立体几何中的动点问题解题策略

合集下载

谈立体几何中动点轨迹问题的解题策略

谈立体几何中动点轨迹问题的解题策略

立体几何中的动点轨迹问题是一个常见的问题类型,它涉及到空间几何中的点、线、面等元素的运动和变化。

解决这类问题的关键在于理解运动和变化的过程,并能够通过数学模型进行描述。

解题策略主要包括以下几个方面:
1. **建立空间坐标系**:为了更好地描述空间几何元素的位置和运动,需要建立一个适当的空间坐标系。

坐标系的建立应依据问题的具体情境和需求,通常选择一个固定点作为原点,并确定三个互相垂直的轴。

2. **确定动点的坐标**:在确定了坐标系之后,需要确定动点的坐标。

这可以通过设定动点的坐标变量来实现,例如设动点的坐标为$(x, y, z)$。

3. **分析运动过程**:在确定了动点的坐标后,需要分析动点的运动过程。

这包括了解动点的运动方向、速度、加速度等参数,以及这些参数与坐标变量的关系。

4. **建立数学模型**:通过分析运动过程,可以建立描述动点运动的数学模型。

这通常涉及到物理、几何、代数等多个方面的知识,需要根据具体问题进行选择和应用。

5. **求解数学模型**:建立了数学模型后,需要求解该模型以得到动点的轨迹方程。

这可能涉及到微积分、线性代数、解析几何等多个数学领域的知识,需要根据问题的复杂程度和要求进行选择和应用。

6. **验证答案**:最后,需要对得到的答案进行验证,以确保其正确性和有效性。

这可以通过将答案代入原问题中进行检验,或者通过与其他已知的答案进行比较来进行验证。

综上所述,解决立体几何中的动点轨迹问题需要综合运用空间几何、物理、数学等多个领域的知识,并能够根据具体问题进行选择和应用。

同时,还需要有一定的逻辑思维和分析能力,以更好地理解和解决这类问题。

如何求解与动点有关的立体几何问题

如何求解与动点有关的立体几何问题

与动点有关的立体几何问题中的点、线、面的位置往往是不确定的或可变的,此类问题的难度较大,对同学们的空间想象能力和逻辑推理能力有较高的要求.那么求解这类问题有哪些方法呢?下面一起来探讨.一、利用函数思想当问题中的某些点、线、面发生变化时,某些位置关系或量就会发生变化,还会引发其他变量的变化,此时我们可根据题意选择合适的量作为变量,建立关于该变量的函数关系式,运用函数思想,将立体几何问题转化为函数问题,利用函数的图象和性质来解题.例1.已知正四面体ABCD 的棱长为1,P 为棱AB 上的动点(端点A 、B 除外),过点P 作平面α垂直于AB ,平面α与正四面体的表面相交.记AP =x ,则交线围成的图形面积S =f ()x 的图象大致为().A CB D解:取线段AB 的中点O ,连接OC 、OD ,因为△ABC 、△ABD 为等边三角形,O 为AB 的中点,则OC ⊥AB ,OD ⊥AB ,因为OC ⋂OD =O ,OC 、OD ⊂平面OCD ,所以AB ⊥平面OCD ,因为AB ⊥平面α,所以平面α与平面OCD 平行或重合,且OD =OC =AC 2-OA 2取CD 的中点M ,连接OM ,则OM ⊥CD ,且OM =OC 2-CM 2故S △OCD =12CD ⋅OM①当0<x <12时,平面α//平面OCD ,平面α⋂平面ABC =PE ,平面OCD ⋂平面ABC =OC ,则PE //OC ,同理可得,PF //OD ,EF //CD ,所以PE OC =AE AC =EF CD =AF AD =PF OD ,故△PEF ∽△OCD .由图1可知SS △OCD =()AP AO2=4x 2,则S =f ()x =2x 2;图1图2②当x =12时,S =f ()12③当12<x <1时,平面α//平面OCD ,平面α⋂平面ABC =PE ,平面OCD ⋂平面ABC =OC ,则PE //OC ,同理可得,PF //OD ,EF //CD ,所以PE OC =BE BC =EF CD =BF BD =PF OD ,故△PEF ∽△OCD ,由图2可知SS △OCD =()BP BO2=4()1-x 2,则S =f ()x =2()1-x 2.综上所述,S =f ()x =ìíîïïïï2x 2,0<x ≤12,2()x -12,12<x <1,故函数f ()x 的图象为C 选项中的图象.故C 项正确.由于P 为棱AB 上的动点,所以我们以AP =x 为自变量,根据正四面体ABCD 的特征,以及点、线、面的位置关系得到当0<x <12和12<x <1时关于x 的函数式,将与动点有关的立体几何问题转化为函数问题,根据函数式画出函数的图象,即可解题.二、构造空间向量向量法是指通过构建空间直角坐标系,将问题转化为空间向量运算问题来求解.由于无法确定问题中动点的位置,所以不妨建立空间直角坐标系,设出动点的坐标,给各条线段赋予方向,根据点、线、面的位置关系建立关于动点坐标的关系式,进而求得动点的轨迹方程,从而求得问题的答案.例2.(多选题)已知正方体ABCD -A 1B 1C 1D 1的边长53为2,点P ,Q 分别在正方形A 1B 1C 1D 1的内切圆,正方形C 1D 1DC 的外接圆上运动,则().A. PQ ⋅CD ≤2+22 B.|PQ|≥3-2C.∠PAQ >π8D.∠PAQ <π2解:以A 为原点, AD , AA 1,AB 为x ,y ,z 轴的正方向建立空间直角坐标系.设P (1+cos α,2,1+sin α),Q (2,1+2cos β,1+2sin β),可得C ()2,0,2,D ()2,0,0,则 CD =()0,0,-2,PQ =()1-cos α,2cos β-1,2sin β-sin α,所以 PQ ⋅CD =2(sin α-2sin β)≤2+22,故A 选项正确;而|PQ |2=(1-cosα)2+(2cos β-1)2+(2sin β-sin α)2=5-2cos α-22cos β-22sin αsin β≥5-22cos β-4+8sin 2β,记t =22cos β,|PQ |2≥5-t -12-t 2≥5-2=5-26=(3-2)2,故B 选项正确;取C 1D 1的中点M ,AM 穿过一侧的外接圆,取A 1B 1的中点M ′,则AM ′不穿过,故必存在点P ,使得AP 经过外接圆,设公共点为Q ,此时P ,A ,Q 共线,故C 选项不正确;假设D 选项成立,则 AP ⋅AQ =2(1+cos α)+2(1+2cos β)+(1+sin α)(1+2sin β)>0,取α=π,β=54π,得 AP ⋅ AQ =0,即∠PAQ =π2,故D 选项不正确.所以本题的正确答案为AB 两项.建立空间直角坐标系后,求得各个点的坐标,各条线段的方向向量,即可利用空间向量数量积公式、向量的模的坐标公式进行运算,从而确定正确的选项.三、采用转化法动和静是相对的.在动点运动的过程中,要善于寻找或构造与之相关的一些不变量,将一些变化的点、线、面的关系、位置进行合理的转换,如将动点到直线的距离转化为动点所在直线与另一条直线之间的距离、动点所在的平面与另一条直线之间的距离;将动点的位置视为静止的点,以化动为静,构建关系式,运用转化法顺利求得问题的答案.例3.若直线m ⊥平面α,垂足是O ,正四面体ABCD 的棱长为4,点C 在平面α上运动,点B 在直线m 上运动,则点O 到直线AD 的距离的取值范围是().A.éëêêùûúú42-52,42+52 B.[]22-2,22+2C.éëêêùûúú3-222,3+222 D.[]32-2,32+2图3解:如图3,分别取BC ,AD 的中点M ,N ,连接AM ,MD ,MN ,则AM ⊥BC ,MD ⊥BC ,又AM ⋂MD =M ,AM ⊂平面AMD ,MD ⊂平面AMD ,则BC ⊥平面AMD ,又MN ⊂平面AMD ,则MN ⊥BC .在RtΔABM 中,AM =AB 2-BM 2=42-22=23,在等腰ΔAMD 中,MN ⊥AD ,可得MN =AM 2-AN 2=()232-22=22.若固定正四面体ABCD 的位置,则点O 在以BC 为直径的球上运动,此时球的半径为2,可知点O 到直线AD 的最小距离为球心到直线AD 的距离减去半径,即22-2,最大距离为球心到直线AD 的距离加上半径,即22+2,则点O 到直线AD 的距离的取值范围是[]22-2,22+2.故选B 项.解答本题,需采用转化法,将问题转化为点O 在以BC 为直径的球上运动的问题.再根据BC 与球的位置关系,以及球的性质,将问题转化为求球心到直线AD 的距离.对于与动点有关的立体几何问题,我们不仅要结合图形,发现并关注动点在运动过程中的不变量,还需通过改变视角,将空间中的点、线、面之间的位置关系转化到平面中进行研究、分析,才能顺利求得问题的答案.无论运用哪种方法解答与动点有关的立体几何问题,都需结合几何图形来分析问题,灵活运用数形结合思想,这样才能达到事半功倍的效果.(作者单位:安徽省阜南第二中学)54。

