求动点轨迹方程专题解析
动点轨迹方程问题的解法

考点透视董纪琴动点的轨迹方程问题主要考查圆锥曲线的定义与几何性质,通常要求根据已知的条件,求动点的轨迹方程.此类问题具有较强的抽象性,且解题过程中的运算量较大.很多同学由于在解题时没有选择合适的方法,导致解题失败.下面,笔者结合例题探讨一下动点轨迹方程问题的解法.一、直接法运用直接法求解动点的轨迹方程问题,需充分利用题设中的几何条件,寻找与动点有关的几何量或等量关系,并将其转化为关于动点的坐标的关系式,进而得到动点的轨迹方程.其解题步骤为:(1)设动点的坐标;(2)找等量关系;(3)根据已知条件列出方程;(4)整理化简该方程,求得动点的轨迹方程.例1.已知点A(-2,0),B(2,0),直线AM与BM的斜率之积为-12,求点M的轨迹C的方程,并说明C是什么曲线.解:由题意知kAM=yx+2,kBM=yx-2.因为直线AM与BM的斜率之积为-12,故y x+2∙y x-2=-12,化简得x24+y22=1(||x≠2),故曲线C为中心在坐标原点,半长轴为2,半短轴为2,焦点在x轴上,且不含左、右顶点的椭圆.运用直接法求动点的轨迹方程,通常需仔细寻找与动点有关的一些几何量,如相等距离、相等角、成比例的线段等,然后根据两点间的距离公式、点到直线的距离公式、斜率公式、相似三角形的性质等建立关于x,y的等量关系式,再通过化简,就能求出动点轨迹的方程.二、参数法若题目较为复杂,根据题意难以快速建立与动点有关的关系式,或明确动点的运动轨迹,就可以运用参数法,设出相关参数,建立关于参数的方程,再通过化简、消去参数,进而得到动点的轨迹方程.例2.若点A在x轴上移动,点B在y轴上移动,线段AB的长为a,点P是AB上的一动点,且||AP=2||PB,求点P的轨迹方程.解:过点P作PM⊥x轴于M,过点P作PN⊥y轴于N.设点P()x,y,AB与x轴的夹角为θ(||θ≤π2),则||AP=2a3,||BP=a3,于是x=13a cosθ,y=23a sinθ,消去参数,可得æèöø3xa2+æèçöø÷3y2a2=1,即动点的P轨迹方程为36x2+9y2=4a2.由于A,B为动点,所以直线AB与x轴的夹角直接影响着A、B点的横、纵坐标,此时我们要引入参数,运用参数法解题.根据题意绘制出相应的几何图形,再添加合适的辅助线,并根据直角三角形的性质列出关于参数的方程,就能通过消参,快速得出动点的轨迹方程.三、相关点法若动点P随点Q的变化而变化,就可以采用相关点法来求动点的轨迹方程.在解题时,我们首先要设出点P与点Q的坐标,然后根据题意建立两点之间的关系式,再将其代入关系式中进行运算,即可求出动点的轨迹方程.例3.已知点B为椭圆x2a2+y2b2=1(a>b>0)上的动点,点A(2a,0)为定点,试求线段AB的中点M的轨迹方程.解:设中点M的坐标为()x,y,B点的坐标为()x0,y0,因为M为线段AB的中点,所以ìíîïïx0+2a2=x,y0+02=y,可得{x0=2x-2a,y0=2y,则B(2x-2a,2y),因为点B在椭圆x2a2+y2b2=1,所以x02a2+y02b2=1,即(2x-2a)2a2+(2y)2b2=1,整理可得4(x-a)2a2+4y2b2=1,该方程即为中点M的轨迹方程.仔细分析题意可以知道,点M都随着点B的变化而变化,因此需采用相关点法解题比较便捷,用M点的坐标表示B点的坐标,再将其代入题设中进行运算,化简所得的结果,即可快速求得问题的答案.由此可见,无论运用哪种方法求动点的轨迹方程,都要设出动点的坐标,建立关于动点的坐标与已知曲线方程之间的关系式,再通过化简,求得关于动点坐标的方程,从而求出动点的轨迹方程.虽然此类问题较为复杂,难度系数较大,但是只要明确题目中与动点相关的已知条件,选择与之相应的方法进行求解,问题就能迎刃而解.(作者单位:南京航空航天大学附属高级中学)37。
求动点轨迹方程的三个“妙招”

方法集锦求动点的轨迹方程是圆锥曲线中常见的一类题目.此类问题主要考查了圆锥曲线的定义、几何性质,是一类难度较大的问题.解答此类问题,同学们需具备较强的应变能力和分析、解决问题的能力.本文主要介绍求动点轨迹方程的三个技巧:直接法、相关点法、交轨法.一、直接法若题目中直接给出了与动点相关的一些关系式或者条件,如几何关系、三角或者向量关系式,我们可以根据题意利用直接法来求动点的轨迹方程.其基本思路是:(1)设出动点的坐标;(2)根据已知条件列式;(3)整合、化简关系式;(4)明确x 、y 的取值范围,得到动点的轨迹方程.例1.动点P 到两个定点A ()-3,0和B ()3,0的距离之比等于2,求动点P 的轨迹方程.解:设P 点的坐标为()x ,y ,则||PA =()x +32+y 2,||PB =()x -32+y 2,∵||PA :||PB =2:1,∴()x +3+y 2=2()x -32+y 2,整理可得:()x -52+y 2=16,∴P 点的轨迹方程为:()x -52+y 2=16.解答本题主要采用了直接法.首先设出动点P 的坐标,然后利用两点间的距离公式求出PA 和PB 的距离,结合已知条件建立等量关系式,化简、整理得到动点P 的轨迹方程.二、相关点法若动点P (x ,y )随着另一动点Q ()x 0,y 0的运动而运动,且动点Q 的轨迹已给定或容易求得,则可以运用相关点法求P 点的轨迹方程.其思路是:先用x ,y 表示x 0,y 0,再将其代入到Q 的轨迹方程中,整理化简方程即可得到P 的轨迹方程.例2.抛物线y 2=4x 的通径与抛物线交于A 、B 两点,动点C 在抛物线上,求△ABC 的重心P 的轨迹方程.解:设重心P 的坐标为()x ,y ,则动点C 的坐标为()x 0,y 0,且有y 02=4x 0,①根据题意可知A ()1,2,B ()1,-2,且x 0≠1(A 、B 、C 不能在同一条直线上),根据三角形的重心坐标公式可得:x =x 0+23,y =y 03,将上式代入①式,整理可得:y 2=43æèöøx -23,所以P 点的轨迹方程为y 2=43æèöøx -23()x ≠1.因为本题中的P 点随着C 点运动,所以需要运用相关点法求解.首先设出重心P 以及动点C 的坐标,根据题意建立关系式,然后用x ,y 表示x 0,y 0,将其代入到C 的轨迹方程中,便能求得P 的轨迹方程.三、交轨法交轨法适用于解答两动曲线交点的轨迹问题.在运用交轨法解题时,需选择适当的参数表示两动曲线的方程,然后通过消元,将两动曲线方程中的参数消去得到不含参数的方程,所求得的方程即为两动曲线交点的轨迹方程.例3.已知抛物线C :y =x 2,动点P 在直线l :x -y -2=0上运动,过点P 作抛物线C 的两条切线PA ,PB 与抛物线C 分别相切于A ,B 两点,求△APB 的重心G 的轨迹方程.分析:本题需用交轨法求解.首先可依据题意设出切点的坐标,通过对抛物线方程求导得到切线的方程,得出点P 的坐标,然后设出重心G 的坐标,结合中点坐标公式求得P 点的坐标,根据三角形的重心坐标公式建立关于P 点的关系式,化简、消元便可得到G 的轨迹方程.解:设切点A ,B 的坐标分别为()x ,x 12和()x 2,x 22,则切线AP ,BP 的方程分别为:2x 1x -y -x 12=0,2x 2x -y -x 22=0,所以P 的坐标为:x p =x 1+x 22,y p =x 1x 2,设G 的坐标为()x ,y ,根据三角形的重心坐标公式可得:x =x 1+x 2+x p 3=x p ①,y =y 1+y 2+y p 3=4x p 2-y p3②,又P 点在直线l 上,则x p -y p -2=0,③由①②③可得重心G 的轨迹方程为:y =43x 2-13x +23.虽然求动点的轨迹方程问题较为复杂,难度系数较大,但是同学们只要明确题目中与动点相关的已知条件,如关系式、相关的点、两动曲线的交点等,对其进行合理的转化,选择恰当的解题方法,问题便能迎刃而解.(作者单位:江苏省沭阳如东中学)48Copyright©博看网 . All Rights Reserved.。
怎样求动点的轨迹方程

思路探寻在解题时,我们经常会遇到求动点的轨迹方程问题.此类问题主要考查圆锥曲线的定义、图形以及几何性质,对同学们的想象与计算能力都有较高的要求.在解答此类问题时,需根据题目中所给的条件建立起各个变量之间的联系,得到关于动点的关系式,进而求得动点的轨迹方程.本文主要谈一谈动点的轨迹方程的几种求法.一、直接法直接法是求动点的轨迹方程的基本方法.通常要先设出动点的坐标;然后根据题目中所给的条件,利用相关的公式、定义、性质列出有关动点坐标的关系式;再通过化简、消元、变形,得到动点的轨迹方程;最后验证所得的结果是否满足题目的条件.例1.已知两定点A (-2,0),B (2,0),动点P 满足 PA ∙PB =0.由点P 向x 轴作垂线PQ ,垂足为Q ,若 PM = MQ ,求点M 的轨迹方程.解:设M (x ,y ),P (x 1,y 1),则Q (x 1,0),因为 PA ∙PB =0,所以x 12+y 12=4.因为PM ⊥x 轴, PM = MQ ,所以x 1=x ,y 1=2y ,所以点P 的坐标为(x ,2y ).又因为点P在圆x 12+y 12=4上,所以x 2+4y 2=4,所以点M 的轨迹方程为x 24+y 2=1.本题较为简单,可采用直接法求解.题目的条件中已明确给出了动点的几何关系,只要设出动点的坐标,根据已知条件建立关于点M 的坐标的关系式,即可得到点M 的轨迹方程.二、相关点法若一动点P 随着另一动点Q 的变化而变化,且已知另一动点Q 的运动轨迹,就可以利用相关点法,根据另一动点Q 的轨迹来求得动点P 的轨迹方程.在解题时,需先建立两个动点坐标之间的联系,求得另一动点Q 的轨迹方程;然后用动点P 的坐标表示相关点Q 的坐标,将其代入相关点Q 的轨迹方程,即可求得动点P 的轨迹方程.例2.从圆x 2+y 2=1上的任意一点P 向y 轴作垂线,求该垂线段中点M 的轨迹方程.解:设点P 为(x 0,y 0),点M 为(x ,y ),由题意知:ìíîïïx =x 02,y =y 0,即{x 0=2x ,y 0=y .因为点P 在圆上,所以x 02+y 02=1,可得4x 2+y 2=1,所以点M 的轨迹为椭圆,其轨迹方程为4x 2+y 2=1.分析题意可知,点M 随着点P 的变化而变化,需采用相关点法解答.先设出点M 和P 的坐标,并根据二者之间的联系建立关系式;然后用点M 的坐标表示P 点,通过P 点的轨迹方程间接求得M 点的轨迹方程.三、交轨法如果动点是两条曲线的交点,就可以采用交轨法来求动点的轨迹方程.先选出一个适当的参数表示动点;再根据题目中的条件建立关于参数的式子;然后通过恒等变换,逐步消去参数,得到所求点的轨迹方程.例3.已知动点P 在直线l :x -y -2=0上运动,过P 点作抛物线C :y =x 2的两条切线PA ,PB ,与抛物线C分别相切于A ,B 两点,求△APB 的重心G 的轨迹方程.解:设切点A ,B 的坐标分别为(x 1,x 12)和(x 2,x 22),则切线PA ,PB 的方程分别为:2x 1x -y -x 12=0,2x 2x -y -x 22=0,可得x p =x 1+x 22,y p =x 1x 2.设G 的坐标为(x ,y ),根据三角形重心的坐标公式可得:x =x 1+x 2+xp 3=x p ①,y =y 1+y 2+y p 3=4x p 2-y p3②.又因为点P 在直线l :x -y -2=0上运动,所以x p -y p -2=0③,由①②③可得△APB 的重心G 的轨迹方程是:y =43x 2-13x +23.解答本题,首先要根据题目中所给的条件设出切点的坐标,通过对抛物线的方程求导,得到切线的方程,并求出点P 的坐标;然后设出重心G 的坐标,根据中点的坐标公式和重心的坐标公式建立关系式,即可利用交轨法求得重心G 的轨迹方程.求动点的轨迹方程问题的难度往往不大,但解题时的计算量较大,同学们在解题时要谨慎计算,注意检验,避免出错.(作者单位:江苏省南通市海门四甲中学)史玉蕾48Copyright ©博看网. All Rights Reserved.。
例谈动点的轨迹方程的四种求法

思路探寻求动点的轨迹方程问题经常出现在解析几何试题中,这类问题侧重于考查同学们的推理、分析以及运算能力.求解这类问题的主要方法有定义法、参数法、相关点法和交轨法.下面结合实例,谈一谈这四种方法的特点以及应用技巧.一、定义法定义法是指运用圆锥曲线的定义解题.若发现动点的轨迹形如椭圆、圆、双曲线、抛物线或其中的一部分曲线,就可以根据椭圆、圆、双曲线、抛物线的定义,确定定点、焦点、焦点与动点之间的关系,求得椭圆、圆、双曲线、抛物线方程中的各个参数,便可以快速确定曲线的轨迹方程.例1.如图1所示,已知圆C1:x2+(y+4)2=25和圆C2:x2+(y-4)2=1,某动圆C分别与圆C1和圆C2外切,求动圆圆心C的轨迹方程.图1解:由题意知两圆的圆心为C1(0,-4),C2(0,4),半径为r1=5,r2=1,设动圆C的半径为r,因为圆C分别与圆C1和圆C2外切,所以||CC1=r+5,||CC2=r+1,所以||CC1-||CC2=4<8,即点C到两定点C1、C2的距离之差为常数4,所以动圆圆心C的轨迹是以C1、C2为焦点的双曲线的上支,可得2a=4,2c=||C1C2=8,所以b2=c2-a2=12.所以动圆圆心C的轨迹方程是y24-x212=1(y≥2).结合图形分析动圆C与圆C1、圆C2的位置关系,即可发现||CC1=r+5,||CC2=r+1,即可得出||CC1-||CC2=4<8,由此可联想到双曲线的定义,即平面内到两定点的距离之差为定值的点的轨迹,确定动点的轨迹,求得a、b、c值,即可求得动点的轨迹方程.二、参数法参数法是解答数学问题的重要方法.若动点受某些变量的影响,而我们又无法确定这些变量的取值,则需运用参数法,即用参数表示出变量,设出直线的斜率、点的坐标、曲线的方程等,然后将其代入题设中,建立关系式,通过恒等变换消去参数,即可求得动点的轨迹方程.例2.已知抛物线y2=4px(p>0)的顶点为O,A,B是抛物线上的两个动点,且OA⊥OB,OM⊥AB于点M,求点M的轨迹方程.解:设M(x,y),直线AB的方程为y=kx+b,因为OA⊥OB,所以k=-xy,由ìíîy2=4px,y=kx+b,得k2x2+(2kb-4p)x+b2=0,所以x1x2=-b2k2,y1y2=-4pb k,因为OA⊥OB,所以y1y2=-x1x2,所以-4pbk=-b2k2,即b=-4kp,所以直线AB的方程为y=kx+b=k(x-4p),将k=-xy代入,得x2+y2-4px=0(x≠0),即所求点M的轨迹方程为x2+y2-4px=0(x≠0).解答本题主要运用了参数法,即先引入参数x、y,49k 、b 、x 1、x 2、y 1、y 2,设出动点M 的坐标、直线AB 的方程以及A 、B 两点的坐标;然后将直线与抛物线的方程联立,根据一元二次方程的根与系数的关系建立关系式;最后通过恒等变换消去参数,得到关于x 、y 的方程,即为动点的轨迹方程.三、相关点法若两个动点之间存在某种特定的关系,则可以采用相关点法求解.先分别设出两个动点的坐标,并根据二者之间的关系,用所求动点的坐标表示另一个动点的坐标;然后根据另一个动点的几何关系,建立关于所求动点坐标的关系式,从而求得动点的轨迹方程.运用相关点法解题,要注意寻找两个动点之间的联系,并确定另一个动点所满足的几何关系.例3.如图2所示,在圆x 2+y 2=4上任意选取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足,求线段PD中点M 的轨迹方程.图2解:设点M (x ,y ),P (x 0,y 0),因为M 为线段PD 的中点,所以ìíîïïx =x 0,y =y 02,得{x 0=x ,y 0=2y ,又因为点P (x 0,y 0)在圆x 2+y 2=4上,所以x 02+y 02=4,将{x 0=x ,y 0=2y ,代入上述方程中,得x 24+y 2=1,所以点M 的轨迹为一个椭圆,其方程为x 24+y 2=1.本题中P 、M 均为动点,且点M 随着点P 的运动而变化,需采用相关点法求解,先分别设出P 、M 两点的坐标;然后用M 点的坐标表示P 的坐标;再将其代入点P 的轨迹方程,即可确定点M 的轨迹及其方程.四、交轨法当问题中所求的动点为两条动曲线的交点时,往往需采用交轨法,即将两条动曲线的方程联立,消去其中的参数,得到的关于x 、y 的方程即为所求的动点的轨迹方程.例4.如图3所示,已知双曲线C :y 24-x 23=1与y轴交于点A 1(0,-2)与点A 2(0,2),直线l :y =m 与双曲线交于点P ,Q ,直线A 1P 与直线A 2Q 相交于点M ,试求点M 的轨迹方程.图3解:设P (x 1,m ),Q (-x 1,m ),M (x ,y ),因为点P 在双曲线上,所以m 24-x 123=1.当x 1≠0时,直线PA 1的方程为y +2=m +2x 1x ,直线QA 2的方程为y -2=2-m x 1x,可得y 2-4=4-m 2x 12x 2,所以x 12=3m 2-124,将其代入y 2-4=4-m 2x 12x 2,得y 2-4=-43x 2,化简整理得y 24+x 23=1.当x 1=0时,点M 的坐标满足方程y 24+x 23=1.综上所述,点M 的轨迹方程为y 24+x 23=1.仔细分析题意可知,M 为直线A 1P 与直线A 2Q 的交点,且点A 1、A 2、P 、Q 都满足双曲线的方程,于是采用交轨法,求得两动直线A 1P 与A 2Q 的方程,再将两方程联立,消去参数,即可求出交点M 的轨迹方程.总之,求动点的轨迹方程,关键是要根据题目中的几何条件,寻找动点的横坐标与纵坐标之间的关系,建立关于动点的横坐标与纵坐标的方程.求动点的轨迹方程的方法很多,同学们需熟练掌握一些常用方法的特点、适用情形、解题思路,才能将其灵活地应用于解题中.(作者单位:江苏省南通市海门实验学校)思路探寻50。
方法技巧专题08 轨迹方程的求法(解析版)

