离散数学单项选择题习题(有答案)集讲解学习

合集下载

7月全国自考离散数学试题及答案解析试卷及答案解析真题

7月全国自考离散数学试题及答案解析试卷及答案解析真题

浙江省2019年7月高等教育自学考试离散数学试题课程代码:02324一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内。

每小题2分,共30分)1. 下述不是命题的是( )A. 做人真难啊!B. 后天是阴天。

C. 2是偶数。

D. 地球是方的。

2. 命题公式P →(P ∨Q ∨R)是( )A. 恒真的B. 恒假的C. 可满足的D. 合取范式3. 命题公式﹁B →﹁A 等价于( )A. ﹁A ∨﹁BB. ﹁(A ∨B)C. ﹁A ∧﹁BD. A →B4. 设有A={a,b,c}上的关系R={<a,a>,<b,b>,<a,b>,<b,a>,<c,a>},则R 不具有( )A. 自反性B. 对称性C. 传递性D. 反对称性5. 设×是定义在所有(-∞,+∞)上的连续函数集合C 上的普通乘法运算,则×不满足( )A. 封闭性B. 结合律C. 交换律D. 等幂律6. 下述集合对所给的二元运算封闭的是( )A. 集合S={-1,0,1,2…}上规定运算ο为 a οb=min{a,b-1}, ∀a,b ∈SB. 集合S={x|x=2n ,n ∈N}上的乘法运算C. 集合S={x|x>0}上的规定运算ο为 a οb=ba b ln a ln ++ ∀a,b ∈S D. 集合S={1,3,5,7,…}上的加法运算7. 如果A ∩B=A ∩C ,则下述结论成立的是( )A. B=CB. B ⊆A 且C ⊆AC. B ∪A=C ∪AD. 以上结论都不对8. 下列哪个式子不是谓词演算的合式公式( )A. (∀x)(A(x,2)∧B(y))B. (∀x)(A(x)∧B(x,y))C. ((∀x)∧(∃y))→(A(x,y)∧B(x,y))D. (∀x)(A(x)→B(y))9. 谓词公式(∀y)(∀x)(P(x)→R(x,y))∧∃yQ(x,y)中变元y( )A. 是自由变元但不是约束变元B. 是约束变元但不是自由变元C. 既是自由变元又是约束变元D. 既不是自由变元又不是约束变元10. 设有一个连通平面图,共有6个结点、11条边,则它的边数为( )A. 6B. 7C. 8D. 911. 设A={1,2,3,4,5,6},B={a,b,c,d,e},以下哪一个关系是从A 到B 的满射函数( )A. f={<1,a>,<2,b>,<3,c>,<4,d>,<5,e>}B. f={<1,e>,<2,d>,<3,c>,<4,b>,<5,a>,<6,e>}C. f={<1,a>,<2,b>,<3,c>,<4,a>,<5,b>,<6,c>}D. f={<1,a>,<2,b>,<3,c>,<4,d>,<5,e>,<1,b>}12. 设(B ,·,+, ̄,0,1)是布尔代数,a,b 是B 中元素,a ≤b,则下面公式中与a ·b 等价的是( )A. a+bB. a·bC. aD. a+b13. 下图中是哈密尔顿图的是( )14. 下列是欧拉图的是( )15. 下列不是森林是( )二、填空题(每空2分,共20分)1. 设P,Q是二个命题,则命题公式P∧Q的合取范式是______。

