a b +B. a b -C. a bD. ab二、解答题12.有理数a b c ,,在数轴上的位置如图所示,且表示数a 的点、数b 的点与原点的距离相等.(1)用“>”“<”或“=”填空:b ______0,a b +______0,a c -______0,b c -______0; (2) 11b a -+-= ________;(3)化简:a b a c b b c ++--+-.三、计算题13.已知7x =,12y -=,且x y >,求x y +的值.14.某城市一天凌晨的气温是5C -︒,中午上升了11C ︒,夜间下降了8C ︒,则夜间气温是多少摄氏度?15.若一个数a 的绝对值是3,且a 在数轴上的位置如图,试求它的相反数。

中考复习 填空题、选择题专题一 正负数的意义,相反数、倒数、绝对值

中考复习 填空题、选择题专题一  正负数的意义,相反数、倒数、绝对值

填空题、选择题专题一正负数的意义、数轴、相反数、倒数、绝对值一、云南中考原题1.(2016)计算:|3|-= .2.(2017) 2的相反数是 .3.(2018)1-的绝对值是 .4.(2019)若零上8℃记作+8℃,则零下6℃记作 ℃.5.(2020)中国是最早采用正负数表示相反意义的量的国家.某仓库运进面粉7吨,记为7+吨,那么运出面粉8吨应记为___________吨.6. (2021)某地区2021年元旦的最高气温为9℃,最低气温为﹣2℃,那么该地区这天的最低气温比最高气温低( )A .7℃B .﹣7℃C .11℃D .﹣11℃7.(2022)中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若零上10℃记作+10℃,则零下10℃可记作( )A. 10℃B. 0℃C. -10 ℃D. -20℃二、强化训练1.把上升5m 记为5m +,那么3m -表示______.2.如果向西走30米记作30-米,那么15+米表示:_________.3.将数轴上的点A 向右移动3个单位长度到达点B ,若点B 表示的数是2,则点A 表示的数是________.4.在数轴上与表示﹣2的点相距3个单位长度的点表示的数是 _____.5.13-的绝对值是__________,5的相反数是_________. 6.2022-的相反数是( )A .2022B .12022- C .12022 D .2022-7.12-的绝对值等于( ) A .12-B .12C .2D .-2 8.12-的相反数是( ) A .12- B .12 C .2- D .2 9.12-的倒数等于( ) A .12- B .12 C .2 D .-210.下列说法错误的是( )A .0既不是正数,也不是负数B .零上4摄氏度可以写成4C +︒,也可以写成4C ︒C .若盈利100元记作100+元,则20-元表示亏损20元D .向正北走一定用正数表示,向正南走一定用负数表示11.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是( )A .B .C .D .12.下列说法正确的是( )A .分数都是有理数B . a -是负数C .有理数不是正数就是负数D .绝对值等于本身的数是正数13.将下列四个数表示在数轴上,它们对应的点中,离原点最近的是( )A .-0.4B .0.6C .1.3D .-214.若a 与﹣6互为相反数,则1a -的值为( )A .﹣6B .﹣5C .5D .615.若a 、b 互为相反数,则2(a +b )+3的值为( )A .-1B .3C .1D .216.下列化简,正确的是( )A .[(10)]=10----B .(3)=3---C .(+5)=5-D .[(+8)]=8---17.下列各式正确的是( )A .﹣|﹣5|=5B .﹣(﹣5)=﹣5C .|﹣5|=﹣5D .﹣(﹣5)=518.在实数3-,12-,0,1中,绝对值最小的数是( )A .3-B .12- C .0 D .119.已知等腰三角形的两边长为x ,y ,且满足24(2)0x x y -+-=,则三角形的周长为( )A .12B .16C .20D .16或20 20.一个数的绝对值为7,则这个数是( )A .7B .﹣7C .±7D .以上都不对 21.已知a >0,b <0,且|a |<|b |,则下列关系正确的是() A .b a a b <-<<- B .a b a b -<<<- C .a b b a -<<-< D .b a b a <<-<-。

