立体几何动点问题
高中数学立体几何动点和折叠问题-含答案
高中数学立体几何动点和折叠问题-含答案1.在正方体ABCD-A1B1C1D1中,BC的中点为M,点P在正方体的表面DCC1D1上移动,且满足∠APD=∠MPC。
求三棱锥P-BCD的体积的最大值。
2.△ABC是边长为23的等边三角形,E、F分别为AB、AC的中点,沿EF把四面体OAEF折起,使点A翻折到点P的位置,连接PB、PC。
当四棱锥P-BCFE的外接球的表面积最小时,求四棱锥P-BCFE的体积。
3.△ABC是边长为23的等边三角形,E、F分别在线段AB、AC上滑动,且EF//BC,沿EF把△AEF折起,使点A翻折到点P的位置,连接PB、PC。
求四棱锥P-BCFE的体积的最大值。
4.已知三棱锥P-ABC满足PA⊥底面ABC,在△ABC中,AB=6,AC=8,且AB⊥AC,D是线段AC上一点,且AD=3DC,球O为三棱锥P-ABC的外接球,过点D作球O的截面。
若所得截面圆的面积的最小值与最大值之和为44π,则求球O的表面积。
5.已知A、B、C、D四点均在半径为R(R为常数)的球O的球面上运动,且AB=AC,AB⊥AC,AD⊥BC。
若四面体ABCD的体积的最大值为V,求V的值。
6.已知A、B、C是球O的球面上的三点,AB=2,AC=23,∠ABC=60°,且三棱锥O-ABC的体积为V。
求V的值。
7.已知三棱柱ABC-A1B1C1内接于一个半径为3的球,四边形A1ACC1与B1BCC1为两个全等的矩形,M是A1B1的中点,且C1M=√3.求三棱锥C1-ABC的体积。
8.在四棱柱ABCD-A1B1C1D1中,底面四边形ABCD是菱形,∠ADC=120°,连接AC,BD交于点O,A1O⊥平面ABCD,AO=BD=4,点C'与点C关于平面BC1D对称。
求三棱锥C'-ABD的体积。
1.删除该题,因为这明显是一道数学计算题,没有文章可言。
2.球O的表面积为4π,则球O的体积为(4/3)π。
谈立体几何中动点轨迹问题的解题策略
立体几何中的动点轨迹问题是一个常见的问题类型,它涉及到空间几何中的点、线、面等元素的运动和变化。
解决这类问题的关键在于理解运动和变化的过程,并能够通过数学模型进行描述。
解题策略主要包括以下几个方面:
1. **建立空间坐标系**:为了更好地描述空间几何元素的位置和运动,需要建立一个适当的空间坐标系。
坐标系的建立应依据问题的具体情境和需求,通常选择一个固定点作为原点,并确定三个互相垂直的轴。
2. **确定动点的坐标**:在确定了坐标系之后,需要确定动点的坐标。
这可以通过设定动点的坐标变量来实现,例如设动点的坐标为$(x, y, z)$。
3. **分析运动过程**:在确定了动点的坐标后,需要分析动点的运动过程。
这包括了解动点的运动方向、速度、加速度等参数,以及这些参数与坐标变量的关系。
4. **建立数学模型**:通过分析运动过程,可以建立描述动点运动的数学模型。
这通常涉及到物理、几何、代数等多个方面的知识,需要根据具体问题进行选择和应用。
5. **求解数学模型**:建立了数学模型后,需要求解该模型以得到动点的轨迹方程。
这可能涉及到微积分、线性代数、解析几何等多个数学领域的知识,需要根据问题的复杂程度和要求进行选择和应用。
6. **验证答案**:最后,需要对得到的答案进行验证,以确保其正确性和有效性。
这可以通过将答案代入原问题中进行检验,或者通过与其他已知的答案进行比较来进行验证。
综上所述,解决立体几何中的动点轨迹问题需要综合运用空间几何、物理、数学等多个领域的知识,并能够根据具体问题进行选择和应用。
同时,还需要有一定的逻辑思维和分析能力,以更好地理解和解决这类问题。
立体几何中的动点问题
立体几何中的动点问题1、如图,四棱锥ABCD P -的底面是边长为2的正方形,⊥PA 平面ABCD ,且4=PA ,M 是PB 上的一个动点(不与B P ,重合),过点M 作平面//α平面PAD ,截棱锥所得图形的面积为y ,若平面α与平面PAD 之间的距离为x ,则函数()x f y =的图象是C2、在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑BCD A -中,⊥AB 平面BCD ,且CD BD ⊥,CD BD AB ==,点P 在棱AC 上运动,设CP 的长度为x ,若PBD ∆的面积为()x f ,则()x f 的图象大致是A3、 如图所示,侧棱与底面垂直,且底面为正方形的四棱柱1111D C B A ABCD -中,21=AA ,1=AB ,N M ,分别在BC AD ,1上移动,始终保持//MN 平面11D DCC ,设x BN =,y MN =,则函数()x f y =的图象大致是 C4、如图,已知正方体1111D C B A ABCD -的棱长为2,长为2的线段MN 的一个端点M 在棱1DD 上运动,点N 在正方体的底面ABCD 内运动,则MN 的中点P 的轨迹的面积是________2π5、点P 在正方体1111D C B A ABCD -的面对角线1BC 上运动,给出下列命题:①三棱锥PC D A 1-的体积不变;②//1P A 平面1ACD ;③1BC DP ⊥;④平面⊥1PDB 平面1ACD ;其中正确的命题序号是_______①②④6、在正方体1111D C B A ABCD -中,F E ,分别为11C B ,11D C 的中点,点P 是底面1111D C B A 内一点,且//AP 平面EFDB ,则1tan APA ∠的最大值是_______227、已知直三棱柱111C B A ABC -中的底面为等腰直角三角形,AC AB ⊥,点N M ,分别是边C A AB 11,上动点,若直线//MN 平面11B BCC ,点Q 为线段MN 的中点,则点Q 的轨迹为 C.A 双曲线的一支(一部分) .B 圆弧(一部分).C 线段(去掉一个端点) .D 抛物线的一部分 解:以AB 为轴,AC 为轴,1AA 为轴建系设()b ta M ,0,1,()tb ta M ,0,,()b ta N ,,01,则()()b t ta N -1,,0,()tb ta M ,0,()10<≤t则N M ,中点⎪⎭⎫ ⎝⎛2,2,2b ta ta Q (通过作与平面11B BCC 平行的平面交C A AB 11,来找N M ,进而找中点Q )。
如何求解与动点有关的立体几何问题
与动点有关的立体几何问题中的点、线、面的位置往往是不确定的或可变的,此类问题的难度较大,对同学们的空间想象能力和逻辑推理能力有较高的要求.那么求解这类问题有哪些方法呢?下面一起来探讨.一、利用函数思想当问题中的某些点、线、面发生变化时,某些位置关系或量就会发生变化,还会引发其他变量的变化,此时我们可根据题意选择合适的量作为变量,建立关于该变量的函数关系式,运用函数思想,将立体几何问题转化为函数问题,利用函数的图象和性质来解题.例1.已知正四面体ABCD 的棱长为1,P 为棱AB 上的动点(端点A 、B 除外),过点P 作平面α垂直于AB ,平面α与正四面体的表面相交.记AP =x ,则交线围成的图形面积S =f ()x 的图象大致为().A CB D解:取线段AB 的中点O ,连接OC 、OD ,因为△ABC 、△ABD 为等边三角形,O 为AB 的中点,则OC ⊥AB ,OD ⊥AB ,因为OC ⋂OD =O ,OC 、OD ⊂平面OCD ,所以AB ⊥平面OCD ,因为AB ⊥平面α,所以平面α与平面OCD 平行或重合,且OD =OC =AC 2-OA 2取CD 的中点M ,连接OM ,则OM ⊥CD ,且OM =OC 2-CM 2故S △OCD =12CD ⋅OM①当0<x <12时,平面α//平面OCD ,平面α⋂平面ABC =PE ,平面OCD ⋂平面ABC =OC ,则PE //OC ,同理可得,PF //OD ,EF //CD ,所以PE OC =AE AC =EF CD =AF AD =PF OD ,故△PEF ∽△OCD .由图1可知SS △OCD =()AP AO2=4x 2,则S =f ()x =2x 2;图1图2②当x =12时,S =f ()12③当12<x <1时,平面α//平面OCD ,平面α⋂平面ABC =PE ,平面OCD ⋂平面ABC =OC ,则PE //OC ,同理可得,PF //OD ,EF //CD ,所以PE OC =BE BC =EF CD =BF BD =PF OD ,故△PEF ∽△OCD ,由图2可知SS △OCD =()BP BO2=4()1-x 2,则S =f ()x =2()1-x 2.综上所述,S =f ()x =ìíîïïïï2x 2,0<x ≤12,2()x -12,12<x <1,故函数f ()x 的图象为C 选项中的图象.故C 项正确.由于P 为棱AB 上的动点,所以我们以AP =x 为自变量,根据正四面体ABCD 的特征,以及点、线、面的位置关系得到当0<x <12和12<x <1时关于x 的函数式,将与动点有关的立体几何问题转化为函数问题,根据函数式画出函数的图象,即可解题.二、构造空间向量向量法是指通过构建空间直角坐标系,将问题转化为空间向量运算问题来求解.由于无法确定问题中动点的位置,所以不妨建立空间直角坐标系,设出动点的坐标,给各条线段赋予方向,根据点、线、面的位置关系建立关于动点坐标的关系式,进而求得动点的轨迹方程,从而求得问题的答案.例2.(多选题)已知正方体ABCD -A 1B 1C 1D 1的边长53为2,点P ,Q 分别在正方形A 1B 1C 1D 1的内切圆,正方形C 1D 1DC 的外接圆上运动,则().A. PQ ⋅CD ≤2+22 B.|PQ|≥3-2C.∠PAQ >π8D.∠PAQ <π2解:以A 为原点, AD , AA 1,AB 为x ,y ,z 轴的正方向建立空间直角坐标系.设P (1+cos α,2,1+sin α),Q (2,1+2cos β,1+2sin β),可得C ()2,0,2,D ()2,0,0,则 CD =()0,0,-2,PQ =()1-cos α,2cos β-1,2sin β-sin α,所以 PQ ⋅CD =2(sin α-2sin β)≤2+22,故A 选项正确;而|PQ |2=(1-cosα)2+(2cos β-1)2+(2sin β-sin α)2=5-2cos α-22cos β-22sin αsin β≥5-22cos β-4+8sin 2β,记t =22cos β,|PQ |2≥5-t -12-t 2≥5-2=5-26=(3-2)2,故B 选项正确;取C 1D 1的中点M ,AM 穿过一侧的外接圆,取A 1B 1的中点M ′,则AM ′不穿过,故必存在点P ,使得AP 经过外接圆,设公共点为Q ,此时P ,A ,Q 共线,故C 选项不正确;假设D 选项成立,则 AP ⋅AQ =2(1+cos α)+2(1+2cos β)+(1+sin α)(1+2sin β)>0,取α=π,β=54π,得 AP ⋅ AQ =0,即∠PAQ =π2,故D 选项不正确.所以本题的正确答案为AB 两项.建立空间直角坐标系后,求得各个点的坐标,各条线段的方向向量,即可利用空间向量数量积公式、向量的模的坐标公式进行运算,从而确定正确的选项.三、采用转化法动和静是相对的.在动点运动的过程中,要善于寻找或构造与之相关的一些不变量,将一些变化的点、线、面的关系、位置进行合理的转换,如将动点到直线的距离转化为动点所在直线与另一条直线之间的距离、动点所在的平面与另一条直线之间的距离;将动点的位置视为静止的点,以化动为静,构建关系式,运用转化法顺利求得问题的答案.例3.若直线m ⊥平面α,垂足是O ,正四面体ABCD 的棱长为4,点C 在平面α上运动,点B 在直线m 上运动,则点O 到直线AD 的距离的取值范围是().A.éëêêùûúú42-52,42+52 B.[]22-2,22+2C.éëêêùûúú3-222,3+222 D.[]32-2,32+2图3解:如图3,分别取BC ,AD 的中点M ,N ,连接AM ,MD ,MN ,则AM ⊥BC ,MD ⊥BC ,又AM ⋂MD =M ,AM ⊂平面AMD ,MD ⊂平面AMD ,则BC ⊥平面AMD ,又MN ⊂平面AMD ,则MN ⊥BC .在RtΔABM 中,AM =AB 2-BM 2=42-22=23,在等腰ΔAMD 中,MN ⊥AD ,可得MN =AM 2-AN 2=()232-22=22.若固定正四面体ABCD 的位置,则点O 在以BC 为直径的球上运动,此时球的半径为2,可知点O 到直线AD 的最小距离为球心到直线AD 的距离减去半径,即22-2,最大距离为球心到直线AD 的距离加上半径,即22+2,则点O 到直线AD 的距离的取值范围是[]22-2,22+2.故选B 项.解答本题,需采用转化法,将问题转化为点O 在以BC 为直径的球上运动的问题.再根据BC 与球的位置关系,以及球的性质,将问题转化为求球心到直线AD 的距离.对于与动点有关的立体几何问题,我们不仅要结合图形,发现并关注动点在运动过程中的不变量,还需通过改变视角,将空间中的点、线、面之间的位置关系转化到平面中进行研究、分析,才能顺利求得问题的答案.无论运用哪种方法解答与动点有关的立体几何问题,都需结合几何图形来分析问题,灵活运用数形结合思想,这样才能达到事半功倍的效果.(作者单位:安徽省阜南第二中学)54。
高中数学立体几何动点和折叠问题-含答案
立体几何折叠动点问题1.(2020•湖南模拟)在棱长为6的正方体1111ABCD A B C D -,中,M 是BC 的中点,点P 是正方体的表面11DCC D (包括边界)上的动点,且满足APD MPC ∠=∠,则三棱锥P BCD -体积的最大值是( )A .B .36C .24D .2.(2020•德阳模拟)ABC ∆是边长为E ,F 分别为AB ,AC 的中点,沿EF 把OAEF 折起,使点A 翻折到点P 的位置,连接PB 、PC ,当四棱锥P BCFE -的外接球的表面积最小时,四棱锥P BCFE -的体积为( )A B C D3.(2020•德阳模拟)ABC ∆是边长为的等边三角形,E 、F 分别在线段AB 、AC 上滑动,//EF BC ,沿EF 把AEF ∆折起,使点A 翻折到点P 的位置,连接PB 、PC ,则四棱锥P BCFE -的体积的最大值为()A .BC .3D .24.(2020春•江西月考)已知三棱锥P ABC -满足PA ⊥底面ABC ,在ABC ∆中,6AB =,8AC =,AB AC ⊥,D 是线段AC 上一点,且3AD DC =,球O 为三棱锥P ABC -的外接球,过点D 作球O 的截面,若所得截面圆的面积的最小值与最大值之和为44π,则球O 的表面积为( ) A .72π B .86π C .112π D .128π5.(2020春•沙坪坝区校级期中)已知A ,B ,C ,D 四点均在半径为(R R 为常数)的球O 的球面上运动,且AB AC =,AB AC ⊥,AD BC ⊥,若四面体ABCD 的体积的最大值为16,则球O 的表面积为( ) A .32π B .2π C .94π D .83π6.(2020春•五华区校级月考)已知A ,B ,C 是球O 的球面上的三点,2AB =,AC =60ABC ∠=︒,且三棱锥O ABC -,则球O 的体积为( )A .24πB .48πC .D .7.(2020•东莞市模拟)已知三棱柱111ABC A B C -四边形11A ACC 与11B BCC 为两个全等的矩形,M 是11A B 的中点,且11112C M A B =,则三棱柱111ABC A B C -体积的最大值为( ) A .12B .16C .4D .438.(2020•江西模拟)四棱柱1111ABCD A B C D -中,底面四边形ABCD 是菱形,120ADC ∠=︒,连接AC ,BD 交于点O ,1A O ⊥平面ABCD ,14AO BD ==,点C '与点C 关于平面1BC D 对称,则三棱锥C ABD '-的体积为( )A .B .C .D .9.(2020•浙江模拟)在长方体1111ABCD A B C D -中,底面ABCD 是边长为4的正方形,侧棱1(4)AA t t =>,点E 是BC 的中点,点P 是侧面11ABB A 内的动点(包括四条边上的点),且满足tan 4tan APD EPB ∠=∠,则四棱锥P ABED -的体积的最大值是( )A B . C D10.(2019秋•包河区校级期末)矩形ABCD 中,2BC =,沿对角线AC 将三角形ADC 折起,得到四面体A BCD -,四面体A BCD -外接球表面积为16π,当四面体A BCD -的体积取最大值时,四面体A BCD -的表面积为( )A .B .C .D .11.(2020•山东模拟)如图,正方体1111ABCD A B C D -的棱长为1,线段11A C 上有两个动点E ,F ,且12EF =;则下列结论错误的是( )A .BD CE ⊥B .//EF 平面ABCDC .三棱锥E FBC -的体积为定值D .BEF ∆的面积与CEF ∆的面积相等12.(2020•海淀区校级模拟)在边长为1的正方体中,E ,F ,G ,H 分别为11A B ,11C D ,AB ,CD 的中点,点P 从G 出发,沿折线GBCH 匀速运动,点Q 从H 出发,沿折线HDAG 匀速运动,且点P 与点Q 运动的速度相等,记E ,F ,P ,Q 四点为顶点的三棱锥的体积为V ,点P 运动的路程为x ,在02x 剟时,V 与x 的图象应为( )A .B .C .D .13.(2019秋•襄城区校级月考)如图,在四棱锥P ABCD -中,顶点P 在底面的投影O 恰为正方形ABCD 的中心且AB =设点M ,N 分别为线段PD ,PO 上的动点,已知当AN MN +取得最小值时,动点M 恰为PD 的中点,则该四棱锥的外接球的表面积为( )A .643π B .163π C .253π D .649π。