离散数学考试题及答案

离散数学考试题及答案

离散数学考试题及答案一、单项选择题(每题2分,共10分)1. 在集合{1,2,3}和{3,4,5}的笛卡尔积中,元素(3,4)属于()。

A. {1,2,3}B. {3,4,5}C. {1,2,3,4,5}D. {1,2,3}×{3,4,5}答案:D2. 命题“若x>2,则x>1”的逆否命题是()。

A. 若x≤2,则x≤1B. 若x≤1,则x≤2C. 若x≤1,则x≤2D. 若x≤2,则x≤1答案:C3. 函数f: A→B的定义域是集合A,值域是集合B的()。

A. 子集B. 真子集C. 任意子集D. 非空子集答案:D4. 以下哪个图是无向图()。

A. 有向图B. 无向图C. 完全图D. 树答案:B5. 以下哪个命题是真命题()。

A. 所有的马都是白色的B. 有些马是白色的C. 没有马是白色的D. 以上都不是答案:B二、填空题(每题2分,共10分)6. 集合{1,2,3}的子集个数为______。

答案:87. 命题“若x>0,则x>1”的逆命题是:若x>1,则______。

答案:x>08. 函数f: A→B中,若A={1,2},B={3,4},则f的值域可以是{3}或{4}或{3,4},但不能是______。

答案:{1,2}9. 在有向图中,若存在从顶点A到顶点B的有向路径,则称A到B是______的。

答案:可达10. 命题逻辑中,合取(AND)的符号是______。

答案:∧三、解答题(每题15分,共30分)11. 证明:若p∧q为真,则p和q都为真。

证明:根据合取(AND)的定义,p∧q为真当且仅当p和q都为真。

因此,若p∧q为真,则p和q都为真。

12. 给定函数f: A→B,其中A={1,2,3},B={4,5,6},且f(1)=4,f(2)=5,f(3)=6。

请找出f的值域。

答案:根据函数的定义,f的值域是其所有输出值的集合。

因此,f的值域为{4,5,6}。

离散数学试题总汇及答案

离散数学试题总汇及答案

离散数学试题总汇及答案一、单项选择题(每题2分,共20分)1. 在集合{1, 2, 3, 4}中,子集{1, 2}的补集是()。

A. {3, 4}B. {1, 3, 4}C. {2, 3, 4}D. {1, 2, 3, 4}答案:A2. 命题“若x > 0,则x² > 0”的逆否命题是()。

A. 若x² ≤ 0,则x ≤ 0B. 若x² > 0,则x > 0C. 若x ≤ 0,则x² ≤ 0D. 若x² ≤ 0,则x < 0答案:C3. 函数f(x) = x² + 2x + 1的值域是()。

A. {x | x ≥ 0}B. {x | x ≥ 1}C. {x | x ≥ 2}D. {x | x ≥ -1}答案:B4. 以下哪个图是无向图()。

A. 有向图B. 无向图C. 有向树D. 无向树答案:B5. 以下哪个图是二分图()。

A. 完全图B. 非完全图C. 任意两个顶点都相连的图D. 任意两个顶点都不相连的图答案:C6. 以下哪个是哈密顿回路()。

A. 经过每个顶点恰好一次的回路B. 经过每个顶点至少一次的回路C. 经过每个顶点恰好两次的回路D. 经过每个顶点至少两次的回路答案:A7. 以下哪个是欧拉回路()。

A. 经过每条边恰好一次的回路B. 经过每条边至少一次的回路C. 经过每条边恰好两次的回路D. 经过每条边至少两次的回路答案:A8. 以下哪个是二进制数()。

A. 1010B. 1020C. 1102D. 1120答案:A9. 以下哪个是格雷码()。

A. 0101B. 1010C. 1100D. 1110答案:B10. 以下哪个是素数()。

A. 4B. 6C. 7D. 8答案:C二、填空题(每题2分,共20分)11. 集合{1, 2, 3}与{2, 3, 4}的交集是______。

答案:{2, 3}12. 命题“若x > 0,则x² > 0”的逆命题是:若x² > 0,则______。

离散数学考试题及答案

离散数学考试题及答案

离散数学考试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项不是离散数学的研究对象?A. 图论B. 组合数学C. 微积分D. 逻辑学答案:C2. 在逻辑学中,下列哪个命题是真命题?A. 如果今天是周一,那么明天是周二。

B. 如果今天是周一,那么明天是周三。

C. 如果今天是周一,那么明天是周四。

D. 如果今天是周一,那么明天是周五。

答案:A3. 在集合论中,下列哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 在图论中,下列哪个术语描述的是图中的顶点集合?A. 边B. 路径C. 子图D. 顶点答案:D二、填空题(每题5分,共20分)1. 如果一个集合A包含5个元素,那么它的子集个数是______。

答案:322. 在逻辑学中,如果命题P和命题Q都是真命题,那么复合命题“P且Q”的真值是______。

答案:真3. 在图论中,如果一个图的顶点数为n,那么它的最大边数是______。

答案:n(n-1)/24. 如果一个二叉树的深度为3,那么它最多包含______个节点。

答案:7三、简答题(每题10分,共30分)1. 请简述什么是图的连通性,并给出一个例子。

答案:图的连通性是指在图中任意两个顶点之间都存在一条路径。

例如,在一个完全图K3中,任意两个顶点之间都可以通过一条边直接连接,因此它是连通的。

2. 解释什么是逻辑蕴含,并给出一个例子。

答案:逻辑蕴含是指如果一个命题P为真,则另一个命题Q也必须为真。

例如,命题P:“如果今天是周一”,命题Q:“明天是周二”。

如果今天是周一,那么根据逻辑蕴含,明天必须是周二。

3. 请描述什么是二叉搜索树,并给出它的一个性质。

答案:二叉搜索树是一种特殊的二叉树,其中每个节点的左子树只包含小于当前节点的数,右子树只包含大于当前节点的数。

它的一个性质是中序遍历可以得到一个有序序列。

四、计算题(每题15分,共30分)1. 给定一个集合A={1, 2, 3, 4, 5},请计算它的幂集,并列出所有元素。

离散数学试题总汇及答案

离散数学试题总汇及答案

离散数学试题总汇及答案一、单项选择题(每题2分,共20分)1. 在集合{1,2,3}和{3,4,5}的笛卡尔积中,元素(2,4)是否存在?A. 存在B. 不存在C. 无法确定D. 以上都不对2. 函数f: A→B是单射的,当且仅当对于任意的a1, a2∈A,若f(a1)=f(a2),则a1=a2。

A. 正确B. 错误C. 无法确定D. 以上都不对3. 以下哪个命题是真命题?A. 所有的狗都会游泳。

B. 有些狗不会游泳。

C. 所有的狗都不会游泳。

D. 以上都不是真命题。

4. 如果p蕴含q为假,那么p和q的真值可以是?A. p为真,q为假B. p为假,q为真C. p为真,q为真D. p为假,q为假5. 以下哪个图是连通图?A. 一个孤立点B. 两个不相连的点C. 一个包含三个点且每对点都相连的图D. 以上都不是连通图6. 在有向图中,如果存在从顶点u到顶点v的路径,那么称v是u的后继顶点。

A. 正确B. 错误C. 无法确定D. 以上都不对7. 以下哪个等价关系是集合{1,2,3}上的?A. {(1,1), (2,2), (3,3)}B. {(1,2), (2,1), (2,2), (3,3)}C. {(1,1), (2,3), (3,2), (3,3)}D. {(1,1), (2,2), (3,3), (1,3)}8. 以下哪个命题是假命题?A. 所有的鸟都有羽毛。

B. 有些鸟不会飞。

C. 所有的哺乳动物都是温血动物。

D. 以上都不是假命题。

9. 在图论中,一个图的生成树是包含图中所有顶点的最小连通子图。

A. 正确B. 错误C. 无法确定D. 以上都不对10. 如果命题p和q互为逆否命题,那么它们具有相同的真值。

A. 正确B. 错误C. 无法确定D. 以上都不对二、填空题(每题2分,共20分)1. 集合{1,2,3}和{3,4,5}的并集是________。

2. 函数f: A→B是满射的,当且仅当对于任意的b∈B,存在a∈A,使得f(a)=________。

离散数学试题及答案

离散数学试题及答案

离散数学试题及答案一、选择题(每题2分,共20分)1. 在集合论中,下列哪个选项不是集合的运算?A. 并集B. 交集C. 差集D. 乘法2. 命题逻辑中,下列哪个命题是真命题?A. (P ∧ ¬P) → QB. (P ∨ Q) ∧ ¬(P ∧ Q)C. P → (Q → P)D. (P → Q) ∧ (Q → R) → (P → R)3. 函数f: A → B,如果f是单射,那么下列哪个选项是正确的?A. A中不同的元素在B中可能有相同的像B. B中每个元素都有原像C. A中不同的元素在B中有不同的像D. B中不同的元素在A中有不同的原像4. 在图论中,下列哪个选项不是图的基本术语?A. 顶点B. 边C. 邻接D. 矩阵5. 组合数学中,从n个不同元素中取出k个元素的组合数记作C(n, k),下列哪个选项是错误的?A. C(n, k) = C(n, n-k)B. C(n, 0) = 1C. C(n, 1) = nD. C(n, k) = C(k, n)6. 关系R是A×B上的二元关系,下列哪个选项不是关系R的性质?A. 自反性B. 对称性C. 传递性D. 可数性7. 在命题逻辑中,下列哪个命题等价于P ∨ (Q ∧ R)?A. (P ∨ Q) ∧ (P ∨ R)B. (P ∧ Q) ∨ (P ∧ R)C. (P ∨ Q) ∨ RD. (P ∨ Q) ∧ R8. 集合{1, 2, 3}的幂集含有多少个元素?A. 3B. 6C. 8D. 99. 在图论中,下列哪个选项不是树的性质?A. 无环B. 至少有两个顶点C. 任意两个顶点都由唯一路径连接D. 至少有一个环10. 在集合论中,下列哪个选项是正确的?A. 空集是任何集合的子集B. 任何集合都是其自身的超集C. 空集是任何非空集合的真子集D. 空集是其自身的并集二、简答题(每题10分,共30分)11. 简述命题逻辑中的德摩根定律,并给出一个例子。

