2021年中考数学重难点专项突破专题71 瓜豆原理中动点轨迹不确定型最值问题(解析版)
2021年中考压轴之瓜豆原理求线段最值问题
![2021年中考压轴之瓜豆原理求线段最值问题](https://img.taocdn.com/s3/m/8b7e4fff647d27284a7351cf.png)
中考线段最值问题----瓜豆原理【问题引入】如下图1所示,Q为OP的中点,P为线段AB上的一个动点,Q为OP的中点,当P点在线段AB上运动时,Q点的运动轨迹是什么?【问题分析】如下图2,当P点为于A点时,此时Q点位于OA的中点Q1;当P点位于B点时,此时Q点位于OB的中点Q2;我们发现,△OQ1Q2△△OAB,随着Q点位置的不同,△OQ1Q2与△OAB 一直相似,其本质为动态相似!【模型建立】此类题中,题目或许先描述的是动点P,但最终问题问的是另一个动点Q,P和Q之间存在着某种联系,从P点出发探讨Q点运动轨迹即为本文要探讨的瓜豆原理。
1、两个概念:主动点:主动运动的点称为主动点,如上图1中的P点;从动点:由于主动点运动而“被迫”运动的点称为从动点,如上图1中的Q点;2、瓜豆原理成立的两个必要条件△主动点、从动点与定点连线的夹角为定值;△主动点、从动点到定点的距离之比是定值.举例如下:如下图3:,动点P在直线BC上运动,A为定点,Q为另一动点,且满足条件:①∠PAQ是定值;②AP:AQ是定值,则动点Q的轨迹与动点P的轨迹一致,即:P在直线BC上动,则Q在另一直线MN上动,且△BAC∽△MAN(动态相似)。
3、核心结论①从动点的运动轨迹与主动点运动轨迹一致,即如果主动点在直线上运动,则从动点也必然在直线上运动;如果主动点在圆上运动,则从动点也必然在圆上运动,故非常形象的称之为“瓜豆原理”。
②主动点的起点、终点、定点组成的三角形与从动点的起点、终点、定点组成的三角形相似(或全等),如上图中△AMN∽△ABC。
③主动点运动轨迹与从动点的运动轨迹的夹角(锐角)等于主、从动点与定点连线的夹角。
如上图中∠PAQ=α。
【类型总结】---核心处理方法:Step1:找出主动点的起点和终点;Step2:找出题中所有的定点;Step3:验证两个必要条件,即:①主、从动点与定点连线的夹角为定值;②主、从动点到定点的距离之比是定值。
中考数学解题技巧7:“不离不弃”瓜豆原理模型
![中考数学解题技巧7:“不离不弃”瓜豆原理模型](https://img.taocdn.com/s3/m/1fe03f1fc77da26925c5b0cd.png)
为常规思路.
02.轨迹之圆篇
引例 1:如图,P 是圆 O 上一个动点,A 为定点,连接 AP,Q 为 AP 中点. 考虑:当点 P 在圆 O 上运动时,Q 点轨迹是?
A
Q
P
O
【分析】观察动图可知点 Q 轨迹是个圆,而我们还需确定的是此圆与圆 O 有什么关系?
y
P
M
O
C
O
A
B
x
【2016 武汉中考】如图,在等腰 Rt△ABC 中,AC=BC= 2 2 ,点 P 在以斜边 AB 为直径的 半圆上,M 为 PC 的中点,当半圆从点 A 运动至点 B 时,点 M 运动的路径长为________.
P A
M
C
B
【分析】考虑 C、M、P 共线及 M 是 CP 中点,可确定 M 点轨迹: 取 AB 中点 O,连接 CO 取 CO 中点 D,以 D 为圆心,DM 为半径作圆 D 分别交 AC、BC 于 E、F 两点,则弧 EF 即为 M 点轨迹.
y
PM C
O
A
B
x
【分析】M 点为主动点,C 点为从动点,B 点为定点.考虑 C 是 BM 中点,可知 C 点轨迹: 取 BP 中点 O,以 O 为圆心,OC 为半径作圆,即为点 C 轨迹.
y
PM OC
O
A
B
x
当 A、C、O 三点共线且点 C 在线段 OA 上时,AC 取到最小值,根据 B、P 坐标求 O,利 用两点间距离公式求得 OA,再减去 OC 即可.