立体几何动态问题的求解策略

立体几何动态问题的求解策略

立体几何动态问题的求解策略类型一. 立体几何中动态问题中的角度问题例题1:如图,四边形ABCD和ADPQ 均为正方形,它们所在的平面互相垂直,动点M在线段PQ上,E、F分别为AB、BC的中点.设异面直线EM与AF所成的角为θ,则θcos的最大值为答案:25解析:281161814552yy tt+=≥++-,当1t=时取等号.所以2211222cos511555451144yyyθ-+==≤⨯=⋅++⋅++,当0y=时,取得最大值.zyxFMEQ PDCB【指点迷津】空间的角的问题,一种方法,代数法,只要便于建立空间直角坐标系均可建立空间直角坐标系,然后利用公式求解;另一种方法,几何法,几何问题要结合图形分析何时取得最大(小)值.当点M 在P 处时,EM 与AF 所成角为直角,此时余弦值为0(最小),当M 点向左移动时,EM 与AF 所成角逐渐变小时,点M 到达点Q 时,角最小,余弦值最大.例题2:如图,在正方体1111ABCD A B C D -中,点O 为线段BD 的中点.设点P 在线段1CC 上,直线OP 与平面1A BD 所成的角为α,则sin α的取值范围是 A .3[,1]3 B .6[,1]3 C .622[,]33 D .22[,1]3答案:B 解析:111133212222cos ,sin 33322A OC A OC +-∠==∠=⨯,11313622cos ,sin 33322A OC A OC +-∠==-∠=⨯. 又直线与平面所成的角小于等于90,而1A OC ∠为钝角,所以sin α的范围为6[,1]3,选B. 例题3:在正方体ABCD-A 1B 1C 1D 1中,E 是侧面ADD 1A 1内的动点,且B 1E ∥平面BDC 1,则直线B 1E 与直线AB 所成角的正弦值的最小值是A. B.C. D.【答案】B【解析】解:以D为原点,DA为x轴,DC为y轴,为z轴,建立空间直角坐标系,设正方体中棱长为1,设0,,,,1,,1,,0,,1,,,1,,1,,设平面的法向量y,,则,取,得,平面,,解得,,,设直线与直线AB 所成角为,1,,,,,.直线与直线AB 所成角的正弦值的最小值是.3、如图,已知平面αβ⊥,l αβ=,A 、B 是直线l 上的两点,C 、D 是平面β内的两点,且DA l ⊥,CB l ⊥,3AD =,6AB =,6CB =.P 是平面α上的一动点,且直线PD ,PC 与平面α所成角相等,则二面角P BC D --的余弦值的最小值是( )A 5B .12 C3 D .1【答案】C 【解析】类型二. 立体几何中动态问题中的距离问题例题1:如图,在正方体中,棱长为1,点为线段上的动点(包含线段端点),则下列结论错误的是A.当时,平面B.当为中点时,四棱锥的外接球表面为C.的最小值为D.当时,平面【答案】C【解析】对于,连结,,,则,,,设到平面的距离为,则,解得,∴.∴当时,为与平面的交点.∵平面∥平面,∵平面,∴∥平面,故A正确.又由以上分析可得,当时,即为三棱锥的高,∴平面,所以D正确.对于B,当为中点时,四棱锥为正四棱锥,设平面的中心为,四棱锥的外接球为,所以,解得,故四棱锥的外接球表面积为,所以B正确.对于C,连结,,则,∴,由等面积法得的最小值为,∴的最小值为.所以C不正确.故选:C.【指点迷津】求两点间的距离或其最值.一种方法,可建立坐标系,设点的坐标,用两点间距离公式写出距离,转化为求函数的最值问题;另一种方法,几何法,根据几何图形的特点,寻找那两点间的距离最大(小),求其值. 例题2:在棱长为4的正方体ABCD ﹣A 1B 1C 1D 1中,点E 、F 分别在棱AA 1和AB 上,且C 1E ⊥EF ,则|AF|的最大值为A. B. 1 C. D. 2【答案】B 【解析】以AB ,AD ,AA 1所在直线为x ,y ,z 轴,建立空间直角坐标系如图所示,则C 1(4,4,4),设E (0,0,z ),z ∈[0,4],F (x ,0,0),x ∈[0,4],则|AF|=x .=(4,4,4﹣z ),=(x ,0,﹣z ).因为C 1E ⊥EF ,所以,即:z 2+4x ﹣4z =0,x =z ﹣.当z =2时,x 取得最大值为1.|AF|的最大值为1. 故选:B .例题3. 如图,已知正方体1111ABCD A B C D -棱长为4,点H 在棱1AA 上,且11HA =,在侧面11BCC B 内作边长为1的正方形1EFGC ,P 是侧面11BCC B 内一动点,且点P 到平面11CDD C 距离等于线段PF 的长,则当点P 运动时,2||HP 的最小值是( )A .21B .22C .23D .25 【答案】B 【解析】在1BB 上取点K ,使得11B K =,则HK ⊥面11BCC B ,连结PK ,则222216HP HK PK PK =+=+.在平面11BCC B 上,以1CC 所在直线为x 轴,以GF 所在直线为y 轴,由题意可知,P 点轨迹为抛物线,其方程为221x y -=,K 点坐标为()04,,设()P x y ,,则221x y =-(其中1[22371],x y ⎡⎤∈-∈⎢⎥⎣⎦,,,()22222421816615PK x y y y y y y =+-=-+-+=-+当17,223y ⎡⎤=∈⎢⎥⎣⎦时,2min 6|PK =,故2min |16622HP =+=.例题4:如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 为BC 的中点,点P 在线段D 1E 上,点P 到直线CC 1的距离的最小值为__________.【答案】 255【解析】类型三. 立体几何中动态问题中的面积、体积问题例题1:在棱长为6的正方体中,是中点,点是面所在的平面内的动点,且满足,则三棱锥的体积最大值是()A. 36B.C. 24D.【答案】B【解析】【指点迷津】求几何体体积的最值,先观察几何图形三棱锥P-BCD ,其底面的面积为不变的几何量,求点P 到平面BCD 的距离的最大值,选择公式,可求最值.例题2:《 九章算术》是我国古代数学名著,它在几何学中的研究比西方早一千多年.例如堑堵指底面为直角三角形,且侧棱垂直于底面的三棱柱;阳马指底面为矩形,一侧棱垂直于底面的四棱锥.如图,在堑堵111ABC A B C -中,AC BC ⊥,若12A A AB ==,当阳马11B A ACC -体积最大时,则堑堵111ABC A B C -的体积为( )A .83B .2 C.2 D .22 【答案】C 【解析】例题3:已知矩形ABCD 中, 6,4AB BC ==, ,E F 分别是,AB CD 上两动点,且AE DF =,把四边形BCFE 沿EF 折起,使平面BCFE ⊥平面ABCD ,若折得的几何体的体积最大,则该几何体外接球的体积为( ) A. 28π B. 287π C. 32π D. 642π【答案】D 【解析】例题4:如图,直角三角形,,,将绕边旋转至位置,若二面角的大小为,则四面体的外接球的表面积的最小值为()A.B.C.D.【答案】B【解析】如图,,,分别为,,的中点,作面,作面,连,,易知点即为四面体的外接球心,,,.设,,则,,,.【处理一】消元化为二次函数..【处理二】柯西不等式..所以.类型四. 立体几何中动态问题中的轨迹问题【例4】如图直三棱柱中,为边长为2的等边三角形,,点、、、、分别是边、、、、的中点,动点在四边形内部运动,并且始终有平面,则动点的轨迹长度为()A. B. C. D.【答案】D【解析】因为分别为的中点,所以,,所以平面,平面,又因为,所以平面平面,要使平面,则平面,所以点的轨迹为线段,点的轨迹长度为.故本题正确答案为. 【指点迷津】由已知可知平面HFM ∥平面ACC ’A ’,要始终有MP ∥平面ACC ’A ’,点M 为定点,所以点P 的轨迹为线段HF ,求其长度即可. 例题2:如图,正三棱柱的侧棱长为,底面边长为,一只蚂蚁从点出发沿每个侧面爬到,路线为,则蚂蚁爬行的最短路程是A .B .C .D .【答案】A 【解析】正三棱柱的侧面展开图是如图所示的矩形,矩形的长为,宽为,则其对角线的长为最短程. 因此蚂蚁爬行的最短路程为.故选:A.例题3:在正方体1111ABCD A B C D 中,已知点P 为平面11AA D D 中的一个动点,且点P 满足:直线1PC 与平面11AA D D 所成的角的大小等于平面PBC 与平面11AA D D 所成锐二面角的大小,则点P 的轨迹为A .直线B .椭圆C .圆D .抛物线 【答案】D 【解析】例题4:已知平面平面,,且.是正方形,在正方形内部有一点,满足与平面所成的角相等,则点的轨迹长度为 ( )A. B. C.D.【答案】C 【解析】根据题意,以为原点,分别以所在直线为轴,建立空间直角坐标系,如图1所示,则,,设,易知直线与平面所的角分别为,均为锐角,F E P C 1B 1D 1A 1DCBA z yx类型五. 立体几何中动态问题中的翻折、旋转问题例题1:如图,已知ABC ∆,D 是AB 的中点,沿直线CD 将ACD ∆折成A CD '∆,所成二面角A CDB '--的平面角为α,则( )A.A DB α'∠≤B.A DB α'∠≥C. A CB α'∠≤D.A CB α'∠≤【答案】B. 【解析】试题分析:设ADC θ∠=,设2AB =,则由题意1AD BD ==,在空间图形中,设A B t '=,在A CB '∆中,2222222112cos 22112A D DB AB t t A DB A D DB '+-+--'∠==='⨯⨯⨯,在空间图形中,过A '作AN DC ⊥,过B 作BM DC ⊥,垂足分别为N ,M , 过N 作//NP MB ,连结A P ',∴NP DC ⊥,则A NP '∠就是二面角A CD B '--的平面角,∴A NP α'∠=,在Rt A ND '∆中,cos cos DN A D A DC θ''=∠=,sin sin A N A D A DC θ'''=∠=,【指点迷津】翻折问题,翻折前后在同一个面内的两个量之间的位置关系不变,由于▲ABC 的形状不确定,∠A ’CB 与α的大小关系不确定,在根据二面角的定义可知∠A ’DB ≥α,当且仅当AC=BC 时,等号成立。