离散数学试题及答案解析

离散数学试题及答案解析

离散数学试题及答案解析一、选择题1. 在集合{1,2,3,4}中,含有3个元素的子集有多少个?A. 4B. 8C. 16D. 32答案:B解析:含有3个元素的子集可以通过组合数公式C(n, k) = n! / [k!(n-k)!]来计算,其中n为集合的元素个数,k为子集中的元素个数。

在本题中,n=4,k=3,所以C(4, 3) = 4! / [3!(4-3)!] = 4。

2. 下列哪个命题是真命题?A. 所有偶数都是整数。

B. 所有整数都是偶数。

C. 所有整数都是奇数。

D. 所有奇数都是整数。

答案:A解析:偶数是指能被2整除的整数,因此所有偶数都是整数,选项A是真命题。

选项B、C和D都是错误的,因为并非所有整数都是偶数或奇数。

二、填空题1. 逻辑运算符“非”(NOT)的真值表是:当输入为真时,输出为______;当输入为假时,输出为真。

答案:假解析:逻辑运算符“非”(NOT)是一元运算符,它将输入的真值取反。

如果输入为真,则输出为假;如果输入为假,则输出为真。

2. 命题逻辑中,合取词“与”(AND)的真值表是:当两个命题都为真时,输出为真;否则输出为______。

答案:假解析:合取词“与”(AND)是二元运算符,只有当两个命题都为真时,输出才为真;如果其中一个或两个命题为假,则输出为假。

三、简答题1. 解释什么是等价关系,并给出一个例子。

答案:等价关系是定义在集合上的一个二元关系,它满足自反性、对称性和传递性。

例如,考虑整数集合上的“同余”关系。

对于任意整数a,b,如果a和b除以同一个正整数n后余数相同,则称a和b模n同余。

这个关系是自反的(a同余a),对称的(如果a同余b,则b同余a),并且是传递的(如果a同余b且b同余c,则a同余c)。

2. 什么是图的连通性?一个图是连通的需要满足什么条件?答案:图的连通性是指在无向图中,任意两个顶点之间都存在一条路径。

一个图是连通的需要满足以下条件:图中的任意两个顶点v和w,都可以通过图中的边相互到达。

离散数学考试题目及答案

离散数学考试题目及答案

离散数学考试题目及答案一、单项选择题(每题2分,共20分)1. 集合A={1,2,3},集合B={3,4,5},则A∩B的元素个数为:A. 0B. 1C. 2D. 3答案:B2. 函数f: X→Y是一个双射,当且仅当:A. f是单射且满射B. f是单射C. f是满射D. f是双射答案:A3. 命题p: "x是偶数",命题q: "x是3的倍数",下列逻辑运算中,表示"x是6的倍数"的是:A. p∧qB. p∨qC. ¬p∧¬qD. ¬p∨¬q答案:A4. 有向图G中,若存在从顶点u到顶点v的有向路径,则称顶点u可达顶点v。

若G中任意两个顶点都相互可达,则称G为:A. 强连通图B. 弱连通图C. 无向图D. 有向无环图答案:A5. 在二进制数系统中,下列哪个数的值最大?A. 1010B. 1100C. 1110D. 1101答案:C6. 布尔代数中,逻辑或运算符表示为:A. ∧B. ∨C. ¬D. →答案:B7. 有限自动机中,状态q0是初始状态,状态q1是接受状态。

若存在从q0到q1的ε-转移,则该自动机:A. 仅在输入为空时接受B. 仅在输入非空时接受C. 无论输入为何都接受D. 无法确定是否接受答案:C8. 命题逻辑中,若命题p和q都为真,则p∧q的真值是:A. 真B. 假C. 可能为真,也可能为假D. 无法确定答案:A9. 集合{1,2,3}的子集个数为:A. 4B. 6C. 7D. 8答案:D10. 若关系R在集合A上是自反的,则对于A中的任意元素a,有:A. (a,a)∈RB. (a,a)∉RC. (a,a)是R的自反对D. (a,a)不是R的自反对答案:A二、填空题(每题3分,共15分)1. 集合A={1,2,3}的幂集包含__个元素。

答案:82. 若函数f: X→Y是满射,则对于Y中的任意元素y,至少存在X中的一个元素x,使得f(x)=__。

离散数学单项选择题习题(有答案)集

离散数学单项选择题习题(有答案)集

单项选择题第一章第二章1. 下列表达式正确的有( )A. Q Q P ⇒ → ⌝ ) (B.P Q P ⇒∨ C .P Q P Q P ⇔⌝∧∨∧)()( D.T Q P P ⇔→→)(2. 下列推理步骤错在( )①))()((x G x F x →∀P ②)()(y G y F →US① ③)(x xF ∃P ④)(y FES③ ⑤)(y GT②④I ⑥)(x xG ∃ EG⑤A.②B.④C.⑤D.⑥3. 设P :2×2=5,Q :雪是黑的,R :2×4=8,S :太阳从东方升起,下列( )命题的真值为真。

A.R Q P ∧→B.S P R ∧→C.R Q S ∧→D.)()(S Q R P ∧∨∧4. 下列公式中哪些是永真式?( )A.(┐P ∧Q )→(Q→⌝R)B.P→(Q→Q)C.(P ∧Q)→PD.P→(P ∧Q)5. 下列等价关系正确的是( )A.)()())()((x xQ x xP x Q x P x ∀∨∀⇔∨∀ B .)()())()((x xQ x xP x Q x P x ∃∨∃⇔∨∃C.Q x xP Q x P x →∀⇔→∀)())((D.Q x xP Q x P x →∃⇔→∃)())((6. 下列推导错在( )①)(y x y x >∃∀P ②)(y z y >∃US① ③z z >ES② ④)(x x x >∀ UG③A.②B. ④ C . ③ D.无7. 若公式)()(R P Q P ∧⌝∨∧的主析取范式为111110011001m m m m ∨∨∨则它的主合取范式为( )A.111110011001m m m m ∧∧∧B.101100010000M M M M ∧∧∧ ;C.111110011001M M M M ∧∧∧D.101100010000m m m m ∧∧∧ 。