七年级数学 数轴、相反数、绝对值单元测试题

七年级数学 数轴、相反数、绝对值单元测试题

一、单选题2.在跳远测验中,合格标准是4米,张非跳出了4.22米,记为+0.22米,李敏跳出了3.85米,记作( )A .+0.15B .﹣0.15C .+3.85D .﹣3.853.实数a 在数轴上的对应点的位置如图所示.若实数b 满足a b a -<<,则b 的值可以是( )A .2B .-1C .-2D .-34.在一次数学测验中,小明所在班级的平均分为86分,把高出平均分的部分记为正数,小明考了98分记作+12分,若小强成绩记作-4分,则他的考试分数为( )A .90分B .88分C .84分D .82分5.如图,将数轴上6-与6两点间的线段六等分,这五个等分点所对应数依次为12345,,,,a a a a a .则与1a 相等的数是( )A .2aB .3aC .4aD .5a6.已知有理数a ,b 在数轴上的位置如图所示,则下列关系正确的是( )A .0a b >>B .0b a >>C .0b a >>D .0a b >>7.实际测量一座山的高度时,有时需要在若干个观测点中测量两个相邻可视观测点的相对高度如A C -为90米表示观测点A 比观测点C 高90米),然后用这些相对高度计算出山的高度.下表是某次测量数据的部分记录,根据这次测量的数据,可得A B -是( )米.A .210B .130C .390D .-2108.A 、B 为数轴上的两点,若点A 表示的数是2,且线段AB =5,则点B 表示的数为( )A .7B .﹣3C .﹣7或3D .7或-39.如图所示,圆的周长为4个单位长度在圆周的4等分点处标上字母A ,B ,C ,D ,先将圆周上的字母A 对应的点与数轴上的原点重合,再将圆沿着数轴向右滚动,那么数轴上的1949所对应的点与圆周上字母( )所对应的点重合.A .AB .BC .CD .D二、填空题 11.172-的相反数是___________. 12.在直线上向右为正方向,负数都在0的_______边,也就是负数都比0_____,正数都比0_____.13.比-2.5大,比92小的所有整数有______ 14.在数4.3,3-5,|0|,227⎛⎫-- ⎪⎝⎭,-|-3|,-(+5)中,___________ 是正数 15.已知m 与n 互为相反数,且m 与n 之间的距离为6,且m <n .则m =_____,n=_______.16.小红的妈妈买了4筐白菜,以每筐25千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重后的记录分别为0.25+,1-,0.5+,0.75-,小红快速准确地算出了4筐白菜的总质量为__________千克.17.点A 、B 在数轴上对应的数分别为,a b ,满足()2250a b ++-=,点P 在数轴上对应的数为x ,当x =_________时,10PA PB +=.18.定义:[]x 表示不大于x 的最大整数,()x 表示不小于x 的最小整数,例如:[]2.32=,()2.33=,[]2.33-=-,()2.32-=-.则[]()1.7 1.7+-=___________.19.绝对值大于1而小于3.5的所有整数的和为_____.三、解答题21.把下列各数分别填入相应的集合:0,﹣7,5.6 ,﹣4.8,﹣814,227,15,19. 整数集合{ …};分数集合{ …};非负数集合{ …};负数集合{ …}.22.我们知道数形结合是解决数学问题的重要思想方法,例如|3-1|可表示为数轴上3和1这两点的距离,而31+即()|31|--则表示3和-1这两点的距离.式子1x -的几何意义是数轴上x 所对应的点与1所对应的点之间的距离,而()22x x +=--,所以2x +的几何意义就是数轴上x 所对应的点与-2所对应的点之间的距离.根据以上发现,试探索:(1)直接写出|8(2)|--=____________.