2022高考数学立体几何—空间中的动点问题全文
可编辑修改精选全文完整版立体几何—空间中的动点问题专题综述空间中的动点问题是指在一定的约束条件下,点的位置发生变化,在变化过程中找出规律,将动点问题转化为“定点”问题、将空间问题转化为平面问题、将立体几何的问题转化为解析几何的问题等,目的是把问题回归到最本质的定义、定理或现有的结论中去.立体几何中考查动点问题,往往题目难度较大,渗透化归与转化思想,对学生的逻辑推理能力要求较高.一般考查动点轨迹、动点的存在性、定值、范围、最值等问题,除了利用化动为定、空间问题平面化等方法,在几何体中由动点的变化过程推理出结果以外,也可以通过建系,坐标法构建函数,求得结果.专题探究探究1:坐标法解决动点问题建立空间直角坐标系,使几何元素的关系数量化,借助空间向量求解,省去中间繁琐的推理过程.解题步骤与空间向量解决立体几何问题一致,建立适当的空间直角坐标系由动点的位置关系,如在棱上或面内,转化为向量的关系,用参数表示动点的坐标通过空间向量的坐标运算表示出待求的量若求最值或取值范围,转化为函数问题,但要注意自变量的取值范围.一般坐标法用于解决动点的存在性问题、求最值、求范围问题.说明:对于求最值、范围问题,也可以直接通过几何体中的某个变量,构建函数,求最值或范围.(2022湖北省宜昌市模拟) (多选)在正方体1111ABCD A B C D -中,点为线段1AD 上一动点,则( ) A. 对任意的点,都有1B D CQ ⊥ B. 三棱锥1B B CQ -的体积为定值 C. 当为1AD 中点时,异面直线1B Q 与所成的角最小D. 当为1AD 中点时,直线1B Q 与平面11BCC B 所成的角最大【审题视点】以正方体为载体考查定点的定值、最值问题,正方体便于建立空间直角坐标系,可选择用坐标法解决.【思维引导】选项,可以用几何知识证明;选项,设出点坐标,用坐标表示出异面直线成角的余弦值或线面角的正弦值,求最值,得出点位置.【规范解析】解:对于:连接,1.CD因为在正方体1111ABCD A B C D -中, 1B D ⊥平面1ACD ,CQ ⊂平面1ACD , 1B D CQ ⊥,故正确; 对于:平面11//ADD A 平面11BCC B ,平面11ADD A 与平面11BCC B 的距离为正方体棱长,1123111326B B CQ Q BCB V V a a a --==⨯⋅=,为定值,故正确;对于:以为坐标原点,直线分别轴,建立空间直角坐标系如下图:设正方体1111ABCD A B C D -的棱长为2, ()[](),0,20,2Q x x x -∈,则1(2,2,2)B , ()2,2,0B , (0,2,0)C , 因此()12,2,B Q x x =---, ()2,0,0BC =-, 设异面直线1B Q 与所成的角为θ,则当时,,当时,当时,故当与1D 重合时,异面直线1B Q 与所成的角最小,故不正确;对于: ()12,2,B Q x x =---, 又是平面11BCC B 的一个法向量,设直线1B Q 与平面11BCC B 所成的角为α,则,所以当1x =时,sin α取得最大值63,而0,2πα⎡⎤∈⎢⎥⎣⎦, 因此α取得最大值,即当为1AD 中点时,直线1B Q 与平面11BCC B 所成的角最大, 故正确. 故选.ABD用一个参数表示动点的坐标,并求出参数范围,即为函数定义域转化为函数求最值,求出当函数取最值时的x 的值【探究总结】典例1是一道典型的研究动点问题的多选题,难度中等,但能够反映出坐标法研究最值范围问题的思路.建系设坐标,写出参数范围 根据向量运算构造函数求最值.(2021安徽省蚌埠市联考) 已知圆柱1OO 底面半径为1,高为π,是圆柱的一个轴截面,动点从点出发沿着圆柱的侧面到达点,其距离最短时在侧面留下的曲线Γ如图所示.将轴截面绕着轴1OO 逆时针旋转(0)θθπ<<后,边11B C 与曲线Γ相交于点.P(1)求曲线Γ长度; (2)当2πθ=时,求点1C 到平面的距离;(3)证明:不存在(0)θθπ<<,使得二面角D AB P --的大小为.4π探究2:化动为定点的位置在变化的过程中,有些量或位置关系是不变的,比如点到平面的距离不变,从而使几何体的体积不变;动点与另外一定点的连线与某条直线始终垂直,与某个平面始终平行.在证明体积为定值、证明位置关系时,要动中寻定,将动态的问题静态化:将动点转化为定点,寻找动直线所在的确定平面,从而解决问题.答题思路:1.动点到平面的距离为定值:证明平面,动点到平面的距离即为定点到平面的距离;2.为动点,为定点,证明:证明所在平面与垂直;3.为动点,为定点,证明平面:证明所在平面与平面平行.(2021湖南省四校联考) 在正三棱柱中,,,分别为的中点,P 是线段DF 上的一点.有下列三个结论:①平面;②;③三棱锥的体积时定值,其中所有正确结论的编号是 A. ①②B. ①③C. ②③D. ①②③【审题视点】求证关于动直线的线面平行或线线垂直,三棱锥的体积为定值问题,要化动为定.【思维引导】证明动直线所在平面与已知平面平行;证明定直线与动直线所在平面垂直;寻找过点与平面平行的直线,即得出点到平面的距离.【规范解析】解:如图,对于①,在正三棱柱中,,分别为的中点,平面平面,由平面,得平面,故①正确;对于②,在正三棱柱中,平面平面,平面平面平面,,平面平面,故②正确;对于③,平面平面,平面到平面的距离为定值,而有为定值,故是定值,线面平行,转化为面面平行异面直线垂直,转化为线面垂直体积的定值问题,转化点到平面的距离是定值,即通过线面平行或面面平行,得出动点到平面距离为定值故③正确.故选D .【探究总结】立体几何证明中经常出现,求证关于动直线的线面平行与线线垂直问题,其思路是转化为证明动直线所在的定平面与其他平面或直线的位置关系.关键是分析动点,动线或动面间的联系,在移动变化的同时寻求规律.(2021云南省曲靖市联考) 如图所示的几何体中,111ABC A B C -为直三棱柱,四边形为平行四边形,2CD AD =,60ADC ∠=︒,1.AA AC =(1)证明:,1C ,1B 四点共面,且11A C DC ⊥;(2)若1AD =,点是上一点,求四棱锥的体积,并判断点到平面11ADC B 的距离是否为定值?请说明理由.探究3: 巧用极端位置由于点位置连续变化,使研究的图形发生连续的变化,利用点的位置变化“极端”位置,避开抽象及复杂的运算,得到结论.常见题型:1.定值问题:几何体中存在动点,但所求结果是确定的,即随着动点位置的改变不会影响所求的量,故可以考虑动点在极端位置的情况,优化解题过程.2.范围问题:几何体中存在动点,结果会随着动点位置改变而改变,当动点从一侧极端位置移动到令一个极端位置的过程中,所求量在增大、或减小、或先增后减、或先减后增,通过求出极端位置处的值,及最值,从而得出范围;3.探究问题:探究满足条件的点是否存在,也可以转化为求出范围,从而得出结论.(2021湖南省株洲市模拟) 在正四面体中, 为棱的中点, 为直线上的动点,则平面与平面夹角的正弦值的取值范围是 .【审题视点】本例可用极端位置法分析,也可以建系,用坐标法解决.【思维引导】借助极端位置分析,不难看出经过和底边中线的平面与平面垂直,点在移动的过程中,存在一个位置使平面与经过和底边中线的平面平行,即平面平面,此时两平面所成角为,角最大;当点移动到无穷远时,平面平面,此时两平面所成角最小.【规范解析】解:由下左图 设为的中心,为的中点, 则在正四面体中平面, 为中点,为的中点,,故平面连接,并延长交于点, 连接,并延长交于点, 则过点的平面交直线于点. 则平面平面 即平面与平面的夹角的正弦值为1,点从取最值的位置处移动至直线的无穷远处的过程中, 平面与平面的夹角逐渐减小,即当点在无穷远处时,看作, 如下右图 故平面与平面的夹角即为平面与平面的夹角,求出其正弦值为. 综上可知:面与面的夹角的正弦值的取值范围为.【探究总结】借助极端位置解决典例3中的问题,首先利用几何知识,明确点在移动的过程中 ,所求量的变化情况,若在极端位置处取“最值”,问题就简化为求出极端位置处的值.(2021浙江省杭州市高三模拟)高为1的正三棱锥的底面边长为,二面角与二面角A PB C --之和记为,则在从小到大的变化过程中,的变化情况是( )A .一直增大B .一直减小C .先增大后减小D .先减小后增大专题升华结合几何知识,两平面成角的变化过程,即动点从一个极端位置变化到另一极端位置时,夹角大小的增减情况在极端位置处取“最值”,直接求出点该处时的夹角的正弦值,即为范围区间的一个端点几何体中研究动点问题往往难度较大,开放性强,技巧性高.总体思路是:用几何知识,经过逻辑推理,证明位置关系或求出表示出所求量;或者建立空间直角坐标系,将几何问题代数化,用空间向量研究动点问题,省去了繁杂的推理环节,但计算量较大.解决动点问题的策略不局限与上述方法,常用的的方法还有:运用条件直接推算,借助条件将几何体还原到长方体中去;构造函数,数形结合;还将空间问题转化为平面几何解决,如化折为直、利用解析几何的知识解决. 但只要我们熟练掌握这些基本方法,并灵活加以应用,不仅能化繁为简,化难为易,而且还可以得到简捷巧妙的解法.【答案详解】 变式训练1【解答】解:(1)在侧面展开图中为的长,其中AB AD π==,∴曲线Γ的长为2;π(2)当2πθ=时,建立如图所示的空间直角坐标系,则有()0,1,0A -、()0,1,0B 、1,0,2P π⎛⎫- ⎪⎝⎭、()11,0,C π-, 、(1,1,)2AP π=-、1(1,0,)OC π=-设平面的法向量为(,,)n x y z =,则2002n AB y n AP x y z π⎧⋅==⎪⎨⋅=-++=⎪⎩, 取2z =得(,0,2)n π=,所以点1C 到平面的距离为12||||4OC n d n ππ⋅==+; (3)假设存在满足要求的(0)θθπ<<, 在(2)的坐标系中,()sin ,cos ,P θθθ-,,设平面的法向量为111(,,)m x y z =,则111120sin (cos 1)0y x y z θθθ=⎧⎨-+++=⎩,取11x =得sin (1,0,)m θθ=,又平面的法向量为(1,0,0)k =,由二面角D AB P --的大小为4π, 则|cos ⟨,m k ⟩2212|sin .21sin θθθθ==⇒=+ sin (0)2πθθθ<<<,0θπ∴<<时,均有sin θθ<,与上式矛盾.所以不存在(0)θθπ<<使得二面角D AB P --的大小为.4π 变式训练2【解答】(1)证明:因为111ABC A B C -为直三棱柱, 所以,且,又四边形为平行四边形,//BC AD ,且BC AD =,,且,四边形为平行四边形,,1B 四点共面;,又1AA ⊥平面,AC ⊂平面,,四边形11A ACC 为正方形,连接1AC 交1A C 于,,在ADC ∆中,2CD AD =,,由余弦定理得,,所以,AD AC ⊥,又1AA ⊥平面ABCD ,AD ⊂平面ABCD ,1AA AD ⊥,,1AA ⊂平面11A ACC ,,AD ⊥平面11A ACC ,1AC ⊂平面11A ACC ,所以,又,平面,1A C ⊥平面, 1DC ⊂平面,(2)解:由(1)知:1A C ⊥平面,在Rt DAC 中,由已知得3AC =,,四棱锥的体积,//BC AD ,点到平面的距离为定值,即为点到平面的距离变式训练3【解析】解:设二面角为,二面角A PB C --为,当时,正三棱锥趋向于变为正三棱柱,;当时,正三棱锥趋向变为平面,.当正三棱锥为正四面体时,且,,故.当从小变大时,要经过从变为小于的角,然后变为的过程, 故只有选项符合.故选:.静夜思[ 唐] 李白原文译文对照床前明月光,疑是地上霜。
立体几何中的动点问题
立体几何中的动点问题一、立体几何中的动点问题嘿,小伙伴们,咱今天来唠唠立体几何里的动点问题哈。
这动点问题就像一个调皮的小怪兽,在立体几何这个大城堡里到处乱窜呢。
你想啊,立体几何本身就已经够让人头疼的了,再加上个动点,那简直是“难上加难”。
比如说一个正方体或者长方体里面,有个点在棱上或者面上动来动去的,你要去研究它的轨迹啦,它和其他点、线、面之间的关系啦,真的是很考验我们的小脑袋瓜。
我给你们举个例子哈,就像有个三棱柱,在它的一条侧棱上有个动点,这个动点和底面三角形的某个顶点连线,然后问你这条连线和底面的夹角怎么随着这个动点的移动而变化。
这时候你就得动用你学过的那些立体几何的知识了,像什么直线和平面的夹角公式啦,向量的方法啦。
而且呢,这个动点问题还常常和空间想象力挂钩。
有时候你光靠在纸上画图还不行,得在脑子里构建出那个立体的模型,想象着那个点是怎么动的。
这就像是你自己在脑子里玩一个3D游戏一样,不过这个游戏可没那么容易通关哦。
还有一种情况也很常见,就是在一个圆锥或者圆柱里面有动点。
圆锥和圆柱本身就是曲线图形,再加上动点,就像是在弯弯绕绕的迷宫里找出口一样。
比如说在圆锥的侧面上有个动点,要你求这个动点到圆锥底面圆心的距离的取值范围,你就得考虑圆锥的母线长啦,底面半径啦,还有这个动点的运动范围啦。
其实解决立体几何中的动点问题呢,也有一些小窍门。
一个就是多画图,不同位置的图都画一画,这样你就能比较直观地看到动点的变化了。
再一个就是要善于把立体问题转化成平面问题,利用平面几何的知识来解决。
就像把圆锥展开成扇形,把圆柱展开成长方形,这样可能就会让问题变得简单一些呢。
不过呢,不管有多少小窍门,都得靠我们自己多做练习题,多去思考,这样才能真正掌握这个有点“小狡猾”的动点问题。
加油哦,小伙伴们!。
立体几何中的动点轨迹问题
同理,在平面 AA1D1D 内满足条件的点的轨迹长度为52π.在平面 A1B1C1D1 内满足条件 的点的轨迹为以 A1 为圆心,A1F 为半径的14圆弧,长度为 2π×4×14=2π.同理,在平 面 ABCD 内满足条件的点的轨迹为以 A 为圆心,AE 为半径的圆弧,长度为 2π×3×14 =32π.故轨迹的总长度为52π+52π+2π+32π=172π.
的长度最小.因为 B1N1=D1N1= 5,B1D1=2 2,所以△B1N1D1 的边 B1D1 上的高为
52- 22= 3,则 S△B1N1D1=12×2 2× 3= 6,则当 B1N⊥D1N1 时,B1N 最
小,即 B1Nmin=2S△DB1N1N1 1D1=2
6=2 5
530.
总结 提炼
与平行有关的轨迹问题的解题策略 (1)线面平行转化为面面平行得轨迹; (2)平行时可利用法向量垂直关系求轨迹.
模型 3 动点保持等距关系
3 (2023·湖北联考节选)已知正方体 ABCD-A1B1C1D1 的棱长为 3,P 为正方体表 53
面上的一个动点,A1P=2 3,则点 P 的轨迹长度为___2__π__.
【解析】 如图,点 P 的轨迹一部分是在平面 ABB1A1,A1B1C1D1, ADD1A1 三个面内以 2 3为半径,圆心角为π6的三段圆弧,另一部分是 在平面 BCC1B1,CDD1C1,ABCD 三个面内以 3为半径,圆心角为π2 的三段圆弧.故点 P 的轨迹的长度为112×2π×2 3×3+14×2π× 3×3=523π.
点击对应数字即可跳转到对应题目
1
2
3
4
5
6
7
8
9
配套精练
2 . 如 图 , 正 方 体 ABCD - A1B1C1D1 的 棱 长 为 2 , E , F 分 别 为
2023年高考数学复习:立体几何动点问题
d2=
|P→A|2-P→A|A→·MA→M| 2=
204t+2+t264,
S△APM=12 t2+4·d2= 5t2+16.
S△PAD=12×2×4=4,设点 D 到平面 α 的距离为 h,
利用等体积法VD-APM=VM-PAD,
即13·S△APM·h=13·S△PAD·t,
可得 h= 5t42+t 16,则 h=
√A.平面 BCM⊥平面 A1AM
√B.三棱锥 B-MB1C 体积最大值为16
√C.当 M 为 AB1 的中点时,直线 B1D 与直线 CM 所成
的角的余弦值为
2 3
D.直线 CM 与 A1D 所成的角不可能是π4
解 析 对 于 A , ∵BC⊥AB , BC⊥BB1 , AB∩BB1=B,AB,BB1⊂平面AA1M, ∴BC⊥平面AA1M,又BC⊂平面BCM, ∴平面BCM⊥平面A1AM,A正确; 对于 B,VBMB1C =VC BB1M =13 S△BB1M ·BC=13 S△BB1M ,
42- 126=3
2- 12
6,
即当P→A·P→D取得最小值时,点 P 到 AD 的距离为3
2- 12
6 .
能力 提升
动点问题的解题技巧 (1)应用“位置关系定理”转化. (2)建立“坐标系”计算. (3)依据“曲线定义”判定.
跟踪演练
1.已知 MN 是长方体外接球的一条直径,点 P 在长方体表面上运动,长方
边形
1234
解析 如图,建立空间直角坐标系,延长AE与z轴交于点P, 连接PF与y轴交于点M, 则平面α由平面AEF扩展为平面APM. 由此模型可知A错误,B,D正确. D(0,0,0),A(2,0,0),P(0,0,4), 设点M的坐标为(0,t,0)(t∈[2,4]), D→A=(2,0,0),A→M=(-2,t,0),P→A=(2,0,-4), 则可知点P到直线AM的距离为
立体几何动点问题
1.如图三棱柱 中,侧棱与底面垂直, , ,M是 的中点,N在线段 上.
(1)若N为线段 的中点.(i)求证 ;(ii)求二面角 的大小;
(2)当N在什么位置时,直线 与平面 所成的角最大,并求出此最大角.