2022高考数学立体几何—空间中的动点问题全文

2022高考数学立体几何—空间中的动点问题全文

可编辑修改精选全文完整版立体几何—空间中的动点问题专题综述空间中的动点问题是指在一定的约束条件下,点的位置发生变化,在变化过程中找出规律,将动点问题转化为“定点”问题、将空间问题转化为平面问题、将立体几何的问题转化为解析几何的问题等,目的是把问题回归到最本质的定义、定理或现有的结论中去.立体几何中考查动点问题,往往题目难度较大,渗透化归与转化思想,对学生的逻辑推理能力要求较高.一般考查动点轨迹、动点的存在性、定值、范围、最值等问题,除了利用化动为定、空间问题平面化等方法,在几何体中由动点的变化过程推理出结果以外,也可以通过建系,坐标法构建函数,求得结果.专题探究探究1:坐标法解决动点问题建立空间直角坐标系,使几何元素的关系数量化,借助空间向量求解,省去中间繁琐的推理过程.解题步骤与空间向量解决立体几何问题一致,建立适当的空间直角坐标系由动点的位置关系,如在棱上或面内,转化为向量的关系,用参数表示动点的坐标通过空间向量的坐标运算表示出待求的量若求最值或取值范围,转化为函数问题,但要注意自变量的取值范围.一般坐标法用于解决动点的存在性问题、求最值、求范围问题.说明:对于求最值、范围问题,也可以直接通过几何体中的某个变量,构建函数,求最值或范围.(2022湖北省宜昌市模拟) (多选)在正方体1111ABCD A B C D -中,点为线段1AD 上一动点,则( ) A. 对任意的点,都有1B D CQ ⊥ B. 三棱锥1B B CQ -的体积为定值 C. 当为1AD 中点时,异面直线1B Q 与所成的角最小D. 当为1AD 中点时,直线1B Q 与平面11BCC B 所成的角最大【审题视点】以正方体为载体考查定点的定值、最值问题,正方体便于建立空间直角坐标系,可选择用坐标法解决.【思维引导】选项,可以用几何知识证明;选项,设出点坐标,用坐标表示出异面直线成角的余弦值或线面角的正弦值,求最值,得出点位置.【规范解析】解:对于:连接,1.CD因为在正方体1111ABCD A B C D -中, 1B D ⊥平面1ACD ,CQ ⊂平面1ACD , 1B D CQ ⊥,故正确; 对于:平面11//ADD A 平面11BCC B ,平面11ADD A 与平面11BCC B 的距离为正方体棱长,1123111326B B CQ Q BCB V V a a a --==⨯⋅=,为定值,故正确;对于:以为坐标原点,直线分别轴,建立空间直角坐标系如下图:设正方体1111ABCD A B C D -的棱长为2, ()[](),0,20,2Q x x x -∈,则1(2,2,2)B , ()2,2,0B , (0,2,0)C , 因此()12,2,B Q x x =---, ()2,0,0BC =-, 设异面直线1B Q 与所成的角为θ,则当时,,当时,当时,故当与1D 重合时,异面直线1B Q 与所成的角最小,故不正确;对于: ()12,2,B Q x x =---, 又是平面11BCC B 的一个法向量,设直线1B Q 与平面11BCC B 所成的角为α,则,所以当1x =时,sin α取得最大值63,而0,2πα⎡⎤∈⎢⎥⎣⎦, 因此α取得最大值,即当为1AD 中点时,直线1B Q 与平面11BCC B 所成的角最大, 故正确. 故选.ABD用一个参数表示动点的坐标,并求出参数范围,即为函数定义域转化为函数求最值,求出当函数取最值时的x 的值【探究总结】典例1是一道典型的研究动点问题的多选题,难度中等,但能够反映出坐标法研究最值范围问题的思路.建系设坐标,写出参数范围 根据向量运算构造函数求最值.(2021安徽省蚌埠市联考) 已知圆柱1OO 底面半径为1,高为π,是圆柱的一个轴截面,动点从点出发沿着圆柱的侧面到达点,其距离最短时在侧面留下的曲线Γ如图所示.将轴截面绕着轴1OO 逆时针旋转(0)θθπ<<后,边11B C 与曲线Γ相交于点.P(1)求曲线Γ长度; (2)当2πθ=时,求点1C 到平面的距离;(3)证明:不存在(0)θθπ<<,使得二面角D AB P --的大小为.4π探究2:化动为定点的位置在变化的过程中,有些量或位置关系是不变的,比如点到平面的距离不变,从而使几何体的体积不变;动点与另外一定点的连线与某条直线始终垂直,与某个平面始终平行.在证明体积为定值、证明位置关系时,要动中寻定,将动态的问题静态化:将动点转化为定点,寻找动直线所在的确定平面,从而解决问题.答题思路:1.动点到平面的距离为定值:证明平面,动点到平面的距离即为定点到平面的距离;2.为动点,为定点,证明:证明所在平面与垂直;3.为动点,为定点,证明平面:证明所在平面与平面平行.(2021湖南省四校联考) 在正三棱柱中,,,分别为的中点,P 是线段DF 上的一点.有下列三个结论:①平面;②;③三棱锥的体积时定值,其中所有正确结论的编号是 A. ①②B. ①③C. ②③D. ①②③【审题视点】求证关于动直线的线面平行或线线垂直,三棱锥的体积为定值问题,要化动为定.【思维引导】证明动直线所在平面与已知平面平行;证明定直线与动直线所在平面垂直;寻找过点与平面平行的直线,即得出点到平面的距离.【规范解析】解:如图,对于①,在正三棱柱中,,分别为的中点,平面平面,由平面,得平面,故①正确;对于②,在正三棱柱中,平面平面,平面平面平面,,平面平面,故②正确;对于③,平面平面,平面到平面的距离为定值,而有为定值,故是定值,线面平行,转化为面面平行异面直线垂直,转化为线面垂直体积的定值问题,转化点到平面的距离是定值,即通过线面平行或面面平行,得出动点到平面距离为定值故③正确.故选D .【探究总结】立体几何证明中经常出现,求证关于动直线的线面平行与线线垂直问题,其思路是转化为证明动直线所在的定平面与其他平面或直线的位置关系.关键是分析动点,动线或动面间的联系,在移动变化的同时寻求规律.(2021云南省曲靖市联考) 如图所示的几何体中,111ABC A B C -为直三棱柱,四边形为平行四边形,2CD AD =,60ADC ∠=︒,1.AA AC =(1)证明:,1C ,1B 四点共面,且11A C DC ⊥;(2)若1AD =,点是上一点,求四棱锥的体积,并判断点到平面11ADC B 的距离是否为定值?请说明理由.探究3: 巧用极端位置由于点位置连续变化,使研究的图形发生连续的变化,利用点的位置变化“极端”位置,避开抽象及复杂的运算,得到结论.常见题型:1.定值问题:几何体中存在动点,但所求结果是确定的,即随着动点位置的改变不会影响所求的量,故可以考虑动点在极端位置的情况,优化解题过程.2.范围问题:几何体中存在动点,结果会随着动点位置改变而改变,当动点从一侧极端位置移动到令一个极端位置的过程中,所求量在增大、或减小、或先增后减、或先减后增,通过求出极端位置处的值,及最值,从而得出范围;3.探究问题:探究满足条件的点是否存在,也可以转化为求出范围,从而得出结论.(2021湖南省株洲市模拟) 在正四面体中, 为棱的中点, 为直线上的动点,则平面与平面夹角的正弦值的取值范围是 .【审题视点】本例可用极端位置法分析,也可以建系,用坐标法解决.【思维引导】借助极端位置分析,不难看出经过和底边中线的平面与平面垂直,点在移动的过程中,存在一个位置使平面与经过和底边中线的平面平行,即平面平面,此时两平面所成角为,角最大;当点移动到无穷远时,平面平面,此时两平面所成角最小.【规范解析】解:由下左图 设为的中心,为的中点, 则在正四面体中平面, 为中点,为的中点,,故平面连接,并延长交于点, 连接,并延长交于点, 则过点的平面交直线于点. 则平面平面 即平面与平面的夹角的正弦值为1,点从取最值的位置处移动至直线的无穷远处的过程中, 平面与平面的夹角逐渐减小,即当点在无穷远处时,看作, 如下右图 故平面与平面的夹角即为平面与平面的夹角,求出其正弦值为. 综上可知:面与面的夹角的正弦值的取值范围为.【探究总结】借助极端位置解决典例3中的问题,首先利用几何知识,明确点在移动的过程中 ,所求量的变化情况,若在极端位置处取“最值”,问题就简化为求出极端位置处的值.(2021浙江省杭州市高三模拟)高为1的正三棱锥的底面边长为,二面角与二面角A PB C --之和记为,则在从小到大的变化过程中,的变化情况是( )A .一直增大B .一直减小C .先增大后减小D .先减小后增大专题升华结合几何知识,两平面成角的变化过程,即动点从一个极端位置变化到另一极端位置时,夹角大小的增减情况在极端位置处取“最值”,直接求出点该处时的夹角的正弦值,即为范围区间的一个端点几何体中研究动点问题往往难度较大,开放性强,技巧性高.总体思路是:用几何知识,经过逻辑推理,证明位置关系或求出表示出所求量;或者建立空间直角坐标系,将几何问题代数化,用空间向量研究动点问题,省去了繁杂的推理环节,但计算量较大.解决动点问题的策略不局限与上述方法,常用的的方法还有:运用条件直接推算,借助条件将几何体还原到长方体中去;构造函数,数形结合;还将空间问题转化为平面几何解决,如化折为直、利用解析几何的知识解决. 但只要我们熟练掌握这些基本方法,并灵活加以应用,不仅能化繁为简,化难为易,而且还可以得到简捷巧妙的解法.【答案详解】 变式训练1【解答】解:(1)在侧面展开图中为的长,其中AB AD π==,∴曲线Γ的长为2;π(2)当2πθ=时,建立如图所示的空间直角坐标系,则有()0,1,0A -、()0,1,0B 、1,0,2P π⎛⎫- ⎪⎝⎭、()11,0,C π-, 、(1,1,)2AP π=-、1(1,0,)OC π=-设平面的法向量为(,,)n x y z =,则2002n AB y n AP x y z π⎧⋅==⎪⎨⋅=-++=⎪⎩, 取2z =得(,0,2)n π=,所以点1C 到平面的距离为12||||4OC n d n ππ⋅==+; (3)假设存在满足要求的(0)θθπ<<, 在(2)的坐标系中,()sin ,cos ,P θθθ-,,设平面的法向量为111(,,)m x y z =,则111120sin (cos 1)0y x y z θθθ=⎧⎨-+++=⎩,取11x =得sin (1,0,)m θθ=,又平面的法向量为(1,0,0)k =,由二面角D AB P --的大小为4π, 则|cos ⟨,m k ⟩2212|sin .21sin θθθθ==⇒=+ sin (0)2πθθθ<<<,0θπ∴<<时,均有sin θθ<,与上式矛盾.所以不存在(0)θθπ<<使得二面角D AB P --的大小为.4π 变式训练2【解答】(1)证明:因为111ABC A B C -为直三棱柱, 所以,且,又四边形为平行四边形,//BC AD ,且BC AD =,,且,四边形为平行四边形,,1B 四点共面;,又1AA ⊥平面,AC ⊂平面,,四边形11A ACC 为正方形,连接1AC 交1A C 于,,在ADC ∆中,2CD AD =,,由余弦定理得,,所以,AD AC ⊥,又1AA ⊥平面ABCD ,AD ⊂平面ABCD ,1AA AD ⊥,,1AA ⊂平面11A ACC ,,AD ⊥平面11A ACC ,1AC ⊂平面11A ACC ,所以,又,平面,1A C ⊥平面, 1DC ⊂平面,(2)解:由(1)知:1A C ⊥平面,在Rt DAC 中,由已知得3AC =,,四棱锥的体积,//BC AD ,点到平面的距离为定值,即为点到平面的距离变式训练3【解析】解:设二面角为,二面角A PB C --为,当时,正三棱锥趋向于变为正三棱柱,;当时,正三棱锥趋向变为平面,.当正三棱锥为正四面体时,且,,故.当从小变大时,要经过从变为小于的角,然后变为的过程, 故只有选项符合.故选:.静夜思[ 唐] 李白原文译文对照床前明月光,疑是地上霜。