方法技巧专题8 轨迹方程问题 解析版一、 轨迹方程问题知识框架二、求轨迹方程的常用方法【一】定义法1.例题【例1】已知ABC ∆的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足,sin 45sin sin C A B =+求点C 的轨迹。
【解析】由,sin 45sin sin C A B =+可知1045==+c a b ,即10||||=+BC AC ,满足椭圆的定义。
令椭圆方程为12'22'2=+b y a x ,则34,5'''=⇒==bc a ,则轨迹方程为192522=+y x ()5±≠x ,图形为椭圆(不含左,右顶点)。
【例2】一动圆与圆22650x y x +++=外切,同时与圆226910x y x +--=内切,求动圆圆心M 的轨迹方程,并说明它是什么样的曲线。
【解析】设动圆圆心为(,)M x y ,半径为R ,设已知圆的圆心分别为1O 、2O ,定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。
将圆方程分别配方得:22(3)4x y ++=,22(3)100x y -+=, 当M 与1O 相切时,有1||2O M R =+ ① 当M 与2O 相切时,有2||10O M R =- ②将①②两式的两边分别相加,得21||||12O M O M +=,即2222(3)(3)12x y x y +++-+= ③ 移项再两边分别平方得:222(3)12x y x ++=+ ④两边再平方得:22341080x y +-=,整理得2213627x y +=, 所以,动圆圆心的轨迹方程是2213627x y +=,轨迹是椭圆。
【例3】已知A 、B 、C 是直线l 上的三点,且|AB|=|BC|=6,⊙O′切直线l 于点A ,又过B 、C 作⊙O′异于l 的两切线,设这两切线交于点P ,求点P 的轨迹方程.【解析】设过B 、C 异于l 的两切线分别切⊙O′于D 、E 两点, 两切线交于点P. 由切线的性质知:|BA|=|BD|,|PD|=|PE|,|CA|=|CE|,故|PB|+|PC|=|BD|+|PD|+|PC|=|BA|+|PE|+|PC|=|BA|+|CE|=|AB|+|CA|=6+12=18>6=|BC|, 故由椭圆定义知,点P 的轨迹是以B 、C 为两焦点的椭圆, 以l 所在的直线为x 轴,以BC 的中点为原点,建立坐标系,可求得动点P 的轨迹方程为:2218172x y +=2.巩固提升综合练习【练习1】已知圆()25422=++y x 的圆心为M 1,圆()1422=+-y x 的圆心为M 2,一动圆与这两个圆外切,求动圆圆心P 的轨迹方程。
(完整版)高中数学动点轨迹问题专题讲解

动点轨迹问题专题讲解一.专题内容:求动点(, )P x y 的轨迹方程实质上是建立动点的坐标, x y 之间的关系式,首先要分析形成轨迹的点和已知条件的内在联系,选择最便于反映这种联系的坐标形式,寻求适当关系建立等式,常用方法有: (1)等量关系法.....:根据题意,列出限制动点的条件等式,这种求轨迹的方法叫做等量关系法,利用这种方法时,要求对平面几何中常用的定理和解析几何中的有关基本公式很熟悉. (2)定义法...:如果动点满足的条件符合某种已知曲线(如圆锥曲线)的定义,可根据其定义用待定系数法求出轨迹方程.(3)转移代入法.....:如果所求轨迹上的点(, )P x y 是随另一个在已知曲线C :(, )0F x y =上的动点00(, )M x y 的变化而变化,且00, x y 能用, x y 表示,即0(, )x f x y =,0(, )y g x y =,则将00, x y 代入已知曲线(, )0F x y =,化简后即为所求的轨迹方程.(4)参数法...:选取适当的参数(如直线斜率k 等),分别求出动点坐标, x y 与参数的关系式,得出所求轨迹的参数方程,消去参数即可. (5)交轨法...:即求两动直线交点的轨迹,可选取同一个参数,建立两动直线的方程,然后消去参数,即可(有时还可以由三点共线,斜率相等寻找关系). 注意:轨迹的完备性和纯粹性!一定要检验特殊点和线! 二.相关试题训练(一)选择、填空题1.( )已知1F 、2F 是定点,12||8F F =,动点M 满足12||||8MF MF +=,则动点M 的轨迹是 (A )椭圆 (B )直线 (C )圆 (D )线段2.( )设(0,5)M ,(0,5)N -,MNP ∆的周长为36,则MNP ∆的顶点P 的轨迹方程是(A )22125169x y +=(0x ≠) (B )221144169x y +=(0x ≠) (C )22116925x y +=(0y ≠) (D )221169144x y +=(0y ≠) 3.与圆2240x y x +-=外切,又与y 轴相切的圆的圆心轨迹方程是 ;4.P 在以1F 、2F 为焦点的双曲线221169x y -=上运动,则12F F P ∆的重心G 的轨迹方程是 ;5.已知圆C :22(16x y +=内一点)A ,圆C 上一动点Q , AQ 的垂直平分线交CQ 于P 点,则P 点的轨迹方程为 .2214x y += 6.△ABC 的顶点为(5, 0)A -、(5, 0)B ,△ABC 的内切圆圆心在直线3x =上,则顶点C 的轨迹方程是 ;221916x y -=(3x >) 变式:若点P 为双曲线221916x y -=的右支上一点,1F 、2F 分别是左、右焦点,则△12PF F 的内切圆圆心的轨迹方程是 ;推广:若点P 为椭圆221259x y +=上任一点,1F 、2F 分别是左、右焦点,圆M 与线段1F P 的延长线、线段2PF 及x 轴分别相切,则圆心M 的轨迹是 ;7.已知动点M 到定点(3,0)A 的距离比到直线40x +=的距离少1,则点M 的轨迹方程是 .(212y x =)8.抛物线22y x =的一组斜率为k 的平行弦的中点的轨迹方程是 .(4kx =(28k y >))9.过抛物线24y x =的焦点F 作直线与抛物线交于P 、Q 两点,当此直线绕焦点F 旋转时, 弦PQ 中点的轨迹方程为 . 解法分析:解法1 当直线PQ 的斜率存在时,设PQ 所在直线方程为 (1)y k x =-与抛物线方程联立,2(1),4y k x y x=-⎧⎨=⎩ 消去y 得 2222(24)0k x k x k -++=. 设11(,)P x y ,22(,)Q x y ,PQ 中点为(,)M x y ,则有21222,22(1).x x k x k y k x k ⎧++==⎪⎪⎨⎪=-=⎪⎩消k 得22(1)y x =-.当直线PQ 的斜率不存在时,易得弦PQ 的中点为(1,0)F ,也满足所求方程. 故所求轨迹方程为22(1)y x =-. 解法2 设11(,)P x y ,22(,)Q x y ,由2112224,4.y x y x ⎧=⎪⎨=⎪⎩ 得121212()()4()y y y y x x -+=-,设PQ 中点为(,)M x y ,当12x x ≠时,有121224y y y x x -⋅=-,又1PQ MF yk k x ==-,所以,21yy x ⋅=-,即22(1)y x =-. 当12x x =时,易得弦PQ 的中点为(1,0)F ,也满足所求方程. 故所求轨迹方程为22(1)y x =-.10.过定点(1, 4)P 作直线交抛物线:C 22y x =于A 、B 两点, 过A 、B 分别作抛物线C 的切线交于点M, 则点M 的轨迹方程为_________.44y x =-(二)解答题1.一动圆过点(0, 3)P ,且与圆22(3)100x y ++=相内切,求该动圆圆心C 的轨迹方程. (定义法)2.过椭圆221369x y +=的左顶点1A 作任意弦1A E 并延长到F ,使1||||EF A E =,2A 为椭圆另一顶点,连结OF 交2A E 于点P , 求动点P 的轨迹方程.(直接法、定义法;突出转化思想)3.已知1A 、2A 是椭圆22221x y a b+=的长轴端点,P 、Q 是椭圆上关于长轴12A A 对称的两点,求直线1PA 和2QA 的交点M 的轨迹.(交轨法)4.已知点G 是△ABC 的重心,(0,1), (0,1)A B -,在x 轴上有一点M ,满足||||MA MC =, GM AB R λλ=(∈).(1)求点C 的轨迹方程;(2)若斜率为k 的直线l 与点C 的轨迹交于不同两点P 、Q ,且满足||||AP AQ =,试求k 的取值范围.解:(1)设(,)C x y ,则由重心坐标公式可得(,)33x yG . ∵ GM AB λ=,点M 在x 轴上,∴ (,0)3x M .∵ ||||MA MC =,(0,1)A -,∴=,即 2213x y +=. 故点C 的轨迹方程为2213x y +=(1y ≠±).(直接法) (2)设直线l 的方程为y kx b =+(1b ≠±),11(,)P x y 、22(,)Q x y ,PQ 的中点为N . 由22,3 3.y kx b x y =+⎧⎨+=⎩消y ,得222(13)63(1)0k x kbx b +++-=.∴ 22223612(13)(1)0k b k b ∆=-+->,即22130k b +->. ①又122613kbx x k+=-+,∴212122262()221313k b b y y k x x b b k k -+=++=+=++, ∴ 223(,)1313kb bN k k-++. ∵ ||||AP AQ =,∴ AN PQ ⊥,∴ 1ANk k =-,即 221113313bk kb k k ++=--+,∴ 2132k b +=,又由①式可得 220b b ->,∴ 02b <<且1b ≠.∴ 20134k <+<且2132k +≠,解得11k -<<且3k ≠±. 故k 的取值范围是11k -<<且k ≠. 5.已知平面上两定点(0,2)M -、(0,2)N ,P 为一动点,满足MP MN PN MN ⋅=⋅. (Ⅰ)求动点P 的轨迹C 的方程;(直接法)(Ⅱ)若A 、B 是轨迹C 上的两动点,且AN NB λ=.过A 、B 两点分别作轨迹C 的切线,设其交点为Q ,证明NQ AB ⋅为定值.解:(Ⅰ)设(,)P x y .由已知(,2)MP x y =+,(0,4)MN =,(,2)PN x y =--,48MP MN y ⋅=+.4PN MN x ⋅=……………………………………………3分∵MP MN PN MN ⋅=⋅,∴48y += 整理,得 28x y =.即动点P 的轨迹C 为抛物线,其方程为28x y =.6.已知O 为坐标原点,点(1,0)E -、(1,0)F ,动点A 、M 、N 满足||||AE m EF =(1m >),0MN AF =⋅,1()2ON OA OF =+,//AM ME .求点M 的轨迹W 的方程.解:∵0MN AF ⋅=,1()2ON OA OF =+,∴ MN 垂直平分AF .又//AM ME ,∴ 点M 在AE 上,∴ ||||||||2AM ME AE m EF m +===,||||MA MF =, ∴ ||||2||ME MF m EF +=>,∴ 点M 的轨迹W 是以E 、F 为焦点的椭圆,且半长轴a m =,半焦距1c =, ∴ 22221b a c m =-=-.∴ 点M 的轨迹W 的方程为222211x y m m +=-(1m >).7.设,x y R ∈,,i j 为直角坐标系内,x y 轴正方向上的单位向量,若向量(2)a xi y j =++,(2)b xi y j =+-, 且||||8a b +=.(1)求点(,)M x y 的轨迹C 的方程;(定义法)(2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程,若不存在,试说明理由.解:(1)2211216x y +=; (2)因为l 过y 轴上的点(0,3).若直线l 是y 轴,则,A B 两点是椭圆的顶点.0OP OA OB =+=,所以P 与O 重合,与四边形OAPB 是矩形矛盾. 故直线l 的斜率存在,设l 方程为3y kx =+,1122(,),(,)A x y B x y .由223,1,1216y kx x y =+⎧⎪⎨+=⎪⎩ 消y 得22(43)18210,k x kx ++-=此时22(18)4(43)(21)k k ∆=-+->0恒成立,且1221843k x x k +=-+,1222143x x k =-+, OP OA OB =+,所以四边形OAPB 是平行四边形.若存在直线l ,使得四边形OAPB 是矩形,则OA OB ⊥,即0OA OB ⋅=.1122(,),(,)OA x y OB x y ==,∴ 12120OA OB x x y y ⋅=+=.即21212(1)3()90k x x k x x ++++=.2222118(1)()3()4343k k k k k +⋅-+⋅-++ 90+=.2516k =,得54k =±. 故存在直线l :534y x =±+,使得四边形OAPB 是矩形. 8.如图,平面内的定点F 到定直线l 的距离为2,定点E 满足:||EF =2,且EF l ⊥于G ,点Q 是直线l 上一动点,点M 满足:FM MQ =,点P 满足://PQ EF ,0PM FQ ⋅=. (I )建立适当的直角坐标系,求动点P 的轨迹方程;(II )若经过点E 的直线1l 与点P 的轨迹交于相异两点A 、B ,令AFB θ∠=,当34πθπ≤<时,求直线1l 的斜率k 的取值范围.解:(1)以FG 的中点O 为原点,以EF 所在直线为y 轴,建立平面直角坐标系xoy ,设点(,)P x y ,则(0, 1)F ,(0, 3)E ,:1l y =-.∵ FM MQ =,//PQ EF ,∴(,1)Q x -,(, 0)2x M .∵0PM FQ ⋅=,∴ ()()(2)02xx y -⨯+-⨯-=,即所求点P 的轨迹方程为24x y =. (2)设点))(,(),,(212211x x y x B y x A ≠设AF 的斜率为1k ,BF 的斜率为2k ,直线1l 的方程为3+=kx y由⎩⎨⎧=+=yx kx y 432…………6分 01242=--kx x 得 1242121-==+∴x x k x x …………7分 9)4(44221222121==⋅=∴xx x x y y646)(22121+=++=+k x x k y y …………8分)1)(1()1,(),1,,(21212211--+=⋅∴-=-=y y x x FB FA y x FB y x FA841649121)(22212121--=+--+-=++-+=k k y y y y x x)1)(1(||||21++=⋅y y FB FA 又16416491)(222121+=+++=+++=k k y y y y4216484||||cos 2222++-=+--=⋅=∴k k k k FB FA θ…………10分 由于πθπ<≤43 2242122cos 122-≤++-<--≤<-∴k k 即θ…………11分 222242222≥∴≥++∴k k k解得4488-≤≥k k 或…………13分∴直线1l 斜率k 的取值范围是}8,8|{44-≥≥k k k 或9.如图所示,已知定点(1, 0)F ,动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且0PM PF ⋅=,||||PM PN =. (1)求动点N 的轨迹方程;(2)直线l 与动点N 的轨迹交于A 、B 两点,若4OA OB ⋅=-,且||AB ≤求直线l 的斜率k 的取值范围.解:(1)设(,)N x y ,由||||PM PN =得(,0)M x -,(0, )2y P ,(,)2y PM x =--,(1,)2y PF =-,又0PM PF ⋅=,∴204y x -+=,即动点N 的轨迹方程为24y x =. (2)10.已知点(0, 1)F ,点M 在x 轴上,点N 在y 轴上,P 为动点,满足0MN MF ⋅=,0MN MP +=.(1)求P 点轨迹E 的方程;(2)将(1)中轨迹E 按向量(0, 1)a =平移后得曲线E ',设Q 是E '上任一点,过Q 作圆22(1)1x y ++=的两条切线,分别交x 轴与A 、B 两点,求||AB 的取值范围.解:(1)设(, 0)M a 、(0, )N b 、(,)P x y ,则(,)MN a b =-、(, 1)MF a =-、(, )MP x a y =-.由题意得(, )(, 1)0,(, )(,)(0, 0).a b a a b x a y -⋅-=⎧⎨-+-=⎩ ∴ 20,, ,2a b xa b y ⎧+=⎪⎨==-⎪⎩ ∴ 214y x =, 故动点P 的轨迹方程为214y x =. (2)11.如图()A m和(,)B n 两点分别在射线OS 、OT 上移动,且12OA OB ⋅=-, O 为坐标原点,动点P 满足OP OA OB =+.(1)求m n ⋅的值; (2)求P 点的轨迹C 的方程,并说明它表示怎样的曲线?(3)若直线l 过点(2, 0)E 交(2)中曲线C 于M 、N 两点,且3ME EN =,求l 的方程. 解:(1)由已知得1()(,)22OA OB m n mn ⋅=⋅=-=-,∴ 14mn =. (2)设P 点坐标为(,)x y (0x >),由OP OA OB =+得(,)()(,)x y m n =+())m n m n =+-,∴,)x m n y m n =+⎧⎪⎨=-⎪⎩ 消去m ,n 可得2243y x mn -=,又因14mn =,∴ P 点的轨迹方程为221(0)3y x x -=>.它表示以坐标原点为中心,焦点在x 轴上,且实轴长为2,焦距为4的双曲线2213y x -=的右支.(3)设直线l 的方程为2x ty =+,将其代入C 的方程得223(2)3ty y +-= 即 22(31)1290t y ty -++=,易知2(31)0t -≠(否则,直线l的斜率为又22214436(31)36(1)0t t t ∆=--=+>,设1122(,),(,)M x y N x y ,则121222129,3131t y y y y t t -+==-- ∵ l 与C 的两个交点,M N 在y 轴的右侧212121212(2)(2)2()4x x ty ty t y y t y y =++=+++2222291234240313131t t t t t t t -+=⋅+⋅+=->---, ∴ 2310t -<,即2103t <<,又由120x x +>同理可得 2103t <<,由3ME EN =得 1122(2,)3(2,)x y x y --=-, ∴ 121223(2)3x x y y -=-⎧⎨-=⎩由122222123231t y y y y y t +=-+=-=--得22631t y t =-,由21222229(3)331y y y y y t =-=-=-得222331y t =--,消去2y 得 2222363(31)31t t t =---考虑几何求法!! 解之得:2115t = ,满足2103t <<.故所求直线l0y --=0y +-=.12.设A ,B分别是直线y x =和y x =上的两个动点,并且||20AB =点P 满足OP OA OB =+.记动点P 的轨迹为C . (I ) 求轨迹C 的方程;(II )若点D 的坐标为(0,16),M 、N 是曲线C 上的两个动点,且DM DN λ=,求实数λ的取值范围.解:(I )设(,)P x y ,因为A 、B分别为直线5y x =和5y x =-上的点,故可设11()A x x,22(,)B x x . ∵OP OA OB =+,∴1212,()5x x x y x x =+⎧⎪⎨=-⎪⎩.∴1212,2x x x x x y +=⎧⎪⎨-=⎪⎩.又20AB =, ∴2212124()()205x x x x -++=.∴22542045y x +=. 即曲线C 的方程为2212516x y +=. (II ) 设N (s ,t ),M (x ,y ),则由DN DM λ=,可得(x ,y-16)=λ (s ,t-16). 故x s λ=,16(16)y t λ=+-.∵ M 、N 在曲线C 上, ∴⎪⎪⎩⎪⎪⎨⎧=+-+=+ 1.16)1616t (25s 1,16t 25s 22222λλλ消去s 得116)1616t (16)t 16(222=+-+-λλλ.由题意知0≠λ,且1≠λ,解得 17152t λλ-=. 又 4t ≤, ∴421517≤-λλ. 解得 3553≤≤λ(1≠λ).故实数λ的取值范围是3553≤≤λ(1≠λ). 13.设双曲线22213y x a -=的两个焦点分别为1F 、2F ,离心率为2. (1)求此双曲线的渐近线1l 、2l 的方程;(3y x =±) (2)若A 、B 分别为1l 、2l 上的动点,且122||5||AB F F =,求线段AB 的中点M 的轨迹方程,并说明是什么曲线.(22317525x y +=) 提示:()221212||10()10AB x x y y =⇒-+-=,又1133y x =-,2233y x =, 则12213()3y y x x +=-,21123()3y y x x -=+. 又 122x x x =+,122y y y =+代入距离公式即可.(3)过点(1, 0)N 是否存在直线l ,使l 与双曲线交于P 、Q 两点,且0OP OQ ⋅=,若存在,求出直线l 的方程;若不存在,说明理由.(不存在) 14.已知点(1, 0)F ,直线:2l x =,设动点P 到直线l 的距离为d ,已知2||2PF d =,且2332d ≤≤. (1)求动点P 的轨迹方程; (2)若13PF OF ⋅=,求向量OP 与OF 的夹角;(3)如图所示,若点G 满足2GF FC =,点M 满足3MP PF =,且线段MG 的垂直平分线经过点P ,求△PGF 的面积.15.如图,直线:1l y kx =+与椭圆22:2C ax y +=(1a >)交于A 、B 两点,以OA 、OB 为邻边作平行四边形OAPB (O 为坐标原点). (1)若1k =,且四边形OAPB 为矩形,求a 的值;(3a =)(2)若2a =,当k 变化时(k R ∈),求点P 的轨迹方程.(22220x y y +-=(0y ≠))16.双曲线C :22221x y a b -=(0a >,0b >)的离心率为2,其中(0,)A b -,(, 0)B a ,且22224||||||||3OA OB OA OB +=⋅.(1)求双曲线C 的方程; (2)若双曲线C 上存在关于直线l :4y kx =+对称的点,求实数k 的取值范围. 解:(I )依题意有:lxyCGFOPM2222222c 2,a 4a b a b ,3a b c .⎧=⎪⎪⎪+=⎨⎪⎪+=⎪⎩解得:.2,3,1===c b a所求双曲线的方程为.1322=-y x ………………………………………6分 (Ⅱ)当k=0时,显然不存在.………………………………………7分当k≠0时,设双曲线上两点M 、N 关于直线l 对称.由l ⊥MN ,直线MN 的方程为1y x b k=-+.则M 、N 两点的坐标满足方程组由221y x b,k3x y 3.⎧=-+⎪⎨⎪-=⎩消去y 得 2222(3k 1)x 2kbx (b 3)k 0-+-+=.…………………………………9分显然23k 10-≠,∴2222(2kb)4(3k 1)(b 3)k 0∆⎡⎤=---+>⎣⎦.即222k b 3k 10+->. ①设线段MN 中点D (00x ,y )则02202kb x ,3k 13k b y .3k 1-⎧=⎪⎪-⎨⎪=⎪-⎩∵D (00x ,y )在直线l 上,∴22223k b k b43k 13k 1-=+--.即22k b=3k 1- ② 把②带入①中得 222k b +bk 0>, 解得b 0>或b 1<-.∴223k 10k ->或223k 1<-1k-.即k >或1k 2<,且k≠0.∴k 的取值范围是113(,)(,0)(0,)(,)3223-∞--+∞.…………………14分 17.已知向量OA =(2,0),OC =AB =(0,1),动点M 到定直线y =1的距离等于d ,并且满足OM ·AM =K(CM ·BM -d 2),其中O 为坐标原点,K 为参数. (Ⅰ)求动点M 的轨迹方程,并判断曲线类型;(Ⅱ)如果动点M 的轨迹是一条圆锥曲线,其离心率e 满足33≤e ≤22,求实数K 的取值范围.18.过抛物线24y x =的焦点作两条弦AB 、CD ,若0AB CD ⋅=,1()2OM OA OB =+,1()2ON OC OD =+.(1)求证:直线MN 过定点;(2)记(1)中的定点为Q ,求证AQB ∠为钝角; (3)分别以AB 、CD 为直径作圆,两圆公共弦的中点为H ,求H 的轨迹方程,并指出轨迹是什么曲线.19.(05年江西)如图,M 是抛物线上2y x =上的一点,动弦ME 、MF 分别交x 轴于A 、B 两点,且MA MB =.(1)若M 为定点,证明:直线EF 的斜率为定值; (2)若M 为动点,且90EMF ∠=,求△EMF 的重心G 的轨迹.思路分析:(1)由直线MF (或ME )方程与抛物线方程组成的方程组解出点F 和点E 的坐标,利用斜率公式来证明;(2)用M 点的坐标将E 、F 点的坐标表示出来,进而表示出G 点坐标,消去0y 即得到G 的轨迹方程(参数法).解:(1)法一:设200(,)M y y ,直线ME 的斜率为k (0k >),则直线MF 的斜率为k -,方程为200()y y k x y -=-.∴由2002()y y k x y y x⎧-=-⎪⎨=⎪⎩,消x 得200(1)0ky y y ky -+-=,解得01F ky y k-=,∴ 202(1)F ky x k -=, ∴0022000022211214(1)(1)2E F EFE F ky ky y y k k k k ky ky ky x x y k k k -+---====---+--(定值).所以直线EF 的斜率为定值.法二:设定点00(,)M x y ,11(,)E x y 、22(,)F x y ,由200211,y x y x ⎧=⎪⎨=⎪⎩ 得 010101()()y y y y x x -+=-,即011ME k y y =+;同理 021MF k y y =+.∵ MA MB =,∴ ME MF k k =-,即010211y y y y =-++,∴ 1202y y y +=-.所以,1212221212120112EF y y y y k x x y y y y y --====---+(定值). 第一问的变式:过点M 作倾斜角互补的直线ME 、MF ,则直线EF 的斜率为定值;根据不同的倾斜角,可得出一组平行弦.(2)90,45,1,EMF MAB k ∠=∠==当时所以直线ME 的方程为200()y y k x y -=-由2002y y x y y x ⎧-=-⎪⎨=⎪⎩得200((1),1)E y y --同理可得200((1),(1)).F y y +-+设重心G (x , y ),则有222200000000(1)(1)23333(1)(1)333M E F M E F y y y y x x x x y y y y x x x y ⎧+-+++++===⎪⎪⎨+--+++⎪===-⎪⎩消去参数0y 得2122()9273y x x =->. 20.如图,ABCD 是边长为2的正方形纸片,沿某动直线l 为折痕将正方形在其下方的部分向上翻折,使得每次翻折后点B 都落在边AD 上,记为B ',折痕l 与AB 交于点E ,点M 满足关系式EM EB EB '=+.(1)建立适当的直角坐标系,求点M 的轨迹方程;(2)若曲线C 是由点M 的轨迹及其关于边AB 对称的曲线组成的,F 是AB 边上的一点,4BA BF =,过点F 的直线交曲线C 于P 、Q 两点,且PF FQ λ=,求实数λ的取值范围.。
专题01 解析几何中的轨迹方程问题(原卷版)