8. 在下述公式中不是重言式为( )A .)()(Q P Q P ∨→∧B .))()(()(P Q Q P Q P →∧→↔↔C .Q Q P ∧→⌝)(D .)(Q P P ∨→9. 下列各式中哪个不成立( )A.)()())()((x xQ x xP x Q x P x ∀∨∀⇔∨∀B.)()())()((x xQ x xP x Q x P x ∃∨∃⇔∨∃C .)()())()((x xQ x xP x Q x P x ∀∧∀⇔∧∀ D.Q x xP Q x P x ∧∀⇔∧∀)())((10.命题“尽管有人聪明,但未必一切人都聪明”的符号化(P(x):x 是聪明的,M(x):x 是人)( )A.)))()((())()((x P x M x x P x M x →∀⌝∧→∃B.)))()((())()((x P x M x x P x M x ∧∀⌝∧∧∃C.)))()((())()((x P x M x x P x M x →∀⌝∧∧∃D.)))()((())()((x P x M x x P x M x →∀⌝∨∧∃11.下述命题公式中,是重言式的为( )A.)()(q p q p ∨→∧B.q p ∨))()((p q q p →∨→⇔C.q q p ∧→⌝)(D.q q p →⌝∧)(12.谓词公式)())()((x Q y yR x P x →∃∨∀中的x 是( )A.自由变元B.约束变元C.既是自由变元又是约束变元D.既不是自由变元又不是约束变元13.命题“有的人喜欢所有的花”的逻辑符号化为( )设D :全总个体域,F (x ):x 是花,M(x) :x 是人,H(x,y):x 喜欢yA. ))),()(()((y x H y F y x M x →∀→∃B.))),()(()((y x H y F y x M x →∀∧∀C. ))),()(()((y x H y F y x M x →∀→∀D.))),()(()((y x H y F y x M x →∀∧∃14.下列等价式成立的有( )A.Q P Q P ⌝→⌝⇔→B.R R P P ⇔∧∨)(C.Q Q P P ⇔→∧)(D.R Q P R Q P →∧⇔→→)()(15.给定公式)()(x xP x xP ∀→∃,当D={a,b}时,解释( )使该公式真值为0。

离散数学期末考试题及答案

离散数学期末考试题及答案

离散数学期末考试题及答案一、单项选择题(每题2分,共20分)1. 集合{1, 2, 3}的子集个数是:A. 3B. 4C. 8D. 2^3答案:C2. 命题逻辑中,命题p∧(q∨¬p)的真值表中,真值个数为:A. 1B. 2C. 3D. 4答案:B3. 函数f: A→B中,若A={1, 2},B={a, b},则f是单射的必要条件是:A. |A| ≤ |B|B. |A| < |B|C. |A| = |B|D. |A| > |B|答案:B4. 以下哪个图是无向图?A. 有向图B. 无向图C. 完全图D. 树答案:B5. 在图论中,一个图的生成树是:A. 包含图中所有顶点的最小连通子图B. 包含图中所有边的最小连通子图C. 包含图中所有顶点和边的连通子图D. 包含图中所有顶点和边的无环子图答案:A6. 以下哪个命题是真命题?A. 所有偶数都是整数B. 所有整数都是偶数C. 所有奇数都是整数D. 所有整数都是奇数答案:A7. 在布尔代数中,以下哪个运算符表示逻辑与?A. ∨B. ∧C. ¬D. →答案:B8. 有限状态机中,状态的转移是由以下哪个决定的?A. 当前状态B. 输入符号C. 当前状态和输入符号D. 输出符号答案:C9. 以下哪个是图的遍历算法?A. 深度优先搜索B. 广度优先搜索C. 动态规划D. 分治算法答案:A10. 在集合论中,以下哪个符号表示集合的交集?A. ∪B. ∩C. ×D. ÷答案:B二、填空题(每题2分,共20分)1. 集合{1, 2, 3}的幂集是{∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}},其中包含元素个数最多的子集是_。

答案:{1, 2, 3}2. 在命题逻辑中,如果p和q都为真,则p∨q的真值为_。

答案:真3. 函数f: A→B中,若A={1, 2},B={a, b, c},则f是满射的必要条件是_。

(完整版)《离散数学》试题及答案解析,推荐文档

(完整版)《离散数学》试题及答案解析,推荐文档
3. 设 R 是实数集合,,,是 R 上的三个映射,(x) = x+3, (x) = 2x, (x) = x/4, 试求复合映射•,•, •, •,••.
4. 设 I 是如下一个解释:D = {2, 3},
a
b
f (2) f (3)
3
2
3
2
试求 (1) P(a, f (a))∧P(b, f (b));
WORD 整理版
一、填空题 1 设集合 A,B,其中 A={1,2,3}, B= {1,2}, 则 A - B=____________________;
(A)
- (B)= __________________________ . 2. 设有限集合 A, |A| = n, 则 |(A×A)| = __________________________. 3. 设集合 A = {a, b}, B = {1, 2}, 则从 A 到 B 的所有映射是 __________________________ _____________, 其中双射的是
专业资料学习参考
WORD 整理版
0 1 1 1 1
15. 设图 G 的相邻矩阵为 1 0 1 0 0 ,则 G 的顶点数与边数分别为(
).
1 1 0 1 1
1 0 1 0 1
1 0 1 1 0
(A)4, 5 (B)5, 6 三、计算证明题
(C)4, 10
(D)5, 8.
1.设集合 A={1, 2, 3, 4, 6, 8, 9, 12},R 为整除关系。
则在解释 I 下取真值为 1 的公式是( ).
(A)xyP(x,y) (B)xyP(x,y) (C)xP(x,x) (D)xyP(x,y). 6. 若供选择答案中的数值表示一个简单图中各个顶点的度,能画出图的是( ).