2.在如图所示的几何体中,四边形 为平行四边形, , 平面 , , , , ,且 是 的中点.
6.如图,已知菱形ABCD的边长为6,∠BAD=60°,AC∩BD=O。将菱形ABCD沿对角线AC折起,使BD= ,得到三棱锥B-ACD。
(1)若点M是棱BC的中点,求证:OM∥平面ABD; (2)求二面角A-BD-O的余弦值;
(3)设点N是线段BD上一个动点,试确定N点的位置,使得CN= ,并证明你的结论。
(1)求证: 平面 ;
(2)设 为侧棱 上一点, ,试确定 的值,使得二面角 为
9.如图,三棱柱 中,侧面 底面 , ,且 ,O为 中点.(1)证明: 平面 (2)求直线 与平面 所成角的正弦值;
(3)在 上是否存在一点 ,使得 平面 ,若不存在,说明理由;若存在,确定点 的位置.
10.如图,棱锥P—ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD= .
7.正△ 的边长为4, 是 边上的高, 分别是 和 边的中点,现将△ 沿 翻折成直二面角 .(1)试判断直线 与平面 的位置关系,并说明理由;
(2)求二面角 的余弦值 (8.在四棱锥 中,侧面 底面 , , 为 中点,底面 是直角梯形, , , , .
(1)求二面角 的大小;
(2)在线段 上是否存在一点 ,使得 与 所成的角为 ?若存在,求出 的长度;若不存在,请说明理由.
3.四棱锥P—ABCD中,底面ABCD是边长为2的菱形,侧面PAD⊥底面ABCD,∠BCD=60º,PA=PD= ,E是BC中点,点Q在侧棱PC上.
立体几何中动点轨迹问题的几种解题方法_柳双生
六、 试用猜想证明法求解
猜想 证 明 法 也 是 解 决 空 间 轨 迹 问 题 的 一 种 可 以 尝试着使用的 方 法 , 这 往 往 是 以 立 体 几 何 的 定 理 及 空间图形的定义为依据 , 大胆猜想 , 然后通过验证 , 以
z ∩
面
P O y α
α , 过 点 P 且 与 直 线 l 成 30o 角 的
三、 应用坐标法求解
用代数方法研究几何问题是解析几何的本质 , 通 过 建 立 直 角 坐 标 系,设 出 动 点 坐 标,将 几 何 问 题 转 化 成代数问题来解决 , 这是探求空间图形中的轨迹问题 常用的一种方法 . 例 3. 正方体 ABCD-A1B1C1D1 的 棱 长 为 1 , 点 P 是 平 面 ABCD 上 的 动 点 , 且 动 点 P 到 直 线 A1D1 的 距 离与动点 P 到直线 AB 的 距 离 的 平 方 和 为 2 , 则 动 点 的轨迹是 ( )
)
A. 一条线段
M
D1 A1
B. 椭圆的一部分 C. 双曲线的一部分 D. 抛物线的一部分
分 析 : 在 平 面 A1B1C1D1 中 , 过 点 P 作 PM ⊥A1D1, 垂 足 为 点 M, 在 平 面 ADD1A1 中 过 点 M 作 MN ∥AA1, 交 AD 于 点 N , 又 因 为 PN=PB ,MN=BB1, 所 以 △ PMN
直线交面 α 于点 M , 若点 M 的轨 迹为一圆锥曲线 , 求其离心率 .
M x
达到解决的目的 . 例 6. 在正四棱锥 S-ABCD 中 ,E 是 BC 的 中 点 , 点 P 在侧面 △SCD 内及 其 边 界 上 运 动 , 并 且 总 是 保 持 PE⊥AC , 则动点 P 的轨迹是 ( )
高中数学立体几何动点和折叠问题-含答案
立体几何折叠动点问题1.(2020•湖南模拟)在棱长为6的正方体1111ABCD A B C D -,中,M 是BC 的中点,点P 是正方体的表面11DCC D (包括边界)上的动点,且满足APD MPC ∠=∠,则三棱锥P BCD -体积的最大值是( )A .B .36C .24D .2.(2020•德阳模拟)ABC ∆是边长为E ,F 分别为AB ,AC 的中点,沿EF 把OAEF 折起,使点A 翻折到点P 的位置,连接PB 、PC ,当四棱锥P BCFE -的外接球的表面积最小时,四棱锥P BCFE -的体积为( )A B C D3.(2020•德阳模拟)ABC ∆是边长为的等边三角形,E 、F 分别在线段AB 、AC 上滑动,//EF BC ,沿EF 把AEF ∆折起,使点A 翻折到点P 的位置,连接PB 、PC ,则四棱锥P BCFE -的体积的最大值为()A .BC .3D .24.(2020春•江西月考)已知三棱锥P ABC -满足PA ⊥底面ABC ,在ABC ∆中,6AB =,8AC =,AB AC ⊥,D 是线段AC 上一点,且3AD DC =,球O 为三棱锥P ABC -的外接球,过点D 作球O 的截面,若所得截面圆的面积的最小值与最大值之和为44π,则球O 的表面积为( ) A .72π B .86π C .112π D .128π5.(2020春•沙坪坝区校级期中)已知A ,B ,C ,D 四点均在半径为(R R 为常数)的球O 的球面上运动,且AB AC =,AB AC ⊥,AD BC ⊥,若四面体ABCD 的体积的最大值为16,则球O 的表面积为( ) A .32π B .2π C .94π D .83π6.(2020春•五华区校级月考)已知A ,B ,C 是球O 的球面上的三点,2AB =,AC =60ABC ∠=︒,且三棱锥O ABC -,则球O 的体积为( )A .24πB .48πC .D .7.(2020•东莞市模拟)已知三棱柱111ABC A B C -四边形11A ACC 与11B BCC 为两个全等的矩形,M 是11A B 的中点,且11112C M A B =,则三棱柱111ABC A B C -体积的最大值为( ) A .12B .16C .4D .438.(2020•江西模拟)四棱柱1111ABCD A B C D -中,底面四边形ABCD 是菱形,120ADC ∠=︒,连接AC ,BD 交于点O ,1A O ⊥平面ABCD ,14AO BD ==,点C '与点C 关于平面1BC D 对称,则三棱锥C ABD '-的体积为( )A .B .C .D .9.(2020•浙江模拟)在长方体1111ABCD A B C D -中,底面ABCD 是边长为4的正方形,侧棱1(4)AA t t =>,点E 是BC 的中点,点P 是侧面11ABB A 内的动点(包括四条边上的点),且满足tan 4tan APD EPB ∠=∠,则四棱锥P ABED -的体积的最大值是( )A B . C D10.(2019秋•包河区校级期末)矩形ABCD 中,2BC =,沿对角线AC 将三角形ADC 折起,得到四面体A BCD -,四面体A BCD -外接球表面积为16π,当四面体A BCD -的体积取最大值时,四面体A BCD -的表面积为( )A .B .C .D .11.(2020•山东模拟)如图,正方体1111ABCD A B C D -的棱长为1,线段11A C 上有两个动点E ,F ,且12EF =;则下列结论错误的是( )A .BD CE ⊥B .//EF 平面ABCDC .三棱锥E FBC -的体积为定值D .BEF ∆的面积与CEF ∆的面积相等12.(2020•海淀区校级模拟)在边长为1的正方体中,E ,F ,G ,H 分别为11A B ,11C D ,AB ,CD 的中点,点P 从G 出发,沿折线GBCH 匀速运动,点Q 从H 出发,沿折线HDAG 匀速运动,且点P 与点Q 运动的速度相等,记E ,F ,P ,Q 四点为顶点的三棱锥的体积为V ,点P 运动的路程为x ,在02x 剟时,V 与x 的图象应为( )A .B .C .D .13.(2019秋•襄城区校级月考)如图,在四棱锥P ABCD -中,顶点P 在底面的投影O 恰为正方形ABCD 的中心且AB =设点M ,N 分别为线段PD ,PO 上的动点,已知当AN MN +取得最小值时,动点M 恰为PD 的中点,则该四棱锥的外接球的表面积为( )A .643π B .163π C .253π D .649π14.(2019春•昆明期末)在平行四边形ABCD 中,3BAD π∠=,点E 在AB 边上,112AD AE AB ===,将ADE ∆沿直线DE 折起成△A DE ',F 为A C '的中点,则下列结论正确的是( )A .直线A E '与直线BF 共面B .12BF =C .△A EC '可以是直角三角形D .A C DE '⊥15.(2019秋•安顺月考)如图,正方体1111ABCD A B C D -的棱长为2m ,E 为1AA 的中点,动点P 从点D 出发,沿DA AB BC CD ---运动,最后返回D .已知P 的运动速度为1/m s ,那么三棱锥11P EC D -的体积y (单位:3)m 关于时间x (单位:)s 的函数图象大致为( )A .B .C .D .16.(2019秋•沙坪坝区校级期中)如图,正方体1111ABCD A B C D -中,E 为AB 中点,F 在线段1DD 上.给出下列判断:①存在点F 使得1A C ⊥平面1B EF ;②在平面1111A B C D 内总存在与平面1B EF 平行的直线;③平面1B EF 与平面ABCD 所成的二面角(锐角)的大小与点F 的位置无关; ④三棱锥1B B EF -的体积与点F 的位置无关. 其中正确判断的有( ) A .①② B .③④ C .①③ D .②④17.(2019秋•镜湖区校级期中)如图,正方体1111ABCD A B C D -的棱长为1,动点E 在线段11A C 上,F 、M 分别是AD 、CD 的中点,则下列结论中错误的是( )A .11//FM ACB .BM ⊥平面1CC FC .存在点E ,使得平面//BEF 平面11CCD D D .三棱锥B CEF -的体积为定值18.(2019•越城区校级学业考试)如图,线段AB 是圆的直径,圆内一条动弦CD 与AB 交于点M ,且22MB AM ==.现将半圆ACB 沿直径AB 翻折,则三棱锥C ABD -体积的最大值是( )A .23B .13C .3D .1参考答案与试题解析1.(2020•湖南模拟)在棱长为6的正方体1111ABCD A B C D -,中,M 是BC 的中点,点P 是正方体的表面11DCC D (包括边界)上的动点,且满足APD MPC ∠=∠,则三棱锥P BCD -体积的最大值是( )A .B .36C .24D .【解答】解:Q 在棱长为6的正方体1111ABCD A B C D -中,M 是BC 的中点,点P 是面11DCC D 所在的平面内的动点,且满足APD MPC ∠=∠,Rt ADP ∴∆∽△Rt PMC ∆,∴2AD PDMC PC==,即2PD PC =,设DO x =,PO h =,作PO CD ⊥,∴=,化简得:223348144h x x =-+-,06x 剟,根据函数单调性判断:6x =时,23h 最大值为36,h =最大值,Q 在正方体中PO ⊥面BCD ,∴三棱锥P BCD -的体积最大值:116632⨯⨯⨯⨯=2.(2020•德阳模拟)ABC ∆是边长为E ,F 分别为AB ,AC 的中点,沿EF 把OAEF 折起,使点A 翻折到点P 的位置,连接PB 、PC ,当四棱锥P BCFE -的外接球的表面积最小时,四棱锥P BCFE -的体积为( )A B C D 【解答】解:如图,由题意,BC 的中点O 为等腰梯形BCFE 的外接圆的圆心,则四棱锥P BCFE -的外接球的球心在过O 且垂直于平面BCFE 的直线上,要使四棱锥P BCFE -的外接球的表面积最小,则半径最小,即需要O 为四棱锥P BCFE -的外接球的球心,此时OP OB ==1322PG OG OA ===,则99344cos 322POG +-∠==, P ∴到平面BCFE的距离为sin d OP POG =∠g1322BCFE S =⨯ ∴四棱锥P BCFE -的体积为13V =D . 3.(2020•德阳模拟)ABC ∆是边长为的等边三角形,E 、F 分别在线段AB 、AC 上滑动,//EF BC ,沿EF 把AEF ∆折起,使点A 翻折到点P 的位置,连接PB 、PC ,则四棱锥P BCFE -的体积的最大值为()A.BC .3D .2【解答】解:要想体积最大,高得最大,底面积也得最大,当平面AEF ⊥平面EFCB 时,体积才最大;设2EF a =;设O 为EF 的中点,如图: Q 等边ABC ∆中,点E ,F 分别为AB ,AC 上一点,且//EF BC ,AE AF ∴=,O Q 为EF 的中点,AO EF ∴⊥,Q 平面AEF ⊥平面EFCB ,平面AEF ⋂平面EFCB EF =,AO ∴⊥平面EFCB ,2EF a =Q,AO ∴.∴四棱锥A EFCB -的体积311(2(3)()332V a a a a a a =⨯⨯+⨯==-,2330V a ∴'=-=,1a ∴= (负值舍),01a <<,V1a >>,V 单调递减, 1a ∴=,四棱锥A EFCB -的体积最大,最大值为:312-=.故选:D .4.(2020春•江西月考)已知三棱锥P ABC -满足PA ⊥底面ABC ,在ABC ∆中,6AB =,8AC =,AB AC ⊥,D 是线段AC 上一点,且3AD DC =,球O 为三棱锥P ABC -的外接球,过点D 作球O 的截面,若所得截面圆的面积的最小值与最大值之和为44π,则球O 的表面积为( ) A .72πB .86πC .112πD .128π【解答】解:如图.M 是BC 边中点,E 是AC 边中点,AB AC ⊥Q ,M ∴是ABC ∆的外心,作//OM PA ,PA ⊥Q 平面ABC ,OM ∴⊥平面ABC ,OM AM ∴⊥,OM MD ⊥,取12OM PA =,易得OA OP =,O ∴是三棱锥P ABC -的外接球的球心. E 是AC 中点,则//ME AB ,132ME AB ==,ME AC ∴⊥,3AD DC =Q ,∴124ED AC ==,∴MD =,设2PA a =,则OM a =,222213OD OM MD a =+=+,又152AM BC ==, 222225OA OM AM a ∴=+=+,过D 且与OD 垂直的截面圆半径为r ,则r ==径等于球半径OA ,222(25)1244OA r a πππππ∴+=++=,22(25)32OA a ππ=+=.∴24128S OA ππ==球.故选:D .5.(2020春•沙坪坝区校级期中)已知A ,B ,C ,D 四点均在半径为(R R 为常数)的球O 的球面上运动,且AB AC =,AB AC ⊥,AD BC ⊥,若四面体ABCD 的体积的最大值为16,则球O 的表面积为( ) A .32πB .2πC .94π D .83π 【解答】解:因为AB AC =,AB AC ⊥,AD BC ⊥,作AN BC ⊥于N ,则N 为BC 的中点,且12AN BC =, 若四面体ABCD 的体积的最大值时,则DN ⊥面ABC ,则外接球的球心在DN 上,设为O , 设外接球的半径为R ,连接OA ,则OA OD R ==,211112()()3263D ABC V BC AN DN AN AN R ON AN R ON -==+=+g g g g g g g2211()()()()()33OA ON R ON R ON R ON R ON =-+=+-+ 3311()(22)()14()(22)()()()66363R ON R ON R ON R R ON R ON R ON ++-++=+-+=g …, 当且仅当22R ON R ON -=+,即3R ON =时取等号,因为三棱锥的最大体积为16,所以3141()636R =g ,可得34R =,所以外接球的表面积为29944164S R πππ===g ,6.(2020春•五华区校级月考)已知A ,B ,C 是球O 的球面上的三点,2AB =,AC =60ABC ∠=︒,且三棱锥O ABC -,则球O 的体积为( ) A .24πB .48π C. D.【解答】解:O 到截面ABC 的投影为三角形ABC 的外接圆的圆心,设为E ,连接AE ,则AE 为底面外接圆的圆心,OE OB OC ==为球的半径R ,因为2AB =,AC =,60ABC ∠=︒,由余弦定理可得:22221412cos cos602222AB BC AC BC ABC AB BC BC+-+-∠=︒===g g g g ,整理可得:2280BC BC --=,解得4BC =, 设三角形ABC 的外接圆半径为r,则2sin 60AC r ==︒2r =,111sin 6024326O ABC V AB BC OE OE -=︒==g g g g g g,所以OE = 在三角形OAE中,R OA ===所以外接球的体积为3441233V R ππ===g g .7.(2020•东莞市模拟)已知三棱柱111ABC A B C -四边形11A ACC 与11B BCC 为两个全等的矩形,M 是11A B 的中点,且11112C M A B =,则三棱柱111ABC A B C -体积的最大值为( ) A .12B .16C .4D .43【解答】解:Q 四边形11A ACC 与11B BCC 为两个全等的矩形,AC BC ∴=,1CC AC ⊥,1CC BC ⊥,又AC BC C =Q I ,AC ,BC ⊂平面ABC ,1CC ∴⊥平面ABC ;M Q 是11A B 的中点,且11112C M A B =,∴底面△111A B C 是直角三角形;综上,三棱柱111ABC A B C -是底面为等腰三角形的直棱柱.