(2)结合数轴,找出所有符合条件的整数x ,235x x -++=的所有整数的和.(3)由以上探索猜想,对于任何有理数x ,46x x ++-是否有最小值?如果有,请写出最小值并说明理由;如果没有,请说明理由.参考答案:1.B【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:若把向东走2km 记做“+2km”,那么向西走1km 应记做﹣1km .故选:B .【点睛】本题主要考查正数与负数,理解正数与负数的意义是解题的关键.2.B【分析】根据正负数的意义解答.【详解】解:∵4.22-4=0.22,∵以4米为标准,若张非跳出了4.22米,可记做+0.22米,∵3.85-4=-0.15,∵李敏跳出了3.85米,记作﹣0.15米,故选:B .【点睛】此题考查了正负数的意义,有理数减法的应用,正确理解正负数的意义是解题的关键.3.B【分析】先根据数轴的定义得出a 的取值范围,从而可得出b 的取值范围,由此即可得.【详解】解:由数轴的定义得:12a <<21a ∴-<-<-2a ∴<又a b a -<<b ∴到原点的距离一定小于2观察四个选项,只有选项B 符合故选:B .【点睛】本题考查了数轴的定义,熟记并灵活运用数轴的定义是解题关键.4.D【分析】根据高出平均分的部分记作正数,得到低于平均分的部分记作负数,即可得到结果.【详解】解:根据题意得:小明98分,应记为+12分;小强成绩记作-4分,则他的考试分数为82分.故选:D .【点睛】此题考查了正数与负数,弄清题意是解本题的关键.5.D【分析】求出数轴上6-与6两点间的线段六等分的每一等分的长度,接着求出1a 的值,再求出1a 的绝对值,得到对应的数是5a .【详解】∵()6662--÷=⎡⎤⎣⎦,∵1624a -+=-=, ∵144a =-=,∵56254a =-+⨯=, ∵15a a =.故选D .【点睛】本题主要考查了数轴和绝对值,熟练掌握数轴的定义和表示数的方法,绝对值的几何意义和计算方法,是解决此类问题的关键.6.B【分析】通过识图可得a <0<b ,|a |>|b |,从而作出判断.【详解】解:由题意可得:a <0<b ,|a |>|b |,A 、0a b >>,错误,此选项不符合题意;B 、0b a >>,正确,故此选项符合题意;C 、0b a >>,错误,故此选项不符合题意;D 、0a b >>,错误,故此选项不符合题意;故选:B .【点睛】本题考查了数轴上的点,理解数轴上点的特点,准确识图是解题关键.7.A【分析】数轴法:设点C 为原点,则A 表示数90,D 表示数-80,以此类推,将以上各观测点在数轴上表示,即可解题.【详解】解:设点C 为原点,则A 表示数90,D 表示数-80,以此类推将以上各观测点在数轴上表示如下:即E 表示数-140,F 表示数-90,G 表示数-160,B 表示数-12090(120)90120210A B ∴-=--=+=故选:A .【点睛】本题考查正负数在实际生活中的应用,是基础考点,利用数轴解题是关键.8.D【分析】根据题意,结合数轴确定出点B所表示的数即可.【详解】解:∵点A表示的数是2,且AB=5,当点B在A的左侧,点B表示的数为:2-5=-3,当点B在点A的右侧,点B表示的数为:2+5=7,∵点B表示的数为7或-3,故选:D.【点睛】此题考查了用数轴上的点表示数,熟练掌握数轴上点表示的意义是解本题的关键.9.D【分析】因为圆沿着数轴向右滚动,依次与数轴上数字顺序重合的是A、D、C、B,且A点只与4的倍数点重合,即数轴上表示4n的点都与A点重合,表示4n+1的数都与D点重合,依此按序类推.【详解】解:设数轴上的一个整数为x,由题意可知当x=4n时(n为整数),A点与x重合;当x=4n+1时(n为整数),D点与x重合;当x=4n+2时(n为整数),C点与x重合;当x=4n+3时(n为整数),B点与x重合;而1949=487×4+1,所以数轴上的1949所对应的点与圆周上字母D重合.故选D.