离散数学期末考试题及答案

离散数学期末考试题及答案

离散数学期末考试题及答案一、单项选择题(每题2分,共20分)1. 集合A={1,2,3},B={2,3,4},则A∩B=()。

A. {1,2,3}B. {2,3}C. {2,4}D. {1,4}答案:B2. 命题“若x>0,则x>1”的逆否命题是()。

A. 若x≤0,则x≤1B. 若x≤1,则x≤0C. 若x>1,则x>0D. 若x≤1,则x≤0答案:B3. 函数f: A→B的定义域是集合A,值域是集合B,则()。

A. A⊆BB. A⊂BC. A⊇BD. A⊃B答案:A4. 集合{1,2,3}与集合{3,2,1}是否相等?()。

A. 是B. 否C. 无法确定D. 以上都不对答案:A5. 命题p:“x>0”,则¬p为()。

A. x≤0B. x<0C. x=0D. x<0或x=0答案:A6. 命题“若x>0,则x>1”的逆命题是()。

A. 若x>0,则x>1B. 若x≤1,则x≤0C. 若x>1,则x>0D. 若x≤0,则x≤1答案:C7. 函数f: A→B的定义域是集合A,值域是集合B,则()。

A. A⊆BB. A⊂BC. A⊇BD. A⊃B答案:A8. 集合{1,2,3}与集合{3,2,1}是否相等?()。

A. 是B. 否C. 无法确定D. 以上都不对答案:A9. 命题p:“x>0”,则¬p为()。

A. x≤0B. x<0C. x=0D. x<0或x=0答案:A10. 命题“若x>0,则x>1”的逆命题是()。

A. 若x>0,则x>1B. 若x≤1,则x≤0C. 若x>1,则x>0D. 若x≤0,则x≤1答案:C二、填空题(每题2分,共20分)1. 集合A={1,2,3},B={2,3,4},则A∪B=______。

答案:{1,2,3,4}2. 命题“若x>0,则x>1”的逆否命题是:若x≤1,则x≤0。

离散数学试题及答案

离散数学试题及答案

离散数学试题及答案一、选择题1. 下列哪个是由离散数学的基本概念组成的?A. 集合论和函数论B. 图论和逻辑C. 运算符和关系D. 全数论和数论答案:B2. 下列哪个是离散数学的一个应用领域?A. 数据结构和算法分析B. 微积分和线性代数C. 概率论和统计学D. 数值分析和微分方程答案:A3. 集合A={1, 2, 3},集合B={2, 3, 4},则A交B的结果是:A. {1, 2, 3, 4}B. {2, 3}C. {2}D. {1}答案:B4. 下列哪个是对于集合的补集运算的正确描述?A. A∪A' = ∅B. A∩A' = ∅C. A - A' = AD. A'∩B' = (A∪B)'答案:B5. 若命题p为真,命题q为假,则命题p→q的真值为:A. 真B. 假C. 不确定D. 无法确定答案:B二、填空题1. 对于命题“如果x是偶数,则x能被2整除”,其逆命题为________________。

答案:如果x不能被2整除,则x不是偶数。

2. 在一个完全图中,如果有12条边,则这个图有__________个顶点。

答案:6个顶点。

3. 设集合A={1, 2, 3, 4},则A的幂集的元素个数是__________。

答案:2^4=16个元素。

4. 设关系R={(-1, 0), (0, 1), (1, 0)},则R的逆关系是__________。

答案:R^(-1)={(0, -1), (1, 0), (0, 1)}。

5. 若集合A={1, 2, 3},集合B={2, 3, 4},则A的笛卡尔积B是__________。

答案:A×B={(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}。

三、计算题1. 求集合A={1, 2, 3}和集合B={2, 3, 4}的并集。

离散数学考试试题及答案

离散数学考试试题及答案

离散数学考试试题及答案一、单项选择题(每题5分,共20分)1. 在离散数学中,以下哪个概念不是布尔代数的基本元素?A. 逻辑与B. 逻辑或C. 逻辑非D. 逻辑异或答案:D2. 下列哪个命题不是命题逻辑中的命题?A. 所有学生都是勤奋的B. 有些学生是勤奋的C. 学生是勤奋的D. 勤奋的学生答案:D3. 在集合论中,以下哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 以下哪个图不是无向图?A. 简单图B. 完全图C. 有向图D. 多重图答案:C二、填空题(每题5分,共20分)1. 如果一个命题的逆否命题为真,则原命题的________为真。