设AC BC a ==,1CC b =,将三棱柱还原为长方体,即22212a b +=;∴三棱柱的体积2231111(12)(12),244ABC V S CC a b b b b b b ∆===-=-+∈g ; 记31()(12)4f b b b =-+,则213()(312)(2)(2)44f b b b b '=-+=--+,当f '(b )0>时,02b <<;当f '(b )0<时,2b <<f ∴(b )在(0,2)上单调递增,(2,上单调递减, 故f (b )max f =(2)4=.故选:C .8.(2020•江西模拟)四棱柱1111ABCD A B C D -中,底面四边形ABCD 是菱形,120ADC ∠=︒,连接AC ,BD 交于点O ,1A O ⊥平面ABCD ,14AO BD ==,点C '与点C 关于平面1BC D 对称,则三棱锥C ABD '-的体积为( )A .B .C .D .【解答】解:连接1OC ,过点C 作1CM OC ⊥,垂足为M ,因为1OA ⊥平面ABCD ,故1OA BD ⊥, 因为四边形ABCD 是菱形,故OA BD ⊥,故BD ⊥平面11ACC A ,故BD CM ⊥,又1CM OC ⊥,故CM ⊥平面1BDC ,又ABD ∆是边长为4的等边三角形,可得OC OA ==所以11A C AC ==Rt △11A C O 中,可得1160AOC ∠=︒,则30MOC ∠=︒,可知OCC '∆为等边三角形,且所在平面垂直底面,故114432C ABD V '-=⨯⨯⨯=三棱锥,故选:D .9.(2020•浙江模拟)在长方体1111ABCD A B C D -中,底面ABCD 是边长为4的正方形,侧棱1(4)AA t t =>,点E 是BC 的中点,点P 是侧面11ABB A 内的动点(包括四条边上的点),且满足tan 4tan APD EPB ∠=∠,则四棱锥P ABED -的体积的最大值是( )A B . C D 【解答】解:作PN AB ⊥于N ,在长方体1111ABCD A B C D -中,DA ⊥平面11A ABB ,CB ⊥平面11A ABB , 在Rt PAD ∆和Rt PBC ∆中,tan AD APD AP ∠=,tan BE EPB PB ∠=,tan 4tan APD EPB ∠=∠Q ,1122BE BC AD ==,12PA PB ∴=,设PN h =,AN x =,则4BN x =-,[0x ∈,4],由12PA PB =,得2214PA PB =,即22221[(4)]4h x h x +=+-,整理得2281633h x x =--+,[0x ∈,4],开口向下,对称轴为43x =-,∴在[0x ∈,4]单调递减,则0x =时,2h 取到最大值163,即h∴四棱锥P ABED -的体积的最大值是11(24)432⨯+⨯=故选:C .10.(2019秋•包河区校级期末)矩形ABCD 中,2BC =,沿对角线AC 将三角形ADC 折起,得到四面体A BCD -,四面体A BCD -外接球表面积为16π,当四面体A BCD -的体积取最大值时,四面体A BCD -的表面积为( )A .B .C .D .【解答】解:由题意可知,直角三角形斜边的中线是斜边的一半,所以长宽分别为2和1的长方形ABCD 沿对角线AC 折起二面角,得到四面体A BCD -,则四面体A BCD -的外接球的球心O 为AC 中点,半径12R AC =,所求四面体A BCD -的外接球的表面积为2416R ππ⨯=;24R AC AB ⇒=⇒=⇒=∴矩形ABCD 中,AB =2BC =,沿AC 将三角形ADC 折起,当平面ADC ⊥平面ABC 时,得到的四面体A BCD -的体积最大,如图所示;过点D 作DO ⊥平面ABC ,垂足为O ,则点D 到平面ABC 的距离为AD CD d OD AC ⨯==== 过点O 作OM AB ⊥,作ON BC ⊥,垂足分别为M 、N ,连接DM ,DN ;则BM AB ⊥,DN BC ⊥;所以1AO =,3OC =,所以12OM =,ON =;所以DMDN ==;又122ADC ABC S S ∆∆==⨯22=11222ACD S AB DM ∆==⨯g =11222BCD S BC DN ∆==⨯=g ;所以四面体A BCD -的表面积为:24ABC ACD BCD S S S S ∆∆∆=++=B .11.(2020•山东模拟)如图,正方体1111ABCD A B C D -的棱长为1,线段11A C 上有两个动点E ,F ,且12EF =;则下列结论错误的是( )A .BD CE ⊥B .//EF 平面ABCDC .三棱锥E FBC -的体积为定值D .BEF ∆的面积与CEF ∆的面积相等【解答】解:对于A ,连接AC ,则BD AC ⊥,1BD AA ⊥,BD ∴⊥平面11AA C C ,又AE ⊂平面11AA C C ,BD AE ∴⊥.故A 正确;对于B ,11//AC AC Q ,即//EF AC ,又EF ⊂/平面ABCD ,AC ⊂平面ABCD ,//EF ∴平面ABCD ,故B 正确;对于C ,1111112224AEF S EF AA ∆==⨯⨯=g g ,点B 到平面AEF 的距离为B 到平面11AA C C 的距离12d BD ==,1134A BEF B AEF V V --∴==⨯,故C 正确;对于D ,连接1A B ,1C B ,则△11A BC B ∴到EF =A 到EF 的距离为11AA =,AEF ∴∆的面积与BEF ∆的面积不相等.故D 错误.故选:D .12.(2020•海淀区校级模拟)在边长为1的正方体中,E ,F ,G ,H 分别为11A B ,11C D ,AB ,CD 的中点,点P 从G 出发,沿折线GBCH 匀速运动,点Q 从H 出发,沿折线HDAG 匀速运动,且点P 与点Q 运动的速度相等,记E ,F ,P ,Q 四点为顶点的三棱锥的体积为V ,点P 运动的路程为x ,在02x 剟时,V 与x 的图象应为( )A .B .C .D .【解答】解:(1)当102x剟时,点P 与点Q 运动的速度相等根据下图得出:面OEF 把几何体PEFQ 分割为相等的几何体,111122OEF S ∆=⨯⨯=Q ,P 到面OEF 的距离为x ,112223263PEFQ P OEF x xV V x -==⨯⨯==g ,23(2)当1322x <…时,P 在AB 上,Q 在11C D 上,P 到12,111122OEF S ∆=⨯⨯=, 1111223226PEFQ P OEF V V -==⨯⨯⨯==定值.(3)当322x <…时,111122OEF S ∆=⨯⨯=,P 到面OEF 的距离为2x -, 112122(2)3233PEFQ P OEF V V x x -==⨯⨯⨯-=-,1,032113,622213,2332xx V x x x ⎧<⎪⎪⎪=<⎨⎪⎪-⎪⎩……剟故选:C .13.(2019秋•襄城区校级月考)如图,在四棱锥P ABCD -中,顶点P 在底面的投影O 恰为正方形ABCD 的中心且AB =设点M ,N 分别为线段PD ,PO 上的动点,已知当AN MN +取得最小值时,动点M 恰为PD 的中点,则该四棱锥的外接球的表面积为( )A .643π B .163π C .253π D .649π 【解答】解:将三角形POD 展开到与平面PAO 共面,则AN MN +的最小值时,A 、M 、N 三点共线,记作AM .M Q 点在线段PD 上,AM 最短时恰为PD 中点,AM PD ∴⊥,AM ∴既为PD 中线,又是PD 边上的高,AP AD ∴=.Q 顶点P 在底面的投影恰为正方形ABCD 的中心,则四棱锥为正四棱锥,AP PD ∴=,∴三角形APD 为等边三角形.Q AB =2AO ∴=,24AP AD AO ∴===,则PO ==设球心为Q ,连接QA ,则在Rt QOA ∆中,222QA AO QO =+,∴224)R R =+,解得R =,∴外接球的表面积216644433S R πππ==⨯=.故选:A . 14.(2019春•昆明期末)在平行四边形ABCD 中,3BAD π∠=,点E 在AB 边上,112AD AE AB ===,将ADE ∆沿直线DE 折起成△A DE ',F 为A C '的中点,则下列结论正确的是( )A .直线A E '与直线BF 共面B .12BF =C .△A EC '可以是直角三角形D .A C DE '⊥【解答】解:在平行四边形ABCD 中,3BAD π∠=,点E 在AB 边上,112AD AE AB ===, 将ADE ∆沿直线DE 折起成△A DE ',F 为A C '的中点,在A 中,取CD 中点G ,连结BG ,FG ,则//BG DE ,//FG A D ', BG FG G =Q I ,∴平面//BGF 平面A DE ',BF ⊂Q 平面BFG ,//BF ∴平面A DE ',∴直线A E '与直线BF 平行或异面,故A 错误;在B 中,Q 将ADE ∆沿直线DE 折起成△A DE ',F 为A C '的中点,A '点位置不确定,BF ∴的长不是常数,故B 错误;在C 中,1A E '=,CE =∴当2A E '=时,A E CE '⊥,△A EC '是直角三角形,故D 正确;在D 中,DE CE ⊥Q ,60DEA ∠'=︒,DE ∴与A C '不垂直,故D 错误.故选:C .15.(2019秋•安顺月考)如图,正方体1111ABCD A B C D -的棱长为2m ,E 为1AA 的中点,动点P 从点D 出发,沿DA AB BC CD ---运动,最后返回D .已知P 的运动速度为1/m s ,那么三棱锥11P EC D -的体积y (单位:3)m 关于时间x (单位:)s 的函数图象大致为( )A .B .C .D .【解答】解:(1)当02x 剟时,P 在线段DA 上运动,此时DP x =, 112224()22222PED x x x S ⨯-=-++=-V ,所以1111112(2)(4)323P EC D C PED x V V x --==⨯⨯-=-;(2)当24x 剟时,P 在线段AB 上,因为//AB 平面11EC D ,所以P 到平面11EC D 的距离为定值,所以11P EC D V -为定值,1112(42)33A EC D V -=-=;(3)当46x 剟时,P 在线段BC 上,取1BB 的中点F ,1111P EC D P FC E E PFC V V V ---==, 此时6CP x =-,同理可得112PC F x S =-V ,所以11(2)3E PFC V x -=-; (4)当68x 剟时,P 在线段CD 上,因为//CD 平面11EC D ,所以P 到平面11EC D 的距离为定值,所以11P EC D V -为定值,1114(62)33D EC D V -=-=.综上,三棱锥11P EC D -的体积y (单位:3)m 关于时间x (单位:)s 的函数大致图象如右图所示. 故选:B .16.(2019秋•沙坪坝区校级期中)如图,正方体1111ABCD A B C D -中,E 为AB 中点,F 在线段1DD 上.给出下列判断:①存在点F 使得1A C ⊥平面1B EF ;②在平面1111A B C D 内总存在与平面1B EF 平行的直线;③平面1B EF 与平面ABCD 所成的二面角(锐角)的大小与点F 的位置无关; ④三棱锥1B B EF -的体积与点F 的位置无关. 其中正确判断的有( )A .①②B .③④C .①③D .②④【解答】解:对于①,假设存在F 使得1A C ⊥平面1B EF ,则11AC B E ⊥,又1BC B E ⊥,1BC A C C =I ,1B E ∴⊥平面1A BC ,则11B E A B ⊥,这与11A B AB ⊥矛盾,所以①错误;对于②,因为平面1B EF 与平面1111A B C D 相交,设交线为l ,则在平面1111A B C D 内与l 平行的直线平行于平面1B EF ,故②正确;对于③,以D 点为坐标原点,以DA 所在直线为x 轴,DC 所在直线为y 轴,1DD 所在直线为z 轴,建立空间坐标系,则平面ABCD 的法向量为(0m =r ,0,1),而平面1B EF 的法向量n r,随着F 位置变化,故平面1B EF 与平面ABCD 所成的二面角(锐角)的大小与点F 的位置有关,故③错误;对于④,三棱锥1B B EF -的体积即为三棱锥1F BB E -,因为1//DD 平面11ABB A ,所以,当F 在线段1DD 上移动时,F 到平面11ABB A 的距离不变,故三棱锥1B B EF -的体积与点F 的位置无关,即④正确. 故选:D .17.(2019秋•镜湖区校级期中)如图,正方体1111ABCD A B C D -的棱长为1,动点E 在线段11A C 上,F 、M 分别是AD 、CD 的中点,则下列结论中错误的是( )A .11//FM ACB .BM ⊥平面1CC FC .存在点E ,使得平面//BEF 平面11CCD D D .三棱锥B CEF -的体积为定值【解答】解:在A 中,因为F 、M 分别是AD 、CD 的中点,所以11////FM AC AC ,故A 正确; 在B 中,由平面几何得BM CF ⊥,又有1BM C C ⊥,所以BM ⊥平面1CC F ,故B 正确;在C 中,BF 与平面11CC D D 有交点,所以不存在点E ,使得平面//BEF 平面11CC D D ,故C 错误.在D 中,三棱锥B CEF -以面BCF 为底,则高是定值,所以三棱锥B CEF -的体积为定值,故D 正确. 故选:C .18.(2019•越城区校级学业考试)如图,线段AB 是圆的直径,圆内一条动弦CD 与AB 交于点M ,且22MB AM ==.现将半圆ACB 沿直径AB 翻折,则三棱锥C ABD -体积的最大值是( )A .23B .13C .3D .1【解答】解:记翻折后CM 与平面ABD 所成角为α,则三棱锥C ABD -的高为sin h CM α=,∴三棱锥C ABD -体积:11(sin )sin 32C ABD V AB DM DMA CM α-=⨯⨯⨯⨯∠⨯⨯16AB DM CM ⨯⨯⨯…, 3AB =Q ,2DM CM AM BM ⨯=⨯=,∴三棱锥C ABD -体积的最大值是: 1()3216C ABD max V -=⨯⨯=V .故选:D .。
立体几何动点问题之点在线上与点在面内
⊥BN π4
=PB PD ⊥⊥PB AE
==AB BC AD 22,⊥AB BC −P ABCD 5
−−P AD M λ∆PBC =∈λλPC
PM (0,1)][PC M ∠ABC =600ABCD 2PAD P ABCD -
1.如图,四棱锥,
侧面
是边长为的正三角形且与底面垂直,底面是的菱形,为棱上的动点且. (1)求证:为直角三角形;
(2)试确定的值,使得二面角的平面角余
弦值为.
2.已知四棱锥的底面ABCD 是直角梯形,AD //BC ,,
E 为CD 的中点,
(1)证明:平面PBD 平面ABCD ;
(2)若,PC 与平面ABCD 所成的角为,试问“在侧面PCD 内是否存在一点N ,使得平面PCD ?”若存在,求出
点N 到平面ABCD 的距离;若不存在,
请说明理由.
立体几何动点问题之点在线上与点在面内2020届江夏一中高三数学二轮专题
第1页,共2页。
立体几何动点最值问题
立体几何动点最值问题
立体几何动点最值问题是指在立体几何空间中,给定一些特定条件下,求一个动点的某个值的最大或最小值。
这类问题广泛应用于建筑设计、机械工程、地理测量等领域。
在解决立体几何动点最值问题时,通常需要利用几何性质和数学方法进行分析和求解。
下面以两个典型的问题为例进行拓展说明。
问题一:在一个正方体中,找到离一个定点最远的顶点。
解答:首先,我们找到这个正方体的中心点,然后根据对称性可以知道,离中心点最远的顶点就是通过连接中心点和一个面的对角线的顶点。
因此,我们可以通过计算这个对角线的长度,并找出最长的对角线来确定离定点最远的顶点。
问题二:在一个球体上,找到离球心最远的点。
解答:根据球体的几何性质,离球心最远的点是球体表面上的点。
因此,我们可以通过计算球心到球面上各点的距离,并找出最大距离的点来确定离球心最远的点。
在实际应用中,立体几何动点最值问题的解决往往需要结合具体的条件和约束条件进行分析和求解。
这些问题可能涉及到线段、面积、体积等几何量的计算,以及最优化等数学方法的运用。
因此,解决这类
问题需要理解立体几何的基本概念和性质,并熟练掌握相关的计算和求解技巧。
立体几何中的动点问题
3.与圆x2+y2-4x=0外切,且与y轴相切的动圆圆心的轨迹方 y2=8x(x>0)或y=0(x<0) 程是______________________.
相应习题
4.△ABC的顶点为A(0,-2),C(0,2),三边长a、b、c成 等差数列,公差d<0;则动点B的轨迹方程为______
x2 y2 1 y 0,x 0 _____________________ . 12 16
2 2 1 (x - 1 ) y (0,0)) 2 4 (舍去原点
例1 :已知圆C的方程为 : ( x - 1) 2 y 2 1, 过原点O作任一弦OA, 求 弦OA的中点M的轨迹方程.
y A M O C(1,0) x 方法三 向量法:利用向量性质(主要是利用垂 直和平行)求曲线方程.
例1 :已知圆C的方程为 : ( x - 1) 2 y 2 1, 过原点O作任一弦OA, 求 弦OA的中点M的轨迹方程.
y A M O C(1,0) x 方法五 交轨法:若动点是两动曲线的交 点,可联立两曲线方程,消去多余参数, 得出动点轨迹方程.