专题01 解析几何中的轨迹方程问题常见考点考点一 直接法典例1.已知点()2,0A -,()2,0B ,动点(),M x y 满足直线AM 与BM 的斜率之积为12,记M 的轨迹为曲线C . (1)求C 的方程;(2)若直线l :3y x =-和曲线C 相交于E ,F 两点,求EF .变式1-1.在直角坐标系xOy 中,已知动点P 与平面上两定点(1,0)M -,(1,0)N 连线的斜率的积为定值4-,设点P 的轨迹为C .(1)求出曲线C 的方程;(2)设直线1y kx =+与C 交于A ,B 两点,若OA OB ⊥,求k 的值.变式1-2.若点(),M x y 到直线40x +=的距离比它到点()1,0N 的距离大3. (1)求点M 的轨迹方程;(2)过点N 的直线1l 与点M 的轨迹曲线交于A ,B 两点,过点N 的直线2l 与点M 的轨迹曲线交于C ,D 两点,若12l l ⊥,求11AB CD +的值.变式1-3.在平面直角坐标系中,动点P 到点()2,0F 的距离和它到直线9:2l x =的距离之比为23.动点P 的轨迹为曲线C .(1)求曲线C 的方程,并说明曲线C 是什么图形;(2)已知曲线C 与x 轴的交点分别为,A B ,点M 是曲线C 上异于,A B 的一点,直线MA 的斜率为1k ,直线MB 的斜率为2k ,求证:12k k 为定值.考点二 相关点法典例2.已知圆()222:0O x y r r +=>与直线y x =+(1)求圆O 的标准方程;(2)若线段AB 的端点A 在圆O 上运动,端点B 的坐标是()6,0,求线段AB 的中点M 的轨迹方程.变式2-1.已知圆M 经过原点和点()3,1-,且它的圆心M 在直线250x y +-=上. (1)求圆M 的方程;(2)若点D 为圆M 上的动点,定点()2,0C ,求线段CD 的中点P 的轨迹方程.变式2-2.已知抛物线24C y x =: 的焦点为F . 点A P 、满足2AP FA =-.当点A 在抛物线C 上运动时,求动点P 的轨迹方程.变式2-3.已知圆()2221:0C x y r r +=>与直线01:2l y x =相切,点A 为圆1C 上一动点,AN x ⊥轴于点N ,且动点M 满足()2222OM AM ON +=-,设动点M 的轨迹为曲线C ,求动点M 的轨迹曲线C 的方程.考点三 定义法典例3.设圆222150x y x ++-=的圆心为1C ﹐直线l 过点()21,0C 且与x 轴不重合,直线l 交圆1C 于A ,B 两点.过2C 作1AC 的平行线交1BC 于点P . (1)求点P 的轨迹方程;(2)设点P 的轨迹为曲线E ,直线l 交E 于M ,N 两点,C 在线段MN 上运动,原点O 关于C 的对称点为Q ,求四边形OMQN 面积的取值范围;变式3-1.已知在平面直角坐标系中,圆A :22570x y ++-=的圆心为A ,过点B ,0)任作直线l 交圆A 于点C 、D ,过点B 作与AD 平行的直线交AC 于点E . (1)求动点E 的轨迹方程;(2)设动点E 的轨迹与y 轴正半轴交于点P ,过点P 且斜率为k 1,k 2的两直线交动点E 的轨迹于M 、N 两点(异于点P ),若126k k +=,证明:直线MN 过定点.变式3-2.已知P 为圆22:2150M x y x +--=上一动点,点()1,0N -,线段PN 的垂直平分线交线段PM 于点Q .(1)求点Q 的轨迹方程;(2)设点Q 的轨迹为曲线C ,过点N 作曲线C 的两条互相垂直的弦,两条弦的中点分別为E ,F ,过点N 作直线EF 的垂线,垂足为点H ,是否存在定点G ,使得GH 为定值?若存在,求出点G 的坐标;若不存在,说明理由.变式3-3.在平面直角坐标系xOy 中,动圆P 与圆221:28C x y x ++=内切,与圆222:20C x y x +-=外切.(1)求动圆圆心P 的轨迹方程E ;(2)若直线(1)x t t =≠与轨迹E 交于A ,B 两点,直线2BC 交轨迹E 于另一个点M ,连接AM 交x 轴于点N ,试探究;是否存在t ,使得2MC N 的面积等于94?若存在,求出全部的t 值;若不存在,请说明理由.考点四 消参法与交轨法典例4.如图所示,过双曲线C :2213y x -=的左焦点F 作直线l 与双曲线交于P 、Q ,以OP 、OQ为邻边作平行四边形OPMQ ,求点M 的轨迹方程.变式4-1.已知椭圆22184x y +=,点A ,B 分别是它的左、右顶点,一条垂直于x 轴的动直线l 与椭圆相交于P ,Q 两点,当直线l 与椭圆相切于点A 或点B 时,看作P ,Q 两点重合于点A 或点B ,求直线AP 与直线BQ 的交点M 的轨迹方程.变式4-2.已知抛物线C 的顶点为原点,其焦点()0,F c (0)c >到直线:20l x y --= (1)求抛物线C 的方程;(2)设点0(P x ,0)y 为直线l 上一动点,过点P 作抛物线C 的两条切线PA ,PB ,其中A ,B 为切点,求直线AB 的方程,并证明直线AB 过定点Q ;(3)过(2)中的点Q 的直线m 交抛物线C 于A ,B 两点,过点A ,B 分别作抛物线C 的切线1l ,2l ,求1l ,2l 交点M 满足的轨迹方程.变式4-3.已知A ( -3,0),B (3,0),四边形AMBN 的对角线交于点D (1,0),kMA 与kMB 的等比中项为13,直线AM ,NB 相交于点P . (1)求点M 的轨迹C 的方程;(2)若点N 也在C 上,点P 是否在定直线上?如果是,求出该直线,如果不是,请说明理由.巩固练习练习一 直接法1.在平面直角坐标系xOy 中,A (2,0),B (-2,0). (1)若|P A |=|PB |,求点P 的轨迹方程;(2)若2|P A |=|PB |,且对于任意的点P ,Q ,均有OQ =λOP ,记点Q 的轨迹方程为C ,若C 与x 轴有一个交点为A ,求λ的值.2.已知动点P 到点(0,1)的距离与到直线y =2的距离的比值为2,动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)直线y =kx +1与曲线C 交于A ,B 两点,点M (0,2),证明:直线MA ,MB 的斜率之和为0.3.已知点A ,B 的坐标分别为()2,0-,()2,0,直线AM ,BM 相交于点M ,且它们的斜率之积是34-,求点M 的轨迹方程.4.设动点M 到定点(3,0)F 的距离与它到直线4:3l x =的距离之比为32,求点M 的轨迹方程.练习二 相关点法5.已知圆C 经过点A (3,1)、B (-1,3),且它的圆心在直线320x y --=上. (1)求圆C 的标准方程;(2)若点D 为圆C 上任意一点,且点E (3,0),求线段ED 中点M 的轨迹方程.6.已知Rt ABC 的斜边为AB ,且(1,0),(3,0)A B -.求: (1)直角顶点C 的轨迹方程; (2)直角边BC 的中点M 的轨迹方程.7.在圆x 2+y 2=4上任取一点P ,设点P 在x 轴上的正投影为点D .当点P 在圆上运动时,动点M 满足2PD MD =,动点M 形成的轨迹为曲线C .求曲线C 的方程.8.圆O :x 2+y 2=9上的动点P 在x 轴、y 轴上的射影分别是P 1,P 2,点M 满足122133OM OP OP =+. (1)求点M 的轨迹C 的方程;(2)点A (0,1),B (0,﹣3),过点B 的直线与轨迹C 交于点S ,N ,且直线AS 、AN 的斜率k AS ,k AN 存在,求证:k AS •k AN 为常数.练习三 定义法9.在平面直角坐标系xOy 中,点P 是圆1F :22(16x y +=上的动点,定点2F ,线段2PF 的垂直平分线交1PF 于Q ,记Q 点的轨迹为E . (Ⅰ)求轨迹E 的方程;(Ⅰ)若动直线l :(0)y kx m k =+≠与轨迹E 交于不同的两点M 、N ,点A 在轨迹E 上,且四边形OMAN 为平行四边形.证明:四边形OMAN 的面积为定值.10.已知圆A :(x +1)2+y 2=16,圆C 过点B (1,0)且与圆A 相切,设圆心C 的轨迹为曲线E . (Ⅰ)求曲线E 的方程;(Ⅰ)过点B 作两条互相垂直的直线l 1,l 2,直线l 1与E 交于M ,N 两点,直线l 2与圆A 交于P ,Q 两点,求MN PQ的取值范围.11.设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .证明EA EB +为定值,并写出点E 的轨迹方程.12.在直角坐标系xOy 中,动圆P 与圆Q :22(2)1x y -+=外切,且圆P 与直线1x =-相切,记动圆圆心P 的轨迹为曲线C .求曲线C 的轨迹方程.练习四 消参法与交轨法13.设椭圆方程为2214y x +=,过点()0,1M 的直线l 交椭圆于点A ,B ,O 是坐标原点,点P 满足()12OP OA OB =+,点N 的坐标为11,22⎛⎫⎪⎝⎭,当l 绕点M 旋转时,求:(1)动点P 的轨迹方程; (2)NP 的最小值与最大值.14.已知椭圆C :2222x y a b +=1(a >b >0)经过点1),且离心率为2.(1)求椭圆C 的方程;(2)设M ,N 是椭圆上的点,直线OM 与ON (O 为坐标原点)的斜率之积为12-.若动点P 满足2OP OM ON =+,求点P 的轨迹方程.15.已知抛物线C :212y x =,过点()1,1Q 的动直线与抛物线C 交于不同的两点A 、B ,分别以A 、B 为切点作抛物线的切线1l 、2l ,直线1l 、2l 交于点P . (1)求动点P 的轨迹方程;(2)求PAB △面积的最小值,并求出此时直线AB 的方程.16.设M 是椭圆C :221124x y +=上的一点,P 、Q 、T 分别为M 关于y 轴、原点、x 轴的对称点,N为椭圆C 上异于M 的另一点,且MN ⅠMQ ,QN 与PT 的交点为E ,当M 沿椭圆C 运动时,求动点E 的轨迹方程.。
如何求动点的轨迹方程

求动点的轨迹方程问题是一类常考题目,主要考查椭圆、双曲线、抛物线的定义、几何性质以及标准方程.此类问题对同学们的运算和推理分析能力有较高的要求.下面介绍两种求动点的轨迹方程的方法.一、定义法定义法是指利用圆锥曲线的第一、第二定义来求动点的轨迹方程.在利用圆锥曲线的第一定义解题时,首先要在平面上找出两个定点,然后根据题意判断在平面上是否有一个动点到两定点的距离的和或差为常数,据此求得圆锥曲线中的参数a 、b 、c ,进而得到动点的轨迹方程.利用圆锥曲线的第二定义解题,首先要找出一条定直线和一个定点,判断该定直线到定点的距离与到曲线上动点的距离之比是否为常数,据此求得动点的轨迹方程.例1.如图1,已知点A ()1,0是圆C:()x +12+y 2=8上的一点,AM 的垂直平分线l 交CM 于点N ,当点M在圆C 上运动时,求N 点的轨迹方程.解:连接AN ,由于直线l 为AM 的垂直平分线,所以△AMN 为等腰三角形,所以||AN =||MN ,所以||CN +||AN =||CN +||MN =||CM =22>||AC =2.则N 点的轨迹是以A,C 两点为焦点的椭圆,由其焦点在x 轴上,故可设椭圆的标准方程为:x 2a 2+y 2b2=1()a >b >0,所以2a =22,2c =2,即a =2,c =1,由a 2=c 2+b 2得b 2=a 2-c 2=1,因此N 点的轨迹方程为x 22+y 2=1.观察图形可以发现,动点N 到两定点A 、C 的距离之和为定值,由此可联想到椭圆的第一定义,于是可断定N 的轨迹为椭圆,再根据椭圆的第一定义求得椭圆的标准方程中a 、b 、c 的值,即可求得N 点的轨迹方程.例2.如图2,若动圆过定点A ()-3,0,且和定圆C :()x -32+y 2=4外切,则动圆圆心P 的轨迹方程是_____.解:由C :()x -32+y 2=4可得定圆的圆心为C ()3,0,设动圆P 的半径为r ,则||PA =r ,由两圆外切可得||PC =2+r ,所以||PC -||PA =2,所以可判定P 的轨迹为双曲线的左支,则a =1,c =3,解得b 2=c 2-a 2=8,所以轨迹方程为x 2-y 28=1()x ≤-1.经观察图形可发现,定圆的圆心C ()3,0恰好与A ()-3,0关于原点对称,可将其视为定点,将P 视为曲线上的动点,由两圆外切可知||PC -||PA =2,由此可根据圆锥曲线的第一定义断定P 的轨迹为双曲线的左支,求得a 、b 的值,即可求得动点的轨迹方程.二、相关点法有些问题中的动点随着另一个动点的变化而变化,此时,可采用相关点法来求动点的轨迹方程.利用相关点法求动点的轨迹方程,需首先设出动点的坐标,再根据动点与另一个动点之间的关系建立关系式,用动点的坐标来表示出另一个动点,将其代入已知曲线的方程中,通过化简就能求得动点的轨迹方程.例3.已知圆x 2+y 2=1,从这个圆上的任意一点P 向y 轴作垂线段,求线段中点M 的轨迹方程.分析:分析题意可知,M 点随着P 点的变化而变化,需采用相关点法解题.设出M 点的坐标,求得P 的坐标,并将其代入圆的方程中,即可解题.解:设P 点的坐标为()x 0,y 0,M 点的坐标为()x,y ,由题意可得:ìíîïïx =x 02,y =y 0,即{x 0=2x,y 0=y,因为P 点在圆上,所以{x 0=2x,y 0=y,满足x 2+y 2=1,可得4x 2+y 2=1,则M 点的轨迹为椭圆,其标准方程为:x 214+y 2=1.总之,无论运用定义法还是相关点法求动点的轨迹方程,都要把握四点:(1)明确动点与定点、其他动点之间的关系;(2)根据题意确定动点的轨迹;(3)建立关于动点坐标的关系式;(4)根据动点的轨迹确定x 的取值范围.这样,才能快速、正确地求得动点的轨迹方程.(作者单位:江西省新余市第一中学)图1考点透视37。
专题四:求动点轨迹方程5种方法(解析版)