Q
A
P
O
【分析】Q 点满足(1)∠PAQ=45°;(2)AP:AQ= 2 :1,故 Q 点轨迹是个圆.
最值系列问题之轨迹问题(瓜豆原理)
![最值系列问题之轨迹问题(瓜豆原理)](https://img.taocdn.com/s3/m/919332572cc58bd63086bd89.png)
最值系列之瓜豆原理在辅助圆问题中,我们了解了求关于动点最值问题的方式之一——求出动点轨迹,即可求出关于动点的最值.⑧到两条平行线距离相等的点的轨迹是和这两条平行线平行且到这两条平行线距离相等的一条直线.本文讨论一类动点引发的最值问题,在此类题目中,题目或许先描述的是动点P,但最终问题问的可以是另一点Q,当然P、Q之间存在某种联系,从P点出发探讨Q点运动轨迹并求出最值,为常规思路.该题型常见于中考的大小压轴题中,以最值计算或函数解析式的方式出题。
一、轨迹之圆篇引例1:如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点.考虑:当点P在圆O上运动时,Q点轨迹是?【分析】观察动图可知点Q轨迹是个圆,而我们还需确定的是此圆与圆O有什么关系?考虑到Q点始终为AP中点,连接AO,取AO中点M,则M点即为Q点轨迹圆圆心,半径MQ是OP一半,任意时刻,均有△AMQ∽△AOP,QM:PO=AQ:AP=1:2.【小结】确定Q点轨迹圆即确定其圆心与半径,由A、Q、P始终共线可得:A、M、O三点共线,由Q为AP中点可得:AM=1/2AO.Q点轨迹相当于是P点轨迹成比例缩放.根据动点之间的相对位置关系分析圆心的相对位置关系;根据动点之间的数量关系分析轨迹圆半径数量关系.引例2:如图,P是圆O上一个动点,A为定点,连接AP,作AQ⊥AP且AQ=AP.考虑:当点P在圆O上运动时,Q点轨迹是?Q【分析】Q点轨迹是个圆,可理解为将AP绕点A逆时针旋转90°得AQ,故Q点轨迹与P 点轨迹都是圆.接下来确定圆心与半径.考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO.即可确定圆M位置,任意时刻均有△APO≌△AQM.引例3:如图,△APQ是直角三角形,∠P AQ=90°且AP=2AQ,当P在圆O运动时,Q点轨迹是?【分析】考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑AP:AQ=2:1,可得Q点轨迹圆圆心M满足AO:AM=2:1.即可确定圆M位置,任意时刻均有△APO∽△AQM,且相似比为2.【模型总结】为了便于区分动点P、Q,可称点P为“主动点”,点Q为“从动点”.此类问题的必要条件:两个定量主动点、从动点与定点连线的夹角是定量(∠P AQ是定值);主动点、从动点到定点的距离之比是定量(AP:AQ是定值).Q【结论】(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角:∠P AQ=∠OAM;(2)主、从动点与定点的距离之比等于两圆心到定点的距离之比:AP:AQ=AO:AM,也等于两圆半径之比.按以上两点即可确定从动点轨迹圆,Q与P的关系相当于旋转+伸缩.古人云:种瓜得瓜,种豆得豆.“种”圆得圆,“种”线得线,谓之“瓜豆原理”.【思考1】:如图,P是圆O上一个动点,A为定点,连接AP,以AP为一边作等边△APQ.考虑:当点P在圆O上运动时,Q点轨迹是?【分析】Q点满足(1)∠P AQ=60°;(2)AP=AQ,故Q点轨迹是个圆:考虑∠P AQ=60°,可得Q点轨迹圆圆心M满足∠MAO=60°;考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO.即可确定圆M位置,任意时刻均有△APO≌△AQM.【小结】可以理解AQ由AP旋转得来,故圆M亦由圆O旋转得来,旋转角度与缩放比例均等于AP与AQ的位置和数量关系.【思考2】如图,P是圆O上一个动点,A为定点,连接AP,以AP为斜边作等腰直角△APQ.考虑:当点P在圆O上运动时,如何作出Q点轨迹?【分析】Q点满足(1)∠P AQ=45°;(2)AP:AQ1,故Q点轨迹是个圆.连接AO,构造∠OAM=45°且AO:AM:1.M点即为Q点轨迹圆圆心,此时任意时刻均有△AOP∽△AMQ.即可确定点Q的轨迹圆.【练习】如图,点P(3,4),圆P半径为2,A(2.8,0),B(5.6,0),点M是圆P上的动点,点C是MB的中点,则AC的最小值是_______.【分析】M点为主动点,C点为从动点,B点为定点.考虑C是BM中点,可知C点轨迹:取BP中点O,以O为圆心,OC为半径作圆,即为点C轨迹.当A、C、O三点共线且点C在线段OA上时,AC取到最小值,根据B、P坐标求O,利用两点间距离公式求得OA,再减去OC即可.【2016武汉中考】如图,在等腰Rt △ABC 中,AC =BC=P 在以斜边AB 为直径的半圆上,M 为PC 的中点,当半圆从点A 运动至点B 时,点M 运动的路径长为________.【分析】考虑C 、M 、P 共线及M 是CP 中点,可确定M 点轨迹:取AB 中点O ,连接CO 取CO 中点D ,以D 为圆心,DM 为半径作圆D 分别交AC 、BC 于E 、F 两点,则弧EF 即为M 点轨迹.当然,若能理解M 点与P 点轨迹关系,可直接得到M 点的轨迹长为P 点轨迹长一半,即可解决问题.【2018南通中考】如图,正方形ABCD 中,AB O 是BC 边的中点,点E 是正方形内一动点,OE =2,连接DE ,将线段DE 绕点D 逆时针旋转90°得DF ,连接AE 、CF .求线段OF 长的最小值.OABCDE F【分析】E 是主动点,F 是从动点,D 是定点,E 点满足EO =2,故E 点轨迹是以O 为圆心,2为半径的圆.F考虑DE⊥DF且DE=DF,故作DM⊥DO且DM=DO,F点轨迹是以点M为圆心,2为半径的圆.直接连接OM,与圆M交点即为F点,此时OF最小.可构造三垂直全等求线段长,再利用勾股定理求得OM,减去MF即可得到OF的最小值.【练习】△ABC 中,AB =4,AC =2,以BC 为边在△ABC 外作正方形BCDE ,BD 、CE 交于点O ,则线段AO 的最大值为_____________.AB CDE O【分析】考虑到AB 、AC 均为定值,可以固定其中一个,比如固定AB ,将AC 看成动线段,由此引发正方形BCED 的变化,求得线段AO 的最大值.根据AC =2,可得C 点轨迹是以点A 为圆心,2为半径的圆.OEDCBA接下来题目求AO 的最大值,所以确定O 点轨迹即可,观察△BOC 是等腰直角三角形,锐角顶点C 的轨迹是以点A 为圆心,2为半径的圆,所以O 点轨迹也是圆,以AB 为斜边构造等腰直角三角形,直角顶点M 即为点O 轨迹圆圆心.连接AM并延长与圆M交点即为所求的点O,此时AO最大,根据AB先求AM,再根据BC与BO的比值可得圆M的半径与圆A半径的比值,得到MO,相加即得AO.此题方法也不止这一种,比如可以如下构造旋转,当A、C、A’共线时,可得AO最大值.A'或者直接利用托勒密定理可得最大值.二、轨迹之线段篇引例:如图,P是直线BC上一动点,连接AP,取AP中点Q,当点P在BC上运动时,Q点轨迹是?【分析】当P点轨迹是直线时,Q点轨迹也是一条直线.可以这样理解:分别过A、Q向BC作垂线,垂足分别为M、N,在运动过程中,因为AP=2AQ,所以QN始终为AM的一半,即Q点到BC的距离是定值,故Q点轨迹是一条直线.