设直线lOA : y kx ①
OA CM
x2 2 y 1 轨迹方程是_________________________ 4
8. 过原点的动椭圆的一个焦点为F(1,0),长轴长为 2
9 1 2 x- y 4,则动椭圆中心的轨迹方程为_________________ 4 2
我们每个人都是社会中的动点,愿我 们在人生道路上合理的利用定理,确定属于 自己的坐标,形成美丽的人生轨迹。
x y
2
2
2
( x 1) y
2
2
2
立体几何动点轨迹问题(备课精选)
立体几何动点轨迹的计算问题1.正四棱锥S ABCD -的底面边长为2,高为2,E 是边BC 的中点,动点P 在棱锥表面上运动,并且总保持PE AC ⊥,则动点P 的轨迹的周长为_____________.2.正方体1111ABCD A B C D -的棱长为1,P 为BC 的中点,Q 为线段1CC 的动点,过,,A P Q 的平面截该正方体所得的截面记为S ,则下列命题正确的是__________________ ①当102CQ <<时,S 为四边形;②当12CQ =时,S 为等腰梯形;③当34CQ =时,S 与11C D 的交点R 满足1113C R =;④当314CQ <<时,S 为六边形;⑤当1CQ =时,S 的面答案:①②③⑤==,平行于AD 3.如图,空间四边形ABCD的对棱AD、BC成900的角,且AD BC a与BC的截面分别交AB、AC、CD、BD于E、F、G、H.E在AB的上,截面EGFH的最大面积是.答案:4.在棱长为1的正方体1111ABCD A BC D -中,,M N 分别是111,AC A B 的中点.点P 在该正方体的表面上运动,则总能使MP 与BN 垂直的点P 所构成的轨迹的周长等于 .答案:25.如图所示的一块长方体木料中,已知1,21===AA BC AB ,设F 为线段AD 上一点,则该长方体中经过点C F A ,,1的截面面积的最小值为 .41=最大值S6.如图所示的一块长方体木料中,已知1,41===AA BC AB ,设E 为底面ABCD 的中心,且)210(,≤≤=λλAD AF ,则该长方体中经过点F E A ,,1的截面面积的最小值为 .答案:7.长方体1111ABCD A BC D -中,已知2AB AD ==,13AA =,棱AD 在平面α内,则长方体在平面α内的射影所构成的图形面积的取值范围是 .答案:.9.在直三棱柱111A B C ABC -中,底面ABC 为直角三角形,2BAC π∠=,11AB AC AA ===. 已知G与E分别为11A B 和1CC 的中点,D与F分别为线段AC和1324≤≤SABCD1A 1B 1C 1D αAB 上的动点(不包括端点). 若GD EF ⊥,则线段DF 的长度的最小值为 。
立体几何动点问题
例2若三棱锥A — BCD 的侧面 6米,太线与地面所成角为 60°,求此S= n ab ,其中a,b 为长、短半轴长)立体几与平面解析几的交汇问题在教材中,立体几与解析几是互相独立的两章,彼此分离不相联系,实际上,从空间维数看,平面几 是二维的,立体几是三维的,因此,立体几是由平面几升维而产生;另一面,从立体几与解析几的联系看,解析几中的直线是空间二个平面的交线,圆锥曲线(椭圆、双曲线、抛物线)是平面截圆锥面所产生的截 线;从轨迹的观点看,空间中的曲面(曲线)是空间中动点运动的轨迹,正因为平面几与立体几有这么多 千丝万缕的联系,因此,在平面几与立体几的交汇点,新知识生长的土壤特别肥沃,创新型题型的生长空 间也相当宽广,这一点,在高考卷中已有充分展示,应引起我们在复习中的足够重视。
一、动点轨迹问题这类问题往往是先利用题中条件把立几问题转化为平面几问题,再判断动点轨迹。
A. 一条线段,但要去掉两个点B. 一个圆,但要去掉两个点ABC —动点P 到平面BCD 距离与到棱 AB 距离相等,则动点 P 的轨迹 与厶ABC 组成的图形可能是()解:设二面角 A — BC — D 大小为作PR 丄面BCD , R 为垂足,PQ 丄BC 于Q , PT 丄AB 于T ,、几体的截痕例3:球在平面上的斜射影为椭园:已知一巨型广告汽球直径 广告汽球在地面上投影椭圆的离心率和面积(椭圆面积公式为例1定点A 和B 都在平面 , 定点 P PBC 是异于A 和B 的动点,且 PCAC。
那么,动点 C 在平面 的轨迹是( )C. 一个椭圆,但要去掉两个点D.半圆,但要去掉两个点C贝U / PQR= 0,且由条件 PT=PR=PQ • sin 0 ,为小于1的常数,故轨迹图形应选( D )。
例5、(北京)平面 的斜线AB 交 于点B ,过定点A 的动直线I 与AB 垂直,且交 解:由于太线可认定为平行光线,故广告球的投影椭园等价于以广告球直径为直径的圆柱截面椭园:此时丄—三二匸石二兰b=R , a=-】=2R , •••离心率-, 2投影面积 S= n ab= n ・ k • 2R=2 n R =18 n 。
立体几何中的动点问题-答案解析
立体几何中的动点问题-答案解析考点:平行垂直的存在性问题1【答案】见解析【解析】设,则,, 设平面的法向量为,,, ,令得, 平面,,解得, 当是的中点时,平面.1【答案】见解析【解析】设是棱上一点,则存在使得.因此点.由,得,解得.因为,所以在棱上存在点,使得.此时,.1【答案】1【解析】如图,连接,与交于点,连接,要使得平面,则必须有,所以,进一步得出. 模块1:存在性问题例题1G 0,t ,1()=AG −1,t ,1()F ,1,1(21)BEF =n x ,y ,z ()∵=EF −,,0(2121)=BF −,0,1(21)∴{−x +y =02121−x +z =021z =1=n 2,2,1()∵AG //BEF ∴⋅AG =n −1,t ,1⋅()2,2,1=()0t =21∴G D C 11AG //BEF 例题2M P C λ∈0,1[]=P M λ P C M 0,λ,1−λ,=()BM −1,λ−1,1−λ,=()AC −1,2,0()⋅BM =AC 01+2λ−1=()0 λ =21 λ=∈210,1[]P C M BM ⊥AC =P CP M21达标检测1AG A F 1M M E BG //A EF 1GB //M E =M GAM =EB AE1=A G 1D G 11考点:空间角的存在性问题1【答案】见解析【解析】线段上存在点符合题意.建立如图所示的坐标系, 设,其中.设,则有,所以,从而,所以,又,所以,令,整理得.解得,舍去.故线段上存在点符合题意,且.例题3A C 1F =A F 1λA C 1λ∈0,1[]F x ,y ,z (111)x ,y ,z −2=(111)2λ,2λ,−2λ()x =12λ,y =12λ,z =12−2λF 2λ,2λ,2−2λ()=DF 2λ,2λ+1,2−2λ()=BC 0,4,0()cos⟨,⟩=∣∣∣DF BC ∣∣∣=⋅∣∣∣DF ∣∣∣∣∣∣BC ∣∣∣⋅∣∣∣DF BC ∣∣∣42λ+2λ+1+2−2λ()2()2()242λ+1∣∣=2λ+2λ+1+2−2λ()2()2()22λ+1∣∣353λ−27λ+2=0λ=31λ=2A C 1F =A C1A F131例题41【答案】存在点符合条件,且是棱的中点.【解析】解:以为原点,为轴正方向,为轴正方向,垂直于且与相交的方向为轴正方向,建立空间直角坐标系.所以,,,,,设平面的法向量为,则,,令,则.在棱上存在一点,设,且,,解得,,,,直线与平面所成的角为,,解得,存在点符合条件,且是棱的中点.1【答案】见解析【解析】解:假设在棱上存在点,使得二面角的余弦值是,则,,设为平面的法向量,N N DC M M B x M C y AB DE z M −xyz M (0,0,0)C (0,,0)2E (−,0,1)2B (,0,0)2D (,0,2)2EM C =n (x ,y ,z )′′′⋅M E =n −x +2′z =′0⋅M C =n y =2′0x =′1=n (1,0,)2DC N N x ,y ,z ()=DN λ0⩽λ⩽1DC ()∴x −,y ,z −2=(2)λ−,,−2(22)x =−2λ2y =λ2z =2−2λ∴=M N −λ,λ,2−2λ(222)∵M N EM C 60∘∴cos⟨,⟩=M N n ×321−λ+2λ+41−λ()22()2−λ+2−2λ222()=sin 60=∘23λ=21∴N N DC 例题5CC 1E 0,0,t ()A −EB −1B 17217=AE −1,0,t ()=AB 1−1,2,4()=n x ,y ,z ()AEB 1则,取,得,平面的法向量,,由,解得.在棱上存在点,使得二面角的余弦值是,.1【答案】C【解析】解:存在,在棱上取一点,如图,由题意可知,平面,连接,交于点,易知,,连接,则为二面角的平面角,当时,即,解得,当时,二面角的大小为.{⋅=−x +tz =0n AE ⋅=−x +2y +4z =0n AB 1z =1=n t ,,1(2t −4)BEB 1=m 1,0,0()∴cos ,=⟨m n ⟩=⋅∣∣∣m ∣∣n ∣∣∣⋅m n=t ++12(2t −4)2t 17217t >0t =1∴CC 1E A −EB −1B 17217CE =1达标检测2BB ′P BP ⊥ABC AC BD O BO ⊥AC BO =2P O ∠P OB P −AC −B ∠P OB =30∘tan ∠P OB ==BOP B 33BP =36∴BP =36P −AC −B 30∘模块2:最值问题考点:最值问题1【答案】B【解析】解:建立如图所示的空间直角坐标系,则,设,则,,故当时,取得最小值为,故选:B.1【答案】B【解析】由知四边形为平行四边形,.,.,,.即,,达标检测3D 1,0,2,B 0,1,3()1()P 0,0,z ()=P D 1,0,2−z ,=()P B 10,1,3−z ()∴⋅P D =P B 10+0+2−z 3−z =()()z −−(25)241z =25⋅P D P B 1−41例题6(1)M NQP ∴M N =P Q ∵DD =1AD =DC =BC =1∴AD =1BD =2∵D M =1DN =a ∴=1D P 12a =1DQ2a D P =1DQ =2a∴M N =P Q =1−D P +DQ (1)22=1−+(2a)2(2a )2=0<a <a −+(22)221(2)故当时,的长度有最小值,为.即当,分别移动到,的中点时,的长度最小,此时的长度为.1【答案】D【解析】解:以为原点,建立如图所示空间直角坐标系,则,,,,设,,,则,,,,解得,,.当时,的面积取得最小值,为.故选:D.1【答案】A【解析】解:以点为原点,以,,所在直线为坐标轴建立空间直角坐标系,如图所示:则,.设,,于是,.,,,a =22M N 22M N AD 1BD M N M N 22例题7D P 4,0,2()C 0,4,0()D 0,0,41()B 4,4,0()M 4,a ,b ()0⩽a ⩽40⩽b ⩽4=D M 14,a ,b −4()=CP 4,−4,2()∵D M ⊥CP 1∴⋅D M 1=CP 16−4a +2b −8=02a −b =4∴M 4,a ,2a −4()∴BM =∣∣4−4+4−a +4−2a ()2()2()2==5a −24a +3225a −+(512)2516∴a =512△BCM S =2×=54585例题8C CD CB CC ′C 0,0,0()C 0,0,2′(3)P 0,a ,0()Q b ,0,0()0<a ⩽40<b ⩽3=QC ′−b ,0,2(3)=P C ′0,−a ,2(3)=CC ′0,0,2(3)设平面的一个法向量为,则,取,得,,,解得.当时,,三棱锥的体积最小,.故选:A.2019天津理171【答案】见解析【解析】证明:以为坐标原点,分别以,,所在直线为,,轴建立空间直角坐标系,如图所示,可得,,,,.设,则.由题意易知是平面的一个法向量,又,可得.又直线平面,P QC ′=n x ,y ,z (){⋅=−ay +2z =0n P C ′3⋅=−bx +2z =0n QC ′3z =1=n ,,1(b 23a23)∵∣cos⟨,⟩∣=n CC ′sin 30=∘21∴∣⋅n ∣=CC ′∣∣⋅21CC ′⇒∣∣∣n ∣∣∣+a 24=b241ab ⩾8∴ab =8S =△PQC 4C −′P QC V =(C −PQC ′)min ×314×2=3383模块3:课堂总结模块4:直击高考例题9A AB AD AE x y z A 0,0,0()B 1,0,0()C 1,2,0()D 0,1,0()E 0,0,2()CF =h h >0()F 1,2,h ()=AB 1,0,0()ADE =BF 0,2,h ()⋅BF =AB 0∵BF ⊂ADE平面.2【答案】见解析【解析】解:依题意,,,.设为平面的法向量,则,令,得..直线与平面所成角的正弦值为.3【答案】见解析【解析】解:设为平面的法向量,则,取,可得,由题意,得,解得.经检验,符合题意.线段的长为.∴BF //ADE =BD −1,1,0()=BE −1,0,2()=CE −1,−2,2()=n x ,y ,z ()BDE {⋅=−x +y =0n BD ⋅=−x +2z =0n BE z =1=n 2,2,1()∴cos⟨,⟩=CE n =⋅∣∣∣CE ∣∣∣∣∣∣n ∣∣∣⋅CE n −94∴CE BDE 94=m x ,y ,z ()BDF {⋅=−x +y =0m BD ⋅=2y +hz =0m BF y =1=m 1,1,−(h 2)cos⟨,⟩=∣∣∣m n ∣∣∣=⋅∣∣∣m ∣∣∣∣∣∣n ∣∣∣⋅∣∣∣m n ∣∣∣=3×2+h 244−∣∣h 2∣∣31h =78∴CF 78模块5:随堂测随堂测随堂题11【答案】见解析【解析】解:如图,由知,,是平面内的两个不共线向量.设是平面的一个法向量,则,即.取,得.又平面的一个法向量是,所以.而二面角的余弦值为,因此,解得或(舍去).此时.设,而,得,所以.因为平面,且平面的一个法向量为,所以,即,亦即,从而.于是将四面体视为以为底面的三棱锥,则其高为,故四面体的体积.1【答案】B【解析】解:由题意可知该四面体的体积最大时,就是折叠成直二面角,建立空间直角坐标系,如图:设正方形的对角线长为,则,设直线与所成的角为,则,所以.(1)=DQ 6,m −6,0()=DD 10,−3,6()P QD =n 1x ,y ,z ()P QD {⋅=0n 1DQ ⋅=0n 1DD 1{6x +m −6y =0()−3y +6z =0y =6=n 16−m ,6,3()AQD =n 20,0,1()cos ,=⟨n 1n 2⟩=∣∣∣n 1∣∣∣∣∣∣n 2∣∣∣⋅n 1n 2=6−m +6+3()22236−m +45()23P −QD −A 73=6−m +45()2373m =4m =8Q 6,4,0()=DP λDD 1=DD 10,−3,6()P 0,6−3λ,6λ()=P Q 6,3λ−2,−6λ()P Q //ABB A 11ABB A 11=n 30,1,0()⋅P Q =n 303λ−2=0λ=32P 0,4,4()ADP Q △ADQ P −ADQ 4ADP Q V =S ⋅31△ADQ h =24随堂题22=AB −1,1,0,=()DC 1,0,1()AB CD θcos θ==∣∣∣∣∣∣∣∣∣AB ∣∣∣∣∣∣DC ∣∣∣⋅AB DC ∣∣∣∣∣∣=×22121θ=60∘故选:B.。
专题06 立体几何中的动点及最值范围问题(解析版)
专题06 立体几何中动点及最值范围问题题型一、角度、长度最值范围问题(多选)1、设动点P 在正方体1111ABCD A B C D -的对角线1BD 上,记11D P D B λ=当APC ∠为钝角时,则实数可能的取值是( ) A .12B .23C .13D .1【答案】AB【分析】首先以D 为原点,DA ,DC ,1DD 分别为x ,y ,z 轴建立空间直角坐标系,根据题意得到0PA PC ⋅<,再解不等式即可得到答案.【解析】以D 为原点,DA ,DC ,1DD 分别为x ,y ,z 轴建立空间直角坐标系,如图所示:设正方体的边长为1,则()1,0,0A ,()1,1,0B ,()0,1,0C ,()10,0,1D ,()11,0,1D A =-,()10,1,1D C =-,()11,1,1D B =-,所以()11,,D P D B λλλλ==-. 又因为()()()11,,1,0,11,,1PA PD D A λλλλλλ=+=--+-=---,()()()11,,0,1,1,1,1PC PD DC λλλλλλ=+=--+-=---, 因为APC ∠为钝角,所以0PA PC ⋅<,即()()()()()()()2111=1310λλλλλλλ--+--+---<,解得113λ<<.故选AB【名师点睛】本题主要考查空间向量的数量积运算,属于简单题.2、如图,正方体1111ABCD A B C D -,点P 在1AB 上运动(不含端点),点E 是AC 上一点(不含端点),设EP 与平面1ACD 所成角为θ,则cosθ的最小值为( )A .13B .33C .53D .63答案: A 解析:由已知求出AC 的中点1E 与1B 的连线与平面1ACD 所成角的余弦值,在1AB 上(不含端点)任取一点P ,在平面1AB E 内过P 作11//PE B E ,则EP 与平面1ACD 所成角11OE B θ=∠,可得1cos 3θ=,结合选项即可得答案.详解:解:如图,由正方体的性质,可得1B D ⊥平面1AD C ,且1B 在平面1AD C 上的射影O 为△1AD C 的外心.设正方体的棱长为1,则△1AD C 的边长为2, 当1E 为AC 的中点时,11162326OE =-=, 1116122B E =+=,此时11616cos 362OE B ==. 在1AB 上(不含端点)任取一点P ,在平面1AB E 内过P 作11//PE B E ,则EP 与平面1ACD 所成角11OE B θ=∠,可得1cos 3θ=.结合选项可知,cos θ的最小值为13.故选:A .3、三棱柱111ABC A B C -的侧棱与底面垂直,11AA AB AC ===,AB AC ⊥,N 是BC 的中点,点P 在11A B 上,且满足111A P A B λ=,当直线PN 与平面ABC 所成的角取最大值时,λ的值为( )A .12B .22C .32D .255【答案】A【分析】建立空间直角坐标系,利用向量的夹角公式,求出直线PN 与平面ABC 所成的角,即可求得结论.【解析】如图,以AB ,AC ,1AA 分别为x ,y ,z 轴,建立空间直角坐标系A xyz -,则(,P λ0,1),11,,122PN λ⎛⎫=-- ⎪⎝⎭,平面ABC 的一个法向量为(0,n =0,1)设直线PN 与平面ABC 所成的角为θ,21sin 15()24PN nPN nθλ⋅∴==⋅-+, ∴当12λ=时,25(sin )5max θ=,此时角θ最大.故选A . 【名师点睛】本题考查了向量法求线面角的求法,考查了函数最值的求法,是基础题,解题时要认真审题,注意向量法的合理运用.4、如图所示,在正方体1111ABCD A B C D -中,点E 为线段AB 的中点,点F 在线段AD 上移动,异面直线1B C 与EF 所成角最小时,其余弦值为( )A .0B .12C .105D .1116【答案】C【分析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,利用向量法能求出异面直线1B C 与EF 的夹角的余弦值,根据夹角最小即可求得结果.