培优提能10 立体几何中的动态问题

培优提能10 立体几何中的动态问题

培优提能10 立体几何中的动态问题立体几何中的“动态问题”是指空间中的某些点、线、面的位置是不确定的或可变的一类开放性问题,解答此类问题应该动静结合、化动为静,找到相应的几何关系,具体有以下几种解决方法:(1)函数法:某些点、线、面的运动,必然导致某些位置关系或一些变量的变化.变量变化时会引发其他变量的变化,从而建立函数关系,将立体几何问题转化为函数问题来解.(2)解析法:我们常利用空间直角坐标系解决立体几何问题,即实现几何问题代数化.因此利用空间直角坐标系将空间图形中的若干元素坐标化后,借助向量进行运算和分析,是解决这类问题的常用方法. (3)等价转换法:动和静是相对的,在运动变化过程中,要善于寻找或构造与之相关的一些不变因素,将一些变化的点、线、面进行合理转换,实现变量与不变量的结合.培优点1 以静制动(旋转问题、射影问题)典例1 正四面体ABCD的棱长为1,棱AB∥平面α(如图),则四面体上的所有点在平面α内的射影构成的图形面积的取值范围是.解析:去掉与问题无关的面,将四面体看成是以AB为棱的二面角C-AB-D(二面角大小一定),用纸折出这个二面角,不妨将AB置于平面α内,将二面角绕AB 转动一周,观察点C,D 在平面α上的射影,可以发现点C,D 在平面α上的射影始终在AB 的射影的中垂线上.当CD ∥平面α时,四边形ABCD 的面积最大,为12(如图1).当CD ⊥平面α时,四边形ABCD 的面积最小,为√24(如图2),转动过程中C,D 在平面α上的射影从C,D 变化到C ′,D ′(如图3),故图形面积的取值范围是[√24,12]. 答案:[√24,12]在解决立体几何中的“动态”问题时,需从复杂的图形中分化出最简单的具有实质性意义的点、线、面,让几何图形的实质“形销骨立”,即从混沌中找出秩序,是解决“动态”问题的关键.触类旁通1 如图,直线l ⊥平面α,垂足为O.正方体ABC D −A 1B 1C 1D 1的棱长为2.点A 是直线l 上的动点,点B 1在平面α内,则点O 到线段CD 1的中点P 的距离的最大值为 .解析:从题图中分化出4个点O,A,B1,P,其中△AOB1为直角三角形,固定A,B1,点P的轨迹是在与AB1垂直的平面上且以AB1的中点Q为圆心的圆,从而OP≤OQ+QP=12AB1+2=√2+2,当且仅当OQ⊥AB1,即点O,Q,P共线时,取到等号,此时直线AB1与平面α成45°角.答案:√2+2培优点2 动点轨迹(长度)问题典例2 在棱长为2√2的正方体ABCD-A1B1C1D1中,E,F分别为棱AB,AD 的中点,P为线段C1D上的动点,则直线A1P与平面D1EF的交点Q的轨迹长度为( )A.2√153B.4√33C.2√133D.4√23解析:如图,连接B1D1,因为E,F 分别为棱AB,AD 的中点,所以B 1D 1∥EF,则B 1,D 1,E,F 四点共面.连接A 1C 1,A 1D,设A 1C 1∩B 1D 1=M,A 1D ∩D 1F=N,连接MN,则点Q 的轨迹为线段MN,易得A 1D=√A 1D 12+DD 12=4,△A 1ND 1∽△DNF,且A 1D 1FD=2,所以A 1N=23A 1D=83.易知A 1C 1=C 1D=A 1D=4,所以∠C 1A 1D=60°,又A 1M=2,所以在△A 1MN 中,由余弦定理可得MN 2=A 1N 2+A 1M 2-2A 1N ·A 1Mcos 60°=529,所以MN=2√133,即点Q 的轨迹长度为2√133.故选C.空间中动点轨迹问题变化并不多,一般此类问题可以从三个角度进行分析处理,一是从曲线定义或函数关系出发给出合理解释;二是平面与平面交线得直线或线段;三是平面和曲面(圆锥,圆柱侧面,球面)交线得圆、圆锥曲线.很少有题目会脱离这三个方向.触类旁通2 (多选题)(2022·湖南郴州高三期末)如图,点P 是棱长为2的正方体ABCD-A 1B 1C 1D 1表面上的一个动点,则( AC )A.当点P 在平面BCC 1B 1上运动时,四棱锥P-AA 1D 1D 的体积不变B.当点P 在线段AC 上运动时,D 1P 与A 1C 1所成角的取值范围是[π6,π2]C.当直线AP 与平面ABCD 所成的角为45°时,点P 的轨迹长度为π+4√2D.若F 是A 1B 1的中点,当P 在底面ABCD 上运动,且满足PF ∥平面B 1CD 1时,PF 长度的最小值是 √5解析:当P 在平面BCC 1B 1上运动时,点P 到平面AA 1D 1D 的距离不变,正方形AA 1D 1D 的面积不变,故四棱锥P-AA 1D 1D 的体积不变,故A 正确; 建立如图所示的空间直角坐标系,设P(x,2-x,0),0≤x ≤2,A 1(2,0,2),D 1(0,0,2),C 1(0,2,2),则D 1P →=(x,2-x,-2),A 1C 1→=(-2,2,0),设D 1P 与A 1C 1所成的角为θ(0≤θ≤π2),则cos θ=|cos<D 1P →,A 1C 1→>|=|D 1P →·A 1C 1→||D 1P →||A 1C 1→|=|x -1|√(x -1)2+3,因为0≤|x-1|≤1,当|x-1|=0时,θ=π2,当0<|x-1|≤1时,cos θ=|x -1|√(x -1)2+3=√1+3|x -1|2,0<cos θ≤12,则π3≤θ<π2,综上,π3≤θ≤π2,所以D 1P 与A 1C 1所成角的取值范围是[π3,π2],故B 错误;因为直线AP 与平面ABCD 所成的角为45°,若点P 在平面BCC 1B 1和平面DCC 1D 1内,因为∠B 1AB=45°,∠D 1AD=45°已为最大,不成立,在平面ADD 1A 1内,点P 的轨迹长度是AD 1=2√2,在平面ABB 1A 1内,点P 的轨迹长度是AB 1=2√2, 在平面A 1B 1C 1D 1内,如图所示,作PM ⊥平面ABCD,因为∠PAM=45°,所以PM=AM,又PM=AB,所以AM=AB,则A 1P=AB,所以点P 的轨迹是以A 1为圆心,以2为半径的四分之一圆,所以点P 的轨迹长度为14×2π×2=π,所以点P 的轨迹总长度为π+4√2,故C 正确; 建立如图所示的空间直角坐标系,设P(x,y,0),x,y ∈[0,2],B 1(2,2,2),D 1(0,0,2),C(0,2,0),F(2,1,2),则CB 1→=(2,0,2),CD 1→=(0,-2,2),FP →=(x-2,y-1,-2), 设平面B 1CD 1的法向量为n=(a,b,c),则{CD 1→·n =0,CB 1→·n =0,即{-2b +2c =0,2a +2c =0,令a=1,则n=(1,-1,-1), 因为PF ∥平面B 1CD 1,所以FP →·n=(x-2)-(y-1)+2=0,即y=x+1,所以|FP →|=√(x -2)2+(y -1)2+4=√2x 2-4x +8=√2(x -1)2+6≥√6,当x=1时,等号成立,故D 错误.故选AC.培优点3 翻折问题典例3 如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC 的中心为O.D,E,F 为圆O 上的点,△DBC,△ECA,△FAB 分别是以BC,CA,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB 为折痕折起△DBC,△ECA,△FAB,使得D,E,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积的最大值为 cm 3.解析:如图,连接OD,交BC于点G,由题意,知OD⊥BC,OG=√3BC.6设OG=x,则BC=2√3x,DG=5-x,×2√3x×3x=3√3x2,三棱锥的高h=√DG2-OG2=√25-10x,S△ABC=12则三棱锥的体积V=1S△ABC·h=√3x2·√25-10x=√3·√25x4-10x5.3),则f′(x)=100x3-50x4.令f′(x)=0,得令f(x)=25x4-10x5,x∈(0,52x=2.当x∈(0,2)时,f′(x)>0,f(x)单调递增;当x∈(2,5)时,f′2(x)<0,f(x)单调递减.故当x=2时,f(x)取得最大值80,则V≤√3×√80=4√15.所以三棱锥体积的最大值为4√15 cm3.答案:4√15在解决立体几何中的“动态”问题时,对于一些很难把握运动模型(规律)的求值问题,可以通过构建某个变量的函数,以数解形.