【引例】如图,△APQ是等腰直角三角形,∠P AQ=90°且AP=AQ,当点P在直线BC上运动时,求Q点轨迹?【分析】当AP与AQ夹角固定且AP:AQ为定值的话,P、Q轨迹是同一种图形.当确定轨迹是线段的时候,可以任取两个时刻的Q点的位置,连线即可,比如Q 点的起始位置和终点位置,连接即得Q点轨迹线段.Q2AB CQ1【模型总结】 必要条件:主动点、从动点与定点连线的夹角是定量(∠P AQ 是定值); 主动点、从动点到定点的距离之比是定量(AP :AQ 是定值). 结论:P 、Q 两点轨迹所在直线的夹角等于∠P AQ (当∠P AQ ≤90°时,∠P AQ 等于MN 与BC 夹角)P 、Q 两点轨迹长度之比等于AP :AQ (由△ABC ∽△AMN ,可得AP :AQ =BC :MN )【2017姑苏区二模】如图,在等边△ABC 中,AB =10,BD =4,BE =2,点P 从点E 出发沿EA 方向运动,连结PD ,以PD 为边,在PD 的右侧按如图所示的方式作等边△DPF ,当点P 从点E 运动到点A 时,点F 运动的路径长是________.A【分析】根据△DPF 是等边三角形,所以可知F 点运动路径长与P 点相同,P 从E 点运动到A 点路径长为8,故此题答案为8.【2013湖州中考】如图,已知点A是第一象限内横坐标为AC⊥x轴于点M,交直线y=-x于点N,若点P是线段ON上的一个动点,∠APB=30°,BA⊥P A,则点P在线段ON上运动时,A点不变,B点随之运动.求当点P从点O 运动到点N时,点B运动的路径长是________.【分析】根据∠P AB=90°,∠APB=30°可得:AP:AB,故B点轨迹也是线段,且P点轨迹路径长与B,P点轨迹长ON为B点轨迹长为【练习】如图,在平面直角坐标系中,A(-3,0),点B是y轴正半轴上一动点,点C、D在x正半轴上,以AB为边在AB的下方作等边△ABP,点B在y轴上运动时,求OP的最小值.【分析】求OP是等边三角形且B点在直线上运动,故可知P点轨迹也是直线.取两特殊时刻:(1)当点B与点O重合时,作出P点位置P1;(2)当点B在x轴上方且AB与x轴夹角为60°时,作出P点位置P2.连接P1P2,即为P点轨迹.根据∠ABP =60°可知:12P P 与y 轴夹角为60°,作OP ⊥12P P ,所得OP 长度即为最小值,OP 2=OA =3,所以OP =32.【2019宿迁中考】如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为 .【分析】同样是作等边三角形,区别于上一题求动点路径长,本题是求CG 最小值,可以将F 点看成是由点B 向点A 运动,由此作出G 点轨迹:考虑到F 点轨迹是线段,故G 点轨迹也是线段,取起点和终点即可确定线段位置,初始时刻G 点在1G 位置,最终G 点在2G 位置(2G 不一定在CD 边),12G G 即为G 点运动轨迹.G 2CG 最小值即当CG ⊥12G G 的时候取到,作CH ⊥12G G 于点H ,CH 即为所求的最小值.GABCDEF根据模型可知:12G G 与AB 夹角为60°,故12G G ⊥1EG .过点E 作EF ⊥CH 于点F ,则HF =1G E =1,CF =1322CE =,所以CH =52,因此CG 的最小值为52.G 2三、轨迹之其他图形篇所谓“瓜豆原理”,就是主动点的轨迹与从动点的轨迹是相似性,根据主、从动点与定点连线形成的夹角以及主、从动点到定点的距离之比,可确定从动点的轨迹,而当主动点轨迹是其他图形时,从动点轨迹必然也是.