【点睛】本题考查的是数轴上数字在圆环旋转过程中的对应规律,看清圆环的旋转方向是重点,关键要找到旋转过程中数字的对应方式.10.C【分析】∵根据两点间距离进行计算即可;∵利用路程除以速度即可;∵分两种情况,点P在点B的右侧,点P在点B的左侧,由题意求出AP的长,再利用路程除以速度即可;∵分两种情况,点P在点B的右侧,点P在点B的左侧,利用线段的中点性质进行计算即可.【详解】解:设点B对应的数是x,∵点A对应的数为8,且AB=12,∵8-x=12,∵x=-4,∵点B对应的数是-4,故∵正确;由题意得:12÷2=6(秒),∵点P到达点B时,t=6,故∵正确;分两种情况:当点P在点B的右侧时,∵AB=12,BP=2,∵AP=AB-BP=12-2=10,∵10÷2=5(秒),∵BP=2时,t=5,当点P在点B的左侧时,∵AB=12,BP=2,∵AP=AB+BP=12+2=14,∵14÷2=7(秒),∵BP=2时,t=7,综上所述,BP=2时,t=5或7,故∵错误;分两种情况:当点P在点B的右侧时,∵M,N分别为AP,BP的中点,∵MP=12AP,NP=12BP,∵MN=MP+NP=1 2AP+12BP=12AB=12×12=6,当点P在点B的左侧时,∵M,N分别为AP,BP的中点,∵MP=12AP,NP=12BP,∵MN=MP-NP=1 2AP-12BP=12AB=12×12=6,∵在点P的运动过程中,线段MN的长度不变,故∵正确;所以,上列结论中正确的有3个,故选:C.【点睛】本题考查了数轴,根据题目的已知条件并结合图形分析是解题的关键.11.1 7 2【分析】绝对值相等,符号相反的数互为相反数.【详解】解:172-的相反数是172.故答案是:172.【点睛】本题考查相反数的定义,解题的关键是根据相反数的定义求相反数.12.左;小;大【分析】在数轴上,首先确定原点0的位置和单位长度,且从左到右的顺序就是数从小到大的顺序,所有的负数都在0的左边,越往左数越小,正数都在0的右边,越往右数越大.【详解】在数轴上,所有的负数都在0的左边,也就是负数都比0小,正数都在0的右边,正数都比0大,负数都比正数小.故答案为:左;小;大.【点睛】此题考查在数轴上表示正负数,理解所有的负数都在0的左边,正数都在0的右边是解题的关键.13.-2,-1,0,1,2,3,4【分析】根据整数的定义结合已知得出符合题意的答案.【详解】比﹣2.5大,比92小的所有整数有:﹣2,﹣1,0,1,2,3,4.故答案为:﹣2,﹣1,0,1,2,3,4.【点睛】本题考查了有理数大小比较的方法,正确把握整数的定义是解答本题的关键.14.4.3,227⎛⎫-- ⎪⎝⎭【分析】首先将各数化简,再根据正数的定义可得结果.【详解】解:在数4.3,3-5,|0|=0,222277⎛⎫--= ⎪⎝⎭,-|-3|=-3,-(+5)=-5中,4.3,227⎛⎫-- ⎪⎝⎭是正数. 故答案为:4.3,227⎛⎫-- ⎪⎝⎭. 【点睛】本题主要考查了有理数的定义,绝对值的意义,相反数的意义,熟练掌握有理数的分类是解答此题的关键. 15. -3 3【分析】先根据m ,n 互为相反数,可得:n=-m ,然后根据m <n ,且m 与n 在数轴上所对应的点之间的距离是6,可得:n -m=6,求出m 的值即可.【详解】∵m ,n 互为相反数,∵n=-m ,∵m <n ,且m 与n 在数轴上所对应的点之间的距离是6,∵n -m=6,∵-m -m=6,∵m=-3,n=3.故答案为:-3,3.【点睛】考查了数轴上两点间的距离,解题关键是由相反数的含义得到n=-m 和数轴上两点之间的距离. 16.99【详解】(0.25)++(1-)0.5++(0.75-)+25×4=-1+100=99.故答案为99.17.72-或132【分析】由绝对值和完全平方的非负性可得2050a b +=⎧⎨-=⎩,则可计算出A 、B 对应的数,然后分三种情况进行讨论求解即可. 