触类旁通3 (1)(多选题)(2022·河北唐山高三期末)如图,四边形ABCD是边长为2的正方形,E为AB的中点,将△AED沿DE所在的直线翻折,使A与A′重合,得到四棱锥A′-BCDE,则在翻折的过程中( AB )A.DE⊥AA′B.存在某个位置,使得A′E⊥CDC.存在某个位置,使得A′B∥DED.存在某个位置,使四棱锥A′-BCDE的体积为1(2)(多选题)(2022·广东罗湖高三期末)在△ABC中,AB⊥BC,且AC=2,BC=1,若将△ABC沿AC边上的中线BD折起,使得平面ABD⊥平面BCD.点E在由此得到的四面体ABCD的棱AC上运动,则下列结论正确的为( BCD )A.∠ADC=π2B.四面体ABCD的体积为18C.存在点E使得△BDE的面积为14D.四面体ABCD外接球的表面积为13π3解析:(1)对于A,如图所示,过A′作A′O⊥DE,垂足为O,延长AO交BC于点F,因为DE⊥AO,且AO∩A′O=O,AO,A′O⊂平面A′AO,所以DE⊥平面A′AO,又因为A′A⊂平面A′AO,所以DE⊥AA′,A正确;对于B,取DC的中点G,连接EG,A′G,当A′在平面ABCD上的射影在直线EG上时,此时DC⊥平面A′EG,从而得到A′E⊥CD,B正确;对于C,连接A′B,因为点E∈平面A′BE,点D∉平面A′BE,所以直线A′B与DE是异面直线,所以不存在某个位置,使得A′B∥DE,C错误;对于D,由VA′BCDE =13×12×(1+2)×2×h=1,解得h=1,由A′O⊥DE,可得A′O=A′E·A′DDE =√5=√5,即此时四棱锥的高h∈(0,√5],此时√5<1,所以不存在某个位置,使四棱锥A′-BCDE的体积为1,D错误.故选AB.(2)对于A,取BD的中点M,连接CM,因为BC=CD=1,所以CM⊥BD,又平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,所以CM⊥平面ABD,则CM⊥AD,若∠ADC=π2,则AD⊥CD,所以AD⊥平面CBD,则AD⊥BD,显然不可能,A错误;对于B,易知△BCD的面积为√34,在平面ABD中,过A作BD的垂线,交BD的延长线于点H,易知AH=√32,因为平面ABD ⊥平面BCD,平面ABD ∩平面BCD=BD,所以AH ⊥平面BCD,即三棱锥A-BCD 的高为AH=√32,所以三棱锥A-BCD 的体积V=13×√34×√32=18,即四面体ABCD 的体积为18,B正确;对于C,显然当AC ⊥平面BDE 时,△BDE 的面积取得最小值,易知CD=1,DH=12,由余弦定理可得CH=√72,所以AC=√AH 2+CH 2=√102, 又四面体ABCD 的体积为18, 所以18=13×S ×√102,即S=3√1040<14, 且△BCD 的面积为√34>14,所以存在点E 使得△BDE 的面积为14,C 正确;对于D,设△BCD 与△ABD 的外心依次为O 1,O 2, 过O 1作平面BCD 的垂线l 1,过O 2作平面ABD 的垂线l 2,则四面体ABCD 的外接球球心O 为直线l 1与l 2的交点,延长CO 1交BD 于点M,则M 为BD 的中点,连接O 2M,则四边形MO 1OO 2为矩形,结合正弦定理可求得O 2M=√32,O 1C=√33, 所以四面体ABCD 的外接球半径为R=OC=√O 1O 2+O 1C 2=√O 2M 2+O 1C 2=√34+13=√1312,则四面体ABCD 外接球的表面积为S=4πR 2=4π×1312=13π3,D 正确.故选BCD.培优点4 动态最值问题典例4 (多选题)(2022·江苏常州高三期末)已知正方体ABCD-A 1B 1C 1D 1的棱长为3a,点M 是棱BC 上的定点,且BM=2CM,点P 是棱C 1D 1上的动点,则( )A.当PC 1=23a 时,△PAM 是直角三角形B.四棱锥A 1-PAM 体积的最小值为32a 3 C.存在点P,使得直线BD 1⊥平面PAM D.任意点P,都有直线BB 1∥平面PAM 解析:由已知及计算可得PC 1=23a,AM=√13a,AP=√2113a,MP=√943a,所以AP 2=MP 2+AM 2,所以△PAM 为直角三角形,A 正确;S △AA 1M =12×3a ×√13a=3√132a 2,当P 与C 1重合时,点P 到平面AA 1M 的距离最小,设点P 到平面AA 1M 的距离为h, 在B 1C 1上取M 1,使B 1M 1=2C 1M 1,sin ∠B 1M 1A 1=√13=ℎmin a,所以h min =√13a,所以V A 1PAM =V PAA 1M =13×S △AA 1M ×h ≥13×3√132a 2×√13a=32a 3,B 正确;因为BD 1⊥平面AB 1C,平面AB 1C 与平面PAM 不平行,所以BD 1与平面PAM 不垂直,C 错误;P 与C 1重合时,平面PAM 为平面C 1AM,BB 1∥CC 1,若BB 1∥平面PAM,则CC 1⊂平面C 1AM,与CC 1⊄平面C 1AM 矛盾,D 错误.故选AB.解决与空间图形有关的线段、角、距离、面积、体积等最值问题,一般可以从三方面着手:(1)从问题的几何特征入手,充分利用其几何性质去解决; (2)利用空间几何体的侧面展开图;(3)找出问题中的代数关系,建立目标函数,利用代数方法求目标函数的最值.解题途径很多,在函数建成后,可用一次函数的端点法,二次函数的配方法、公式法,函数有界法(如三角函数等)及导数法等.触类旁通4 (多选题)(2022·广东揭阳高三期末)如图所示,已知正方体ABCD-A 1B 1C 1D 1的棱长为2,M,N 分别是AD,CC 1的中点,P 是线段AB 上的动点,则下列说法正确的是( BD )A.平面PMN 截正方体所得的截面可以是四边形、五边形或六边形B.当点P 与A,B 两点不重合时,平面PMN 截正方体所得的截面是五边形C.△MPN 是锐角三角形D.△MPN 面积的最大值是√212解析:如图所示,当点P 与A,B 两点不重合时,将线段MP 向两端延长,分别交CD,CB 的延长线于点O,Q,连接NO,NQ 分别交DD 1,BB 1于R,S 两点,连接RM,SP,此时截面为五边形MPSNR,故B 正确;当点P 与点A 或点B 重合时,截面为四边形,不可能为六边形,故A 错误;考虑△MPN,当点P 与点A 重合时,MN=√6,PM=1,PN=3, 此时因为MN 2+PM 2<PN 2,故∠PMN 为钝角,故C 错误;当点P 与点B 重合时,点P 到直线MN 的距离取到最大值,△MPN 的面积取到最大值,此时MN=√6,BM=BN=√5,则MN 边上的高为√(√5)2-(√62)2=√142,△MPN的面积为12×√142×√6=√212,即最大值为√212,故D正确.故选BD.。

中考数学压轴专题训练——动态(动点)几何问题的解题技巧(含答案)

中考数学压轴专题训练——动态(动点)几何问题的解题技巧(含答案)

点 的坐标
为 .……
一次函数的解读式
为 .
(3) 两点在直线 上, 的坐标分别是 .
, .
过点 作 ,垂足为点 .

又 , 点坐标为 .
3.(1)解方程 ,得 .
由m<n,知m=1,n=5.
∴A(1,0),B(0,5).………………………1分
∴ 解之,得
所求抛物线的解读式为 ……3分
(2)由 得 故C的坐标为(-5,0).………4分
(1)如图1,若点D、E分别在AC、BC的延长线上,通过观察和测量,猜想FH和FG的数量关系为_______
和位置关系为_____;
(2)如图2,若将三角板△DEC绕着点C顺时针旋转至ACE在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由;
(2)如图3,将图1中的△DEC绕点C顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.
(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.
4、(1)如图1所示,在四边形 中, = , 与 相交于点 , 分别是 的中点,联结 ,分别交 、 于点 ,试判断 的形状,并加以证明;
(2)如图2,在四边形 中,若 , 分别是 的中点,联结FE并延长,分别与 的延长线交于点 ,请在图2中画图并观察,图中是否有相等的角,若有,请直接写出结论:;
(3)如图③,当∠DAB=90°,∠B与∠D互补时,线段AB、AD、AC有怎样的数量关系?写出你的猜想,并给予证明.
7.设点E是平行四边形ABCD的边AB的中点,F是BC边上一点,线段DE和AF相交于点P,点Q在线段DE上,且AQ∥PC.