【2016乐山中考】如图,在反比例函数2y x=-的图像上有一个动点A ,连接AO 并延长交图像的另一支于点B ,在第一象限内有一点C ,满足AC =BC ,当点A 运动时,点C 始终在函数ky x=的图像上运动,若tan ∠CAB =2,则k的值为( )A .2B .4C .6D .8【分析】∠AOC=90°且AO:OC=1:2,显然点C的轨迹也是一条双曲线,分别作AM、CN垂直x轴,垂足分别为M、N,连接OC,易证△AMO∽△ONC,∴CN=2OM,ON=2AM,∴ON·CN=4AM·OM,故k=4×2=8.【思考】若将条件“tan∠CAB=2”改为“△ABC是等边三角形”,k会是多少?【练习】如图,A(-1,1),B(-1,4),C(-5,4),点P是△ABC边上一动点,连接OP,以OP为斜边在OP的右上方作等腰直角△OPQ,当点P在△ABC边上运动一周时,点Q的轨迹形成的封闭图形面积为________.【分析】根据△OPQ是等腰直角三角形可得:Q点运动轨迹与P点轨迹形状相同,根据OP:OQ,可得P点轨迹图形与Q,故面积比为2:1,△ABC面积为1/2×3×4=6,故Q点轨迹形成的封闭图形面积为3.【小结】根据瓜豆原理,类似这种求从动点轨迹长或者轨迹图形面积,根据主动点轨迹推导即可,甚至无需作图.【练习】如图所示,AB =4,AC =2,以BC 为底边向上构造等腰直角三角形BCD ,连接AD 并延长至点P ,使AD =PD ,则PB 的取值范围为___________.ABCDP【分析】固定AB 不变,AC =2,则C 点轨迹是以A 为圆心,2为半径的圆,以BC 为斜边作等腰直角三角形BCD ,则D 点轨迹是以点M考虑到AP =2AD ,故P 点轨迹是以N 为圆心,即可求出PB 的取值范围.。
2021年贵阳市中考数学总复习:轨迹问题中的“瓜豆原理”模型
![2021年贵阳市中考数学总复习:轨迹问题中的“瓜豆原理”模型](https://img.taocdn.com/s3/m/cc34c57ee2bd960591c67729.png)
(2)点Q可以看作点P绕定点A按逆时针方向旋转60°而来;
(3)点Q可以看作点P绕定点A按逆时针方向旋转角α而来.
问题2 (直线生直线)在问题1中,若点A是定点,点P在直线l上运动,在运动过程 中保持∠A大小不变,则点Q的运动路径是什么?它可以由点P的路径通过怎样的 旋转变换得到?
图①
图② 问题2图
图①
图②
图③
问题6图
问题6 解:点C的路径可以由点B所在的⊙O以定点A为位似中心,以相应的位比
放缩而来,且这两个圆的相似比(即半径比)等于位似比.如解图所示:
问题6解图①
问题6解图②
问题6解图③
模型总结
此类轨迹问题可通过“位似变换”来解决,称B为主动点,C为从动点,根据位似 的性质,从动点C的路径与主动点B的路径是相似图形. “集体行动,步调一致”, 每一个点都是经过相同的变换得到,整个路径自然也是经过相同的交换而来,若 是圆,其圆心亦然,且这两个圆的相似比(即半径比)等于位似比.
(3)点C可以看作点B先绕着定点A逆时针旋转角α,再以定点A为位似中心,以k为
位似比放缩而来.
问题8 (直线生直线)在问题7中,若点B在定直线l上运动,其他条件不变,如图所 示,点C的运动路径是什么?它可以看作点B的路径如何而来?
图②
问题8 解:每一个图①点C都可以看作相应问的题点8图B先旋转后位似而来,因此图点③C的路径 是点B的路径(即直线l)先旋转后位似而来.如解图所示:
类型一 旋转型
模型分析 问题1 (共顶点,等线段)根据旋转的性质,写出在下列三角形中,点P经过怎样 的旋转变换可以得到Q点. (1)等腰Rt△APQ;(2)等边△APQ;(3)任意等腰△APQ(顶角为α).