专题四:求动点轨迹方程5种方法(解析版)一、直接法步骤:1、建立恰当的坐标系,设动点坐标()y x ,;2、由已知条件列出几何等量关系式,建立关于y x ,的方程()0=y x f ,;3、化简整理;4、检验,检验点轨迹的纯粹性与完备性。
[例1] 已知圆O 的方程是0222=-+y x ,圆O '的方程是010822=+-+x y x ,如图所示。
由动点P 向圆O 和圆O '所引的切线长相等,求动点P 的轨迹方程。
【解析】设()y x P ,,由圆O 的方程为:222=+y x ,圆O '的方程为()6422=+-y x 。
由已知得BP AP =,所以22BP AP =,所以2222B O P O OA OP '-'=-,则6222-'=-P O OP 。
所以()6422222-+-=-+y x y x ,化简得23=x 。
所以动点P 的轨迹方程为23=x 。
[练习1] 已知平面上两定点()20-,M ,()20,N ,点P 满足MN PN MN MP ⋅=⋅,求点P 的轨迹方程。
【解析】设()y x P ,,则()2+=y x MP ,,()40,=MN ,()y x PN --=2,,因为MN PN MN MP ⋅=⋅,所以()()222424y x y -+=+,所以()2222y x y -+=+。
两端同时平方得:2224444y y x y y +-+=++,整理得:y x 82=。
所以点P 的轨迹方程为y x 82=二、定义法步骤:1、分析几何关系;2、由曲线的定义直接得出轨迹方程。
[例2] 已知圆A :()36222=++y x ,()02,B ,点P 是圆A 上的动点,线段PB 的中垂线交PA 于点Q ,求动点Q 的轨迹方程。
【解析】 由题可得,()02,-A ,4=AB 。
因为Q 点在线段PB 的中垂线上,所以QB PQ =。
求点的轨迹方程的六种常见方法讲解

变式:外切改为相切呢?
相关点法
• 如果动点P(x,y)依赖于已知曲线上另一动点Q (u,v)(这种点叫相关动点)而运动,而Q点的坐标u、 v可以用动点P的坐标表示,则可利用点Q的轨迹方程, 间接地求得P点的轨迹方程.这种求轨迹方程的方法 叫做变量代换法或相关点法.此类问题的难度属中档 水平,可能在选择题或填空题出现,也可能在解答 题中出现,属于小题中较难的题目但属于大题中较 易的题目。
整理得
x2 1
(y a)2 a2
1.
2
当a2 1 时,点P的轨迹为圆弧,所以不存在符合题意的两点 2
当a2 1 时,点P的轨迹为椭圆的一部分,点P到该椭圆焦点的距离的和为定长. 2
当a2 1 时,点P到椭圆两个焦点( 1 a2 , a)和( 1 a2 , a)的距离之和为定值 2.
• 以下举一个例子说明:
6.几何法
【例8】已知圆的方程为x2 y2 6x 6y 14 0,求过点A(3, 5)的直线 交圆的弦的中点的轨迹.
解:圆的方程为(x 3)2 ( y 3)2 4,则圆心C的坐标为(3,3).
设过点A的直线交圆于P、Q两点,M (x, y)是PQ的中点,连CM,则CM PQ,故有:
五类参数:点坐标,斜率,比例,角度,长度等
且 BE CF DG .P为GE与OF的交点(如图). BC CD DA
问:是否存在两个定点,使P到这两点的距离的和为定值?若存在, 求出这两点的坐标及此定值;若不存在,请说明理由.
y
DF
C
E P
G
A
O
Bx
解:根据题设条件,首先求出点P坐标满足的方程,据此再判断是否存在两点,
专题:解析几何中的动点轨迹问题

专题:解析几何中的动点轨迹问题学大苏分教研中心 周坤轨迹方程的探求是解析几何中的基本问题之一,也是近几年各省高考中的常见题型之一。
解答这类问题,需要善于揭示问题的内部规律及知识之间的相互联系。
本专题分成四个部分,首先从题目类型出发,总结常见的几类动点轨迹问题,并给出典型例题;其次从方法入手,总结若干技法(包含高考和竞赛要求,够你用的了...);然后,精选若干练习题,并给出详细解析与答案,务必完全弄懂;最后,回顾高考,列出近几年高考中的动点轨迹原题。
OK ,不废话了,开始进入正题吧...Part 1 几类动点轨迹问题一、动线段定比分点的轨迹例1 已知线段AB 的长为5,并且它的两个端点A 、B 分别在x 轴和y 轴上滑动,点P 在段AB 上,(0)AP PB λλ=>,求点P 的轨迹。
()()()00P x y A a B b 解:设,,,,,,()()011101a a xx y b b y λλλλλλλ+⋅⎧⎧=+=⎪⎪⎪+⎨⎨++⋅=⎪⎪=⎩⎪+⎩, 2225a b +=代入()()222221125y x λλλ+++=()()222221252511x y λλλ+=++222514P x y λ=+=当时,点的轨迹是圆;① 1P y λ>当时,点的轨迹是焦点在轴上的椭圆;②01P x λ<<当时,点的轨迹是焦点在轴上的椭圆③;例2 已知定点A(3,1),动点B 在圆O 224x y +=上,点P 在线段AB 上,且BP:PA=1:2,求点P 的轨迹的方程.()()113P x y B x y AB BP =-解:设,,,,有()()()()1133131313x x y y ⎧+-=⎪+-⎪⎨+-⎪=⎪+-⎩11332312x x y y -⎧=⎪⎪⎨-⎪=⎪⎩化简即:22114x y +=代入223331422x y --⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭得 所以点P 的轨迹为()22116139x y ⎛⎫-+-= ⎪⎝⎭二、两条动直线的交点问题例3 已知两点P (-1,3),Q (1,3)以及一条直线:l y x =,设长为2的线段AB 在l 上移动(点A 在B 的左下方),求直线PA 、QB 交点M 的轨迹的方程 ()()()11M x y A t t B t t ++解:设,,,,,, ()()1313PM x y PA t t =+-=+-,,,, ()()131113QM x y QB t t =--=+-+-,,,, ////PM PAQM QB ∴,,()()()()()()()1313123x t t y x t t y ⎧+-=+-⎪∴⎨--=-⎪⎩34222x y t x y x t x y +⎧=⎪-+⎪⎨-⎪=⎪-+⎩32242x y x x y x y +-=-+-+()()()()32422x y x y x y x +-+=-+-228y x -=例4 已知12A A 、是双曲线22221(0,0)x y a b a b-=>>的两个顶点,线段MN 为垂直于实轴的弦,求直线1MA 与2NA 的交点P 的轨迹()()()()()11111200P x y M x y N x y A a A a --解:设,,,,,,,,,,1122A P A MA P A N k k k k =⎧⎪⎨=⎪⎩ 1111y yx a x ay y x a x a⎧=⎪++⎪⎨-⎪=⎪-+⎩ 1111y y y yx a x a x a x a-⋅=⋅+-+- 22122221y y x a x a =--- 2211221x y a b -= 22221112221y x x a b a a-∴=-= 2212221y b x a a=- 22222y b x a a ∴=-- 222222a y b x a b =-+()2222010x y a b x x a b >>+=≠当时,是焦点在轴上的椭圆,;2220a b x y a =>+=当时,是圆;()2222010x y b a y x a b>>+=≠当时,是焦点在轴上的椭圆,;三、动圆圆心轨迹问题例5 已知动圆M 与定圆2216x y +=相切,并且与x 轴也相切,求动圆圆心M 的轨迹()()0M x y y ≠解:设,,224M x y y +=-当圆与定圆内切时,,224M x y y +=+当圆与定圆内切时, 224x y y ∴+=±222168x y y y +=±+2816y x ±=-M 的轨迹是两条抛物线(挖去它们的交点) ()()2211202088y x y y x y =-≠=-+≠或例6 已知圆221:(3)4C x y ++=,222:(3)100C x y -+=,圆M 与圆1C 和圆2C 都相切,求动圆圆心M 的轨迹()()11113,0,3,0,6,C C C C -=解:,M r 设动圆的半径为12(1),,M C C 若圆与外切与内切则122,10MC r MC r ⎧=+⎪⎨=-⎪⎩121112,MC MC C C +=>12M C C 的轨迹是以、为焦点的椭圆,2126263a a c c ====,,,,22227b a c =-=,2213627x y +=椭圆的方程为12,M C C (2)若圆与、都内切则12210MC r MC r⎧=-⎪⎨=-⎪⎩ 12118MC MC C C +=>12M C C 的轨迹是以、为焦点的椭圆2222842637a a c c b a c =====-=,,,,, 221167x y +=椭圆的方程为四、动圆锥曲线中相关点的轨迹例7 已知双曲线过(3,0)A -和(3,0)B ,它的一个焦点是1(0,4)F -,求它的另一个焦点2F 的轨迹()2F x y 解:设,,2121AF AF BF BF -=-由双曲线定义, ()()()()2222113004530045AF BF =--+-==-+-=,,2255AF BF -=-若,222255AF BF AF BF ∴-=-=,,204F x y =≠±的轨迹是直线()2255AF BF -=-+若,22106AF BF AB +=>=,2F A B 的轨迹是以、为焦点的椭圆,210,5,26,3,4,a a c c b ===== 22142516x y y +=≠±椭圆方程为()22204142516x y F x y y =≠±+=≠±的轨迹是直线()或椭圆()例8 已知圆的方程为224x y +=,动抛物线过点(1,0)A -和(1,0)B ,且以圆的切线为准线,求抛物线的焦点F 的轨迹方程()F x y l M 解:设焦点,,准线与圆相切于,1111AA l A BB l B ⊥⊥作于,于,1124AF BF AA BB OM +=+==,F A B 的轨迹是以、为焦点的椭圆,2422213a c AB a c b ======,,,,,()221043x y F y +=≠轨迹的方程是Part 2 求动点轨迹的十类方法一、直接法根据已知条件及一些基本公式如两点间距离公式、点到直线的距离公式、直线的斜率公式、切线长公式等,直接列出动点满足的等量关系式,从而求得轨迹方程。
第16讲 求动点轨迹与探索型问题(解析版)-高考数学复习《导数与解析几何》必掌握问题