【详解】解:()2250a b ++-=,20+≥a ,2(5)0b -≥ , 则可得:2050a b +=⎧⎨-=⎩, 解得:25a b =-⎧⎨=⎩, 5(2)7AB ∴=--= ,∵当P 在A 点左侧时,210PA PB PA AB +=+= ,32PA ∴= ,则可得:322x --=, 解得:72x =- ∵当P 在B 点右侧时,210PA PB PB AB +=+= ,32PB ∴= , 则可得:352x -=, 解得:132x = , ∵当P 在A 、B 中间时,则有710PA PB AB +==≠ ,∵P 点不存在. 综上所述:132x =或72x =-. 故答案为:72-或132. 【点睛】本题考查了绝对值和完全平方的非负性,数轴上两点间的距离:a ,b 是数轴上任意不同的两点,则这两点间的距离=右边的数-左边的数,掌握数轴上两点距离和分情况讨论是本题的关键.18.0【分析】根据题意,[1.7]中不大于1.7的最大整数为1,(-1.7)中不小于-1.7的最小整数为-1,则可解答【详解】解:依题意:[1.7]=1,(-1.7)=-1∵[]()1.7 1.711=0+-=-故答案为:0【点睛】此题主要考查有理数大小的比较,读懂题意,即可解答.19.0【详解】根据已知得出1<|x|<3.5,求出符合条件的整数包括±2,±3,即2+(﹣2)+3+(﹣3)=0.故答案为0.点睛:本题考查了对绝对值、相反数的意义的应用,主要考查学生的理解能力和计算能力.20.4【分析】根据x 的取值范围,分别判断x -1与x+3的正负,然后根据绝对值的性质求解即可.【详解】∵31x -<<,∵10x -<,30x +>,∵原式(1)(3)x x =--++13x x =-+++4=【点睛】此题主要考查了两点间距离公式的应用,解题的关键是根据绝对值的性质化简.21.0,﹣7,15;5.6,﹣4.8,﹣814,227,19;5.6,227,15,19;﹣7,﹣4.8,﹣814【分析】由题意直接根据有理数的分类,把相应的数填写到相应的集合中即可.【详解】解:整数集合{0,﹣7,15…};分数集合{5.6,﹣4.8,﹣814,227,19…}; 非负数集合{5.6,227,15,19…}; 负数集合{﹣7,﹣4.8,﹣814…}. 故答案为:0,﹣7,15;5.6,﹣4.8,﹣814,227,19;5.6,227,15,19;﹣7,﹣4.8,﹣814. 【点睛】本题考查有理数的分类.注意掌握有理数分为整数和分数;正整数、0、负整数统称整数;正分数、负分数统称分数.非负整数包括正整数和0.22.(1)10(2)-3,-2,-1,0,1,2,和为-3(3)有,10【分析】(1)根据有理数减法法则计算;(2)分析得到2x -表示x 与2的距离,3x +表示x 与-3的距离,由235x x -++=,确定32x -≤≤,进而解答; (3)设-4表示点A ,6表示点B ,x 表示点P ,则()6410AB =--=,分三种情况:当P 在点A 左侧时,当P 在点B 右侧时,当P 在A 、B 之间时,分别求出最小值解答.(1)|8(2)|--=10,故答案为10;(2)2x -表示x 与2的距离,3x +表示x 与-3的距离,∵235x x -++=,∵32x -≤≤,∵整数x =-3,-2,-1,0,1,2,和为-3-2-1+0+1+2=-3;(3)46x x ++-有最小值10,理由如下:设-4表示点A ,6表示点B ,x 表示点P ,则()6410AB =--=,当P 在点A 左侧时,()46221010x x PA PB PA PA AB PA AB PA ++-=+=++=+-+>,当P 在点B 右侧时,()46210210x x PA PB AB PB PB AB PB PB ++-=+=++=+=+>,当P 在A 、B 之间时,4610x x PA PB AB ++-=+==,∵46x x ++-的最小值为10.【点睛】此题考查了数轴上两点之间的距离,有理数绝对值计算,正确理解题中两点之间的距离计算是解题的关键.答案第9页,共9页。