图①
2024年中考数学重难点《几何最值问题》题型及答案解析
![2024年中考数学重难点《几何最值问题》题型及答案解析](https://img.taocdn.com/s3/m/9dff5e462379168884868762caaedd3383c4b5d7.png)
重难点几何最值问题中考数学中《几何最值问题》部分主要考向分为五类:一、将军饮马类最值二、动点辅助圆类最值三、四点共圆类最值四、瓜豆原理类最值五、胡不归类最值几何最值问题虽然在中考数学中经常考察的是将军饮马类和辅助圆类,剩余几种虽然不经常考察,但是考到的时候难度都比较大,所以也需要理解并掌握不同类型的几何最值问题的处理办法,这样到考到的时候才能有捷径应对。
考向一:将军饮马类最值一动”“两定异侧普通一动”“两定同侧普通动”两定“一动”两定“两两动”“两定同侧两动”“两定异侧满分技巧将军饮马:。
1.(2023•绥化)如图,△ABC是边长为6的等边三角形,点E为高BD上的动点.连接CE,将CE绕点C 顺时针旋转60°得到CF.连接AF,EF,DF,则△CDF周长的最小值是3+3.【分析】分析已知,可证明△BCE≌△ACF,得∠CAF=∠CBE=30°,可知点F在△ABC外,使∠CAF =30°的射线AF上,根据将军饮马型,求得DF+CF的最小值便可求得本题结果.【解答】解:∵△ABC是等边三角形,∴AC=BC=6,∠ABC=∠BCA=60°,∵∠ECF=60°,∴∠BCE=60°﹣∠ECA=∠ACF,∵CE=CF,∴△BCE≌△ACF(SAS),∴∠CAF=∠CBE,∵△ABC是等边三角形,BD是高,∴∠CBE=∠ABC=30°,CD=AC=3,过C点作CG⊥AF,交AF的延长线于点G,延长CG到H,使得GH=CG,连接AH,DH,DH与AG 交于点I,连接CI,FH,则∠ACG=60°,CG=GH=AC=3,∴CH=AC=6,∴△ACH为等边三角形,∴DH=CD•tan60°=,AG垂直平分CH,∴CI=HI,CF=FH,∴CI+DI=HI+DI=DH=3,CF+DF=HF+DF≥DH,∴当F与I重合时,即D、F、H三点共线时,CF+DF的值最小为:CF+DF=DH=3,∴△CDF的周长的最小值为3+3.故答案为:3+3.2.(2023•德州)如图,在四边形ABCD中,∠A=90°,AD∥BC,AB=3,BC=4,点E在AB上,且AE=1.F,G为边AD上的两个动点,且FG=1.当四边形CGFE的周长最小时,CG的长为.【分析】先确定FG和EC的长为确定的值,得到四边形CGFE的周长最小时,即为CG+EF最小时,平移CG到C'F,作点E关于AD对称点E',连接E'C'交AD于点G',得到CG+EF最小时,点G与G'重合,再利用平行线分线段成比例求出C'G'长即可.【解答】解:∵∠A=90°,AD∥BC,∴∠B=90°,∵AB=3,BC=4,AE=1,∴BE=AB﹣AE=3﹣1=2,在Rt△EBC中,由勾股定理,得EC===,∵FG=1,∴四边形CGFE的周长=CG+FG+EF+EC=CG+EF+1+,∴四边形CGFE的周长最小时,只要CG+EF最小即可.过点F作FC'∥GC交BC于点C',延长BA到E',使AE'=AE=1,连接E'F,E'C',E'C'交AD于点G',可得AD垂直平分E'E,∴E'F=EF,∵AD∥BC,∴C'F=CG,CC'=FG=1,∴CG+EF=C'F+E'F≥E'C',即CG+EF最小时,CG=C'G',∵E'B=AB+AE'=3+1=4,BC'=BC﹣CC'=4﹣1=3,由勾股定理,得E'C'===5,∵AG'∥BC',∴=,即=,解得C'G'=,即四边形CGFE的周长最小时,CG的长为.