答案:逆命题2. 在图论中,如果一个图的任意两个顶点都由一条边连接,则称这个图为________图。

答案:完全3. 一个集合的幂集是指包含该集合的所有________的集合。

答案:子集4. 如果一个函数的定义域和值域都是有限集合,那么这个函数被称为________函数。

答案:有限三、简答题(每题10分,共30分)1. 请简述什么是图的欧拉路径。

答案:欧拉路径是一条通过图中每条边恰好一次的路径。

2. 解释什么是二元关系,并给出一个例子。

答案:二元关系是指定义在两个集合之间的关系,它将第一个集合中的元素与第二个集合中的元素联系起来。

例如,小于关系就是一个二元关系。

3. 请说明什么是递归函数,并给出一个简单的例子。

答案:递归函数是一种通过自身定义来计算函数值的函数。

例如,阶乘函数就是一个递归函数,定义为:n! = n * (n-1)!,其中n! = 1当n=0时。

四、计算题(每题10分,共30分)1. 计算以下逻辑表达式:(P ∧ Q) ∨ ¬R答案:首先计算P ∧ Q,然后计算¬R,最后计算两者的逻辑或。

2. 给定集合A = {1, 2, 3},B = {2, 3, 4},求A ∪ B。

答案:A ∪ B = {1, 2, 3, 4}3. 已知函数f(x) = 2x + 3,求f(5)。

(完整版)离散数学题库与答案

(完整版)离散数学题库与答案

试卷二十二试题与答案一、单项选择题:(每小题1分,本大题共15分)1.设A={1,2,3,4,5},下面( )集合等于A 。

A 、{1,2,3,4,5,6};B 、}25{2≤x x x 是整数且; C 、}5{≤x x x 是正整数且; D 、}5{≤x x x 是正有理数且。

2.设A={{1,2,3},{4,5},{6,7,8}},下列各式中( )是错的。

A 、A ⊆Φ;B 、{6,7,8}∈A ;C 、{{4,5}}⊂A ;D 、{1,2,3}⊂A 。

3.六阶群的子群的阶数可以是( )。

A 、1,2,5;B 、2,4;C 、3,6,7;D 、2,3 。

4.设B A S ⨯⊆,下列各式中( )是正确的。

A 、 domS ⊆B ; B 、domS ⊆A ;C 、ranS ⊆A ;D 、domS ⋃ ranS = S 。

5.设集合Φ≠X ,则空关系X Φ不具备的性质是( )。

A 、自反性;B 、反自反性;C 、对称性;D 、传递性。

6.下列函数中,( )是入射函数。

A 、世界上每个人与其年龄的序偶集;B 、、世界上每个人与其性别的序偶集;B 、 一个作者的专著与其作者的序偶集; D 、每个国家与其国旗的序偶集。

7.><,*G 是群,则对*( )。

A 、满足结合律、交换律;B 、有单位元,可结合;C 、有单位元、可交换;D 、每元有逆元,有零元。

8.下面( )哈斯图所描述的偏序关系构成分配格。

9.下列( )中的运算符都是可交换的。

A 、→∨∧,,;B 、↔→,;C 、⨯⋂⋃,,;D 、∧∨,。

10.设G 是n 个结点、m 条边和r 个面的连通平面图,则m 等于( )。

A 、n+r-2 ;B 、n-r+2 ;C 、n-r-2 ;D 、n+r+2 。

11.n 个结点的无向完全图n K 的边数为( )。

A 、)1(+n n ;B 、2)1(+n n ;C 、)1(-n n ;D 、2)1(-n n 。

离散数学试题及答案解析

离散数学试题及答案解析

离散数学试题及答案解析一、单项选择题(每题2分,共10分)1. 集合A={1,2,3},集合B={2,3,4},则A∩B等于:A. {1,2,3}B. {2,3}C. {1,4}D. {3,4}答案:B2. 以下哪个命题是真命题?A. 所有天鹅都是白色的。

B. 有些天鹅不是白色的。

C. 所有天鹅都不是白色的。

D. 没有天鹅是白色的。

答案:B3. 函数f: A→B的定义域是A,值域是B,那么f是:A. 单射B. 满射C. 双射D. 既不是单射也不是满射答案:D4. 逻辑表达式(p∧q)→r的逆否命题是:A. ¬r→¬(p∧q)B. ¬r→¬p∨¬qC. r→(p∧q)D. ¬r∧¬p∨¬q答案:B5. 有限集合A={a, b, c}的子集个数为:A. 3B. 4C. 7D. 8答案:D二、填空题(每题3分,共15分)1. 如果一个关系R在集合A上是自反的,那么对于A中的每一个元素a,都有___________。

答案:(a, a)∈R2. 命题逻辑中,合取(AND)的逻辑运算符用___________表示。

答案:∧3. 在图论中,一个连通图是指图中任意两个顶点之间都存在___________。

答案:路径4. 集合{1, 2, 3}的幂集包含___________个元素。

答案:85. 如果一个函数f是单射,那么对于任意的x1, x2∈A,如果f(x1)=f(x2),则x1___________x2。

答案:=三、解答题(每题10分,共20分)1. 证明:若p是q的充分条件,q是r的充分条件,则p是r的充分条件。

证明:假设p成立,由于p是q的充分条件,所以q成立。

又因为q是r的充分条件,所以r成立。

因此,p成立可以推出r成立,即p是r的充分条件。

2. 给定一个有向图,其中包含顶点A、B、C、D,边为(A, B),(B, C),(C, D),(D, A),(A, C)。

离散数学考试试题及答案

离散数学考试试题及答案

离散数学考试试题及答案一、选择题(每题2分,共20分)1. 在集合论中,以下哪个选项表示“属于”关系?A. ⊆B. ⊂C. ∈D. ⊇答案:C2. 以下哪个命题是真命题?A. p ∧ ¬pB. p ∨ ¬pC. p → ¬pD. ¬(p → q) → p答案:B3. 以下哪个选项是命题逻辑中的德摩根定律?A. ¬(p ∨ q) = ¬p ∧ ¬qB. ¬(p ∧ q) = ¬p ∨ ¬qC. ¬(p → q) = p ∧ ¬qD. ¬(p ∨ q) = ¬p ∨ ¬q答案:A4. 以下哪个选项是命题逻辑中的蕴含等价?A. p → q ≡ ¬p ∨ qB. p → q ≡ ¬q → ¬pC. p → q ≡ p ∨ ¬qD. p → q ≡ ¬p ∧ q答案:A5. 以下哪个选项是关系的性质?A. 反身性B. 对称性C. 传递性D. 所有选项都是答案:D6. 以下哪个选项是图论中的有向图?A. 无向图中的边没有方向B. 有向图中的边有方向C. 混合图中的边既有方向也有无方向D. 所有选项都是答案:B7. 在图论中,以下哪个选项是树的性质?A. 树是无环的B. 树是连通的C. 树是无向图D. 所有选项都是答案:D8. 以下哪个选项是布尔代数的基本运算?A. 与(AND)B. 或(OR)C. 非(NOT)D. 所有选项都是答案:D9. 以下哪个选项是组合数学中的排列?A. 从n个不同元素中取出m个元素的组合B. 从n个不同元素中取出m个元素的排列C. 从n个相同元素中取出m个元素的组合D. 从n个相同元素中取出m个元素的排列答案:B10. 以下哪个选项是集合论中的幂集?A. 一个集合的所有子集的集合B. 一个集合的所有真子集的集合C. 一个集合的所有超集的集合D. 一个集合的所有子集的个数答案:A二、简答题(每题10分,共30分)1. 简述命题逻辑中的等价命题是什么?答案:等价命题是指两个命题在所有可能的真值赋值下都具有相同真值的命题。

离散数学练习题(含答案)

离散数学练习题(含答案)