第16讲 求动点轨迹与探索型问题求动点轨迹典型例题动弦中点的轨迹方程【例1】已知椭圆2212x y +=,过点()2,0P 引椭圆的割线,求割线被椭圆截得的弦的中点的轨迹方程.【分析】动弦的中点问题,可以通过设直线法和中点坐标公式,得到中点坐标关于斜率k 的参数方程,消去参数,得到关于弦的中点的普通方程;也可以通过设出弦的端点坐标,代入椭圆方程,并利用中点坐标公式、斜率公式等,列出动点满足的所有关系式,然后消元可得.【解析】解法一(设直线法)设过点()2,0P 的直线方程为()2y k x =-,联立方程()222,1,2y k x x y ⎧=-⎪⎨+=⎪⎩消去y ,整理得222214410.2k x k x k ⎛⎫+-+-= ⎪⎝⎭设弦的两个端点为()()1122,,,A x y B x y ,中点为(),M x y ,得21224212x x k x k +==+,则242x k x=-,代人()2y k x =-,得()22221(2)(2)2,422x y k x x x x x =-=-=--- 即22(1)21x y -+=.又因为过点()2,0P 的直线与椭圆相交,所以()()22221Δ44410,2kk k ⎛⎫=--+-> ⎪⎝⎭解得2102k <,即1422x x <-,亦即01x <. 当k 不存在时,不满足题设要求,舍去.综上可知,割线被椭圆截得的弦的中点的轨迹方程是22(1)21(01)x y x -+=<.解法二(设点法——点差法一)设弦的两个端点为()()1122,,,A x y B x y ,中点为(),M x y ,则221122221212x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 两式相减,得2222121202x x y y -+-=.整理得()()()()1212121220.x x x x y y y y +-++-=由题意知12x x ≠,所以()12121212.22AB y y x x xk x x y y y-+===--+- 因为2AB yk x =-,所以22y x x y =--,整理得22(1)2 1.x y -+=又因为过点()2,0P 的直线与椭圆相交,与解法一同理可得01x <,所以割线被椭圆截得的弦的中点的轨迹方程是22(1)21(01)x y x -+=<.解法三(设点法——点差法二)设弦AB 的中点为(),M x y ,弦的两个端点为()()1111,,2,2A x y B x x y y --,则()()22112211222222x y x x y y ⎧+=⎪⎨-+-=⎪⎩ 两式相减,得2211220xx yy x y +--=,即()()1120.x x x y y y -+-=因为1x x ≠,所以上式两边同时除以1x x -,得1120.y yx y x x-+⋅=- 又因为AM MP k k =,即112y y yx x x -=--.所以202y x y x +⋅=-,化简得22220x x y -+=,整理得22(1)2 1.x y -+=又因为过点()2,0P 的直线与椭圆相交,与解法一同理可得01x <,所以割线被椭圆截得的弦的中点的轨迹方程是22(1)21(01)x y x -+=<.【点睛】求动点轨迹方程,要特别注意曲线的方程的定义的满足,即:(1)曲线上的点的坐标都是方程的解;(2)以这个方程的解为坐标的点都是曲线上的点.所以,当定点在圆雉曲线外的时候一定要验证直线与圆锥曲线相交的条件Δ0>,并求出x (或)y 的取值范围;验证斜率不存在的情况是否符合题意.在处理有关弦的中点问题时,常常可以借助于“设点代入作差”的方式,在计算上有一定的技巧,可以适当的简化计算. 定义法与参数法【例2】设点A 和B 为抛物线24(0)y px p =>上除原点以外的两个动点,已知,OA OB OM AB ⊥⊥,求点M 的轨迹方程,并说明它表示什么曲线. 【分析】在本题中,动点M 可以看成是动直线OM 与动直线AB 的交点,所以可以用“交轨法”,即引入参数后,表示出交点,但要注意合理消参,计算上有一定的难度,这种解法主要考查“参数法”求曲线的轨迹方程;如果考虑到OM AB ⊥,可联想到动点M 位于以OA 为直径的圆上,又在以OB 为直径的圆上,可写出点M 的轨迹方程;或者由OA OB ⊥,可证明动直线AB 经过x 轴上的定点()4,0N p ,再由2OMN π∠=,可联想到动点M 位于以ON 为直径的圆上,则可写出点M 的轨迹方程.【解析】 解法一 如图10.1所示,设()()1122,,,,(A x y B x y M x ,())0y x ≠.则直线AB 的方程为x my a =+.由OM AB ⊥,得ym x=-.由24y px =及x my a =+,消去x ,得2440.y pmy pa --=所以()2122121224,.(4)y y y y pa x x a p =-==又由OA OB ⊥,得1212x x y y =-.所以244a pa a p =⇒=.故4x my p =+.用ym x=-代人,得()22400.x y px x +-=≠故动点M 的轨迹方程为()22400x y px x +-=≠.它表示以()2,0p 为圆心,2p 为半径的圆,但要去掉坐标原点.解法二 设()(),0,M x y x OA ≠的方程为y kx =,代人24y px =,得244,p p A kk ⎛⎫⎪⎝⎭.则直线OB 的方程为1y x k =-,代人24y px =,得()24,4B pk pk -. 由OM AB ⊥,得M 既在以OA 为直径的圆222440? p px y x y k k+--=①上,又在以OB 为直径的圆222440? x y pk x pky +-+= 2?\*?GB3?=②上(零点除外).由①22?\*?GB3?k ⨯+=②得()22400.x y px x +-=≠故动点M 的轨迹方程为()22400x y px x +-=≠.它表示以()2,0p 为圆心,2p 为半径的圆,但要去掉坐标原点.解法三 设OA 的方程为y kx =,代人24y px =,得244,p p A kk ⎛⎫⎪⎝⎭.则直线OB 的方程为1y x k=-,代人24y px =,得()24,4B pk pk -.因此直线AB 的方程为()241k y x p k =--,过定点()4,0N p . 由OM AB ⊥,得M 在以ON 为直径的圆上(原点除外),故动点M 的轨迹方程为()22400x y px x +-=≠.它表示以()2,0p 为圆心,2p 为半径的圆,但要去掉坐标原点.【点睛】当设()()1122,,,A x y B x y 时,注意对“12x x =”的讨论在交轨法中,注意寻找出动点满足的所有几何(等量)关系,即将动点的坐标,x y 用其他相关的量表示出来,然后再消掉这些量,从而就建立了关于,x y 的关系.在求解过程中,既要注意消参的等价性,也要注意多联系圆雉曲线的定义,如果动点满足了某种曲线的定义,则可以用待定系数法较快地写出曲线的方程.强化训练1. 斜率为2的直线与双曲线2212x y -=相交于12,P P 两点,求动弦12P P 的中点的轨迹方程.【解析】解法一 (设直线法)设斜率为2的直线方程为2y x b =+,联立方程222,12,y x b x y =+⎧⎨-=⎩消去y ,并整理得2234120.x bx b +++= 设交点为()()111222,,,P x y P x y ,中点为(),M x y ,则12223x x x b +==-,所以32b x =-,代人2y x b =+,可得12y x =.又因为直线与双曲线2212x y -=相交于两点,所以()22Δ(4)43120,b b =-⨯+>解得6b <-或6b >.又因为23x b =-,所以4x <-或4x >.故动弦12P P 中点轨迹方程为1(42y x x =<-或4)x >.解法二(设点法——点差法)设弦的两个端点的坐标分别为()()1122,,,A x y B x y ,中点M 坐标为(),x y ,则2211222212,12.x y x y ⎧-=⎨-=⎩ 两式相减得()222212120,x x y y ---=.整理得()()()()121212120,x x x x y y y y +--+-=由题意知12x x ≠. ,所以12121212.AB y y x x xk x x y y y-+===-+ 因为2AB k =,所以2xy =.则上式整理得12y x =.又因为斜率为2的直线与双曲线相交,与解法一同理可得4x <-或4x >.故动弦12P P 中点的轨迹方程是12y x =(4x <-或4x >). 2. 由点()2,0-向抛物线24y x =引弦,求弦的中点的轨迹方程.【解析】解法一(设点法点差法)设端点为()()1122,,,A x y B x y ,则221124,y x y ==24x .两式相减得()2221214.y y x x -=-将(1)式两边同时除以21x x -,得()2121214.y y y y x x -+⋅=- 设弦的中点坐标为(),x y ,则12122,2x x x y y y +=+= 因为点(),x y 和点()2,0-在直线AB 上,所以2121.2y y yx x x -=+- 将(3)、(4)两式代人(2)式,得242yy x ⋅=+,整理得()222.y x =+ 故中点的轨迹方程是()222y x =+在抛物线24y x =内部的部分. 解法二(设直线法)设弦AB 所在直线的方程为()2y k x =+,则由方程组()224y k x y x ⎧=+⎨=⎩消去x ,并整理得2480.ky y k -+=设()()1122,,,A x y B x y ,中点的坐标为(),x y ,且124y y k +=,则122.2y y y k+== 代人(1)式得()222y x =+.故所求弦中点的轨迹方程是()222y x =+在抛物线24y x =内部的部分.3. 自()4,0A 引圆224x y +=的割线ABC ,求弦BC 中点P 的轨迹方程.2.已知MN 是椭圆22221x y a b+=中垂直于长轴的动弦,,A B 是椭圆长轴的两个端点,求直线MA 和NB 的交点P 的轨迹方程.【解析】解法一(直接法)设动点(),P x y ,连接OP ,则OP BC ⊥.当0x ≠时,1OP AP k k ⋅=-,即14y y x x ⋅=--,亦即2240.x y x +-= 当0x =时,点P 的坐标()0,0是方程(1)的解.综上所述,点P 的轨迹方程为2240x y x +-=(在已知圆内的部分).解法二(定义法)由OP BC ⊥,可知OP AP ⊥.因此点P 位于以OA 为直径的圆上.因为()4,0A ,所以线段OA 的中点为()2,0.故由圆的定义知,点P 的轨迹方程是2(2)x -+24y =(在已知圆内的部分).4.设椭圆方程为2214y x +=,过点()0,1M 的直线l 交椭圆于点,,A B O 是坐标原点,点P 满足()12OP OA OB =+,点N 的坐标为11,22⎛⎫⎪⎝⎭,当l 绕点M 旋转时,求:(1)动点P 的轨迹方程;(2)NP 的最小值与最大值.【解析】解法一(参数法:利用点的坐标作参数)令()11,M x y ,则()11,N x y -,而由题意知()(),0,,0A a B a -.设AM 与NB 的交点为(),P x y 因为,,A M P 三点共线,所以yx a =+11y x a+. 因为,,N B P 三点共线,所以11y yx a x a =---.两式相乘,得22122221y y x a x a =--- 而2211221x y a b +=,即()2221212b a x y a -=,代人(1)式,得22222y b x a a =-即交点P 的轨迹方程为22221x y a b-=.解法二(参数法:利用角作参数)设()cos ,sin M a b θθ,则()cos ,sin N a b θθ-.因此sin cos y b x a a a θθ=++,sin cos y b x a a aθθ=--- 两式相乘消去θ,即可得所求的点P 的轨迹方程为22221x y a b -=.探索型问题典型例题条件探索型问题【例1】已知点,A B 关于坐标原点O 对称,4AB =,圆M 过点,A B 且与直线20x +=相切.(1)若A 在直线0x y +=上,求圆M 的半径;(2)是否存在定点P ,使得当A 运动时,MA MP -为定值?并说明理由.【分析】解析几何中的存在性问题时,对于条件存在探索型问题(或否定性命题,比如不可能是什么的类型),比较常见的处理方式有以下几种:(1)常采用“肯定顺推法”,即假设满足条件的元素(如点、直线、位置或参数等)存在,并用待定系数法设出,然后根据已知条件和几何关系,列出相关的方程组(或不等式),若方程组在相关的定义域(参数的存在范围)内有解,则元素存在;否则,相关元素不存在;(2)先猜后证的方法,即先把条件特殊化(如采用极端原理的方法)在特殊位置(条件)下,进行验证和判断,然后放到一般情况下给予证明(可参考9.2“先猜后证”一节).在条件存在探索型问题中,思考本质上是“执果索因”.【解析】解(1)因为A 在直线0x y +=上,所以设(),A t t -,则(),B t t -.又因为AB =4,所以2816t =,解得t =因为圆M 过点,A B ,所以圆心M 必在直线y x =上.设(),M a a ,圆的半径为r ,因为圆M 与20x +=相切,所以2r a =+.又因为MA MB r ==,即222((a a r +=,所以222(((2),a a a ++=+解得0a =或4a =.当0a =时,2r =;当4a =时,6r =.因此圆M 的半径为2或6.(2)解法一(设直线法,证明点M 的轨迹为抛物线,然后结合抛物线的定义判断定点P 的存在性)结论:存在定点()1,0P ,使得1MA MP -=.证明如下:因为,A B 关于原点对称且4AB =,所以直线AB 必为过原点O 的直线,且2OA =.①当直线AB 斜率存在时,设AB 方程为y kx =,则圆心M 必在直线1y x k=-上.设(),M km m -,圆M 的半径为r ,因为圆M 与20x +=相切,所以2r km =-+.又因为r MA ===所以2km -+=整理可得24km m =-.故点M 的轨迹方程为24y x =,准线方程为1x =-,焦点()1,0F .(说明:这一步很关键,判断出点M 在抛物线上运动,方能结合抛物线的定义来解题.)因为MA r =,即抛物线上的点到2x =-的距离,所以1MA MF =+,即1.MA MF -=因此当P 与F 重合,即点P 的坐标为()1,0时,1MA MP -=.②当直线AB 斜率不存在时,则直线AB 的方程为0x =,所以点M 在x 轴上.设(),0M n ,则2n +=解得0n =,即()0,0M .若()1,0P ,则21 1.MA MP -=-=综上所述,存在定点()1,0P ,使得MA MP -为定值.解法二(设点法,证明点M 的轨迹为抛物线,然后结合抛物线的定义判断定点P 的存在性)结论:存在定点()1,0P ,使得1MA MP -=.证明如下:因为,A B 关于原点对称且4AB =,所以设()00,A x y ,则()00,B x y --,且22004x y +=. (1)当000x y ≠,即直线AB 的斜率存在时,其斜率为y x .则圆心M 必在直线00x y x y =-上.设0110,x M x x y ⎛⎫- ⎪⎝⎭,圆M 的半径为r ,则因为圆M 与20x +=相切,所以12r x =+.又因为r MA ==所以12x +=整理可得220112040x x x y -=,解得10x =或201204y x x =.当201204y x x =时,0104y y x =-.消去00yx ,可得2114y x =;当10x =时,10y =也满足上式.故点M 的轨迹方程为24y x =,准线方程为1x =-,焦点()1,0F .(说明:这一步很关键,判断出点M 在抛物线上运动,方能结合抛物线的定义来解题.) 以下同解法一.【点睛】此题的解题关键在于推断出点M 的运动轨迹为抛物线,然后利用抛物线的定义来探求定点P 的位置,实现MA MP -为定值的目标. 结论探索型问题【例2】已知椭圆2222:1(0)x y C a b a b+=>>且点()2,1T 在椭圆C 上,设与OT 平行的直线l 与椭圆C 相交于,P Q 两点,直线,TP TQ 分别与x 轴正半轴交于,M N 两点. (1)求椭圆C 的标准方程;(2)判断OM ON +的值是否为定值,并证明你的结论.【分析】解析几何中的存在性问题时,对于结论存在探索型问题,比较常见的处理方式有以下几种:(1)把题目条件准确的逐句翻译转化,按部就班,由因到果,一步步进行演绎推理,从而进行结论存在性判断,这是基本的解题素养;(2)先猜后证的方法,即先把条件特殊化(如采用极端原理的方法)在特殊位置(条件)下进行验证和判断,然后放到一般情况下对结论的存在性给予证明(可参考9.2“先猜后证”一节);(3)关于函数的最值是否存在的问题,通常是构建目标函数,通过求值域的通法,来进行判断即可.另外,反证法与验证法也是求解存在性问题常用的方法. 【解析】 解(1)由题意可得22222411,a b a b c c e a ⎧+=⎪⎪⎪-=⎨⎪⎪==⎪⎩解得a b c ===故椭圆C 的标准方程为22182x y +=.(2)假设直线TP 或TQ 的斜率不存在,则点P 或点Q 的坐标为(2,-1),直线l 的方程为()1122y x +=-,即122y x =-.则联立方程得22182122x y y x ⎧+=⎪⎪⎨⎪=-⎪⎩解得2440x x -+=.此时,直线l 与椭圆C 相切,不合题意.故直线TP 和TQ 的斜率存在. 解法一如图11.2所示,设()()1122,,,P x y Q x y ,则直线TP 的方程为()11112.2y y x x --=-- 直线TQ 的方程为 ()22112.2y y x x --=-- 故11221x OM y -=--,2222.1x ON y -=--图11.2由直线OT 的方程12y x =,设直线PQ 的方程为()102y x t t =+≠.则联立方程得22221,822240.12x y x tx t y x t ⎧+=⎪⎪⇒++-=⎨⎪=+⎪⎩当Δ0>时,212122,24x x t x x t +=-=-.因此121222411x x OM ON y y ⎛⎫--+=-+ ⎪--⎝⎭1212224111122x x x t x t ⎛⎫ ⎪--=-+ ⎪ ⎪+-+-⎝⎭()()()()()1212212122414111(1)42x x t x x t x x t x x t +-+--=-+-++-()()()()()()2222422414112412(1)42t t t t t t t t -+----=--+--+-4.=解法二设()()1122,,,P x y Q x y ,直线TP 和TQ 的斜率分别为1k 和2k ,则由直线OT 的方程12y x =,设直线PQ 的方程为()102y x t t =+≠,则联立方程得22221,822240.12x y x tx t y x t ⎧+=⎪⎪⇒++-=⎨⎪=+⎪⎩当Δ0>时,212122,24x x t x x t +=-=-.因此1212121122y y k k x x --+=+-- 121211112222x t x t x x +-+-=+-- ()()()()()12121224122x x t x x t x x +-+--=--()()()()()21224224122t t t t x x -+----=--0.=故直线TP 和直线TQ 的斜率和为零,从而可得TMN TNM ∠∠=,即TM TN =.因此T 在线段MN 的中垂线上,即MN 的中点横坐标为2.故4OM ON +=. 【点睛】在此题中,解法一非常常规,考生只需把题目的条件,逐一准确地翻译转化,按部就班进行,就能得出结论,这就是培养学生基本的、良好的和规范的答题习惯;解法二则充分体现了解析几何中的“数形结合”和“多想少算”的思维层次,通过推测直线TP 和直线TQ 的斜率和为零,证明T 在线段MN 的中垂线上,从而说明OM ON +的值为定值.在解析几何中,掌握一些常见的结论,解题中通过联想,并用特殊值法进行验证和猜想,来帮助解题还是很有必要的.强化训练1.如图11.1所示,椭圆22:1(01)y C x m m+=<<的左顶点为,A M 是椭圆C 上异于点A 的任意一点,点P 与点A 关于点M 对称.(1)若点P 的坐标为9,55⎛ ⎝⎭,求m 的值; (2)若椭圆C 上存在点M ,使得OP OM ⊥,求m 的取值范围.图11.12.【解析】(1)依题意,M 是线段AP 的中点,如图 A.42所示.因为()91,0,5A P ⎛- ⎝⎭,所以点M的坐标为25⎛ ⎝⎭.由点M 在椭圆C 上,得4121,2525m += 解得47m =.图A.42(2)解法一(参变分离-一目标函数法)设点M 的坐标为()00,x y ,则()2200111,y x x m+=-<<因为M 是线段AP 的中点,所以()0021,2P x y +.又因为OP OM ⊥,所以()20002120.x x y ++=由(1)、(2)两式消去0y ,整理得20020222x x m x +=-.因此()001131,6242282m x x =+-++-+当且仅当02x =-时,等号成立.故m 的取值范围是10,24⎛- ⎝⎦.解法二(转化为利用二次函数探求根的分布)设点M 的坐标为()00,x y ,则2201y x m +=()011x -<<因为M 是线段AP 的中点,所以()0021,2P x y +.又因为OP OM ⊥,所以()20002120.x x y ++=由(1)、(2)两式消去0y ,整理得()2002220.m x x m -++=则问题转化为:方程(3)存在实根0x ,且()01,1x ∈-.不妨考虑二次函数()()2000222f x m x x m =-++在()01,1x ∈-上的零点分布. 因为对称轴()011414x m =<--,且()1221210f m m -=--+=> ()1221230f m m =-++=>所以只需对称轴()01141x m =>--.又方程(3)的()Δ142220m m =-⋅-⋅>,解得m124-. 因为01m <<,所以10,2m ⎛∈- ⎝⎦. 2.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,右焦点为F ,右顶点A .在圆F :222(1)(0)x y r r -+=>上. (1)求椭圆C 和圆F 的方程;(2)已知过点A 的直线l 与椭圆C 交于另一点B ,与圆F 交于另一点P .请判断是否存在斜率不为0的直线l ,使点P 恰好为线段AB 的中点.若存在,求出直线l 的方程;若不存在,请说明理由. 【解析】(1)由题意可得11,2c c a ==.因此2222,3a b a c ==-=.故椭圆C 的标准方程为221.43x y += 由椭圆C 的右顶点()2,0A ,代人圆F 的方程可得21r =. 故圆F 的标准方程为()2211x y -+=(2)解法一假设存在直线()():20l y k x k =-≠满足条件,则由()222,1,43y k x x y ⎧=-⎪⎨+=⎪⎩得()2222431616120.k x k x k +-+-=设()11,B x y ,则21216243k x k +=+,由此可得中点22286,4343k k P k k ⎛⎫- ⎪++⎝⎭.又由点P 在圆F 上可得22222861 1.4343k k k k ⎛⎫-⎛⎫-+= ⎪ ⎪++⎝⎭⎝⎭化简整理得20k =.又因为0k ≠,所以不存在满足条件的直线l .解法二假设存在直线l 满足题意.则由(1)可得OA 是圆F 的直径,所以OP AB ⊥.又由点P 是AB 的中点,可得2OB OA ==.设点()11,B x y ,则由题意可得2211143x y +=.又因为直线l 的斜率不为0,所以214x <. 因此22222211111313 4.44x x OB x y x ⎛⎫=+=+-=+< ⎪⎝⎭图A.43这与OA OB =矛盾.因此不存在满足条件的直线l .3.已知抛物线2:4C y x =,点(),0M m 在x 轴的正半轴上,过M 的直线l 与C 相交于,A B 两点,O 为坐标原点.(1)若1m =,直线l 的斜率为1,求以AB 为直径的圆的方程;(2)若存在直线l 使得,,AM OM MB 成等比数列,求实数m 的取值范围. 【解析】(1)由题意得()1,0M ,直线l 的方程为1y x =-则由214y x y x=-⎧⎨=⎩得2610.x x -+=如图 A.43所示,设,A B 两点坐标为()()1122,,,,A x y B x y AB 的中点P 的坐标为()00,P x y ,则1233x x =+=-11221212y x y x =-=+=-=-故点((3,3A B ++--. 因此12032x x x +==,0012y x =-=故圆心为()3,2P ,直径为8AB ==.因此以AB 为直径的圆的标准方程为22(3)(2)16.x y -+-=(2)解法一设,A B 两点的坐标分别为()()1122,,,,(0)A x y B x y MB AM λλ=>. 则()()1122,,,AM m x y MB x m y =--=-.因此()2121,.x m m x y y λλ⎧-=-⎨=-⎩因为点,A B 在抛物线C 上,所以2211224,4.y x y x == 由(1)(2)消去212,,x y y ,得1x m λ=.若此直线l 使得,,AM OM MB 成等比数列, 则2||OM MB AM =⋅即2||OM AM AM λ=⋅,因此()22211.m x m y λ⎡⎤=-+⎣⎦因为21114,y x x m λ==,因此()221114m m x m x x ⎡⎤=-+⎣⎦,整理得 ()2211340.x m x m --+=因为存在直线l 使得,,AM OM MB 成等比数列,所以关于1x 的方程(3)有正根.又因为方程(3)的两根之积为20m >,所以只可能有两个正根.因此222340Δ(34)40.m m m m ->⎧⎪>⎨⎪=--⎩解得4m .故当4m 时,存在直线l 使得,,AM OM MB 成等比数列.解法二设使得,,AM OM MB 成等比数列的直线AB 方程为x m =(0m >)或()()0y k x m k =-≠.当直线AB 的方程为x m =时,((,,A m B m . 因为,AM OM ,MB 成等比数列,所以2,OM MB AM =⋅即24m m =,解得4m =或0m =(舍去).当直线AB 的方程为()y k x m =-时,则由()24y k x m y x⎧=-⎨=⎩得()22222240.k x k m x k m -++=设,A B 两点的坐标分别为()()1122,,,A x y B x y ,则221212224,.k m x x x x m k++== 由0m >,得()222222Δ24416160.k m k k m k m =+-⋅=+> 因为,,AM OM MB 成等比数列,所以2OM MB AM =⋅.于是2m =又因为,A B 两点在抛物线C 上,所以2211224,4.y x y x == 由(1)(2)(3)三式消去1122,,,x y x y ,得2141m k ⎛⎫=+ ⎪⎝⎭.因为存在直线l 使得,AM OM ,MB 成等比数列,所以21414m k⎛⎫=+> ⎪⎝⎭. 综上所述,当4m 时,存在直线l 使得,,AM OM MB 成等比数列.4.已知椭圆2222:1(0)x y G a b a b+=>>的离心率为经过点()0,1B .设椭圆G 的右顶点为A ,过原点O 的直线l 与椭圆G 交于,P Q 两点(点Q 在第一象限),且与线段AB 交于点M . (1)求椭圆G 的标准方程;(2)是否存在直线l ,使得BOP 的面积是BMQ 的面积的3倍?若存在,求直线l 的方程;若不存在,请说明理由.【解析】(1)由题意可知2221b ca ab c=⎧⎪⎪=⎨⎪=+⎪⎩,解得21a b c ⎧=⎪=⎨⎪=⎩因此椭圆G 的标准方程为2214x y +=(2)解法一(设点法)设()00,Q x y ,则()00,P x y --,易知0002,01x y <<<<. 若使BOP 面积是BMQ 面积的3倍, 只需使得3OQ MQ =,即23OM OQ ==0022,33x y ⎛⎫ ⎪⎝⎭,亦即0022,33M x y ⎛⎫ ⎪⎝⎭.由()()2,0,0,1A B ,得直线AB 的方程为220x y +-=.因为点M 在线段AB 上,所以00242033x y +-=,整理得0032.x y =-因为点Q 在椭圆G 上,所以2200 1.4x y +=把(1)式代人(2)式,可得2081250y y -+=.因为判别式小于零,所以该方程无解. 因此不存在直线l ,使得BOP 的面积是BMQ 面积的3倍. 解法二(设直线法)由题意,设直线l 的方程为(0)y kx k =>.则联立2244y kx x y =⎧⎨+=⎩消去y ,整理得()22414,k x += 即22441x k =+.因此Q ⎛⎫. 由()()2,0,0,1A B ,得直线AB 的方程为220x y +-=.因为点M 在线段AB 上,则联立220y kxx y =⎧⎨+-=⎩消去y ,解得221x k =+.因此22,2121k M k k ⎛⎫ ⎪++⎝⎭. 若使BOP 的面积是BMQ 面积的3倍,只需使得3OQ MQ = 即OM =23OQ ,则22213k =+ 化简整理得2201650k k -+=.因为判别式小于零,所以该方程无解.因此不存在直线l ,使得BOP 的面积是BMQ 面积的3倍. 解法三(设直线法)由题意,设直线l 的方程为(0)y kx k =>则联立22,44,y kx x y =⎧⎨+=⎩消去y ,整理得()22414,k x += 直线AN 与椭圆交于点()0,1N -.因此直线MN 也过点()0,0. 综上所述,直线MN 过定点()0,0. 解法二(设点法)设()()1122,,,M x y N x y ,则由题意可知1210,22y y x ≠-<<,222x -<<,且2222112244,44x y x y +=+=. 因为直线,AM AN 的斜率之积等于14-, 所以14AM AN k k ⋅=-,即12121.224y y x x ⋅=---将上式平方,得()()2212221211622y y x x ⋅=--,即()()2212221211441.?1622x x x x ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭⋅=-- 整理得()()()()2212221244122x x x x --⋅=--,化简得1212221,22x xx x ++⋅=--从而可得()()()()12122222.x x x x ++=-- 解得120x x +=,即12x x =-.代入12121224y y x x ⋅=---,得 ()()()()22212111111112244.?444y y x x x y y =----=-=-=- 因为10y ≠,所以21y y =-.因此()()1111,,,M x y N x y --,从而可知,M N 两点关于原点对称. 故直线MN 过定点()0,0.5.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为2,且过点()2,0A .(1)求椭圆C 的方程;(2)设,M N 是椭圆C 上不同于点A 的两点,且直线,AM AN 的斜率之积等于14-.试问直线MN 是否过定点?若是,求出该点的坐标;若不是,请说明理由.【解析】(1)因为12c e a ==,又因为222a b c =+,所以22224,3a c b c ==. 设椭圆的标准方程为2222143x y c c +=,代人点()2,3,得2224,16,12c a b ===.因此椭圆的标准方程为2211612x y +=.(2)解法一当APQ BPQ ∠∠=时,,PA PB 的斜率之和为0.设直线PA 的斜率为k ,则直线PB 的斜率为k -. 设直线PA 的方程为()32y k x -=-,与椭圆联立,得()22323448y k x x y ⎧-=-⎨+=⎩代入化简得 ()()()22223483244912480.k xk k x k k ++-++--=设()()1122,,,A x y B x y ,代人点()2,3P ,可得()12823234k k x k -+=+.同理可得22x +=()282334k k k ++,所以2122161234k x x k -+=+,1224834kx x k--=+ 因此()1221211241.2AB k x x k y y k x x x x +--===-- 即直线AB 的斜率为定值12.解法二由题意可知,直线AB 的斜率存在, 不妨设直线AB 的方程为y kx m =+则联立223448y kx mx y =+⎧⎨+=⎩化简整理得()2223484480.k x kmx m +++-=设()()1122,,,A x y B x y ,则122834kmx x k-+=+,2122448.34m x x k -=+ 当APQ BPQ ∠∠=时,,PA PB 的斜率之和为0.因此1212330,22y y x x --+=-- 即()()()()211223230,x y x y --+--=亦即()()()()211223230,x kx m x kx m -+-+-+-= 整理得()()()1212223430,kx x m k x x m +--+--=所以()()22244882234303434m km k m k m k k --⎛⎫⋅+----= ⎪++⎝⎭ 整理得()()21230k m k -+-=,解得12k =或23m k =-+. 当23m k =-+时,直线AB 的方程为()23y k x =-+,经过()2,3P ,与已知不符,舍去,因此直线AB 的斜率为定值12.6.已知椭圆2222:1(0)x y C a b a b +=>>离心率等于()()1,2,3,2,32P Q -是椭圆上的两点.(1)求椭圆C 的方程;(2),A B 是椭圆上位于直线PQ 两侧的动点.当,A B 运动时,满足APQ BPQ ∠∠=,试问直线AB 的斜率是否为定值?如果为定值,求出此定值;如果不是定值,请说明理由.【解析】(1)设椭圆的半焦距为c .因为点()0,1在椭圆C 上,所以1b =,因此221a c -=.又因为2c e a ==,所以2c a ==. 故椭圆C 的标准方程为2214x y +=.(2)解法一(首先求出点B 的坐标,然后直接计算,B N 两点间的距离)设()11,A x y ,()22,C x y ,线段AC 的中点为()00,M x y .联立12y x m =+和22440x y +-=,得22x mx ++2220m -=.则由 ()222Δ(2)422840,m m m =--=->可得m <因此212122,22x x m x x m +=-=-.故AC 的中点为1,2M m m ⎛⎫- ⎪⎝⎭.由题意,点B 位于线段AC 的中垂线上,且BA BC ⊥. 因为线段AC 的中垂线方程为()22m y x m -=-+,即322my x =--. 所以不妨设003,22m B x x ⎛⎫-- ⎪⎝⎭,又因为0BA BC ⋅=,所以 1010202033,2,20,22m m x x y x x x y x ⎛⎫⎛⎫-++⋅-++= ⎪ ⎪⎝⎭⎝⎭ 即1210020055,2,20.2222x x m m x x x x x x ⎛⎫⎛⎫-++⋅-++= ⎪ ⎪⎝⎭⎝⎭ 整理得()2212120055255100,444m x x m x x x mx +++++=代人韦达定理,得()()2220055252225100,444m m m m x mx -+-+++=化简整理得220025551042m x mx ++=.又因为直线l 与x 轴的交点为()2,0N m -,所以()222220000325522510.242m BN x m x m x mx ⎛⎫=+++=++= ⎪⎝⎭因此,,B N . 解法二(利用平面几何知识转化)设()()1122,,,A x y C x y ,线段AC 的中点为()00,M x y .联立12y x m =+和22440x y +-=,得222220x mx m ++-=.则由()222Δ(2)422840,m m m =--=->可得m <因此212122,22x x m x x m +=-=-.故AC 的中点为1,2M m m ⎛⎫- ⎪⎝⎭.于是弦长AC 的长为AC ==又因为直线l 与x 轴的交点为()2,0N m -,所以MN ==因此2222215||||.42BN BM MN AC MN =+=+=故,B N .7.已知椭圆2222:1(0)x y E a b a b+=>>过点()0,1,(1)求椭圆E 的方程; (2)设直线1:2l y x m =+与椭圆E 交于,A C 两点,以AC 为对角线作正方形ABCD ,记直线l 与x 轴的交点为N .问:,B N 两点间的距离是否为定值?如果是,求出定值;如果不是,请说明理由.【解析】(1)由题设知c e a ==因此222221.2c a b a a -== 即222b a =.又因为点()2,1P 在椭圆上,所以224112b b +=,解得223,6b a ==.故椭圆C 的标准方程为22163x y +=.(2)(1)若直线AB 的斜率不存在,则((()0,,,1,2A B M ,直线BM 的方程为.y x =令1y =,得()1D -.因此1AD k ==-.又因为31102PQ k -==--,所以AD k =PQ k .故//AD PQ . (2)若直线AB 的斜率存在,则设直线AB 的方程为()()11223,,,,y kx A x y B x y =+.于是由223,26,y kx x y =+⎧⎨+=⎩得()222112120.k x kx +++= 则1212221212,.2121k x x x x k k -+==++ 设直线BM 的方程为()222211y y x x --=--,令1y =,得()2212,11k x D kx ⎛⎫-+⎪+⎝⎭.于是 ()()()()121212121221112121AD kx kx y k k x kx x x k x x kx ++-==-++----+()2122112122212k x x kx kx kx x x k x +++=+--- ()()2121221212222k x x k x x kx kx x x x kx ++++=++--2222222121222121121222121kk k kx k k k k kx k k -⋅+⋅++++=-⋅+--++ 22212kx kx +==---因此AD PQ k k =.故//AD PQ . 综上所述,//AD PQ .8.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为(),2,12P 在椭圆上,过()0,3Q 的直线交椭圆C 于,A B 两点,M 为PQ 中点,直线BM 与直线1y =交于点D . (1)求椭圆C 的标准方程;(2)判断直线AD 与直线PQ 的位置关系,并证明你的结论.【解析】(1)由题设知1b =.因为c e a ==,所以222223,4c a b a a -==即22134a a -=,解得24a =.故椭圆E 的标准方程为2214x y +=.(2)解法一由题意知,直线PQ 的斜率k 存在.设直线PQ 的方程为()21y k x =--()()1122(0),,,,k P x y Q x y <则由()221,421,x y y k x ⎧+=⎪⎨⎪=--⎩得()2222142440.4k x k k x k k ⎛⎫+-+++= ⎪⎝⎭因此221212224244,.1144k k k kx x x x k k +++==++因为111111121122,AP y kx k kx k k x x x ------=== 所以直线AP 的方程为11221kx k y x x --=+.当1y =-时,11222M x x m kx k -==--, 即1112211.22kx k k k m x x --+==-+- 同理2112k k n x +=-+.于是()()()121212111111.x x k k k k m n x x x x +⎛⎫+=-+++=-++ ⎪⎝⎭代人1212,x x x x +,得()()221421111.4422k k k k k k m n k k +++=-+=-++=+ 解法二(先猜后证)由(1)猜想:当直线AB 的斜率存在时,//AD PQ .证明如下:()()121211211AD PQ y k k k x x kx --=-+---+()()()12121221112kx kx kx x x k x ++=++--- ()()2122112121212221212k x x kx kx kx x x k x kx x x k x +++++---=+---()()()()212121212112k k x x k x x kx x x k x ++++=+---因为上式分子()()()212121k k x x k x x =++++()()222121212121kk k k k k =+⋅-+⋅++ 22212121212021k k k kk +--==+所以0AD PQ k k -=,即AD PQ k k =.故//AD PQ .。
求动点的轨迹方程方法例题习题答案