有理数正负数数轴相反数绝对值等概念与练习

有理数正负数数轴相反数绝对值等概念与练习

有理数正负数数轴相反数绝对值等概念与练习1.1正数和负数以前学过的0之外的数前面加上负号“-”的数叫做负数。

以前学过的0之外的数叫做正数。

数0既不是正数也不是负数,0是正数与负数的分界。

在同一个问题中,别离用正数和负数表示的量具有相反的意义引入负数能够简明的表示相反意义的量,关于相反意义的量,若是其中一种量用正数表示,那么另一种量能够用负数表示。

在表示具有相反意义的量时,把哪一种意义的量规定为正,可依如实际情形决定。

要专门注意零既不是正数也不是负数,成立正负数概念后,当考虑一个数时,必然要考虑它的符号,这与小学里学过的数有专门大的区别。

1.2.1有理数正整数、0、负整数统称整数,正分数和负分数统称分数。

整数和分数统称有理数。

数的集合咱们曾经把所有正数组成的集合,叫做正数集合,所有的负数组成的集合叫做负数集合。

一样把所有整数组成的集合叫做整数集合;把所有分数组成的集合叫做分数集合;把所有有理数组成的集合叫做有理数集合。

练习:1、若是向北走10米记作+10米,那么-8米表示()A.向东8米B.向南8米C.向西8米D.向北8米2、若是收入200元记作+200元,那么支出150元记作()A、+150元B、-150元C、+50元D、-50元3、有五个数为312、0、-5、13、-14,其中正数的个数是( ) A 、1个 B 、2个 C 、3个 D 、4个4、负数是指( )A .把某个数的前边加上“-”号B .不大于0的数C .除去正数的其他数D .小于0的数5、以下不是具有相反意义的量是( )A .前进5米和后退5米B .节约3吨和消费10吨C .身高增加2厘米和体重减少2千克D .超过5克和不足2克6、下表是我国几个城市某年一月份的平均气温.城市北京 武汉 广州 哈尔滨 平均气温(单位:℃) -4.6 3.8 13.1 -19.4其中气温最低的城市是( )A 、北京B 、武汉C 、广州D 、哈尔滨7、规定正常水位为0m ,高于正常水位0.5m 时,记作+0.5米,以下说法错误的选项是( )A 、高于正常水位1.5m 记作+1.5mB 、低于正常水位1.5m 记作-1.5mC 、-1m 表示比正常水位低1mD 、+2m 表示比正常水位低2m8、文具店、书店和玩具店依次座落在一条东西走向的大街上,文具店在书店西边20m 处,玩具店位于书店东边100m 处,小明从书店沿街向东走了40m ,接着又向东走了-60m ,此刻小明的位置在( )A 、文具店B 、玩具店C 、文具店西边20mD 、玩具店东边-60m9、一天早晨的气温是-7℃,中午的气温比早晨上升了11℃,中午的气温是( )A 、11℃B 、4℃C 、18℃D 、-11℃10. 以下说法中,① 0是自然数 ② 0是整数 ③ 0是正数 ④ 0是非负数,正确的个数为( )A. 1个B. 2个C. 3个D. 4个11、珠穆朗玛峰高出海平面8844米,表示为+8844米,吐鲁番盆地低于海平面155米,表示为 ;12、 若是+15吨表示运进15吨,那么吨表示 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《正、负数、数轴、相反数、绝对值》练习题
一、填空题(每空1分,共计40分)
1、如果温度上升3o C记作+3o C,那么下降5o C记作
______________________
2、如果向西走12米记作+12米,则向东走—120米表示的意义是
___________________
3、味精袋上标有“300±5克”字样,还说明这袋味精的质量应该是____~____
4、地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海报高度为—5米,其中最高处为___________地,最低处为___________地,最高处与最低处相差_________________
5、规定了________________________的________叫做数轴。

6、数轴上原点左边的数表示____________数,原点右边的数表示_____数,_____表示0。

7、如果点A表示的数是2.2,将点A向左边移动2个单位长度,那么这时点A表示的数是_______,如过再向左移动1.2个单位长度,那么这时点A表示的数是_______
8、13、数轴上,到原点的距离等于4个单位长度的点所表示的数是_____,它们互为_________
9、、数轴上与距离原点3个单位长度的点所表示的负数是
______________
10、、+3的相反数是___________;_____的相反数是—2.3;0的相反数是_____________
11、若X 的相反数是—5,则X=____________;若—X 的相反数是—3.7,则X=_________
1、|—5.7|=____________;|0|=_____________;—
|+5|=______________;—|—6.8|=__________
13、_____________的相反数是它本身,________________的绝对值是它本身,__________的倒数是它本身,_______________的绝对值是它的相反数。

14、一个数的绝对值是2.6,那么这个数为___________________
15、—(—2.9)=__________;—[+(—2.6)]=_______;—{—[+(—2.6)]}=________
16、在下列数中,负分数有 个;非负整数有 个。

7,32,-6,0,3.1415,-2
15,-0.62,-11.
17.比大小:-32-23
18、到原点的距离不大于3的整数有。

19、在数轴上到-1的距离小于3个单位长度的整数有
20.一个数的绝对值越小,则该数在数轴上所对应的点,离原点越_______________.
二、选择题(每小题2分,共计40分)
()1、下列说法正确的是:
A 、非负有理数就是正有理数;
B 、零表示没有,不是自然数;
C 、正整数和负整数统称整数;
D 、整数和分数统称为有理数
()2、零不属于:
A 、有理数集合;
B 、整数集合;
C 、非正有理数集合;
D 、正
数集合
()3、—8,2005,2/3,0,—4,+11,—|—3|,—41,—7.2,-(-2)
中,正整数和负分数共有:A 、3个;B 、4个;C 、5个;D 、6个
()4、下列说法正确的是:
A 、正整数和负整数统称整数;
B 、正分数、负分数统称分
数;
C 、零既可以是正整数也可以是负整数;
D 、一个有理数不
是正数就是负数
()5、下列说法错误的是:
A 、规定了原点、正方向和长度的直线叫数轴;
B 、所有有理
数都可以用数轴上的点表示;C 、数轴上的原点表示数0;D 、数轴上表示—3.33的点在表示—3的点的左边。