离散数学试题第一部分选择题一、单项选择题1.下列是两个命题变元p,q的小项是( C )A.p∧┐p∧q B.┐p∨qC.┐p∧q D.┐p∨p∨q2.令p:今天下雪了,q:路滑,则命题“虽然今天下雪了,但是路不滑”可符号化为( D )A.p→┐q B.p∨┐qC.p∧q D.p∧┐q3.下列语句中是命题的只有( A )A.1+1=10 B.x+y=10C.sinx+siny<0 D.x mod 3=24.下列等值式不正确的是( C )A.┐(∀x)A⇔(∃x)┐AB.(∀x)(B→A(x))⇔B→(∀x)A(x)C.(∃x)(A(x)∧B(x))⇔(∃x)A(x)∧(∃x)B(x)D.(∀x)(∀y)(A(x)→B(y))⇔(∀x)A(x)→(∀y)B(y)5.谓词公式(∃x)P(x,y)∧(∀x)(Q(x,z)→(∃x)(∀y)R(x,y,z)中量词∀x的辖域是( C )A.(∀x)Q(x,z)→(∃x)(∀y)R(x,y,z))B.Q(x,z)→(∀y)R(x,y,z)C.Q(x,z)→(∃x)(∀y)R(x,y,z)D.Q(x,z)6.设A={a,b,c,d},A上的等价关系R={<a,b>,<b,a>,<c,d>,<d,c>}∪I A,则对应于R的A的划分是( D )A.{{a},{b,c},{d}} B.{{a,b},{c},{d}}C.{{a},{b},{c},{d}} D.{{a,b},{c,d}}7.设A={Ø},B=P(P(A)),以下正确的式子是( A )A.{Ø,{Ø}}∈B B.{{Ø,Ø}}∈BC.{{Ø},{{Ø}}}∈B D.{Ø,{{Ø}}}∈B8.设X,Y,Z是集合,一是集合相对补运算,下列等式不正确的是( A )A.(X-Y)-Z=X-(Y∩Z)B.(X-Y)-Z=(X-Z)-YC.(X-Y)-Z=(X-Z)-(Y-Z)D.(X-Y)-Z=X-(Y∪Z)9.在自然数集N上,下列定义的运算中不可结合的只有( D )A.a*b=min(a,b)B.a*b=a+bC.a*b=GCD(a,b)(a,b的最大公约数)02324# 离散数学试题第1 页共4页02324# 离散数学试题 第 2 页 共4页D .a*b=a(mod b)10.设R 和S 是集合A 上的关系,R ∩S 必为反对称关系的是( A ) A .当R 是偏序关系,S 是等价关系; B .当R 和S 都是自反关系; C .当R 和S 都是等价关系; D .当R 和S 都是传递关系11.设R 是A 上的二元关系,且R ·R ⊆R,可以肯定R 应是( D ) A .对称关系; B .全序关系; C .自反关系; D .传递关系 12.设R 为实数集,函数f :R →R ,f(x)=2x ,则f 是( B ) A .满射函数 B .单射函数 C .双射函数 D .非单射非满射第二部分 非选择题二、填空题1.设论域是{a,b,c},则(∀x)S(x)等价于命题公式 S(a)∧S(b)∧S(c) ;(x ∃)S(x)等价于命题公式 S(a)∨S(b) ∨S(c) 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单项选择题第一章第二章1. 下列表达式正确的有( )A. Q Q P ⇒ → ⌝ ) (B.P Q P ⇒∨ C .P Q P Q P ⇔⌝∧∨∧)()( D.T Q P P ⇔→→)(2. 下列推理步骤错在( )①))()((x G x F x →∀P ②)()(y G y F →US① ③)(x xF ∃P ④)(y FES③ ⑤)(y GT②④I ⑥)(x xG ∃ EG⑤A.②B.④C.⑤D.⑥3. 设P :2×2=5,Q :雪是黑的,R :2×4=8,S :太阳从东方升起,下列( )命题的真值为真。

A.R Q P ∧→B.S P R ∧→C.R Q S ∧→D.)()(S Q R P ∧∨∧4. 下列公式中哪些是永真式?( )A.(┐P ∧Q)→(Q→⌝R)B.P→(Q→Q)C.(P ∧Q)→PD.P→(P ∧Q)5. 下列等价关系正确的是( )A.)()())()((x xQ x xP x Q x P x ∀∨∀⇔∨∀ B .)()())()((x xQ x xP x Q x P x ∃∨∃⇔∨∃C.Q x xP Q x P x →∀⇔→∀)())((D.Q x xP Q x P x →∃⇔→∃)())((6. 下列推导错在( )①)(y x y x >∃∀P ②)(y z y >∃US① ③z z >ES② ④)(x x x >∀ UG③A.②B. ④ C . ③ D.无7. 若公式)()(R P Q P ∧⌝∨∧的主析取范式为111110011001m m m m ∨∨∨则它的主合取范式为( )A.111110011001m m m m ∧∧∧B.101100010000M M M M ∧∧∧ ;C.111110011001M M M M ∧∧∧D.101100010000m m m m ∧∧∧ 。

8. 在下述公式中不是重言式为( )A .)()(Q P Q P ∨→∧B .))()(()(P Q Q P Q P →∧→↔↔C .Q Q P ∧→⌝)(D .)(Q P P ∨→9. 下列各式中哪个不成立( )A.)()())()((x xQ x xP x Q x P x ∀∨∀⇔∨∀B.)()())()((x xQ x xP x Q x P x ∃∨∃⇔∨∃C .)()())()((x xQ x xP x Q x P x ∀∧∀⇔∧∀ D.Q x xP Q x P x ∧∀⇔∧∀)())((10.命题“尽管有人聪明,但未必一切人都聪明”的符号化(P(x):x 是聪明的,M(x):x 是人)( )A.)))()((())()((x P x M x x P x M x →∀⌝∧→∃B.)))()((())()((x P x M x x P x M x ∧∀⌝∧∧∃C.)))()((())()((x P x M x x P x M x →∀⌝∧∧∃D.)))()((())()((x P x M x x P x M x →∀⌝∨∧∃11.下述命题公式中,是重言式的为( )A.)()(q p q p ∨→∧B.q p ∨))()((p q q p →∨→⇔C.q q p ∧→⌝)(D.q q p →⌝∧)(12.谓词公式)())()((x Q y yR x P x →∃∨∀中的x 是( )A.自由变元B.约束变元C.既是自由变元又是约束变元D.既不是自由变元又不是约束变元13.命题“有的人喜欢所有的花”的逻辑符号化为( )设D :全总个体域,F (x ):x 是花,M(x) :x 是人,H(x,y):x 喜欢yA. ))),()(()((y x H y F y x M x →∀→∃B.))),()(()((y x H y F y x M x →∀∧∀C. ))),()(()((y x H y F y x M x →∀→∀D.))),()(()((y x H y F y x M x →∀∧∃14.下列等价式成立的有( )A.Q P Q P ⌝→⌝⇔→B.R R P P ⇔∧∨)(C.Q Q P P ⇔→∧)(D.R Q P R Q P →∧⇔→→)()(15.给定公式)()(x xP x xP ∀→∃,当D={a,b}时,解释( )使该公式真值为0。