求动点的轨迹方程(例题,习题与答案)在中学数学教学和高考数学考试中,求动点轨迹的方程和曲线的方程是一个难点和重点内容(求轨迹方程和求曲线方程的区别主要在于:求轨迹方程时,题目中没有直接告知轨迹的形状类型;而求曲线的方程时,题目中明确告知动点轨迹的形状类型)。
求动点轨迹方程的常用方法有:直接法、定义法、相关点法、参数法与交轨法等;求曲线的方程常用“待定系数法”。
求动点轨迹的常用方法动点P 的轨迹方程是指点P 的坐标(x, y )满足的关系式。
1. 直接法(1)依题意,列出动点满足的几何等量关系;(2)将几何等量关系转化为点的坐标满足的代数方程。
例题 已知直角坐标平面上点Q (2,0)和圆C :122=+y x ,动点M 到圆C 的切线长等与MQ ,求动点M 的轨迹方程,说明它表示什么曲线. 解:设动点M(x,y),直线MN 切圆C 于N 。
依题意:MN MQ =,即22MN MQ = 而222NO MO MN-=,所以122-=MO MQ(x-2)2+y 2=x 2+y 2-1化简得:x=45。
动点M 的轨迹是一条直线。
2. 定义法分析图形的几何性质得出动点所满足的几何条件,由动点满足的几何条件可以判断出动点的轨迹满足圆(或椭圆、双曲线、抛物线)的定义。
依题意求出曲线的相关参数,进一步写出轨迹方程。
例题:动圆M 过定点P (-4,0),且与圆C :0822=-+x y x 相切,求动圆圆心M 的轨迹方程。
解:设M(x,y),动圆M的半径为r 。
若圆M 与圆C 相外切,则有 ∣MC ∣=r +4 若圆M 与圆C 相内切,则有 ∣MC ∣=r-4 而∣MP ∣=r, 所以∣MC ∣-∣MP ∣=±4动点M 到两定点P(-4,0),C(4,0)的距离差的绝对值为4,所以动点M 的轨迹为双曲线。
其中a=2, c=4。
动点的轨迹方程为:112422=-y x 3. 相关点法若动点P(x ,y)随已知曲线上的点Q(x 0,y 0)的变动而变动,且x 0、y 0可用x 、y 表示,则将Q 点坐标表达式代入已知曲线方程,即得点P 的轨迹方程。
动点轨迹经典例题(含答案) 易懂版

(一)求轨迹方程的一般方法:1. 待定系数法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。
2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。
3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ),y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。
4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。
5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。
6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。
1. P 是椭圆5922y x +=1上的动点,过P 作椭圆长轴的垂线,垂足为M ,则PM 中点的轨迹中点的轨迹方程为:( )A 、159422=+y xB 、154922=+y xC 、120922=+y x D 、53622y x +=1 2. 圆心在抛物线)0(22>=y x y 上,并且与抛物线的准线及x 轴都相切的圆的方程是( )A 041222=---+y x y x B 01222=+-++y x y xC 01222=+--+y x y xD 041222=+--+y x y x 1:已知ABC ∆的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足,sin 45sin sin C A B =+求点C 的轨迹。
专题26 求动点轨迹方程 微点2 定义法求动点的轨迹方程及答案