初一几何动点问题解题技巧和方法

初一几何动点问题解题技巧和方法

初一几何动点问题解题技巧和方法
1. 哎呀呀,动点问题可别吓着你呀!比如在一个三角形里,有个点在那不停地动,你得跟着它的节奏来解题呢!要时刻关注它的位置变化,这就像是追着一只调皮的小猫咪,可有意思啦!
2. 嘿,一定要学会分类讨论哦!像走着走着遇到岔路口,你得想想不同的情况呀。

比如那个动点在不同线段上时会咋样,这不就跟选择走哪条路一样嘛!
3. 哇塞,找等量关系超重要的呀!就好像寻宝一样,找到那个关键的等量才能解开谜题呢。

比如说两个图形的面积相等,这就是打开解题大门的钥匙呀!
4. 注意啦,画个图会让你豁然开朗哟!这就如同有了一张地图,清楚地看到动点的轨迹和各种关系。

画出来后,哇,一下子就明白多啦!
5. 千万别死脑筋,要灵活运用知识呀!别像只呆呆的小熊。

比如看到角度问题,就赶紧想想跟哪些定理能挂上钩,这可是解题的妙招哇!
6. 哎呀呀,多做题才能越来越厉害呀!就像练功一样,练得多了自然就熟能生巧啦。

每次做动点题都是一次挑战和成长呢!
7. 记住哦,信心满满地去面对动点问题吧!别害怕它,把它当成一个有趣的对手,勇敢地去击败它呀!
我觉得初一几何动点问题只要掌握好这些技巧和方法,就一点也不可怕,反而很有趣呢,能让我们在解题过程中收获满满!。

浅谈解决立体几何中“动态问题”的几种方法

浅谈解决立体几何中“动态问题”的几种方法

浅谈解决立体几何中“动态问题”的几种方法作者:叶昭蓉来源:《新课程学习·下》2015年第02期摘要:立体几何中的“动态问题”主要是研究空间点、线、面位置关系,当某些点、线、面位置变化时,寻找变化量与不变量的关系,将高中阶段所学函数、向量、解析几何等相关知识有机结合起来,培养学生分析问题、解决问题的能力,从而提高学生的数学思维。

关键词:动态问题;函数法;解析法;等价转换法立体几何中的“动态问题”是指空间图形中的某些点、线、面的位置是不确定的或可变的一类开放性问题。

由于某些点、线、面位置的不确定,对学生的空间想象能力、知识的综合能力、思维的转化能力提出了更高的要求。

因此,在教学过程中非常有必要对知识进行活化,引导学生通过观察、分析、比较、联想、转化等思维过程,开拓学生的思维;动静结合,化动为静,找到相应的几何关系; ;在原有的认知结构中,用熟悉的平面几何知识、代数方法等进行解答。

下面浅谈几种解决立体几何中“动态问题”的方法。

一、函数法由于某些点、线、面在动,必然导致某些位置关系或一些量的变化。

当变量变化时会引发其他量的变化,从而建立函数关系,则可将立体几何问题转化为函数来解。

例1.在棱长为1的正方体ABCD-A1B1C1D1中,点P1,P2分别是线段AB、BD1(不包括端点)上的动点,且线段P1P2平行于平面 A1ADD1,则四面体P1P2AB1的体积的最大值为______.【解析】因为点P1、P2分别是线段AB,BD1上的动点,所以线段 P1P2在平面ABD1内,又∵P1P2∥平面A1ADD1,∴P1P2∥平面AD1作P2O⊥BD于点O,连接OP1,则P2O⊥平面ABCD,OP1⊥AB,即OP1为三棱锥P2-P1AB1的高,设AP1=x,0∴VP-PAB=S△ABP·OP1=··x·(1-x)≤()2=当且仅当x=1-x?圯x=时,四面体P1P2AB1的体积的最大值为。

立体几何中动点轨迹问题的几种解题方法_柳双生

立体几何中动点轨迹问题的几种解题方法_柳双生

六、 试用猜想证明法求解
猜想 证 明 法 也 是 解 决 空 间 轨 迹 问 题 的 一 种 可 以 尝试着使用的 方 法 , 这 往 往 是 以 立 体 几 何 的 定 理 及 空间图形的定义为依据 , 大胆猜想 , 然后通过验证 , 以
z ∩

P O y α
α , 过 点 P 且 与 直 线 l 成 30o 角 的
三、 应用坐标法求解
用代数方法研究几何问题是解析几何的本质 , 通 过 建 立 直 角 坐 标 系,设 出 动 点 坐 标,将 几 何 问 题 转 化 成代数问题来解决 , 这是探求空间图形中的轨迹问题 常用的一种方法 . 例 3. 正方体 ABCD-A1B1C1D1 的 棱 长 为 1 , 点 P 是 平 面 ABCD 上 的 动 点 , 且 动 点 P 到 直 线 A1D1 的 距 离与动点 P 到直线 AB 的 距 离 的 平 方 和 为 2 , 则 动 点 的轨迹是 ( )

A. 一条线段
M
D1 A1
B. 椭圆的一部分 C. 双曲线的一部分 D. 抛物线的一部分
分 析 : 在 平 面 A1B1C1D1 中 , 过 点 P 作 PM ⊥A1D1, 垂 足 为 点 M, 在 平 面 ADD1A1 中 过 点 M 作 MN ∥AA1, 交 AD 于 点 N , 又 因 为 PN=PB ,MN=BB1, 所 以 △ PMN
直线交面 α 于点 M , 若点 M 的轨 迹为一圆锥曲线 , 求其离心率 .
M x
达到解决的目的 . 例 6. 在正四棱锥 S-ABCD 中 ,E 是 BC 的 中 点 , 点 P 在侧面 △SCD 内及 其 边 界 上 运 动 , 并 且 总 是 保 持 PE⊥AC , 则动点 P 的轨迹是 ( )