A.P(a)=0、P(b)=0 B .P(a)=0、P(b)=1 C.P(a)=1、P(b)=116.设x x M :)(是人,x x P :)(犯错误,命题“没有不犯错误的人”符号化为( ) A.))()((x P x M x ∧∀ B.)))()(((x P x M x ⌝→∃⌝ C.)))()(((x P x M x ∧∃⌝ D .)))()(((x P x M x ⌝∧∃⌝17.下列语句是命题的有( )A.明年中秋节的晚上是晴天B.0>+y xC.0>xy 当且仅当x 和y 都大于0D.我正在说谎18.下列公式是重言式的有( )A.)(Q P ↔⌝ B .Q Q P →∧)( C.P P Q ∧→⌝)( D.P Q P ↔→)(19.下列集合中哪个是最小联结词集( )A .},{→⌝ B.{⌝, } C. {✂, } D.},,{∨∧⌝20.设L(x):x 是演员,J(x):x 是老师,A(x , y):x 钦佩y ,命题“所有演员都钦佩某些老师”符号化为( )A.)),()((y x A x L x →∀B.))),()(()((y x A y J y x L x ∧∃→∀C.)),()()((y x A y J x L y x ∧∧∃∀D.)),()()((y x A y J x L y x →∧∃∀21.下列各命题中真值为真的命题有( )A.2+2=4当且仅当3是奇数B.2+2=4当且仅当3不是奇数C.2+2≠4当且仅当3是奇数D.2+2=4仅当3不是奇数22.命题逻辑演绎的CP 规则为( )A.在推演过程中可随便使用前提B.在推演过程中可随便使用前面演绎出的某些公式的逻辑结果C .如果要演绎出的公式为C B →形式,那么将B 作为前提,演绎出CD.设)(A Φ是含公式A 的命题公式,A B ⇔,则可用B 替换)(A Φ中的A第三章23.设A={1,2,3,4},P (A )(A 的幂集)上规定二元系|}||(|)(,|,{t s A p t s t s R =∧∈><=则P (A )/ R=( )A .AB .P(A)C .{[Φ]R ,[{1}]R ,[{1,2}]R ,[{1,2,3}]R ,[{1,2,3,4}]R }D .{[Φ]R ,[2]R ,[2,3]R ,[2,3,4]R ,[A]R }24.集合A={1,2,…,10}上的关系R={<x,y>|x+y=10,x,y ∈A},则R 的性质为( )A.自反的B.对称的C.传递的,对称的D.传递的25.集合A={1,2,3,4}上的偏序关系为,则它的Hass 图为( C )26.设R ,S 是集合A 上的关系,则下列说法正确的是( )A .若R ,S 是自反的, 则S R ο是自反的B .若R ,S 是反自反的, 则S R ο是反自反的C .若R ,S 是对称的, 则S R ο是对称的D .若R ,S 是传递的, 则S R ο是传递的27.A,B,C是三个集合,则下列哪几个推理正确 ( )A.A ⊆B ,B ⊆C 则A ⊆CB.A ⊆B ,B ⊆C 则 A∈BC.A∈B,B∈C 则 A∈C28.设A={Φ,{1},{1,3},{1,2,3}}则A 上包含关系“⊆”的哈斯图为( C )29.设f ,g 是函数,当( C )时,f=gA.)()( x g x f domf x =∈∀都有B. 的表达式相同与g fC. g f domf domg ⊆⊆ 且D.rangef rangef domf domg ==,30.设}}{,{,ΦΦ=Φ=B A ,则B -A 是( )A.}}{{ΦB.}{ΦC.}}{,{ΦΦD.Φ31.集合A={1,2,3,4}上的偏序关系图如下左,则它的哈斯图为( C )32.设} 3 ,2 ,1 {=S ,定义S S ⨯上的等价关系,,则由R 产生的S S ⨯上一个划分共有( B )个分块。

A .4B .5C .6D .933.下列是真命题的有( )A . }}{{}{a a ⊆B .}},{{}}{{φφφ∈C .}},{{φφφ∈D .}}{{φφ∈34.设B A S ⨯⊆,下列各式中( B )是正确的domS ⊆B B.domS ⊆A C.ranS ⊆A D.domS ⋃ ranS = S35.设} 3 ,2 ,1 {=S ,S 上关系R 的关系图如下 ,则R 具有( D )性质A .自反性、对称性、传递性B .反自反性、反对称性C .反自反性、反对称性、传递性D .自反性36.设} |{是偶数或奇数x x A =,)}2( |{y x I y y x B =∧∈∃=,)}12( |{+=∧∈∃=y x I y y x C ,},4,4,3,3,2,2,1,1,0|{Λ----=x D 下列相等的集合是( D )A.A 的BB.B 和CC.C 和DD.A 和D37.设{}b a A ,=,则P (A )×A = ( C)A.AB.P (A )C.{}><><><><><><>Φ<>Φ<b A a A b b a b b a a a b a ,,,,},{,},{,},{,},{,,,,D.{}><><><><><><>Φ<>Φ<A b A a b b b a a b a a b a ,,,,}{,,}{,,}{,,}{,,,,,38.A 是素数集合,B 是奇数集合,则A-B=( D )A.素数集合B.奇数集合C.ΦD.{2}39.设R 和S 是P 上的关系,P 是所有人的集合,},|,{的父亲是y x P y x y x R ∧∈><=,},|,{的母亲是y x P y x y x S ∧∈><=则1-S R ο表示关系 ( A )A.},|,{的丈夫是y x P y x y x ∧∈><B.},|,{的孙子或孙女是y x P y x y x ∧∈><C.ΦD.},|,{的祖父或祖母是y x P y x y x ∧∈><40.在自然数集N 上,(对任意N b a ∈,)下列( B)运算是可结合的A.b a b a -=*B.),max(b a b a =*C.b a b a 5+=*D.b a b a -=*41.Q 为有理数集N ,Q 上定义运算*为a*b = a + b – ab ,则<Q ,*>的幺元为( 0 )A.aB.bC.1D.042.公式),()),(),((y x xP z y Q y x P y x ∃∧∨∀∀换名( A )A.),()),(),((y x xP z u Q u x P u x ∃∧∨∀∀B.),()),(),((u x xP z u Q u x P y x ∃∧∨∀∀;C.),()),(),((u x xP z y Q y x P y x ∃∧∨∀∀D.),()),(),((y u uP z y Q y u P y u ∃∧∨∀∀。

相关文档
最新文档