专题26 求动点轨迹方程 微点2 定义法求动点的轨迹方程专题26 求动点轨迹方程 微点2 定义法求动点的轨迹方程 【微点综述】在解析几何教学中,求动点的轨迹方程历来是教学重要专题之一,而曲线的定义反映了曲线的本质属性,它是相应标准方程和几何性质的“源”,也是解题的重要工具,如果能在求动点的轨迹方程中充分利用曲线的定义,常常会达到言简意明、异曲同工的效果.下面就其应用作一些举例介绍. 一、求轨迹方程——定义法若某动点的轨迹符合某一基本轨迹如直线、圆、圆锥曲线的定义,则可以利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义等直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件. 二、常见情形1.到线段两端点相等的点的轨迹是该线段的垂直平分线. 2.到角的两边相等的点的轨迹是该角的平分线及外角平分线.3.平面内到一定点的距离等于定长的点的轨迹是圆,定点为圆心,定长为圆的半径. 4.平面内一个动点P 到两个定点12,F F 的距离之和等于常数(12122,PF PF a F F a +=>为常数)的动点P 的轨迹是以12,F F 为焦点,2a 为长轴长的椭圆. 5.平面内一个动点P 到两个定点12,F F 的距离之差的绝对值等于常数(12122,PF PF a F F a -=<为常数)的动点P 的轨迹是以12,F F 为焦点,2a 为实轴长的双曲线.6.平面内与一定点F 和一条定直线l (l 不经过点F )距离之比对于常数()0e e >的动点的轨迹是圆锥曲线.当01e <<时为椭圆;当1e >时为双曲线;当1e =时为抛物线.其中,定点F 叫做圆锥曲线的焦点,定直线l 叫做圆锥曲线的准线. 三、应用举例1.利用圆的定义求轨迹方程 例11.一条定长为2a 的线段AB ,点A 在x 轴上,点B 在y 轴上滑动.求线段AB 的中点P的轨迹方程.2.利用椭圆的定义求轨迹方程 例2(2022·黑龙江·哈尔滨三中二模)2.已知圆1C :22(3)1x y ++=,2C :22(3)81x y -+=,动圆C 与圆1C ,2C 都相切,则动圆C 的圆心轨迹E 的方程为________________l 与曲线E 仅有三个公共点,依次为P ,Q ,R ,则||PR 的值为________. 例3(2019年高考江苏卷17(1))3.如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1.已知DF 1=52.(1)求椭圆C 的标准方程; (2)求点E 的坐标.3.利用双曲线的定义求轨迹方程 例4(2021年新高考I 卷21(1))4.在平面直角坐标系xOy 中,已知点()1F 、)2122F MF MF -=,,点M的轨迹为C . (1)求C 的方程; (2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.例55.如图,O 为坐标原点,双曲线221112211:1(0,0)x y C a b a b -=>>和椭圆222222222:1(0)y x C a b a b +=>>均过点P ,且以1C 的两个顶点和2C 的两个焦点为顶点的四边形是面积为2的正方形.(1)求12,C C 的方程;(2)是否存在直线l ,使得l 与1C 交于,A B 两点,与2C 只有一个公共点,且||||OA OB AB +=?证明你的结论.4.利用抛物线的定义求轨迹方程 例6(2014年高考福建文21)6.已知曲线Γ上的点到点(0,1)F 的距离比它到直线=3y -的距离小2. (1)求曲线Γ的方程;(2)曲线Γ在点P 处的切线l 与x 轴交于点A .直线3y =分别与直线l 及y 轴交于点,M N ,以MN 为直径作圆C ,过点A 作圆C 的切线,切点为B ,试探究:当点P 在曲线Γ上运动(点P 与原点不重合)时,线段AB 的长度是否发生变化?证明你的结论. 例7(2013年高考全国II 理11)7.设抛物线2:2(0)C y px p =>的焦点为 F ,点M 在 C 上,5MF =,若以 MF 为直径的圆过点(0,2),则C 的方程为 A .24y x =或 28y x = B .22y x =或 28y x = C .24y x =或 216y x = D .22y x =或 216y x =5.解析几何与立体几何交汇轨迹问题例8(2022·全国·模拟预测)8.如图,正方体1111ABCD A B C D -的棱长为点Q 为棱1AA 上一点,点P 在底面ABCD上,且PQ =M 为线段PQ 的中点,则线段1C M 长度的最小值是( )A .2B .6C .2D .6例9(2022·新疆·二模)9.在棱长为6的正四面体ABCD 中,点P 为ABC 所在平面内一动点,且满足+=PA PB PD 的最大值为____________. 小结:定义是事物本质属性的概括和反映,圆锥曲线的几乎每个性质和问题都是由定义派生出来.对于这些常见的圆锥曲线问题,领悟定义优先的思想,把定量的计算和定性的分析有机地结合起来,往往能准确判断、简化运算,灵活解题.我们解决问题,总是希望寻找到最简单又不失本质的原理与方法,从以上案例中,不难发现解决圆锥曲线问题的首选策略是回归定义,优先考虑定义是求解圆锥曲线有关问题的第一思路,运用定义往往能使问题快捷求解. 【强化训练】(2022·四川凉山·三模)10.已知抛物线2:4C y x =,焦点为F ,点M 是抛物线C 上的动点,过点F 作直线()1210a x y a -+-+=的垂线,垂足为P ,则MFMP +的最小值为( )A B C .5D .3(2022·浙江·慈溪中学模拟预测)11.在直角坐标系xOy 中,已知点A ,B 分别是定直线y kx =和(0)=->y kx k 上的动点,若AOB 的面积为定值S ,则线段AB 的中点的轨迹为( ) A .圆B .椭圆C .双曲线D .抛物线(2022·上海青浦·三模)12.如图,ABC ⊥平面,D α为AB 中点,2AB =,60CDB ∠=,点P 为平面α内动点,且P 到直线CD APB ∠的最大值为__________.(2022·山西晋城·三模)13.如图,正方体1111ABCD A B C D -的棱长为4,点M 是棱AB 的中点,点P 是底面ABCD 内的动点,且P 到平面11ADD A 的距离等于线段PM 的长度,则线段1B P 长度的最小值为______.(2022·江苏·南京市宁海中学模拟预测)14.已知平面上一动点P 到定点()1,0F 的距离与它到定直线=1x -的距离相等,设动点P 的轨迹为曲线C . (1)求曲线C 的轨迹方程(2)已知点(B ,过点B 引圆()()222:402M x y r r -+=<<的两条切线BP ;BQ ,切线BP 、BQ 与曲线C 的另一交点分别为P 、Q ,线段PQ 中点N 的纵坐标记为λ,求λ的取值范围.(2022·广东·模拟预测)15.平面直角坐标系内有一定点(1,0)F -,定直线:5l x =-,设动点P 到定直线的距离为d ,且满足||PF d =(1)求动点P 的轨迹方程;(2)直线:3m y kx =-过定点Q ,与动点P 的轨迹交于不同的两点M ,N ,动点P 的轨迹与y 的负半轴交于A 点,直线,AM AN 分别交直线=3y -于点H 、K ,若||||35QH QK +≤,求k 的取值范围.(2022·云南师大附中高三月考)16.已知定圆()221:11F x y ++=,圆()222:125F x y -+=,动圆M 与定圆1F 外切,与定圆2F 内切.(1)求动圆圆心M 的轨迹方程E ;(2)直线l 的方向向量()1,2a =-,直线l 与曲线E 交于A 、B 两点,若AOB ∠为锐角(其中O 为坐标原点),求直线l 纵截距m 的取值范围.17.设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围. (2018年高考江苏卷18(1))18.在平面直角坐标系xOy 中,椭圆C 过点1)2,焦点12(F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;①直线l 与椭圆C 交于,A B 两点.若OAB ,求直线l 的方程. 19.已知点()0,2F ,过点()02P ,-且与y 轴垂直的直线为1l ,2l x ⊥轴,交1l 于点N ,直线l 垂直平分FN ,交2l 于点M . (1)求点M 的轨迹方程;(2)记点M 的轨迹为曲线E ,直线AB 与曲线E 交于不同两点1122(,),(,)A x y B x y ,且2211x x m =-+ (m 为常数),直线l '与AB 平行,且与曲线E 相切,切点为C ,试问ABC的面积是否为定值.若为定值,求出ABC 的面积;若不是定值,说明理由.参考答案:1.222x y a +=【分析】设AB 的中点坐标为(,)x y ,当A 、B 均不与原点重合时,由直角三角形斜边的中线等于斜边的一半可得AB 中点轨迹,验证A 、B 有一点与原点重合时成立得答案. 【详解】当OA OB ⊥时,12OP AB =,即,OP a P =∴的轨迹是以原点为圆心,a 为半径的圆,∴方程是222x y a +=(0x ≠且0y ≠).当A 点为原点时,()0,B a 或()0,B a -,当B 点在原点时,()0A a ,或(),0A a -,P ∴点的轨迹方程是222x y a +=.2. 2212516x y +=,221167x y += 6011 【分析】根据动圆C 与圆1C ,2C 的位置关系,分情况讨论可知动圆C 的圆心轨迹为椭圆,然后计算,,a b c 即可,然后假设直线方程,根据直线于曲线E 的位置关系以及弦长公式,可得结果.【详解】设动圆C 的半径为R 由题可知:当动圆C 与圆1C 外切,与圆2C 内切时 则112122=+11069CC R CC CC C C CC R ⎧⎪⇒+=>=⎨=-⎪⎩所以可知动圆C 圆心轨迹为椭圆所以210=5,3=⇒=a a c ,故22216b a c =-=所以动圆C 的圆心轨迹E 的方程为2212516x y +=当动圆C 与圆1C 内切,与圆2C 内切时 则112122=1869CC R CC CC C C CC R ⎧-⎪⇒+=>=⎨=-⎪⎩所以可知动圆C 圆心轨迹为椭圆所以28=4,3=⇒=a a c ,故2227b a c =-= 所以动圆C 的圆心轨迹E 的方程为221167x y +=所以动圆C的圆心轨迹E的方程为2212516x y+=,221167x y+=设直线l方程为y m=+,()()1122,,,P x y R x y由直线l与曲线E仅有三个公共点则直线l与221167x y+=相切于点Q,与2212516x y+=相交于点P,R所以2222139161120167x yx by m⎧+=⎪⇒++-=⎨⎪=+⎩则()()22243916112039∆=-⨯⨯-=⇒=b b22221662540002516x yx by m⎧+=⎪⇒++-=⎨⎪=+⎩212122540066-+==bx x x x则PR则PR239=b代入可得6011=PR故答案为:2212516x y+=,221167x y+=;6011【点睛】本题考查椭圆的定义,以及弦长公式,考验分析问题能力以及计算能力,属中档题. 3.(1)22143x y+=;(2)3(1,)2E--.【分析】(1)由题意分别求得a,b的值即可确定椭圆方程;(2)解法一:由题意首先确定直线1AF的方程,联立直线方程与圆的方程,确定点B的坐标,联立直线BF2与椭圆的方程即可确定点E的坐标;解法二:由题意利用几何关系确定点E的纵坐标,然后代入椭圆方程可得点E的坐标.【详解】(1)设椭圆C的焦距为2c.因为F1(-1,0),F2(1,0),所以F1F2=2,c=1.又因为DF1=52,AF2①x轴,所以DF232=,因此2a=DF1+DF2=4,从而a=2.由b 2=a 2-c 2,得b 2=3.因此,椭圆C 的标准方程为22143x y +=. (2)解法一:由(1)知,椭圆C :22143x y +=,a =2, 因为AF 2①x 轴,所以点A 的横坐标为1. 将x =1代入圆F 2的方程(x -1) 2+y 2=16,解得y =±4. 因为点A 在x 轴上方,所以A (1,4). 又F 1(-1,0),所以直线AF 1:y =2x +2. 由()2222116y x x y =+⎧⎪⎨-+=⎪⎩,得256110x x +-=, 解得1x =或115x =-. 将115x =-代入22y x =+,得125y =-, 因此1112(,)55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-. 由223(1)4143y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩,得276130x x --=,解得=1x -或137x =. 又因为E 是线段BF 2与椭圆的交点,所以=1x -.将=1x -代入3(1)4y x =-,得32y =-.因此3(1,)2E --.解法二:由(1)知,椭圆C :22143x y +=.如图,连结EF 1.因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB , 从而①BF 1E =①B .因为F 2A =F 2B ,所以①A =①B , 所以①A =①BF 1E ,从而EF 1①F 2A . 因为AF 2①x 轴,所以EF 1①x 轴.因为F 1(-1,0),由221143x x y =-⎧⎪⎨+=⎪⎩,得32y =±.又因为E 是线段BF 2与椭圆的交点,所以32y =-.因此3(1,)2E --.【点睛】本题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力. 4.(1)()221116y x x -=≥;(2)0.【分析】(1) 利用双曲线的定义可知轨迹C 是以点1F 、2F 为左、右焦点双曲线的右支,求出a 、b 的值,即可得出轨迹C 的方程;(2)方法一:设出点的坐标和直线方程,联立直线方程与曲线C 的方程,结合韦达定理求得直线的斜率,最后化简计算可得12k k +的值. 【详解】(1)因为12122MF MF F F -=<=所以,轨迹C 是以点1F 、2F 为左、右焦点的双曲线的右支,设轨迹C 的方程为()222210,0x y a b a b-=>>,则22a =,可得1a =,4b =,所以,轨迹C 的方程为()221116y x x -=≥. (2)[方法一] 【最优解】:直线方程与双曲线方程联立如图所示,设1(,)2T n ,设直线AB 的方程为112211(),,(2,(),)y n k x A x y B x y -=-.联立1221()2116y n k x y x ⎧-=-⎪⎪⎨⎪-=⎪⎩, 化简得22221111211(16)(2)1604k x k k n x k n k n -+---+-=.则22211112122211111624,1616k n k n k k n x x x x k k +-+-+==--.故12,11||)||)22TA x TB x -=-.则222111221(12)(1)11||||(1)()()2216n k TA TB k x x k ++⋅=+--=-.设PQ 的方程为21()2y n k x -=-,同理22222(12)(1)||||16n k TP TQ k ++⋅=-. 因为TA TB TP TQ ⋅=⋅,所以22122212111616k k k k ++=--,化简得22121717111616k k +=+--,所以22121616k k -=-,即2212k k =.因为11k k ≠,所以120k k +=. [方法二] :参数方程法设1(,)2T m .设直线AB 的倾斜角为1θ,则其参数方程为111cos 2sin x t y m t θθ⎧=+⎪⎨⎪=+⎩, 联立直线方程与曲线C 的方程2216160(1)x y x --≥=,可得222221111cos 116(cos )(sin 2sin )1604t m t t mt θθθθ+-++-=+,整理得22221111(16cos sin )(16cos 2sin )(12)0t m t m θθθθ-+--+=.设12,TA t TB t ==,由根与系数的关系得2212222111(12)12||||16cos sin 117cos t m m TA TB t θθθ-++⋅===--⋅.设直线PQ 的倾斜角为2θ,34,TP t TQ t ==, 同理可得2342212||||117cos m T T t P Q t θ+⋅==-⋅ 由||||||||TA TB TP TQ ⋅=⋅,得2212cos cos θθ=.因为12θθ≠,所以12s o o s c c θθ=-.由题意分析知12θθπ+=.所以12tan tan 0θθ+=, 故直线AB 的斜率与直线PQ 的斜率之和为0. [方法三]:利用圆幂定理因为TA TB TP TQ ⋅=⋅,由圆幂定理知A ,B ,P ,Q 四点共圆. 设1(,)2T t ,直线AB 的方程为11()2y t k x -=-,直线PQ 的方程为21()2y t k x -=-,则二次曲线1212()()022k kk x y t k x y t --+--+=. 又由22116y x -=,得过A ,B ,P ,Q 四点的二次曲线系方程为:221212()()(1)0(0)2216k k y k x y t k x y t x λμλ--+--++--=≠,整理可得: []2212121212()()()()16k x y k k xy t k k k k k x μμλλλλ++--+++-12(2)02y k k t m λ++-+=, 其中21212()42k k t m t k k λμ⎡⎤=+-+-⎢⎥⎣⎦.由于A ,B ,P ,Q 四点共圆,则xy 项的系数为0,即120k k +=.【整体点评】(2)方法一:直线方程与二次曲线的方程联立,结合韦达定理处理圆锥曲线问题是最经典的方法,它体现了解析几何的特征,是该题的通性通法,也是最优解; 方法二:参数方程的使用充分利用了参数的几何意义,要求解题过程中对参数有深刻的理解,并能够灵活的应用到题目中.方法三:圆幂定理的应用更多的提现了几何的思想,二次曲线系的应用使得计算更为简单.5.(1)1C 的方程为:2213y x -=;2C 的方程为22132y x+= (2)不存在,证明见解析【分析】(1)根据以1C 的两个顶点和2C 的两个焦点为顶点的四边形是面积为2的正方形得 121,1a c ==,分别将P 的坐标代入双曲线和椭圆方程,可求出双曲线和椭圆方程;(2)当直线l 垂直于x 轴时,求出,A B 的坐标,可以验证OA OB AB +≠;当直线l 不垂直于x 轴时,设l 的方程为y kx m =+,代入双曲线方程,由韦达定理得到,A B 两个点的横坐标、纵坐标之间的关系,代入椭圆方程,根据判别式得到2223k m =-,利用韦达定理推出0OA OB ⋅≠,从而可推出OA OB AB +≠.(1)设2C 的焦距为22c ,因为1C 的两个顶点和2C 的两个焦点为顶点的四边形是面积为2的正方形.所以2122,22c a ==,从而121,1a c ==,因为点P ⎫⎪⎝⎭在双曲线22211y x b -=上,所以22121113b b -=⇒=⎝⎭, 所以1C 的方程为:2213y x -=.因为点P ⎫⎪⎝⎭在222222222:1(0)y x C a b a b +=>>上,所以22221314a b +=, 因为222222221b a c a =-=-,所以22221413(1)a a +=-,解得223a =,所以222b =, 所以2C 的方程为22132y x+=. (2)不存在符合题设条件的直线,证明如下:当直线l 垂直于x 轴时,因为l 与2C只有一个公共点,所以直线的方程为x =或x =当x,,AB所以22,23OA OB AB +==此时OA OB AB +≠,当x =OA OB AB +≠.当直线l 不垂直于x 轴时,设l 的方程为y kx m =+,由 2213y kx my x =+⎧⎪⎨-=⎪⎩可得()2223230k x kmx m ----=,当l 与1C 相交于,A B 两点时,230k -≠,222(2)4(3)(3)0km k m ∆=-+-+>,即2230m k +->,设()()1122,,,A x y B x y ,则212122223,33km m x x x x k k ++==--, 于是()22222221212121222(3)2()()33k m k m y y kx m kx m k x x km x x m m k k+=++=+++=++-- 222333k m k -=-, 由22132y kx m y x =+⎧⎪⎨+=⎪⎩可得()222234260k x kmx m +++-=, 因为直线l 与2C 只有一个公共点,所以()()2222016423260k m k m ∆=⇒-+-=,化简可得2223k m =-,因此22222212122222333332303333m k m k m k OA OB x x y y k k k k +-+---⋅=+=+==≠----, 于是222222OA OB OA OB OA OB OA OB ++⋅≠+-⋅, 即22OA OB OA OB +≠-,所以OA OB AB +≠, 综上所述:OA OB AB +≠,所以不存在符合题目条件的直线l .6.(1)24x y =.(2)当点P 在曲线Γ上运动时,线段AB 的长度不变,证明见解析. 【详解】试题分析:(1)思路一:设(,)S x y 为曲线Γ上任意一点, 依题意可知曲线Γ是以点(0,1)F 为焦点,直线1y =-为准线的抛物线, 得到曲线Γ的方程为24x y =.思路二:设(,)S x y 为曲线Γ上任意一点,由(3)2y --==,化简即得.(2)当点P 在曲线Γ上运动时,线段AB 的长度不变,证明如下: 由(1)知抛物线Γ的方程为214y x =, 设000(,)(0)P x y x ≠,得20014y x =, 应用导数的几何意义,确定切线的斜率,进一步得切线l 的方程为2001124y x x x =-. 由20011240y x x x y ⎧=-⎪⎨⎪=⎩,得01(,0)2A x . 由20011243y x x x y ⎧=-⎪⎨⎪=⎩,得0016(,3)2M x x +. 根据(0,3)N ,得圆心0013(,3)4C x x +,半径0011324r MN x x ==+,由弦长,半径及圆心到直线的距离之关系,确定AB 试题解析:解法一:(1)设(,)S x y 为曲线Γ上任意一点, 依题意,点S 到(0,1)F 的距离与它到直线1y =-的距离相等, 所以曲线Γ是以点(0,1)F 为焦点,直线1y =-为准线的抛物线,所以曲线Γ的方程为24x y =.(2)当点P 在曲线Γ上运动时,线段AB 的长度不变,证明如下: 由(1)知抛物线Γ的方程为214y x =, 设000(,)(0)P x y x ≠,则20014y x =, 由12y x '=,得切线l 的斜率001|2x x k y x =='=, 所以切线l 的方程为0001()2y y x x x -=-,即2001124y x x x =-. 由20011{240y x x x y =-=,得01(,0)2A x .由20011{243y x x x y =-=,得016(,3)2M x x +. 又(0,3)N ,所以圆心0013(,3)4C x x +,半径0011324r MN x x ==+,AB ===所以点P 在曲线Γ上运动时,线段AB 的长度不变.解法二:(1)设(,)S x y 为曲线Γ上任意一点,则(3)2y --==,依题意,点(,)S x y 只能在直线=3y -的上方,所以3y >-,1y =+,化简得,曲线Γ的方程为24x y =.(2)同解法一.考点:抛物线的定义,导数的几何意义,直线方程,直线与抛物线的位置关系,直线与圆的位置关系. 7.C【详解】①抛物线C 方程为22(0)y px p =>,①焦点(,0)2pF ,设(,)M x y ,由抛物线性质52p MF x =+=,可得52p x =-,因为圆心是MF 的中点,所以根据中点坐标公式可得,圆心横坐标为52,由已知圆半径也为52,据此可知该圆与y 轴相切于点(0,2),故圆心纵坐标为2,则M 点纵坐标为4, 即(5,4)2pM -,代入抛物线方程得210160p p -+=,所以p=2或p=8. 所以抛物线C 的方程为24y x =或216y x =. 故答案C.【点睛】本题主要考查了抛物线的定义与简单几何性质,圆的性质和解直角三角形等知识,属于中档题,本题给出抛物线一条长度为5的焦半径MF ,以MF 为直径的圆交抛物线于点(0,2),故将圆心的坐标表示出来,半径求出来之后再代入到抛物线中即可求出p 的值,从而求出抛物线的方程,因此正确运用圆的性质和抛物线的简单几何性质是解题的关键. 8.B【分析】根据给定条件,确定点M 所在的轨形迹图,再利用该图形的性质即可求解作答.【详解】依题意,正方体1111ABCD A B C D -,当点P 与A 不重合时,AQ AP ⊥,如图,因点M 为线段PQ 的中点,则12AM PQ ==P 与A 重合时,12AM PQ ==即无论点P ,Q 如何运动,总有AM M 在以点A 18球面上,而16AC ==,所以线段1C M 长度的最小值是16AC = 故选:B【点睛】结论点睛:球面一点与球面上的点间距离最小值等于这一点与球心距离减球半径;球面一点与球面上的点间距离最大值等于这一点与球心距离加球半径,9.【分析】先由+=PA PB P 的轨迹是椭圆,由点D 在底面ABC 上的射影恰为短轴端点E ,得到PD =)P θθ,求出PE 最大值,进而得到PD 的最大值.【详解】取AB 的中点O ,连接OC ,以AB 为x 轴,OC 为y 轴,建立直角坐标系,则点P 在以A ,B 为焦点的椭圆上,且3==a c ,①23b =,即椭圆方程为221123x y +=,易知点D 在底面ABC 上的射影恰为短轴端点E ,DE ==①==PD设)P θθ,由E ,则2222112cos 3sin 6sin 39sin 163⎛⎫=+-+=-++ ⎪⎝⎭PE θθθθ,①()2max16=PE,当1sin 3θ=-取得,①max ||==PD故答案为:【点睛】本题关键点在于确定点P 的轨迹是椭圆,由点D 在底面ABC 上的射影恰为短轴端点E ,将PD 的最大值转化为PE 最大值,再借助椭圆的参数方程求出PE 最大值即可. 10.A【分析】由条件确定点P 的轨迹,结合抛物线的定义,圆的性质求MF MP +的最小值. 【详解】① 抛物线C 的方程为24y x =, ① (1,0)F ,抛物线C 的准线方程为=1x -,① 方程()1210a x y a -+-+=可化为()1(1)2y a x -=--, ①()1210a x y a -+-+=过定点(2,1)B ,设(,)P x y ,设,F B 的中点为A ,则31,22A ⎛⎫⎪⎝⎭,因为FP BP ⊥,P 为垂足,①122PA FB ==,所以22311222x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,即点P 的轨迹为以A 过点M 作准线=1x -的垂线,垂足为1M ,则1MM MF =,① 1=MF MP MM MP ++,,又MP MA ≥,当且仅当,,M P A 三点共线且P 在,M A 之间时等号成立,① 1MF MP MM MA +≥+, 过点A 作准线=1x -的垂线,垂足为1A ,则115=2MM MA AA +≥,当且仅当1,,A M A 三点共线时等号成立,① MF MP +≥1,,,A M P A 四点共线且P 在,M A 之间时等号成立,所以MF MP +故选:A.11.C【分析】设()()1122,,,-A x kx B x kx ,由于AOB 的面积为定值,可得出12x x 为定值,设12=x x T ,设线段AB 的中点为M,因为()22224M M y x T k ⎛⎫-=± ⎪⎝⎭,即可得出线段AB 的中点的轨迹为双曲线.【详解】设()()1122,,,-A x kx B x kx ,则12||,||==OA OB .由于AOB 的面积为定值且sin AOB ∠为定值,从而12x x 为定值,设12=x x T . 设线段AB 的中点为M ,则122M x x x +=,()122-=M k x x y , 故()()()22221212122244⎛⎫-=+--==± ⎪⎝⎭M M y x x x x x x x T k 为定值, 从而线段AB 的中点的轨迹为双曲线. 故选:C. 12.3π 【分析】由题意,可知P 的椭圆轨迹,即可知当PA PB =,即P 在椭圆短轴的顶点上时APB ∠最大,即可求最大值.【详解】由题设,ABC ⊥平面,D α为AB 中点,2AB =,60CDB ∠=,点P 为平面α内动点,且P 到直线CD①P 是以CD 为轴,α相交的椭圆轨迹上,即以D 为中心,A B 为焦点,2b =24a ==为长轴长的椭圆上,如下图示,①由椭圆的性质知:当且仅当PA PB =,即P 在椭圆短轴的端点上时,APB ∠最大有3APB π∠=.故答案为:3π. 【点睛】关键点点睛:根据题设,确定P 在圆柱体在平面α的交线上,以D 为中心,A B 为焦点, 4为长轴长的椭圆.13.【分析】根据抛物线的定义,可知点P 是以M 为焦点,以AD 为准线的抛物线,然后根据空间中两点的距离来求解.【详解】由P 到平面11ADD A 的距离等于线段PM 的长度,可知点P 是以M 为焦点,以AD 为准线的抛物线.以AM 中点为坐标原点,建立如图所示的空间直角坐标系.()1,0,0M ()13,0,4B ,设(),0P x y ,点P 的方程为:()24,03y x x =≤≤1B P 当1x =时,1B P 长度最小为故答案为: 14.(1)24y x =;(2)λ的取值范围为(--.【分析】(1)根据曲线轨迹方程的定义求解;(2)设切线BP 的方程为12y k x +=(﹣)BQ 的方程为22y k x +=(﹣)12k k += 212284r k k r =--,再求出122y y t +==-,即得解.(1) 设(,)P x y ,|1|x =+, 化简得()222(1)1x y x -+=+, 所以24y x =,所以曲线C 的方程为24y x =, (2)由已知2B(,所以切线,BP BQ 的斜率存在,设切线BP 的方程为12y k x -+=() 则圆心40M (,)到切线AP的距离d r ==,所以22211480r k r -++()﹣=, 设切线BQ 的方程为22y k x -+=()同理可得22222480r k r -++()﹣=, 所以12kk ,是方程222480r k r -++()﹣=的两根,所以12k k += 212284r k k r =--,设1122(,),(,)P x y Q x y ,联立12(2)4y k x y x ⎧=-+⎪⎨=⎪⎩211048k y y k +﹣﹣,所以11=所以114y k =-,同理224y k =-,所以121244(=22y y k k λ-+-++=12112k k ⎛⎫⋅+ ⎪⎝⎭=12122k k k k +⋅=﹣224284r r r -=-⋅--=- 因为02r <<,所以2111884r <<-所以--<- 所以λ的取值范围为(--.【点睛】求取值范围常用的方法有:(1)函数法;(2)导数法;(3)基本不等式法;(4)基本不等式法. 要根据已知条件灵活选择方法求解. 15.(1)动点P 的轨迹方程为椭圆22154x y +=(2)[7,1)(1,7]--【分析】(1)设动点P 的坐标为(,)x y ,根据题意列式再化简方程求解即可;(2)设()()1122,,,M x y N x y ,再根据,AM AN 的直线方程得出,K H x x ,联立直线MN 与椭圆的方程,得出韦达定理与判别式中k 的范围,进而将韦达定理代入||||QH QK +化简可得||7k ≤,结合判别式中k 的范围即可得(1)设动点P 的坐标为(,)x y,因为||PF d ==2225(1)|5|x y x ⎡⎤++=+⎣⎦,整理得22154x y +=.所以动点P 的轨迹方程为椭圆22154x y +=. (2)设()()1122,,,M x y N x y ,由(1)可得A 的坐标为(0,2)-, 故直线112:2y AM y x x +=-,令=3y -,则112H xx y =-+,同理222K x x y =-+.直线:3MN y kx =-,由2234520y kx x y =-⎧⎨+=⎩,消去y 得()224530250k x kx +-+=, 故()22Δ900100450k k =-+>,解得1k <-或1k >.又1212223025,4545k x x x x k k +==++,故120x x >, 又1212||||22H K x xQH QK x x y y +=+=+++ ()()22121212222121212225030245455||253011114545k kkx x x x x x k k k k k kx kx k x x k x x k k --+++=+===---++-+++, ①||||35QH QK +≤, 故5||35k ≤,即||7k ≤, 综上,71k -≤<-或17k <≤. 所以k 的取值范围是[7,1)(1,7]--.16.(1)22198x y ;(2)⎛-⋃ ⎝⎭⎝. 【分析】(1)设动圆M 的半径为r ,分析得出1262MF MF +=>,利用椭圆的定义可知点M的轨迹为椭圆,确定该椭圆的焦点,求出a 、b 、c 的值,即可得出轨迹E 的方程; (2)设点()11,A x y 、()22,B x y ,设直线l 的方程为2y x m =-+,将直线l 的方程与椭圆的方程联立,列出韦达定理,由已知条件得出0OA OB ⋅>,结合0∆>可得出关于实数m 的不等式组,由此可解得实数m 的取值范围.【详解】(1)设动圆M 的半径为r ,由图可知,圆1F 内含于圆2F ,圆1F 的半径为1,圆2F 的半径为5.动圆M 与定圆1F 外切,则11MF r =+,动圆M 与定圆2F 内切,则25MF r =-, 由题意知:()()121562MF MF r r +=++-=>,根据椭圆定义,圆心M 的轨迹是以原点为中心,1F 、2F 为焦点,长半轴长3a =,半焦距1c =的椭圆,2228b a c ∴=-=,E ∴的方程为22198x y ;(2)直线l 的方向向量为()1,2a =-,所以直线l 的斜率为2-. 设点()11,A x y 、()22,B x y ,设直线l 的方程为2y x m =-+,由222198y x m x y =-+⎧⎪⎨+=⎪⎩得2244369720x mx m -+-=.直线l 与椭圆E 有两个交点,所以,()()22223644498288440m m m ∆=-⨯⨯-=->,解得m -<<由韦达定理可得12911m x x +=,21297244m x x -=,AOB ∠为锐角,()()1212121222OA OB x x y y x x x m x m ∴⋅=+=+-+-+()()22212122597223652401444736044m m m x x m x x m m m -==-⨯⋅-++-+=>,m ∴>m <综上,直线l 的纵截距m 的取值范围为⎛-⋃ ⎝⎭⎝. 【点睛】方法点睛:圆锥曲线中的取值范围问题的求解方法(1)函数法:用其他变量作为参数,建立函数关系,利用求函数值域的方法求解. (2)不等式法:根据题意建立含参数的不等式,通过解不等式求参数的取值范围. (3)判别式法:建立关于某变量的一元二次方程,利用根的判别式求参数的取值范围. (4)数形结合法:研究参数所表示的几何意义,利用数形结合思想求解.17.(①)答案见解析;(①)⎡⎣.【详解】试题分析:(①)利用椭圆定义求方程;(①)把面积表示为关于斜率k 的函数,再求最值.试题解析:(①)因为,,故,所以,故. 又圆的标准方程为,从而,所以. 由题设得,,,由椭圆定义可得点的轨迹方程为:().(①)当与轴不垂直时,设的方程为,,.由得.则,.所以.过点且与垂直的直线:,到的距离为,所以.故四边形的面积.可得当与轴不垂直时,四边形面积的取值范围为()12,83.当与轴垂直时,其方程为,,,四边形的面积为12.综上,四边形面积的取值范围为.【考点】圆锥曲线综合问题【名师点睛】高考解析几何解答题大多考查直线与圆锥曲线的位置关系,直线与圆锥曲线的位置关系是一个很宽泛的考试内容,主要由求值、求方程、求定值、求最值、求参数取值范围等几部分组成.其中考查较多的圆锥曲线是椭圆与抛物线,解决这类问题要重视方程思想、函数思想及化归思想的应用.18.(1)2214x y +=,223x y +=;(2)①;①y =+【分析】(1)根据条件易得圆的半径,即得圆的标准方程,再根据点在椭圆上,解方程组可得a ,b ,即得椭圆方程;(2)方法一:①先根据直线与圆相切得一方程,再根据直线与椭圆相切得另一方程,解方程组可得切点坐标;①先根据三角形面积得三角形底边边长,再结合①中方程组,利用求根公式以及两点间距离公式,列方程,解得切点坐标,即得直线方程. 【详解】(1)因为椭圆C 的焦点为()12,F F ,可设椭圆C 的方程为22221(0)x y a b a b+=>>.又点12⎫⎪⎭在椭圆C 上,所以2222311,43,a b a b ⎧+=⎪⎨⎪-=⎩,解得224,1,a b ⎧=⎨=⎩因此,椭圆C 的方程为2214x y +=.因为圆O 的直径为12F F ,所以其方程为223x y +=. (2)[方法一]:【通性通法】代数法硬算①设直线l 与圆O 相切于()0000,(0,0)P x y x y >>,则22003x y +=,所以直线l 的方程为()0000x y x x y y =--+,即0003x y x y y =-+. 由22000143x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩,消去y ,得()222200004243640x y x x x y +-+-=(*),因为直线l 与椭圆C 有且只有一个公共点,所以()()()()22222200000024443644820x x y y y x ∆=--+-=-=.因为00,0x y >,所以001x y =,因此,点P的坐标为. ①因为三角形OAB,所以12AB OP ⋅=,从而AB = 设()()1122,,,A x y B x y ,由(*)得1,20024x x y =+所以()()2221212AB x x y y =-+-()()222000222200048214y x x y x y -⎛⎫=+⋅ ⎪⎝⎭+. 因为22003x y +=,所以()()2202216232491x AB x-==+,即42002451000x x -+=,解得22005(202x x ==舍去),则2012y =,因此P的坐标为⎝⎭. 综上,直线l的方程为y =+[方法二]: 圆的参数方程的应用设P点坐标为π),0,2ααα⎛⎫∈ ⎪⎝⎭.因为原点到直线cos sin x y αα+=d r ==,所以与圆O 切于点P 的直线l的方程为cos sin x y αα+=由22cos sin 1,4x y x y αα⎧+=⎪⎨+=⎪⎩消去y ,得()()22213cos )124sin 0x x ααα+-+-=. ①因为直线l 与椭圆相切,所以()()22Δ16cos 23cos 20αα=-⋅--=.因为π0,2α⎛⎫∈ ⎪⎝⎭,所以cos (0,1)α∈,故cos α=,sin α=.所以,P点坐标为.①因为直线:cos sin l x y αα+=O 相切,所以OAB 中边ABr =,因为OAB,所以||AB = 设()()1122,,,A x y B x y ,由①知22121222124sin 84cos 13cos 13cos x x x x αααα-++===++||AB ==, 即64218cos 153cos 235cos 1000ααα-+-=,即()()()2226cos 5cos 13cos 200ααα---=.因为π0,2α⎛⎫∈ ⎪⎝⎭,所以cos (0,1)α∈,故25cos 6α=,所以cos αα==所以直线l的方程为y =+.[方法三]:直线参数方程与圆的参数方程的应用设P点坐标为π),0,2ααα⎛⎫∈ ⎪⎝⎭,则与圆O 切于点P 的直线l 的参数方程为:πcos2πsin2x ty tαααα⎧⎛⎫=++⎪⎪⎪⎝⎭⎨⎛⎫⎪=++⎪⎪⎝⎭⎩(t为参数),即sincosx ty tαααα⎧=-⎪⎨=+⎪⎩(t为参数).代入2214xy+=,得关于t的一元二次方程()()22213cos cos)89cos0t tαααα+++-=.①因为直线l与椭圆相切,所以,()()222Δcos)413cos89cos0αααα=-+-=,因为π0,2α⎛⎫∈ ⎪⎝⎭,所以cos(0,1)α∈,故cosα=,sinα=.所以,P点坐标为.①同方法二,略.【整体点评】(2)方法一:①直接利用直线与圆的位置关系,直线与椭圆的位置关系代数法硬算,即可解出点P的坐标;①根据三角形面积公式,利用弦长公式可求出点P的坐标,是该题的通性通法;方法二:①利用圆的参数方程设出点)αα,进而表示出直线方程,根据直线与椭圆的位置关系解出点P的坐标;①根据三角形面积公式,利用弦长公式可求出点P的坐标;方法三:①利用圆的参数方程设出点)αα,将直线的参数方程表示出来,根据直线与椭圆的位置关系解出点P的坐标;①根据三角形面积公式,利用弦长公式可求出点P的坐标.19.(1)28x y=(2)是定值,23(1)64m+【分析】(1)由题意得FM MN=,结合抛物线的定义即可求得点M的轨迹方程;(2)设出直线AB的方程,联立抛物线求得AB的中点Q坐标,再联立切线与抛物线求出切点坐标,得到CQ x⊥轴,结合2211x x m=-+以及1212ABCCS Q x x=⋅-求得23(1)64ABCmS+=即可求解.(1)。
解析几何复习专题三动点轨迹的求法