【解析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,在正方体1111ABCD A B C D -中, 点E 为线段AB 的中点,设正方体棱长为2, 则1(0,0,0),(2,1,0),(2,2,2),(0,2,0)D E B C ,1(2,0,2)B C =--,设(),0,0F m ()02m ≤≤,(2,1,0)EF m =--,设异面直线1B C 与EF 的夹角为θ,则1212|||2(2)|cos ||||122(2)1211(2)EF B C m EF B C m m θ⋅-⨯-===⋅⋅-+⋅+-, 异面直线1B C 与EF 所成角最小时,则cos θ最大,即0m =时,210cos 51102141θ===⋅+.故选C .【名师点睛】本题考查异面直线及其所成的角的余弦值,解题方法是建立空间直角坐标系,用空间向量法表示距离、求角,属于中档题.5、如图,已知正方体1111ABCD A B C D -的棱长为1,,E F 分别是棱11,AD B C 上的中点.若点P 为侧面正方形11ADD A 内(含边)动点,且存在,x y R ∈使1B P xBE yBF =+成立,则点P 的轨迹长度为A .12B .1C 5D .2π 【答案】C【分析】根据向量共面判断出1//B P 平面BEF ,由面面平行得到P 点的轨迹,在直角三角形中求出边长即可.【解析】因为1B P xBE yBF =+成立,所以1B P BE BF 、、共面,即1//B P 平面BEF , 如图,取11A D 中点Q ,连接1B Q 、1B A 、AQ , 根据正方体的性质得,1//B Q BE ,1//B A FE , 且111=B QB A B ,=FEBE E ,所以平面1//B AQ 平面BEF ,所以点P 在AQ 上运动,点P 的轨迹为线段AQ ,因为11A A =,112AQ =, 由勾股定理得151+=42QA =,故选C .题型二、动点问题(多选)1、如图,棱长为1的正方体1111ABCD A B C D -中,P 为线段1A B 上的动点(不含端点),则下列结论正确的是A .平面11D A P ⊥平面1A APB .//BC 平面11AD PC .三棱锥1D CDP -的体积为定值 D .直线1D P 与AC 所成的角可能是6π【答案】AC【解析】对于A 中,在正方体1111ABCD A B C D -中,可得1111,A D AA A D AB ⊥⊥,又由1AA AB A =,所以11A D ⊥平面1A AP ,因为11A D ⊂平面11D A P ,所以平面11D A P ⊥平面1A AP ,所以A 正确; 对于B 中,在正方体1111ABCD A B C D -中,可得11//BC A D , 所以11,,,B C A D 四点共面,所以B 不正确; 对于C 中,因为1111122CDD S=⨯⨯=,点P 到平面1CDD 的距离为1BC =, 所以三棱锥1D CDP -的体积为定值,所以C 正确;对于D 中,以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,可得1(0,0,1),(1,0,0),(0,1,0)D A C ,设(1,,)(01,01)P a b a b <<<<, 则1(1,,1),(1,1,0)D P a b AC =-=-, 则11221cos ,01(1)2D P AC D P AC D P ACa b ⋅==<⋅++-⋅,当1a =时,1,2D P AC π=;当0,1a b ==时,13,4D P AC π=, 所以直线1D P 与AC 所成的角的范围是(,)42ππ,所以D 不正确.故选AC【名师点睛】此类问题解答中熟记正方体的几何结构特征,熟练应用转化顶点,利用等体积法求解三棱锥的体积,以及合理利用空间向量的夹角公式求解异面直线所成的角是解答的关键.(多选)2、如图,在三棱柱111ABC A B C -中,侧棱1AA ⊥底面111A B C ,90BAC ︒∠=,11AB AC AA ===,D 是棱1CC 的中点,P 是AD 的延长线与11A C 的延长线的交点.若点Q 在直线1B P 上,则下列结论错误的是( ).A .当Q 为线段1B P 的中点时,DQ ⊥平面1A BD B .当Q 为线段1B P 的三等分点时,DQ ⊥平面1A BDC .在线段1B P 的延长线上,存在一点Q ,使得DQ ⊥平面1A BD D .不存在点Q ,使DQ 与平面1A BD 垂直 【答案】ABC【分析】以1A 为坐标原点,11A B ,11A C ,1A A 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,求得平面1A BD 的一个法向量(,,)n x y z =,假设DQ ⊥平面1A BD ,且11B Q B P λ=,得到11DQ DB BQ =+=11,12,2λλ⎛⎫--+- ⎪⎝⎭,则(2,1,2)n =-与11,12,2DQ λλ⎛⎫=--+- ⎪⎝⎭共线,研究1112122124λλ---+===-是否有解即可. 【解析】以1A 为坐标原点,11A B ,11A C ,1A A 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则由1(0,0,0)A ,1(1,0,0)B ,1(0,1,0)C ,(1,0,1)B ,10,1,2D ⎛⎫ ⎪⎝⎭,(0,2,0)P ,所以1(1,0,1)A B =,110,1,2A D ⎛⎫= ⎪⎝⎭,1(1,2,0)B P =-,111,1,2DB ⎛⎫=-- ⎪⎝⎭.设平面1A BD 的一个法向量为(,,)n x y z =,则11012n A B x z n A D y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩, 取2z =-,则2x =,1y =,所以平面1A BD 的一个法向量为(2,1,2)n =-.假设DQ ⊥平面1A BD ,且11(1,2,0)(,2,0)BQ B P λλλλ==-=-, 则11DQ DB BQ =+=11,12,2λλ⎛⎫--+- ⎪⎝⎭. 因为DQ 也是平面1A BD 的法向量,所以(2,1,2)n =-与11,12,2DQ λλ⎛⎫=--+- ⎪⎝⎭共线,所以1112122124λλ---+===-成立,但此方程关于λ无解. 因此不存在点Q ,使DQ 与平面1A BD 垂直,故选ABC .(多选)3、在长方体1111ABCD A B C D -中,23AB =12AD AA ==,,,P Q R 分别是11,,AB BB AC 上的动点,下列结论正确的是 A .对于任意给定的点P ,存在点Q 使得1D P CQ ⊥ B .对于任意给定的点Q ,存在点R 使得1D R CQ ⊥ C .当1AR A C ⊥时,1AR D R ⊥D .当113AC A R =时,1//D R 平面1BDC 【答案】ABD【分析】如图所示建立空间直角坐标系,计算142D P CQ b ⋅=-,()12222D R CQ b λλ⋅=--,134AR D R ⋅=-,10D R n ⋅=,得到答案.【解析】如图所示,建立空间直角坐标系,设()2,,0P a ,0,23a ⎡⎤∈⎣⎦,()2,23,Q b ,[]0,2b ∈,设11A R AC λ=,得到()22,23,22R λλλ--,[]0,1λ∈. ()12,,2P a D -=,()2,0,CQ b =,142D P CQ b ⋅=-,当2b =时,1D P CQ ⊥,A 正确;()122,23,2D R λλλ=--,()12222D R CQ b λλ⋅=--,取22bλ=+时,1D R CQ ⊥,B 正确;1AR A C⊥,则()()12,23,222,23,2212440AR AC λλλλλλ⋅=--⋅--=-+-+=, 14λ=,此时11333313,,,,02222224AR D R ⎛⎫⎛⎫⋅=-⋅-=-≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,C 错误; 113AC A R =,则4234,,333R ⎛⎫ ⎪ ⎪⎝⎭,14232,,333D R ⎛⎫=- ⎪ ⎪⎝⎭,设平面1BDC 的法向量为(),,n x y z =,则10n BD n DC ⎧⋅=⎪⎨⋅=⎪⎩,解得()3,1,3n =-,故10D R n ⋅=,故1//D R 平面1BDC ,D 正确. 故选ABD .【点睛】本题考查了空间中的线线垂直,线面平行,意在考查学生的计算能力和空间想象能力,推断能力. 题型三、确定点的位置1、如图,在三棱柱111ABC A B C -中,四边形11AAC C 是边长为3的正方形,1CC BC ⊥,1BC =,2AB =.(1)证明:平面1A BC ⊥平面1ABC ;(2)在线段1A B 上是否存在点M ,使得1CM BC ⊥,若存在,求1BMBA 的值;若不存在,请说明理由.【答案】(1)证明见解析;(2)14. 【解析】(1)在ABC 中,3AC =1BC =,2AB =,满足222AC BC AB +=,所以AC BC ⊥,又1CC BC ⊥,1CC AC C =,所以BC ⊥面11ACC A ,又1AC ⊂面11ACC A ,所以1BC A C ⊥,又四边形11AAC C 是边长为3的正方形,所以11AC AC ⊥,又1BCAC C =,所以1AC ⊥面1A CB ,又1AC ⊂平面1ABC ,所以平面1A BC ⊥平面1ABC ;(2)在线段1A B 上存在点M ,使得1CM BC ⊥,且114BM BA =, 理由如下:由(1)得,以点C 为原点,1,,CA CB CC 所在直线分别为,,x y z 轴建立空间直角坐标系,如图所示,则()3,0,0A,()0,0,0C ,()0,1,0B ,13,0,3A ,(13C ,设(),,M x y z ,1BM BA λ=,所以(),1,3,3x y z λ-=-,解得3x λ=,1y λ=-,3z λ=,所以()3,13CM λλλ=-,(10,1,3C B =-,要使1CM BC ⊥,则需10CM BC ⋅=,即130λλ--=,解得14λ=,故114BM BA =.2、如图,在多面体ABCDP 中,ABC 是边长为4的等边三角形,PA AC =,22BD CD ==,42PC PB ==,点E 为BC 的中点,平面BDC ⊥平面ABC .(1)求证://DE 平面PAC(2)线段BC 上是否存在一点T ,使得二面角T DA B --为直二面角?若存在,试指出点T 的位置;若不存在,请说明理由.【答案】(1)证明见解析;(2)存在,T 为线段BC 上靠近点C 的八等分点. 【分析】(1)根据题目条件证明DE ⊥平面ACE ,从而得到DE //PA ,得出DE //平面PAC ;(2)建立空间直角坐标系,假设存在点(),0,0T λ,计算平面TDA 和平面BDA 的法向量,使法向量数量积为零,然后求解λ,根据λ的值确定点T 的位置. 【解析】(1)因为22BD CD ==ABC 是边长为4的等边三角形, 所以((2222222216BD CD BC +=+==,所以BDC 是等腰直角三角形,90BDC ∠=︒.又点E 为BC 的中点,所以DE BC ⊥.因为平面BDC ⊥平面ABC ,平面BDC ⋂平面ABC BC =,所以DE ⊥平面ABC . 因为42PC PB ==,4PA AC AB ===,所以222224432PA AC PC +=+==,222224432PA AB PB +=+==,所以PAB △与PAC 都是直角三角形,故PA AC ⊥,PA AB ⊥. 又AC AB A ⋂=,所以PA ⊥平面ABC ,所以DE PA ∥. 因为PA ⊂平面PAC ,DE ⊄平面PAC ,所以DE 平面PAC .(2)连接AE ,以E 为原点,EC ,EA ,ED 所在直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系,则()0,23,0A ,()2,0,0B -,()2,0,0C ,()0,0,2D ,设存在(),0,0T λ,使得二面角T DA B --为直二面角,易知22λ-≤≤,且0λ≠. 设平面BAD 的法向量为()1111,,n x y z =,则由()2,0,2BD =,()0,23,2AD =-,得1111030x z y z +=⎧⎪⎨-+=⎪⎩,令11z =,得111x x =-,133y =,故131,,13n ⎛⎫=- ⎪ ⎪⎝⎭.设平面TAD 的法向量为()2222,,n x y z =,则由(),0,2DT λ=-,(),23,0AT λ=-,得222220,230x z x y λλ-=⎧⎪⎨-=⎪⎩,令21z =,得22x λ=,233y =,故223,,13n λ⎛⎫= ⎪ ⎪⎝⎭. 由122233133cos ,074433n n λλ-+⨯+==⨯+,得12103λ-+=,故32λ=. 所以当T 为线段BC 上靠近点C 的八等分点时,二面角T DA B --为直二面角.3、如图,三棱柱111ABC A B C -中,AB ⊥侧面11BB C C ,已知13BCC π∠=,1BC =,12AB C C ==,点E 是棱1C C 的中点.(1)求证:1C B ⊥平面ABC ; (2)求二面角11A EB A --的余弦值;(3)在棱CA 上是否存在一点M ,使得EM 与平面11A B E 所成角的正弦值为21111,若存在,求出CM CA 的值;若不存在,请说明理由.【答案】(1)证明见解析(225(3)存在,13CM CA =或523CM CA =.【解析】(1)由题意,因为1BC =,12CC =,13BCC π∠=,所以13BC又所以22211BC BC CC +=,所以1BC BC ⊥,因为AB ⊥侧面11BB C C ,所以1AB BC ⊥.又因为AB BC B ⋂=,AB ,BC ⊂平面ABC ,所以直线1C B ⊥平面ABC . (2)以B 为原点,分别以BC ,1BC 和BA 的方向为x ,y 和z 轴的正方向建立如图所示的空间直角坐标系,则()0,0,2A ,()13,0B -,132E ⎛⎫⎪ ⎪⎝⎭,()13,2A -,设平面1AB E 的一个法向量为()111,,n x y z =,()13,2AB =--,13,,222AE ⎛⎫=- ⎪ ⎪⎝⎭因为100n AB n AE ⎧⋅=⎨⋅=⎩,所以11111132013202x z x y z ⎧--=⎪⎨-=⎪⎩,令13y =,则11x =,所以()1,3,1n =设平面11A B E 的一个法向量为(),,m x y z =,()110,0,2A B =-,133,,222A E ⎛⎫=-- ⎪ ⎪⎝⎭, 因为11100m A B m A E ⎧⋅=⎪⎨⋅=⎪⎩,所以20332022z x y z -=⎧⎪⎨--=⎪⎩,令3y =,则1x =,所以()1,3,0m =,2m =,5n =,4m n ⋅=,所以425cos ,525m n m n m n⋅===.设二面角11A EB A --为α,则25cos cos ,5m n α==. 所以设二面角11A EB A --的余弦值为255. (3)假设存在点M ,设(),,M x y z ,因为CM CA λ=,[]0,1λ∈,所以()()1,,1,0,2x y z λ-=-,所以()1,0,2M λλ-所以13,,222EM λλ⎛⎫=-- ⎪ ⎪⎝⎭设平面11A B E 的一个法向量为()1,3,0m =,所以22132112211132424λλλ--=⎛⎫-++ ⎪⎝⎭,得2693850λλ-+=.即()()312350λλ--=,所以13λ=或523λ=,所以13CM CA =或523CM CA =.【名师点睛】本题考查了线面平行的判定与证明,以及空间角的求解问题,意在考查学生的空间想象能力和逻辑推理能力,解答中熟记线面位置关系的判定定理和性质定理,通过严密推理是线面位置关系判定的关键,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解. 强化训练(多选)1、如图所示,正方体1111ABCD A B C D -中,1AB =,点P 在侧面11BCC B 及其边界上运动,并且总是保持1AP BD ⊥,则以下四个结论正确的是A .113P AA D V -=B .点P 必在线段1BC 上 C .1AP BC ⊥D .//AP 平面11AC D【答案】BD【分析】根据三棱锥体积公式求得116P AA D V -=,知A 错误;以D 为坐标原点建立空间直角坐标系,利用空间向量法可得到1CP x B C →→=-,11AP BC →→⋅=,AP →垂直于平面11AC D 的法向量n →,由此可确定,,B C D 的正误.【解析】对于A ,P 在平面11BCC B 上,平面11//BCC B 平面1AA D ,P ∴到平面1AA D 即为C 到平面1AA D 的距离,即为正方体棱长,1111111113326P AA D AA D V S CD -∴=⋅=⨯⨯⨯⨯=△,A 错误;对于B ,以D 为坐标原点可建立如下图所示的空间直角坐标系:则()1,0,0A ,(),1,P x z ,()1,1,0B ,()10,0,1D ,()11,1,1B ,()0,1,0C()1,1,AP x z →∴=-,()11,1,1BD →=--,()11,0,1B C →=--,1AP BD ⊥,1110AP BD x z →→∴⋅=--+=,x z ∴=,即(),1,P x x ,(),0,CP x x →∴=,1CP x B C →→∴=-,即1,,B P C 三点共线,P ∴必在线段1B C 上,B 正确;对于C ,()1,1,AP x x →=-,()11,0,1BC →=-,111AP BC x x →→∴⋅=-+=,AP ∴与1BC 不垂直,C 错误;对于D ,()11,0,1A ,()10,1,1C ,()0,0,0D ,()11,0,1DA →∴=,()10,1,1DC →=, 设平面11AC D 的法向量(),,n x y z →=,1100n DA x z n DC y z ⎧⋅=+=⎪∴⎨⋅=+=⎪⎩,令1x =,则1z =-,1y =,()1,1,1n →∴=-, 110AP n x x →→∴⋅=-+-=,即AP n →→⊥,//AP ∴平面11ACD ,D 正确. 故选BD .【点睛】本题考查立体几何中动点问题相关命题的辨析,涉及到三棱锥体积公式、动点轨迹、线线垂直关系和线面平行关系等知识;解题关键是熟练应用空间向量法来验证相关结论.2、如图,在边长为2的正方体1111ABCD A B C D -中,E 为BC 的中点,点P 在底面ABCD 上移动,且满足11B P D E ⊥,则线段1B P 的长度的最大值为( )A .45B .2C .2D .3【答案】D【分析】以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系,设点(),,0P x y ,根据110B P D E ⋅=得出x 、y 满足的关系式,并求出y 的取值范围,利用二次函数的基本性质求得1B P 的最大值.