动点几何解题五步法口诀

动点几何解题五步法口诀

动点几何解题五步法口诀全文共四篇示例,供读者参考第一篇示例:动点几何是一种解题方法,可以帮助学生更有效地解决几何题目。

在解题过程中,动点的引入可以帮助我们更清晰地理解几何关系,从而更快地找到解决问题的方法。

动点几何解题五步法口诀是一种简单易记的指导原则,可以帮助我们系统地进行解题。

下面将介绍这五步法口诀的具体内容。

第一步:审题明辨在解题之前,首先要认真审题,明确问题的要求。

要仔细分析题目中的条件,辨别出已知条件和未知条件。

这样可以帮助我们更准确地确定问题的解题方向。

第二步:引入动点在确定了问题的解题方向之后,接下来就是引入动点。

动点是一个虚拟的点,可以在图形中自由移动,从而帮助我们更清晰地观察图形的变化。

通过引入动点,可以使问题更加具体化,从而更容易解决。

第三步:制定条件在引入动点之后,就需要根据题目中的条件,制定适当的条件和约束条件。

这些条件可以帮助我们确定动点的移动规律,从而找到解题的关键点。

第四步:建立方程根据题目条件和约束条件,可以建立相应的方程。

通过建立方程,可以将问题转化为代数问题,更方便我们进行计算。

在建立方程的过程中,需要根据动点的移动规律,确定方程中的变量和参数。

第五步:求解问题最后一步就是根据建立的方程,求解问题。

通过解方程可以得到问题的解答,并验证解答的合理性。

在求解问题的过程中,要注意审题,确保问题的要求得到满足。

通过以上五步法口诀,可以帮助我们更系统地解决动点几何问题。

在解题过程中,要注重审题、引入动点、制定条件、建立方程和求解问题,从而更有效地解决各种几何难题。

希望同学们能够掌握这些方法,提高解题效率,取得更好的成绩。

第二篇示例:动点几何解题是数学竞赛重要的一部分,而动点几何解题五步法口诀是解题过程中的重要指导原则。

在解动点几何问题时,遵循五步法口诀可以帮助我们更加系统地分析问题,拓展思维,找到解题的正确方向。

下面就让我们一起来学习动点几何解题五步法口诀吧!在解动点几何问题时,首先要确定问题的题目是什么,题目要求求解的是什么,同时要理清题目中所涉及的动点和已知条件。

立体几何动点解题技巧

立体几何动点解题技巧

立体几何动点解题技巧
在立体几何中,动点解题是一种常见的解题方法。

通过引入
动点,可以将原问题转化为几何关系和代数关系之间的等价问题,从而简化解题过程。

下面是一些立体几何动点解题的技巧:
1.选择合适的动点:选择一个合适的动点是解题的关键。


点可以是一个普通的点,也可以是一个特殊的点,如重心、垂
心等。

选择动点时要考虑到问题的特点,找到一个能够引入所
需关系的点。

2.构造代数关系:在引入动点后,需要通过几何关系构造代
数关系。

这可以通过使用相似三角形、比例等几何性质得出。

根据动点的移动,几何关系会转化为代数关系,从而可以得到
所需的方程。

3.求解代数方程:得到代数方程后,可以通过解方程求解问题。

根据问题的要求,可以得到方程中未知量的值,进而确定
几何问题的解。

4.注意特殊情况:在使用动点解题时,需要考虑到一些特殊
情况。

例如,当动点的位置使得几何关系不成立时,应该排除
这种情况。

此外,还需要注意动点的位置是否能够涵盖所有可
能的情况。

5.利用易于计算的性质:在解题过程中,可以利用一些易于
计算的几何性质。

例如,平行线、垂直线等性质可以简化计算
过程,减少出错的可能性。

通过灵活运用动点解题技巧,可以更加简化和系统化地解决立体几何问题。

当然,在实际解题过程中,还需要结合具体问题进行灵活运用,并多加练习掌握动点解题的技巧。

立体几何中的动态问题

立体几何中的动态问题

立体几何中的动态问题[解题策略]立体几何中的“动态”问题就变化起因而言大致可分为两类:一是平移;二是旋转.就所求变量而言可分为三类:一是相关线、面、体的测度;二是角度;三是距离.立体几何动态问题的解决需要较高的空间想象能力与化归处理能力,在各省市的高考选择题与填空题中也时有出现.在解“动态”立体几何题时,如果我们能努力探寻运动过程中“静”的一面,动中求静,往往能以静制动、克难致胜.1.去掉枝蔓见本质——大道至简在解决立体几何中的“动态”问题时,需从复杂的图形中分化出最简单的具有实质性意义的点、线、面,让几何图形的实质“形销骨立”,即从混沌中找出秩序,是解决“动态”问题的关键.例1 如图1,直线l⊥平面α,垂足为O.正方体ABCD-A1B1C1D1的棱长为2.点A 是直线l上的动点,点B1在平面α内,则点O到线段CD1中点P的距离的最大值为________.图1答案2+2解析从图形分化出4个点O,A,B1,P,其中△AOB1为直角三角形,固定AOB1,点P的轨迹是在与AB1垂直的平面上且以AB1的中点Q为圆心的圆,从而OP≤OQ+QP=12AB1+2=2+2,当且仅当OQ⊥AB1,且点O,Q,P共线时取到等号,此时直线AB1与平面α成45°角.2.极端位置巧分析——穷妙极巧在解决立体几何中的“动态”问题时,对于移动问题,由图形变化的连续性,穷尽极端特殊之要害,往往能直取答案.例2 在正四面体A -BCD 中,E 为棱BC 的中点,F 为直线BD 上的动点,则平面AEF 与平面ACD 所成二面角的正弦值的取值范围是________. 答案 ⎝ ⎛⎦⎥⎤23,1解析 本例可用极端位置法来加以分析.先寻找垂直:记O 为△ACD 的中心,G 为OC 的中点,则BO ⊥面ACD ,EG ⊥面ACD .如图2,过点A ,E ,G 的平面交直线BD 于点F .此时,平面AEF 与平面ACD 所面二面角的正弦值为1.由图形变化的连续性知,当点F 在直线BD 的无穷远处时,看成EF 和BD 平行,此时平面AEF 与平面ACD 所成二面角最小(如图3),其正弦值为23.图2 图3综上可知,平面AEF 与平面ACD 所成二面角的正弦值的取值范围为⎝ ⎛⎦⎥⎤23,1.3.用法向量定平面——定海神针在解决立体几何中的“动态”问题时,有关角度计算问题,用法向量定平面,可将线面角或面面角转化为线线角.例3 在长方体ABCD -A 1B 1C 1D 1中,已知二面角A 1-BD -A 的大小为π6,若空间有一条直线l 与直线CC 1所成的角为π4,则直线l 与平面A 1BD 所成角的取值范围是________. 答案 ⎣⎢⎡⎦⎥⎤π12,5π12解析 如图4,过点A 作AE ⊥BD 于点E ,连接A 1E ,则∠A 1EA =π6.过点A 作AH ⊥A 1E 于点H ,则AH →为平面A 1BD 的法向量,且∠A 1AH =π6.因为l 与直线CC 1所成角的大小为π4,即l 与直线AA 1所成角的大小为π4,那么l 与直线AH 所成角的取值范围为⎣⎢⎡⎦⎥⎤π4-π6,π4+π6.又因为l 与直线AH 所成的角和l 与平面A 1BD 所成的角互余,所以直线l 与平面A 1BD 所成角的取值范围是⎣⎢⎡⎦⎥⎤π12,5π12.图44.锁定垂面破翻折——独挡一面在解决立体几何中的“动态”问题时,对于翻折或投影问题,若能抓住相关线或面的垂面,化空间为平面,则容易找到问题的核心.例4 如图5,在等腰Rt △ABC 中,AB ⊥AC ,BC =2,M 为BC 的中点,N 为AC 的中点,D 为线段BM 上一个动点(异于两端点),△ABD 沿AD 翻折至B 1D ⊥DC ,点A 在平面B 1CD 上的投影为点O ,当点D 在线段BM 上运动时,以下说法错误的是( )图5A .线段NO 为定长B .CO ∈(1,2)C .∠AMO +∠B 1DA >180°D .点O 的轨迹是圆弧 答案 C解析 如图6,记B 2为B 1在平面ADC 上的射影,由B 1D ⊥DC 可得B 2D ⊥DC .记B 2D 交AB 于点K ,则DC ⊥平面B 1B 2K .在△B 1DC 中,作EM ∥B 1D 交B 1C 于点E ,连接AE ,则平面AEM ∥平面B 1B 2K ,平面AEM ⊥平面B 1DC ,从而点A 在平面B 1DC 上的射影O 在直线EM 上.取AM 的中点H ,则NH =12MC =12,OH =12AM =12,ON =22均为定长.易知点O 的轨迹是以点H 为圆心、12为半径的圆弧,因为CO 2=MO 2+MC 2,且MO ∈(0,1),所以CO ∈(1,2).又∠AMO +∠AME =180°,∠AME =∠B 1DK ,由最小角定理知∠B 1DB 2<180°-∠B 1DA , 得∠B 1DK >∠B 1DA ,于是∠AMO +∠B 1DA <180°.故选C.图65.觅得定值明轨迹——动中有静在解决立体几何中的“动态”问题时,探寻变化过程中的不变关系,是解决动态问题的常用手段.例5 如图7,已知线段AB 垂直于定圆所在的平面,B ,C 是⊙O 上的两个点,H 是点B 在AC 上的射影,当点C 运动时,点H 运动的轨迹是( )图7A .圆B .椭圆C .抛物线D .不是平面图形 答案 A解析 如图8,设⊙O 的半径为r ,取BC 的中点M ,则图8OM⊥BC,MH=MC.因为AB⊥平面BCD,所以BC是AC在平面BCD上的射影,从而OM⊥平面ABC,得OM⊥MH,于是OH2=MO2+MH2=MO2+MC2=r2,即OH=r,亦即动点H在以O为球心、r为半径的球面上.又因为BH⊥AD,B为定点,所以动点H又在过点B且垂直于直线AD的定平面上,故点H运动的轨迹是圆.6.构建函数求最值——以数解形在解决立体几何中的“动态”问题时,对于一些很难把握运动模型(规律)的求值问题,可以通过构建某个变量的函数,以数解形.例6 (2016·浙江)如图9,在△ABC中,AB=BC=2,∠ABC=120°.若平面ABC 外一点P和线段AC上一点D,满足PD=DA,PB=BA,则四面体P-BCD的体积的最大值是________.图9答案1 2解析设M,N分别为AC,AP的中点,因为BA=BP=BC,PD=DA,所以点B在平面PAC上的射影为△PAC的外心O,且点O在直线ND上.又因为AB=BC=2,∠ABC=120°,所以AC=23,图10BO =AB 2-OA 2≤AB 2-AM 2=1, 当且仅当点O 与点M 重合时取到等号.设AD =x ,∠PDC =θ,因为AC =23,所以DC =23-x , 则S △PDC =12x ·(23-x )sin θ≤12x ·(23-x )≤12⎝⎛⎭⎪⎫2322=32, 当且仅当点M 与点D 重合时取到等号. 因此,四面体P -BCD 的体积为V P -BCD =13S △PCD ·OB ≤13×32×1=12,此时点O ,M ,D 重合,即点D 为AC 的中点,且平面PBD 与平面ABC 垂直相交于BD .总之,解立体几何动态问题的过程实质是数学建模的过程,是创新的过程.方程、函数和图形变换是基础,因此夯实基础是解决此类问题的关键.化整为零的思想、转化思想、数形结合思想、函数思想、分类讨论思想等是解决立体几何动态问题的最佳策略.真正破解动态立体几何问题,需要整体把握动态变化过程,更需要深厚的空间想象之内功.如果说招式是术,那么内功就是修行,即不断积累知识与技巧、经验与经历.。

向量巧法解立体几何中的动点问题

向量巧法解立体几何中的动点问题

向量巧法解立体几何中的动点问题作者:李淑红来源:《中学教学参考·理科版》2011年第07期立体几何是高考的必考题型,从近几年的高考试题可以发现,立体几何方面,有关动点问题已逐渐成为命题的热点.但不少学生对此类问题束手无策,因为解此类韪往往需要猜测推理,寻找适合条件的点,然后证明,有一定的困难,而用空间向量运算解决就可避免以上的难点和困惑.下面就具体题例分析介绍解答动点问题的一般思路.【例1】 (2010,全国)如图1,四棱锥S-ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC⊥平面SBC .(Ⅰ)证明:SE=2EB;(Ⅱ)求二面角A-DE-C的大小 .解:(Ⅰ)证明:以D为坐标原点,建立空间直角坐标系D-xyz,如图2,则A(1,0,0), B(1,1,0), C(0,2,0), S(0,0,2).∴--1,1,0),设平面SBC的法向量n=(a,b,c),由n⊥⊥,则,∴2b-2c=0,-a+b=0.令a=1,则b=1,c=1,∴n=(1,1,1).又设>0),则E(λλ+1,λλ+1,2λ+1),则设平面CDE的法向量m=(x,y,z),由m⊥,m⊥得,∴λxλ+1+λyλ+1+2zλ+1=0,2y=0.令x=2,则m=(2,0,-λ).由平面DEC⊥平面SBC,m⊥n,m•n=0,λ=2,故SE=2EB.(Ⅱ)由(1)知E(23,23,23),取DE中点F,则F(13,13,13),-13,-13),故∴FA⊥又-23,-43,-23),故∴EC⊥DE.向量与的夹角A-DE-C等于二面角A-DE-C的平面角,于是cos〈〉=-12.∴二面角A-DE-C的平面角为120°.【例2】在如图3的实验装置中,正方形框架的边长都是1,且平面ABCD与平面ABEF 互相垂直,活动弹子M、N分别在正方形ABCD和ABEF的对角线AC和BF上移动,且CM=BN=a(0<a<2).图3(1) 求MN的长;(2) a为何值时,MN的长最小?(3) 当MN的长最小时,求面MNA与面MNB所成二面角的余弦值.解:如图3,以B为坐标原点,建立空间直角坐标系,(1)M(22a,0,1-22a),N(22a,22a,0),∴-=a-2a+1.-2a+1=(a-,∴当a=22时,的最小值为22.(3)取MN的中点O,则O(12,14,14),则∠AOB即为二面角的平面角θ,∵A(1,0,0),B(0,0,0),∴-14,--12,-14,-14),∴-13.∴面MNA与MNB面所成二面角的余弦值为-13.(责任编辑金铃)注:本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。