专题三 动点轨迹的求法一、直译法:(建、设、限、代、化)例1、已知|AB |=6,动点P 满足)(0||||>=λλPB PA ,求动点P 的轨迹方程,并讨论其轨迹。
二、相关点法(适合两个动点Q P ,,已知点P 的轨迹方程,而点Q 随着点P 的运动而运动,求点Q 的轨迹方程)例1、已知抛物线y 42=x 上两个动点A 、B ,定点C (4,0)求⊿ABC 的重心G 的轨迹方程。
例2、已知点P 在圆922=+y x 上,PA ⊥x 轴,垂足为A ,点M 满足MP AM 2=,求动点M 的轨迹方程。
例3、已知抛物线x 4y 2=,过定点A (0,-2)作一直线l 交抛物线于B 、C 两点,以OB 、OC 为邻边作一平行四边形OBMC ,求动点M 的轨迹方程。
例4、(2017新课标Ⅱ)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足2NP =u u u r u u u r .(1)求点P 的轨迹方程; (2)设点Q 在直线3x =-上,且1OP PQ ⋅=u u u r u u u r .证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .例5 、一种作图工具如图1所示.O 是滑槽AB 的中点,短杆ON 可绕O 转动,长杆MN 通过N 处铰链 与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动,且1DN ON ==,3MN =.当栓子D 在滑槽AB 内作往复运动时,带动..N 绕O 转动一周(D 不动时,N 也不动),M 处的笔尖画出的曲线记为C .以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系.(Ⅰ)求曲线C 的方程;(Ⅱ)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l 总与曲线C 有且只有一个公共点,试探究:△OPQ 的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.三、定义法(当动点M 满足椭圆、双曲线、抛物线、圆的定义时,用定义直接写出方程)例1,设圆C 与两圆中的一个内切,另一个外切.求C 的圆心轨迹L 的方程;例3、已知一动点P 到定点M (1,0)的距离比到直线2-=x 的距离少1,求动点P 的轨迹方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求动点轨迹方程专题解析
一、直接法
步骤:1、建立恰当的坐标系,设动点坐标()y x ,;
2、由已知条件列出几何等量关系式,建立关于y x ,的方程()0=y x f ,;
3、化简整理;
4、检验,检验点轨迹的纯粹性与完备性。
[例1] 已知圆O 的方程是022
2
=-+y x ,圆O '的方程是01082
2
=+-+x y x ,如图所示。
由动点P 向圆O 和圆O '所引的切线长相等,求动点P 的轨迹方程。
【解析】
设()y x P ,,由圆O 的方程为:22
2
=+y x ,圆O '的方程为
()6422=+-y x 。
由已知得BP AP =,所以22BP AP =,
所以2222B O P O OA OP '-'=-,则622
2-'=-P O OP 。
所以()6422
2
22-+-=-+y x y x ,化简得2
3=
x 。
所以动点P 的轨迹方程为2
3=x 。
[练习1] 已知平面上两定点()20-,
M ,()20,N ,点P 满足MN PN MN MP ⋅=⋅,求点P 的轨
迹方程。
【解析】
设()y x P ,,则()2+=y x MP ,,()40,=MN ,()y x PN --=2,,因为MN PN MN MP ⋅=⋅,所以()()2
2
2424y x y -+=+,所以()2222y x y -+=
+。
两端同时平方得:2
2
2
4444y y x y y +-+=++,整理得:y x 82
=。
所以点P 的轨迹方程为y x 82
=
二、定义法
步骤:1、分析几何关系;
2、由曲线的定义直接得出轨迹方程。
[例2] 已知圆A :()3622
2
=++y x ,()02,
B ,点P 是圆A 上的动点,线段PB 的中垂线交PA 于点Q ,求动点Q 的轨迹方程。
【解析】 由题可得,()02,
-A ,4=AB 。
因为Q 点在线段PB 的中垂线上,所以QB PQ =。
所以AB PA PQ QA QB QA >==+=+6,
所以Q 点的轨迹是以B A ,为焦点的椭圆。
设其方程为()0122
22>>=+b a b
y a x 。
则⎪⎩⎪
⎨⎧+===22226
2c b a c a ,即⎪⎩
⎪⎨⎧===2
53c b a ,所以Q 点的轨迹方程为15922=+y x 。
[练习2] 已知圆1C :()1322
=++y x 和圆2C :()932
2
=+-y x ,动圆M 同时与圆1C 及圆2C 相外切,求
动圆圆心M 的轨迹方程。
【解析】 设动圆M 与圆1C 和圆2C 分别相切于点A 和点B , 所以MB MA =,所以MA AC MC =-11,MB BC MC =-22 上式相减得:2131212=-=-=-AC BC MC MC ,且621=C C 。
所以21122C C MC MC <=-,
所以动点M 的轨迹是以1C ,2C 为焦点的双曲线左支。
其中322==c a ,,所以1=a 。
所以动点M 的轨迹方程为()118
2
2
-≤=-x y x
三、相关点法
步骤:1、设所求轨迹的动点为()y x P ,,相关点()00y x Q ,;
2、根据点的产生过程,找到()y x ,和()00y x ,的关系,并将00y x ,用y x ,表示;
3、将()00y x ,代入相关点的曲线,化简即可得到所求轨迹方程。
[例3] 已知点P 在椭圆142
2=+y x 上运动,过P 作y 轴的垂线,垂足为Q ,点M 满足
PQ PM 3
1=,求动点M 的轨迹方程。
【解析】 设()00y x P ,,()y x M ,,则()00y Q ,
, 所以()00y y x x --=,,()00,x -=。
因为31=,所以⎪⎩⎪⎨⎧=--=-0
3000y y x x x ,所以⎪⎩⎪⎨⎧
==y y x
x 0023①。
因为点P 在椭圆1422=+y x 上,所以14
2
02
0=+y x , 把①带入得
116922=+y x ,所以动点M 的轨迹方程为116
9
22=+y x 。
[练习3] 过双曲线12
2
=-y x 上一点Q 作直线2=+y x 的垂线,垂足为N ,求线段QN 的中点P 所形成的曲线方程。
【解析】 设动点()y x P ,,点()00y x Q ,,则()0022y y x x N --,。
把N 带入直线2=+y x 得:22200=-+-y y x x ① 右因为PQ 垂直于直线2=+y x ,所以
10
-=--x x y y ② 由①②可得:121230-+=
y x x ,12
3
210-+=y x y 。
带入双曲线方程得:112321121232
2
=⎪⎭
⎫
⎝⎛-+-⎪⎭⎫ ⎝⎛-+y x y x 。
整理得:0122222
2
=-+--y x y x 。
所以动点P 的曲线方程为0122222
2
=-+--y x y x 四、参数法
步骤:1、引入参数;
2、将所求轨迹的点()y x ,用参数表示;
3、消去参数;
4、研究范围。
[例4] 过点()10,
的直线l 与椭圆14
2
2
=+y x 相交于B A ,两点,求AB 中点M 的轨迹方程。
【解析】 当直线l 斜率不存在时,易知M 点即为原点O 。
当直线l 斜率存在时,设其方程为:1+=kx y ,()11y x A ,,()22y x ,,()y x M ,。
由⎪⎩
⎪⎨⎧=++=14122
y x kx y ,得()032422=-++kx x k ,显然满足判别式0>∆。
所以42221+-=
+k k x x ,()4
8
222
121+=++=+k x x k y y 。
由M 为AB 中点,所以⎪⎪⎩
⎪⎪⎨⎧
+=+=+-=+=44242221221k y y y k k x x x ,消去参数k 得042
2=-+y y x 。
显然原点也满足上式方程。
所以M 的轨迹方程为042
2
=-+y y x
[练习4] 过抛物线()022
>=p px y 的顶点O 作两条垂直的弦OA ,OB ,
求线段AB 中点M 的轨迹方程。
【解析】 由题可得OB OA ,所在直线斜率存在,设(
)
12
122pt pt A ,
,(
)
22
222pt pt B ,。
因为OB OA ⊥,所以122222
2
2
211-=⋅=
⋅pt pt pt pt k k OB OA ,即121-=t t 。
设AB 中点为()y x M ,,则()
()⎪⎪⎩
⎪⎪⎨⎧+=+=+=+=212122212
221222222t t p pt pt y t t p pt pt x , 消去21t t ,得:2
22p px y -=
五、待定系数法
步骤:根据给出的带有参数的方程以及该曲线所具备的一些性质确定参数,然后求解方程。
即设法建立关于b a ,的方程组,先定性,再定量,若位置不确定时,考虑是否两解。
[例5] 已知点P 在以坐标轴为对称轴的椭圆上,且P 到两焦点的距离分别为5、3,过P 且与长轴垂直的直线恰过椭圆的一个焦点,求椭圆的方程。
【解析】 设所求的椭圆方程为()012222>>=+b a b y a x 或()0122
22>>=+b a b
x a y 。
由题可得:()⎪⎩⎪⎨⎧+=-=+=222222
3525
32c b a c a ,解得⎪⎩
⎪⎨⎧===2324c b a 。
故所求方程为
1121622=+y x 或112
162
2=+x y 。
[练习5] 易知椭圆C ()012222>>=+b a b
y a x 的右焦点1F 与抛物线x y 42
=的焦点重合,原点到过点
()0,a A ,()b B -,0的直线距离为
7
21
2,求椭圆C 的标准方程。
【解析】 抛物线x y 42
=焦点坐标为()01,
,所以1=c 。
直线AB 所在直线方程为:
1=-b
y
a x ,即0=--a
b ay bx 。
所以原点到直线AB 的距离为7
21
22
2=
+=
-b a ab d AB O 。
所以⎪⎩⎪⎨⎧==-=+1
72122
2222c b a b a ab ,解得⎪⎩⎪
⎨⎧==3422
b a 。
所以椭圆C 的标准方程为13
42
2=+y x。