【解析】如下图所示,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系D xyz -,则点()12,2,2B 、()10,0,2D 、()1,2,0E ,设点()(),,002,02P x y x y ≤≤≤≤,()11,2,2D E =-,()12,2,2B P x y =---,11D E B P ⊥,()112224220B P D E x y x y ∴⋅=-+-+=+-=,得22x y =-,由0202x y ≤≤⎧⎨≤≤⎩,得022202y y ≤-≤⎧⎨≤≤⎩,得01y ≤≤, ()()2221224548B P x y y y ∴=-+-+=-+01y ≤≤,当1y =时,1B P 取得最大值3.故选D .3、在长方体1111ABCD A B C D -中,已知底面ABCD 为正方形,P 为11A D 的中点,2AD =,13AA =,点Q 为正方形ABCD 所在平面内的一个动点,且满足2QC QP =.则线段BQ 的长度的最大值是( )A .2B .4C .6D .前三个答案都不对【答案】C【分析】先以D 点为坐标原点,分别以DA ,DC ,1DD 所在方向为x 轴,y 轴,z 轴正方向,建立空间直角坐标系,由题意得到(0,2,0)C ,()1,0,3P ,(2,2,0)B ,设(,,0)Q x y ,由2QC QP =,得到22(2)(2)4-++=x y ,再由圆上的点与定点距离的问题,即可求出结果.【解析】以D 点为坐标原点,分别以DA ,DC ,1DD 所在方向为x 轴,y 轴,z 轴正方向,建立如图所示的空间直角坐标系,因为在长方体1111ABCD A B C D -中,已知底面ABCD 为正方形,P 为11A D 的中点,2AD =,13AA =(0,2,0)C ,(1,3P ,(2,2,0)B ,因为点Q 为正方形ABCD 所在平面内的一个动点,设(,,0)Q x y , 因为2QC QP =,所以()2222(2)213+-=⋅-++x y x y ,整理得:22(2)(2)4-++=x y ,即点Q 可看作圆22(2)(2)4-++=x y 上的点, 又22(2)(2)=-+-BQ x y ,所以BQ 表示圆22(2)(2)4-++=x y 上的点与定点(2,2)之间的距离, 因此22max (22)(22)426=-+--+=+=BQ r (其中r表示圆22(2)(2)4-++=x y 的半径.)故选C . 【名师点睛】本题主要考查立体几何中的轨迹问题,涉及圆上的点到定点距离的最值,灵活运用转化与化归的思想即可,属于常考题型.4、如图,已知正方体ABCD -A 1B 1C 1D 1棱长为8,点H 在棱AA 1上,且HA 1=2,在侧面BCC 1B 1内作边长为2的正方形EFGC 1,P 是侧面BCC 1B 1内一动点,且点P 到平面CDD 1C 1距离等于线段PF 的长,则当点P 在侧面BCC 1B 1运动时,2HP 的最小值是( )A .87B .88C .89D .90【答案】B【分析】建立空间直角坐标系,过点H 作1HM BB ⊥,垂足为M ,连接MP ,得出222HP HM MP =+,当MP 最小时,2HP 最小,利用空间直角坐标系求2HP 的最小值.【解析】如图,建立空间直角坐标系,过点H 作1HM BB ⊥,垂足为M ,连接MP ,则HM PM ⊥,所以222HP HM MP =+,当MP 最小时,2HP 最小, 过P 作1PN CC ⊥,垂足为N ,设(,8,)P x z ,则(2,8,6),(8,8,6),(0,8,)F M N z ,且08,08x z ≤≤≤≤,因为PN PF =,所以22(2)(6)x z x -+-=,化简得244(6)x z -=-,所以222222(8)(6)(8)441260(6)2424MP x z x x x x x =-+-=-+-=-+=-+≥, 当6x =时,2MP 取得最小值24,此时222282488HP HM MP =+=+=, 所以2HP 的最小值为88,故选B .5、如图,在棱长为2的正方体1111ABCD A B C D -中,E 为BC 的中点,点P 在底面ABCD 上(包括边界....)移动,且满足11B P D E ⊥,则线段1B P 的长度的最大值为A .55B .25C .2D .3【答案】D【分析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,利用向量法能求出线段1B P 的长度的最大值.【解析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,设P (a ,b ,0),则1D (0,0,2),E (1,2,0),1B (2,2,2),1B P =(a −2,b −2,−2),1D E =(1,2,−2), 因为1B P ⊥1D E ,()1122240B P D E a b ∴⋅=-+-+=, 所以a +2b −2=0,01b ≤≤,所以点P 的轨迹是一条线段,()()()()2222221224224548a b b B P b b b -+-+==+-+=-+, 由二次函数的性质可得当1b =时,2548b b -+可取到最大值9, 所以线段1B P 的长度的最大值为3.故选D .6、如图所示,在正方体1111ABCD A B C D -中,点P 是底面1111D C B A 内(含边界)的一点,且//AP 平面1DBC ,则异面直线1A P 与BD 所成角的取值范围为A .3,44ππ⎡⎤⎢⎥⎣⎦B .,42ππ⎡⎤⎢⎥⎣⎦C .,32ππ⎡⎤⎢⎥⎣⎦D .2,33ππ⎡⎤⎢⎥⎣⎦【答案】C【分析】连接111,,AB AD B D ,则点P 在线段11B D 上,以D 为坐标原点建立坐标系,利用向量方法可求出范围. 【解析】过A 作平面α平面1DBC ,点P 是底面1111D C B A 内(含边界)的一点,且//AP 平面1DBC ,则P ∈平面α,即P 在α与平面1111D C B A 的交线上,连接111,,AB AD B D ,11DD BB =,则四边形11BDD B 是平行四边形,11B D BD ∴,11B D ∴平面1DBC ,同理可证1AB ∥平面1DBC ,∴平面11AB D ∥平面1DBC ,则平面11AB D 即为α,点P 在线段11B D 上,以D 为坐标原点,1,,DA DC DD 建立如图坐标系,设正方体棱长为1,则()0,0,0D ,()1,1,0B ,()1,0,0A ,设(),,1P λλ,[]0,1λ∈,()1,1,0DB ∴=,()1,,1AP λλ=-,21DB AP λ∴⋅=-,2DB =,2222AP λλ=-+,设1A P 与BD 所成角为θ,则()22221211cos 2121DB APDB AP λλθλλλλ⋅--===-+⋅-+ 221313442121324λλλ=-=--+⎛⎫-+ ⎪⎝⎭,当12λ=时,cos θ取得最小值为0, 当0λ=或1时,cos θ取得最大值为12,10cos 2θ∴≤≤,则32ππθ≤≤.故选C .7、如图,三棱锥V ABC -的侧棱长都相等,底面ABC 与侧面VAC 都是以AC 为斜边的等腰直角三角形,E 为线段AC 的中点,F 为直线AB 上的动点,若平面VEF 与平面VBC 所成锐二面角的平面角为θ,则cos θ的最大值是A .33 B .23C 5D 6【答案】D【分析】连接BE ,以E 为原点,EB 为x 轴,EC 为y 轴,EV 为z 轴,建立空间直角坐标系,求出平面VBC 的一个法向量m ,平面VEF 的一个法向量n ,利用cos m n m nθ⋅=即可求解.【解析】底面ABC 与侧面VAC 都是以AC 为斜边的等腰直角三角形, 则Rt ABC Rt VAC ≅,所以VA VC BA BC === 设2VA VC BA BC VB =====,由E 为线段AC 的中点,则2VE BV ==, 由222VE BE VB +=,所以VE EB ⊥,以E 为原点,EB 为x 轴,EC 为y 轴,EV 为z 轴, 建立空间直角坐标系,如图所示:则()2,0C ,)2,0,0B,(2V ,设(),2,0F x x -,(0,2,2VC =-,(2,0,2VB =-,(2EV =,(,2,2VF x x =,设平面VBC 的一个法向量()111,,m x y z =,则00m VC m VB ⎧⋅=⎨⋅=⎩,即1111220220z x ⎧+=⎪⎨-=⎪⎩,令11x =,则11y =,11z =,所以()1,1,1m =. 设平面VEF 的一个法向量()222,,n x y z =,则00n EV n VF ⎧⋅=⎨⋅=⎩,即(222220220z x x x y z ⎧=⎪⋅+-⋅+=⎪⎩,解得20z =,令21y =,则221x x =-, 所以21,1,0n x ⎛⎫=- ⎪ ⎪⎝⎭, 平面VEF 与平面VBC 所成锐二面角的平面角为θ,则22cos 22232m n x m n x xθ⋅==-+,将分子、分母同除以1x,可得=令()2266632f x x x ⎛=-+=-+ ⎝⎭,当2x =时,()min 3f x =,则cos θ3=. 故选D【点睛】本题考查了空间向量法求二面角、考查了基本运算求解能力,解题的关键是建立恰当的空间直角坐标系,属于中档题.8、已知MN 是正方体内切球的一条直径,点P 在正方体表面上运动,正方体的棱长是2,则PM PN →→⋅的取值范围为 A .[]0,4 B .[]0,2C .[]1,4D .[]1,2【答案】B【分析】利用向量的线性运算和数量积运算律可将所求数量积化为21PO →-,根据正方体的特点可确定PO →的最大值和最小值,代入即可得到所求范围. 【解析】设正方体内切球的球心为O ,则1OM ON ==,2PM PN PO OM PO ON PO PO OM ON OM ON →→→→→→→→→→→→⎛⎫⎛⎫⎛⎫⋅=+⋅+=+⋅++⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,MN 为球O 的直径,0OM ON →→∴+=,1OM ON →→⋅=-,21PM PN PO →→→∴⋅=-,又P 在正方体表面上移动,∴当P 为正方体顶点时,PO →最大,最大值为;当P 为内切球与正方体的切点时,PO →最小,最小值为1,[]210,2PO →∴-∈,即PM PN →→⋅的取值范围为[]0,2.故选B .【点睛】本题考查向量数量积的取值范围的求解问题,关键是能够通过向量的线性运算将问题转化为向量模长的取值范围的求解问题.7、在正四面体D ABC -(所有棱长均相等的三棱锥)中,点E 在棱AB 上,满足2AE EB =,点F 为线段AC 上的动点.设直线DE 与平面DBF 所成的角为α,则A .存在某个位置,使得DE BF ⊥B .存在某个位置,使得4FDB π∠=C .存在某个位置,使得平面DEF ⊥平面DACD .存在某个位置,使得6πα=【答案】C【分析】设正四面体D ABC -的底面中心为点O ,连接DO ,则DO ⊥平面ABC ,以点O 为坐标原点,OB 、OD 所在直线分别为x 、z 轴建立空间直角坐标系,设正四面体D ABC -的棱长为2,然后利用空间向量法逐一分析求解可得结果. 【解析】如下图所示,设正四面体D ABC -的底面中心为点O ,连接DO ,则DO ⊥平面ABC ,以点O 为坐标原点,OB 、OD 所在直线分别为x 、z 轴建立空间直角坐标系, 设正四面体D ABC -的棱长为2,则31,0A ⎛⎫- ⎪ ⎪⎝⎭、23B ⎫⎪⎪⎝⎭、3C ⎛⎫ ⎪ ⎪⎝⎭、26D ⎛ ⎝⎭、31,03E ⎫-⎪⎪⎝⎭,设,03F λ⎛⎫- ⎪ ⎪⎝⎭,其中11λ-≤≤, 对于A 选项,若存在某个位置使得DE BF ⊥,31,333DE ⎛⎫=-- ⎪ ⎪⎝⎭,(),0BF λ=-,1103DE BF λ∴⋅=--=,解得3λ=-,不合乎题意,A 选项错误;对于B 选项,若存在某个位置使得4FDB π∠=,,33DF λ⎛=-- ⎝⎭,23DB ⎛=⎝⎭,cos ,DF DB DF DB DF DBλ⋅<>====⋅B选项错误;对于C 选项,设平面DAC 的一个法向量为()111,,m x y z =,1,DA ⎛=-- ⎝⎭,DC ⎛=-⎝⎭,由1111113033303m DA x y z m DC x y z ⎧⋅=---=⎪⎪⎨⎪⋅=-+-=⎪⎩,取11z =-,得()22,0,1m =-,设平面DEF 的一个法向量为()222,,n x y z =,31,3DE ⎛=- ⎝⎭,,DF λ⎛=- ⎝⎭, 由22222231033333n DE x y z n DF x y z λ⎧⋅=--=⎪⎪⎨⎪⋅=-+=⎪⎩,取y =,则()221n λ=+-,若存在某个位置,使得平面DEF ⊥平面DAC ,则2190m n λ⋅=+=,解得[]31,17λ=-∈-,合乎题意,C 选项正确;对于D 选项,设平面DBF 的一个法向量为()333,,u x y z =,2326,0,33DB ⎛⎫=- ⎪ ⎪⎝⎭,326,,33DF λ⎛⎫=-- ⎪ ⎪⎝⎭, 由333332326033326033u DB x z u DF x y z λ⎧⋅=-=⎪⎪⎨⎪⋅=-+-=⎪⎩,令z λ=,则()2,6,u λλ=,若存在某个位置,使得6πα=,即()()22612131sin cos ,6227272363u DE u DE u DEλλπλλ++⋅==<>===⋅⨯++⨯,整理得254120λλ-+=,162400∆=-<,该方程无解,D 选项错误. 故选C.【点评】本题考查利用空间向量法求解空间角以及利用空间向量法处理动点问题,计算量大,属于难题.10、如图,直三棱柱111ABC A B C -的底面是边长为6的等边三角形,侧棱长为2,E 是棱BC 上的动点,F 是棱11B C 上靠近1C 点的三分点,M 是棱1CC 上的动点,则二面角A FM E --的正切值不可能...是A .3155B .2155C .6D .5【答案】B【分析】建立空间直角坐标系,求得二面角A FM E --的余弦值,进而求得二面角A FM E --的正切值,求得正切值的最小值,由此判断出正确选项.【解析】取BC 的中点O ,连接OA ,根据等边三角形的性质可知OA BC ⊥,根据直三棱柱的性质,以O 为原点建立如图所示的空间直角坐标系.则()()0,33,0,1,0,2A F ,设()()3,0,02M t t ≤≤. 则()()1,33,2,2,0,2AF FM t =-=-. 设平面AMF 的一个法向量为(),,m x y z =,则()3320220m AF x z m FM x t z ⎧⋅=-+=⎪⎨⋅=+-=⎪⎩,令1y =,得633363,1,66t m t t ⎛= --⎝⎭. 平面FME 的一个法向量是()0,1,0n =,所以222cos ,28120252633363166m n m n m nt t t t t ⋅===⋅-+⎛⎫⎛⎫-++ ⎪ ⎪--⎝⎭⎝⎭,所以2sin ,1cos ,m n m n =-222710821628120252t t t t -+=-+所以二面角A FM E--的正切值为()sin ,27 cos,m nf tm n===因为02t≤≤,所以111466t-≤≤--,216125405-=-⨯结合二次函数的性质可知当1165t=--时,()f t5=;当1166t=--时,()f t=,所以()f t∈⎣,所以二面角A FM E--.故选B.【点睛】本小题主要考查二面角的求法,考查数形结合的数学思想方法,属于难题.11、直四棱柱ABCD﹣A1B1C1D1中,侧棱长为6,底面是边长为8的菱形,且∠ABC =120°,点E在边BC上,且满足BE=3EC,动点M在该四棱柱的表面上运动,并且总保持ME⊥BD1,则动点M的轨迹围成的图形的面积为_____;当MC与平面ABCD所成角最大时,异面直线MC1与AC所成角的余弦值为_____.【答案】,17【分析】由题意可知M的轨迹为过E且与直线1BD垂直的平面与直四棱柱的截面的边界,根据直棱柱的结构特征和底面棱形的性质,由线面垂直的定义可得截面与下底面的截线是与AC平行的,进而确定截面与与AB的交点F,建立空间直角坐标系,利用坐标方法求得截面与1BB的交点G,进而得到所求面积,根据线面角的定义可得M与G重合时MC与平面ABCD所成角最大,利用空间向量可求异面直线所成角的余弦值.【解析】如图,在直四棱柱1111ABCD A B C D-中,因为底面是菱形,侧棱垂直底面,所以AC ⊥平面11BDD B ,所以1BD AC ⊥.在AB 上取F ,使得3BF FA =,连接EF ,则//EF AC ,1⊥BD EF .记AC 与BD 的交点为O ,以O 为坐标原点,建立如图所示的空间直角坐标系O xyz -,则()4,0,0B ,()14,0,6D -,()1,33,0E .在1BB 上取一点G ,记为()4,0,G t ,于是()18,0,6BD =-,()3,33,EG t =-. 由12460BD EG t ⋅=-+=,得4t =,即12BG GB =, 所以EFG 的边为点M 的运动轨迹. 由题意得22213FG BF BG =+=33836344EF AC ==⨯= 动点M 的轨迹围成的图形的面积为()()22163213331532⨯-=显然当M 与G 重合时,MC 与平面ABCD 所成角最大. 因为()4,0,4M ,()10,43,6C ,所以()14,43,2MC =-. 因为AC 的一个方向向量为()0,1,0n =,所以1251cos ,17MC n =即异面直线1MC 与AC 251. 【点睛】本题考查点、线、面的位置关系,考查空间动点的轨迹,涉及线面垂直的判定与性质,异面直线所成的角,线面角,利用空间直角坐标系和空间向量确定点的位置和求异面直线所成的角,考查直观想象与数学运算的核心素养.属中档题,难度较大.12、如图,在直三棱柱111ABC A B C -中,已知90ABC ∠=︒,P 为侧棱1CC 上任意一点,Q 为棱AB 上任意一点,PQ 与AB 所成角为α,PQ 与平面ABC 所成的角为β,则α与β的大小关系为( )A .αβ=B .αβ<C .αβ>D .不能确定【答案】C【分析】建立空间直角坐标系设()()(),0,,0,,00,0,0P x z Q y x y z >≥≥,利用空间向量法分别求得cos ,cos αβ,然后根据(0,],0,22ππαβ⎡⎤∈∈⎢⎥⎣⎦,利用余弦函数的单调性求解.【解析】建立如图所示空间直角坐标系:设()()(),0,,0,,00,0,0P x z Q y x y z >≥≥,则()(),,,0,,0QP x y z QB y =-=-,所以2222,,QP QB y QP x y z QB y ⋅==++=,所以222cos QP QB y QP QBx y zα⋅==⋅++,又(0,],0,22ππαβ⎡⎤∈∈⎢⎥⎣⎦,222sin QP CP z QPx y zβ⋅==++,所以22222cos x y x y zβ+=++,所以cos cos βα>,因为cos y x = 在0,2π⎛⎫⎪⎝⎭上递减,所以αβ>,故选C 13、如图,在四棱柱1111ABCD A B C D -中,底面ABCD 为正方形,侧棱1AA ⊥底面ABCD ,3AB =,14AA =,P 是侧面11BCC B 内的动点,且1AP BD ⊥,记AP 与平面11BCC B 所成的角为θ,则tan θ的最大值为( )A .43B .53C .2D .259【答案】B【分析】建立空间直角坐标系,利用向量法能求出线面角的正切值的最大值. 