()6、下列说法正确的是:
A 、—1是相反数;
B 、—3.3与+3互为相反数;
C 、—2/3和—3/2互为相反数
D 、—4的相反数是4
()7、下列说法错误的是:
A 、在一个数前面添加一个“—”,就变成原数的相反数;
B 、511 与2.2互为相反数;
C 、如果两个数互为相反数,则它们的相反数也互为相反数
D 、31的相反数是0.3
()7、下列说法正确的是:
A、符号相反的两个数是相反数;
B、任何一个负数都小于它的相反数;
C、任何一个负数都大于它的相反数;
D、0没有相反数
()8、绝对值等于相反数的数一定是:
A、负数;
B、正数;
C、负数或零;
D、正数和零
()9、下面四个结论中,正确的是:
A、|—2|>|—3|;
B、|2|>|3|;
C、2>|—3|;
D、2<|—3|
()10、若a是有理数,则|a|一定:
A、是正数;
B、不是正数;
C、是负数;
D、不是负数
()11、下列说法:
①互为相反数的两个数绝对值相等;②绝对值等于本身的数只
有正数,
②不相当的两个数绝对值不相等;④绝对值相等的两数一定相
等。

其中正确的有:
A、0个;
B、1个;
C、2个;
D、3个
()12、正整数集合和负整数集合合在一起,构成数的集合是(???)
A.整数集合;
B.有理数集合;
C.自然数集合?;?
D.非零整数集合
()13、下列说法中不正确的是:
A、最小的自然数是1;
B、最大的负整数是—1;
C、没有最大的正整数;
D、没有最小的负整数
()14、绝对值等于本身的数有:
A、0个;
B、1个;
C、2个;D无数个
()15、如果甲数的绝对值大于乙数的绝对值,那么:
A、甲数必定大于乙数;
B、甲数必定小于乙数;
C、甲、乙两数一定异号;
D、甲、乙两数的大小,要根据具体值确定
()16、下列说法正确的是:
A、有0个苹果即一个苹果也没有,故0的意义就是表示没有
B、0没有带“—”号,所以0是正数;
C、字母a没有带“—”号,所以a是正数;
D、0既不是正数,也不是负数
()17、下列说法正确的是:
A、“黑色”和“白色”表示具有相反意义的量;
B、“快”和“慢”表示具有相反意义的量;
C、“向南100米”和“向北1000米”表示具有相反意义的量;
D、“+15米”就表示向东走了15米
()18、用—a表示的数一定是:
A、负数;B、正数;C、正数或负数;D、以上都不对()19、下列语句中正确的是:
A 、有理数没有最大的数也没有最小的数;
B 、正数没有最大的数,有最小的数;
C 、负数没有最小的数,有最大的数;
D 、整数有最大的数,也有最小的数
()20、如果a 表示有理数,那么下列说法中正确的是()
(A )+a 和-(-a )互为相反数(B )+a 和-a 一定不相等
(C )-a 一定是负数 (D )-(+a )和+(-a )一定相等
三、解答题(每小题2.5分共计20分)
1、计算题
(1)|-2|×(-2)(2)|-12|×5.2 (3)|-12|-12(4)-3-|-5.3|
2、比较大小
(1)-3与-4(2)
4332-与 (3)7665--与(4)311.53--+-)与(
3.6+(﹣5)﹣2﹣(﹣3)4.
5.6.7.8﹣9.5+(﹣8)﹣(﹣3.2)
7.﹣32+(﹣47)﹣(﹣25)﹣21+658.3+(﹣2)﹣5﹣(﹣8)
9.﹣1﹣(﹣)+3+(﹣2)10.﹣17+(﹣6)+23﹣(﹣20)
4、计算:(1))25
3()5.2()94(321
-⨯-⨯-⨯ (2))7
11()611()511()411()311()211(-⨯-⨯-⨯-⨯-⨯- 5、计算:(1)4
11)8()54()4()125.0(25⨯-⨯-⨯-⨯-⨯ (2)21324)6165487(645.1695.3-⨯+-+⨯-⨯
6、计算:(1))4()61()25.0(-⨯-⨯- (2))30()151309
(-⨯-。

相关文档
最新文档