立体几何中的动点问题

立体几何中的动点问题

3.与圆x2+y2-4x=0外切,且与y轴相切的动圆圆心的轨迹方 y2=8x(x>0)或y=0(x<0) 程是______________________.
相应习题
4.△ABC的顶点为A(0,-2),C(0,2),三边长a、b、c成 等差数列,公差d<0;则动点B的轨迹方程为______
x2 y2 1 y 0,x 0 _____________________ . 12 16
2 2 1 (x - 1 ) y (0,0)) 2 4 (舍去原点
例1 :已知圆C的方程为 : ( x - 1) 2 y 2 1, 过原点O作任一弦OA, 求 弦OA的中点M的轨迹方程.
y A M O C(1,0) x 方法三 向量法:利用向量性质(主要是利用垂 直和平行)求曲线方程.
例1 :已知圆C的方程为 : ( x - 1) 2 y 2 1, 过原点O作任一弦OA, 求 弦OA的中点M的轨迹方程.
y A M O C(1,0) x 方法五 交轨法:若动点是两动曲线的交 点,可联立两曲线方程,消去多余参数, 得出动点轨迹方程.
设直线lOA : y kx ①
OA CM
x2 2 y 1 轨迹方程是_________________________ 4
8. 过原点的动椭圆的一个焦点为F(1,0),长轴长为 2
9 1 2 x- y 4,则动椭圆中心的轨迹方程为_________________ 4 2
我们每个人都是社会中的动点,愿我 们在人生道路上合理的利用定理,确定属于 自己的坐标,形成美丽的人生轨迹。
x y
2
2
2
( x 1) y
2
2
2

动点题的解题技巧

动点题的解题技巧

动点题的解题技巧动点题是数学中常见的一种题型,主要考察学生的空间思维能力和问题解决能力。

解决动点问题需要一定的技巧和策略,以下是一些解题技巧:1. 建立坐标系:首先,为方便分析,我们通常会建立一个坐标系。

根据题目的描述,选择一个合适的点作为原点,确定x轴、y轴的方向。

2. 标记关键点:在动点运动路径上,标记关键的点,如起点、终点、转折点等。

这些关键点在解题过程中可能会起到重要的作用。

3. 找出变量和参数:明确题目中的变量和参数,理解它们之间的关系和变化规律。

这些变量和参数通常与动点的位置、速度、加速度等有关。

4. 运用函数思想:在许多动点问题中,我们需要运用函数的思想来描述和解决。

例如,可以用一次函数、二次函数、三角函数等来表示动点的运动规律。

5. 运用几何知识:动点问题常常涉及到几何图形的形状、大小、位置关系等。

因此,我们需要运用几何知识来分析问题,如平行线、垂直线、角相等、距离相等等等。

6. 寻找等量关系:在解决动点问题时,我们需要寻找等量关系,如时间相等、距离相等、角度相等等等。

这些等量关系可以帮助我们建立方程或方程组。

7. 数形结合:数形结合是解决动点问题的重要方法之一。

通过将数学表达式与几何图形相结合,我们可以更直观地理解问题,找到解题的突破口。

8. 分类讨论:对于一些复杂的动点问题,我们需要进行分类讨论。

根据不同的条件或情况,将问题分解成若干个子问题,然后分别解决。

9. 检验答案:在解决问题后,我们需要对答案进行检验。

检查答案是否符合题目的要求,是否符合实际情况等等。

通过掌握这些解题技巧,我们可以更好地解决动点问题,提高数学思维能力。

立体几何中动点问题的解题策略

立体几何中动点问题的解题策略

立体几何中动点问题的解题策略
梁修曦
【期刊名称】《高中数理化》
【年(卷),期】2017(000)010
【总页数】1页(P24)
【作者】梁修曦
【作者单位】湖北省十堰市郧阳中学
【正文语种】中文
【相关文献】
1.立体几何解题策略探讨研究——线面角解题策略 [J], 沈文飞;
2.数学解题中的化归策略--以立体几何中的动点问题为例 [J], 廖爱国
3."坐标法求解立体几何中的动点问题"课堂实录及教学启示 [J], 苏艺伟; 张兵源
4.从形出发,展开想象——高中立体几何教学中解题策略的实践探究 [J], 陈建华
5.立体几何动点问题解题策略研究与对策 [J], 刘益飞
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A1 B1
B1
D
C
P
D
C
E
P
A
M
B
A
M
B
P2 F PM 21 P2 F E2 F P2 E 1 P2E
两式结合P可E得 PM
PE 为P到直A线 D 的距离
PM 为P到定M点 (不在 AD 上)的距离
.
3
延津县高级中学2014年高考备考专题系列
问题三: 正方体ABCD —A1B1C1D1中,E、F分别是棱A1B1,BC 上的动 点,
圆 球面 直线
椭圆
双曲线
抛物线
.
2
延津县高级中学2014年高考备考专题系列
问题二:已知正方体ABCD —A1B1C1D1的棱长为1,M在棱AB上,且
AM= 1 点P在平面ABCD内运动 3
P到直线A1D1的距离与点P到点M的距离
的平方差为1,则点P的轨迹为_________.
D1
C1
D1
C1
F
A1
教材必修二p124B组第3题、 2010北京卷第8题
2012江西卷第10题、
2013年北京卷14题 、
2013安徽卷15题
.
12
此课件下载可自行编辑修改,此课件供参考! 部分内容来源于网络,如有侵权请与我联系删除!
课时目标:
1、了解空间动点集合的类型 2、探索“动点问题”的解题思路
.
1
问题一: 动点P满足如下条件时
平面内到定点距离等于定长 空间中到定点距离等于定长 两不同平面公共点的集合 平面内到两定点距离之和为定值(大于定点间的距离)
平面内到两定点距离之差的绝对值为定值(小于定点间的距离)
平面内到定直线距离等于到定点(不在定直线上)距离
z
以D为坐标原点建立空角 间坐 直标 D1 系 C1
设P点坐标为x,( y, z)
A1 E
B1
A1EBF
设E(1,m,1) 则 F(1m,1,0)
P D
Cy
A
F
P为E,F中点可得 x
B
x 11m y m 1
2
2
z 1 2
消m 得 去 2x : 2y30(z1)
2
建立“坐标系”进行计算!
.
5
延津县高级中学2014年高考备考专题系列
连结SO,则动点P的轨迹是△SCD的中位线FG。
G P
F
D
C
O
E
A
B
应用“位置关系定理” 转化
.
7
课时检测1 平面α的斜线AB交α于点B,过定点A的动直线l与AB垂直,
且交α于点C,则动点C的轨迹是 ( )
A.一条直线 B.一个圆 C.一个椭圆
D.双曲线的一支
l A
α
B
C
课时检测2 四棱锥P-ABCD,AD⊥面PAB,BC⊥面PAB,底面ABCD为梯形, AD=4,BC=8,AB=6,∠APD=∠CPB,满足上述条件的四棱锥的顶点P的轨迹是
()
A.圆 B.不完整的圆 C.抛物线
D.抛物线的一部分
P
C B
A
D
.
8
延津县高级中学2014年高考备考专题系列
课时检测
1平面α的斜线AB交α于点B,过定点A的动直线l与AB垂直,且交α于
点C,则动点C的轨迹是 ( )
A.一条直线 B.一个圆 C.一个椭圆
D.双曲线的一支
α B
l A
C
.
9
延津县高级中学2014年高考备考专题系列
且 A1E=BF,P为EF的中点,则点P的轨迹是___________ D1
E 点A 1重 与合 F 点, B 重 与合 P 点, 在 A1 ?
E
侧面 AB1BA1的中心
P
E 点B 1重 与合 F 点, C 重 与合 P 点, 在? D
A
侧面 BB1C1C的中心
C1 B1
C F B
.
小实验4
延津县高级中学2014年高考备考专题系列
A
B
.
10
解题策略小结:
应用“位置关系定理” 转化 建立“坐标系” 计算
依据“曲线定义” 判定
我们每个人都是社会中的动点,愿我
们在人生道路上合理的利用定理,确定属于 自己的坐标,形成美丽的人生轨迹。
.
11
解题策略小结:
应用“位置关系定理” 转化 建立“坐标系” 计算
依据“曲线定义” 判定
课后参考题目:
C
∵∠APD=∠CPB ∴tan ∠APD =tan ∠CPB
∴PB=2PA
A
D
P(x,y)(
在平面APB内,以AB的中点为原点, AB所在直线为x轴建立平面直角坐标系, 则A(-3,0)、B(3,0),设P(x,y)(y≠0),则
(x-3)2+y2=4[(x+3)2+y2](y≠0) 即(x+5)2+y2=16(y≠0) ∴P的轨迹是(B)
问题四:如图,在正四棱锥S-ABCD中,E是BC的中点,P点在
侧面△SCD内及其边界上运动,并且总是保持PE AC,则动
点P的轨迹与△SCD组成的相关图形最有可能的是 ( )
S
S
S
S
P
P
P P
D
C
D
C DS
C D
C
A
B
C
D.
S
Байду номын сангаас
D A
P
C E B
.
6
分别取CD、SC的中点F、G,
S
连结EF、EG、FG、BD.设AC与BD的交点为O
课时检测2 四棱锥P-ABCD,AD⊥面PAB,BC⊥面PAB,底面ABCD为梯形,AD=4, BC=8,AB=6,∠APD=∠CPB,满足上述条件的四棱锥的顶点P的轨迹是 A.圆 B.不完整的圆 C.抛物线 D.抛物线的一部分
P B
分析:∵AD⊥面PAB,BC⊥平面PAB ∴AD∥BC且AD⊥PA,CB⊥PB
相关文档
最新文档