【解析】以1,,DA DC DD 所在直线分别为,,x y z 轴,建立空间直角坐标系, 设(,3,)P x z ,则1(3,3,),(3,3,4)AP x z BD =-=--,11,0AP BD AP BD ⊥∴⋅=,33(3)3340,4x z z x ∴---⨯+=∴=, 22225||(3)6916BP x z x x ∴=-+=-+225488191625255x ⎛⎫=-+ ⎪⎝⎭, ||5tan ||3AB BP θ∴=,tan θ∴的最大值为53.故选B .14、如图,在棱长都相等的正三棱柱111ABC A B C -中,D 是棱1CC 的中点,E 是棱1AA 上的动点.设AE x =,随着x 增大,平面BDE 与底面ABC 所成锐二面角的平面角是( )A .增大B .先增大再减小C .减小D .先减小再增大【答案】D【解析】设正三棱柱111ABC A B C -棱长为2,,02AE x x =≤≤, 设平面BDE 与底面ABC 所成锐二面角为α,以A 为坐标原点,过点A 在底面ABC 内与AC 垂直的直线为x 轴,1,AC AA 所在的直线分别为,y z 轴建立空间直角坐标系,则3,1,0),(0,2,1),(0,0,),(3,1,1),(0,2,1)B D E x BD ED x =-=-,设平面BDE 的法向量(,,)m s t k =,则m BDm ED⎧⊥⎨⊥⎩,即302(1)0s t k t x k ⎧-++=⎪⎨+-=⎪⎩,令3k =33,1t x s x =-=+,所以平面BDE 的一个法向量(1,33,23)m x x =+-, 底面ABC 的一个法向量为(0,0,1)n =,222233cos |cos ,|115(1)3(1)12()24m n x x x α=<>==++-+-+当1(0,)2x ∈,cos α随着x 增大而增大,则α随着x 的增大而减小,当1(,2)2x ∈,cos α随着x 增大而减小,则α随着x 的增大而增大.故选D .【点睛】本题考查空间向量法求二面角,应用函数思想讨论二面角的大小,考查直观想象、数学计算能力,素养中档题.15、如图所示,在正方体1111ABCD A B C D -中,点P 是底面1111D C B A 内(含边界)的一点,且//AP 平面1DBC ,则异面直线1A P 与BD 所成角的取值范围为( )A .3,44ππ⎡⎤⎢⎥⎣⎦B .,42ππ⎡⎤⎢⎥⎣⎦C .,32ππ⎡⎤⎢⎥⎣⎦D .2,33ππ⎡⎤⎢⎥⎣⎦【答案】C【解析】过A 作平面α平面1DBC ,点P 是底面1111D C B A 内(含边界)的一点,且//AP 平面1DBC ,则P ∈平面α,即P 在α与平面1111D C B A 的交线上,连接111,,AB AD B D ,11DD BB =,则四边形11BDD B 是平行四边形,11B D BD ∴,11B D ∴平面1DBC ,同理可证1AB ∥平面1DBC ,∴平面11AB D ∥平面1DBC ,则平面11AB D 即为α,点P 在线段11B D 上,以D 为坐标原点,1,,DA DC DD 建立如图坐标系,设正方体棱长为1,则()0,0,0D ,()1,1,0B ,()1,0,0A ,设(),,1P λλ,[]0,1λ∈,()1,1,0DB ∴=,()1,,1AP λλ=-,21DB AP λ∴⋅=-,2DB =,2222AP λλ=-+,设1A P 与BD 所成角为θ,则()22221211cos 2121DB APDB AP λλθλλλλ⋅--===-+⋅-+221313442121324λλλ=-=--+⎛⎫-+⎪⎝⎭12λ=时,cos θ取得最小值为0, 当0λ=或1时,cos θ取得最大值为12,10cos 2θ∴≤≤,则32ππθ≤≤.故选C .16、如图,矩形ABCD 中,222AB AD ==E 为边AB 的中点,将ADE 沿直线DE 翻折成1A DE △.在翻折过程中,直线1A C 与平面ABCD 所成角的正弦值最大为( )A .1024- B .66C .514-D .55【答案】A【解析】分别取DE ,DC 的中点O ,F ,则点A 的轨迹是以AF 为直径的圆, 以,OA OE 为,x y 轴,过O 与平面AOE 垂直的直线为z 轴建立坐标系,则()2,1,0C -,平面ABCD 的其中一个法向量为n = (0,0.1), 由11A O =,设()1cos ,0,sin A αα,则()1cos 2,1,sin CA αα=+-, 记直线1A C与平面ABCD 所成角为θ,则211|sin 1cos sin 4cos 64cos 6||CA nCA n αθαα⋅-===++⋅,设3153535102cos ,,sin 222416444t t t αθ-⎡⎤⎛⎫=+∈=-+≤-=⎪⎢⎥⎣⎦⎝⎭ 所以直线1A C 与平面ABCD 所成角的正弦值最大为1024-,故选A . (多选)17、在正方体1111ABCD A B C D -中,若棱长为1,点,E F 分别为线段11B D 、1BC 上的动点,则下列结论正确结论的是( )A .1DB ⊥面1ACD B .面11//AC B 面1ACDC .点F 到面1ACD 的距离为定值33D .直线AE 与面11BB D D 所成角的正弦值为定值13【答案】ABC【分析】以A 为坐标原点建立空间直角坐标系,利用共线向量可表示出动点,E F 的坐标,利用空间向量判断线面垂直、面面平行、求解点到面的距离和直线与平面所成角的方法依次验证各个选项即可得到结果.【解析】以A 为坐标原点可建立如下图所示的空间直角坐标系:由题意知:()0,0,0A ,()1,0,0B ,()1,1,0C ,()0,1,0D ,()10,0,1A ,()11,0,1B ,()11,1,1C ,()10,1,1D ,设(),,1E x y ,111B E B D λ→→=,即()()1,,0,,0x y λλ-=-,()1,,1E λλ∴-, 设()1,,F y z '',1BF BC μ→→=,即()()0,,0,,y z μμ''=,()1,,F μμ∴. 对于A ,()11,1,1DB →=-,()1,1,0AC →=,()10,1,1AD →=,11100DB AC DB AD ⎧⋅=⎪∴⎨⋅=⎪⎩,1DB AC ∴⊥,11DB AD ⊥, 又1,AC AD ⊂平面1ACD ,1AC AD A =,1DB ∴⊥平面1ACD ,A 正确;对于B ,1DB ⊥平面1ACD ,()11,1,1DB →∴=-为平面1ACD 的一个法向量,()111,1,0A C →=,()11,0,1A B →=-,111110DB A C DB A B ⎧⋅=⎪∴⎨⋅=⎪⎩,111DB AC ∴⊥,11DB A B ⊥, 又111,A C A B ⊂平面11A C B ,1111AC A B A =,1DB ∴⊥平面11A C B ,∴平面11//AC B平面1ACD ,B 正确;对于C ,()1,,AF μμ→=,∴点F 到面1ACD 的距离111333AF DB d DB →→→⋅===,为定值,C 正确;对于D ,几何体为正方体,AC ∴⊥平面11BB D D ,()1,1,0AC →∴=是平面11BB D D 的一个法向量,又()1,,1AE λλ→=-,设直线AE 与平面11BB D D 所成角为θ,则21sin 2222AC AEAC AEθλλ→→→→⋅==⋅-+⋅,不是定值,D 错误.故选ABC .(多选)18、如图所示,正方体1111ABCD A B C D -中,1AB =,点P 在侧面11BCC B 及其边界上运动,并且总是保持1AP BD ⊥,则以下四个结论正确的是( )A .113P AA D V -=B .点P 必在线段1BC 上 C .1AP BC ⊥D .//AP 平面11AC D【答案】BD【分析】根据三棱锥体积公式求得116P AA D V -=,知A 错误;以D 为坐标原点建立空间直角坐标系,利用空间向量法可得到1CP x B C →→=-,11AP BC →→⋅=,AP →垂直于平面11AC D 的法向量n →,由此可确定,,B C D 的正误.【解析】对于A ,P 在平面11BCC B 上,平面11//BCC B 平面1AA D ,P ∴到平面1AA D 即为C 到平面1AA D 的距离,即为正方体棱长,1111111113326P AA D AA D V S CD -∴=⋅=⨯⨯⨯⨯=△,A 错误;对于B ,以D 为坐标原点可建立如下图所示的空间直角坐标系:则()1,0,0A ,(),1,P x z ,()1,1,0B ,()10,0,1D ,()11,1,1B ,()0,1,0C()1,1,AP x z →∴=-,()11,1,1BD →=--,()11,0,1B C →=--,1AP BD ⊥,1110AP BD x z →→∴⋅=--+=,x z ∴=,即(),1,P x x ,(),0,CP x x →∴=,1CP x B C →→∴=-,即1,,B P C 三点共线,P ∴必在线段1B C 上,B 正确; 对于C ,()1,1,AP x x →=-,()11,0,1BC →=-,111AP BC x x →→∴⋅=-+=,AP ∴与1BC 不垂直,C 错误;对于D ,()11,0,1A ,()10,1,1C ,()0,0,0D ,()11,0,1DA →∴=,()10,1,1DC →=,设平面11AC D 的法向量(),,n x y z →=,1100n DA x z n DC y z ⎧⋅=+=⎪∴⎨⋅=+=⎪⎩,令1x =,则1z =-,1y =,()1,1,1n →∴=-, 110AP n x x →→∴⋅=-+-=,即AP n →→⊥,//AP ∴平面11ACD ,D 正确.故选BD . (多选)19、如图所示,棱长为1的正方体1111ABCD A B C D -中,P 为线段1A B 上的动点(不含端点),则下列结论正确的是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AM : MC FN : NB ,沿 AB 折起,使得 DAF 90 ,若 AM : MC 2: 3 ,在线段 AB 上是否存在一点 G ,使平面 MGN //平面 CBE ?若存在,试确定点 G 的位置.
2 1.如图,正方体 ABCD-A1B1C1D1 的棱长为 1,线段 B1D1 上有两个动点 E,F,且 EF=2,
则下列结论中错.误.的个数是( ) (1) AC⊥BE.
2 (2) 若 P 为 AA1 上的一点,则 P 到平面 BEF 的距离为2.
(3) 三棱锥 A-BEF 的体积为定值.
(4) 在空间与 DD1,AC,B1C1 都相交的直线有无数条.
解法一(:1)如图,过点 E 作 EG⊥AC,垂足为 G,过点 F 作 FH⊥AC,垂足为 H,则 EG FH 2 ,
GH 2 2 .
D
C
H
E
M
O
F
G
A
B
D
E
M
O
A
G
H
C
F
B
因为二面角 D-AC-B 为直二面角,EF 2 GH 2 EG2 FH 2 2EG FH cos90
(2 2)2 ( 2)2 ( 2)2 0 12. 又在 EOF 中, OE OF 2 ,
x-2y=-a
①又因 BH =(x,a,y,0),且 BH 与 BD 的方向相同,故 x a = y ,即 a 2a
2x+y=2a
②由①②解得 x= 3 a,y= 4 a,从而 GH = 2 a, 1 a,0 ,
55Βιβλιοθήκη 5 5 | GH |=
5 a.tanEHG= EC =
Ka 2
=
5 k.
5
GH 5 a 2
1
1
EG = 3 PA = 3 , ------5 分连接 BD 交 AC 于 O, 过 G 作 GH//OD ,交 AC 于 H,
连接 EH.GH AC , EH AC , EHG 为二面角 D—AC―E 的平面角. -----6 分
tanEHG
=
EG GH
=
2 2
. 二面角 D—AC―E 的平面角的余弦值为
又 BQ PQ Q, NC 平面PQB NC 平面PCN,平面PCN 平面PQB
4.(12 分)点 O 是边长为 4 的正方形 ABCD 的中心,点 E ,F 分别是 AD , BC 的中点.沿 对角线 AC 把正方形 ABCD 折成直二面角 D AC B . (1)求 EOF 的大小;(2)求二面角 E OF A 的余弦值.
5
由 k>0 知,EHC 是锐角,由 EHC> 30, 得 tanEHG>tan 30, 即
5 k > 3 .故 k 的取值范围为 k> 2 15
2
3
15
cos EOF OE2 OF 2 EF 2 22 22 (2 3)2 1 . EOF 120 .…..6 分
2OE OF
222
2
(2)过点 G 作 GM 垂直于 FO 的延长线于点 M,连 EM. ∵二面角 D-AC-B 为直二面角,∴平面 DAC⊥平面 BAC,交线为 AC, 又∵EG⊥AC,∴EG⊥平面 BAC.∵GM⊥OF,由三垂线定理,得 EM⊥OF.
C.三棱锥 A BEF 的体积为定值 D.△AEF 与△BEF 的面积相等
3. 关 于 图 中 的 正 方 体 ABCD A1B1C1D1 , 下 列 说 法 正 确 的 有 :
D1
___________________.
A1
① P 点在线段 BD上运动,棱锥 P AB1D1 体积不变;
G
② P 点在线段 BD上运动,二面角 P B1D1 A 不变;
6 ⑤当 CQ 1时,S 的面积为 2 .
①⑤
1.(本小题满分 13 分) 如图所示,在三棱锥 A—BCD 中,侧面 ABD、ACD 是全等的直角三角形,AD 是公共的斜 边,且 AD=,BD=CD=1,另一个侧面 ABC 是正三角形.
(1)当正视图方向与向量 的方向相同时,画出三棱锥 A—BCD 的三视图;(要求标出尺
z D
E
O
A
x
C Fy B
cos OE,OF OE OF 1 .EOF 120 .…..6 分 | OE || OF | 2
(2)设平面 OEF 的法向量为 n1 (1, y, z) .
由 n1 OE 0, n1 OF 0, 得
1 y
2z 0, 解得 y 0,
2 y 0,
6.(15 分)如图,在四棱锥 P-ABCD 中,PA 底面 ABCD, DAB 为直角,
AB‖CD,AD=CD=2AB,E、F 分别为 PC、CD 的中点.
(Ⅰ)试证:CD 平面 BEF;
(Ⅱ)设 PA=k·AB,且二面角 E-BD-C 的平面角大于 30 ,求 k 的取值范围. 解:(Ⅰ)如图,以 A 为原点,AB 所在直线为 x 轴, AD 所在直线为 y 轴,AP 所在直线为:轴建立空间直角坐标系,设 AB=a,则易知点 A,B,C,D,F 的坐标分别为 A(0,0,0),B(a,0,0),C(2a,2a,0),D(0,2a,0),
(5) 过 CC1 的中点与直线 AC1 所成角为 40并且与平面 BEF 所成角为 50的直线有 2 条.
A.0
B.1
C.2
D.3
2.如图,正方体 ABCD A1B1C1D1 的棱长为 1,线段 B1D1 上有两个动点
E, F ,且 EF
2 2
,则下列结论中错.误.的是(
)
A. AC BE
B. EF ∥平面 ABCD
2.(本小题满分 12 分)如图所示, 四棱锥 P-ABCD 的底面是边长为 1 的正方形,
PACD,PA = 1, PD= 2 ,E 为 PD 上一点,PE = 2ED.(Ⅰ)求证:PA 平面 ABCD; (Ⅱ)求二面角 D-AC-E 的余弦值; (Ⅲ)在侧棱 PC 上是否存在一点 F,使得 BF // 平面 AEC?若存在,指出 F 点的位置,并证明;若不存在,说明理由.
解:(Ⅰ) PA = PD = 1 ,PD = 2 , PA2 + AD2 = PD2, 即:PA AD ---2 分
又 PA CD , AD , CD 相交于点 D, PA 平面 ABCD-------4 分
(Ⅱ)过 E 作 EG//PA 交 AD 于 G,从而 EG 平面 ABCD,且 AG = 2GD ,
z
2 2
.所以, n1
(1, 0,
2 ) .…..9 分 2
又因为平面 AOF 的法向量为 n2 (0, 0,1) ,…..10 分
cos
n1, n2
|
n1 n2 n1 || n2
|
3 .…..11 分 3
且根据方向判断,二面角 E OF A 的大小为余弦为 3 .…..12 分 3
(此题改编自《选修 2-1》P118,12)
2
2
(Ⅱ)设 E 在 xOy 平面上的投影为 G,过 G 作 GH BD 垂足为 H,由三垂线定理知 EH BD.
从而 EHG 为二面角 E-BD-C 的平面角.由 PA=k·AB 得 P(0,0,ka),E a, a, ka ,G(a,a,0). 2
设 H(x,y,0),则 GH =(x-a,y-a,0), BD =(-a,2a,0),由 GH · BD =0 得=a(x-a)+2a(y-a)=0,即
中点,MO // PA , MO 平面 MBD, PA 平面 MBD, PA // 平面 MBD
(2)二面角 P BD A 的余弦值为 7 7
(3)解,存在点 N , 当 N 为 AB 中点时,平面 PQB 平面 PNC 四边形 ABCD 是正方形,Q 为
AD 的中点,BQ NC. 由(1)知, PQ 平面 ABCD, NC 平面ABCD, PQ NC,
(1)求证: PA // 平面 MBD ;
(2)求:二面角 P BD A的余弦值;
(3)试问:在线段 AB 上是否存在一点 N , 使得平面 PCN 平面
PQB ? 若存在,试指出点 N 的位置,并证明你的结论;若不存在,
请说明理由.
(1)证明:连接 AC 交 BD 于点 O ,连接 MO, 由正方形 ABCD 知 O 为 AC 的中点, M 为 PC 的
BC
BC
则由 n1⊥→知:n1·→=-x+y=0,
AC
AC
同理由 n1⊥→知:n1·→=-x-z=0,
可取 n1=(1,1,-1), 同理,可求得平面 ACD 的一个法向量为
n1=(1,0,-1).
n1·n2 1+0+1 6 ∴cos〈n1,n2〉=|n1||n2|= 2 =3.
6 即二面角 B—AC—D 的余弦值为3. …… 5 分
6
-------8 分
3
(Ⅲ)以 AB , AD , PA 为 x 轴、y 轴、z 轴建立空间直角坐标系.则 A(0 ,0, 0),B(1,0,0) ,C(1,
1 , 0 ), P ( 0 , 0 , 1 ), E ( 0
,
2 3
,
1 3
),
AC
= ( 1,1,0 ) ,
AE
=
(0
,
2 3
,
1 3
∴ EMG 就是二面角 E OF A 的平面角.…..9 分 在 Rt EGM 中, EGM 90 , EG 2 , GM 1 OE 1,
2
∴ tan EMG EG 2 ,COSEMG 3
GM
3
所以,二面角 E OF A 的余弦值为 3 。…..12 分 3