故答案为:.考向二:动点辅助圆类最值满分技巧动点运动轨迹为辅助圆的三种类型:一.定义法——若一动点到定点的距离恒等于固定长,则该点的运动轨迹为以定点为圆心,定长为半径的圆(或圆弧)二.定边对直角模型原理:直径所对的圆周角是直角思路构造:若一条定边所对的“动角”始终为直角,则直角顶点运动轨迹是以该定边为直径的圆(或圆弧)三.定边对定角模型原理:在同圆或等圆中,同弧所对的圆周角相等思路构造:若一条定边所对的“动角”始终为定角,则该定角顶点运动轨迹是以该定角为圆周角,该定边为弦的圆(或圆弧)1.(2023•徐州)如图,在Rt△ABC中,∠C=90°,CA=CB=3,点D在边BC上.将△ACD沿AD折叠,使点C落在点C′处,连接BC′,则BC′的最小值为.【分析】由折叠性质可知AC=AC'=3,然后根据三角形的三边不等关系可进行求解.【解答】解:∵∠C=90°,CA=CB=3,∴,由折叠的性质可知AC=AC'=3,∵BC'≥AB﹣AC',∴当A、C′、B三点在同一条直线时,BC'取最小值,最小值即为,故答案为.2.(2023•黑龙江)如图,在Rt△ACB中,∠BAC=30°,CB=2,点E是斜边AB的中点,把Rt△ABC绕点A顺时针旋转,得Rt△AFD,点C,点B旋转后的对应点分别是点D,点F,连接CF,EF,CE,在旋转的过程中,△CEF面积的最大值是4+.【分析】线段CE为定值,点F到CE距离最大时,△CEF的面积最大,画出图形,即可求出答案.【解答】解:∵线段CE为定值,∴点F到CE的距离最大时,△CEF的面积有最大值.在Rt△ACB中,∠BAC=30°,E是AB的中点,∴AB=2BC=4,CE=AE=AB=2,AC=AB•cos30°=2,∴∠ECA=∠BAC=30°,过点A作AG⊥CE交CE的延长线于点G,∴AG=AC=,∵点F在以A为圆心,AB长为半径的圆上,∴AF=AB=4,∴点F到CE的距离最大值为4+,∴,故答案为:.3.(2023•大庆模拟)如图,AB是⊙O的直径,AB=4,C为的三等分点(更靠近A点),点P是⊙O上个动点,取弦AP的中点D,则线段CD的最大值为()A.2B.C.D.【分析】如图,连接OD,OC,首先证明点D的运动轨迹为以AO为直径的⊙K,连接CK,当点D在CK的延长线上时,CD的值最大,利用勾股定理求出CK即可解决问题.【解答】解:如图,连接OD,OC,∵AD=DP,∴OD⊥P A,∴∠ADO=90°,∴点D的运动轨迹为以AO为直径的⊙K,连接CK,AC,当点D在CK的延长线上时,CD的值最大,∵C为的三等分点,∴∠AOC=60°,∴△AOC是等边三角形,∴CK⊥OA,在Rt△OCK中,∵∠COA=60°,OC=2,OK=1,∴CK==,∵DK=OA=1,∴CD=+1,∴CD的最大值为+1,故选:D.考向三:四点共圆类最值满分技巧对角互补的四边形必有四点共圆,即辅助圆产生模型原理:圆内接四边形对角互补∴FD=,在四边形ACBF中,∠ACB=∠AFB=90°,∴A、C、B、F四点共圆,∴∠ACF=∠ABF=45°,∠CAB=∠CFB,∵∠PCD=45°∴∠ACP=∠FCD,又∵△ABE∽△FBD,∴∠BAE=∠BFD,∴∠CAP=∠CFD,∴△CAP∽△CFD,∴,在四边形ACBF中,由对角互补模型得AC+CB=,∴CF=∴,∴AP=1,∴PE=2,故答案为:2考向四:瓜豆原理类最值满分技巧瓜豆原理的特征和结论:∴AB=CD=6,∠B=∠BCD=90°,∵∠BET=∠FEG=45°,∴∠BEF=∠TEG,∵EB=ET,EF=EG,∴△EBF≌△ETG(SAS),∴∠B=∠ETG=90°,∴点G在射线TG上运动,∴当CG⊥TG时,CG的值最小,∵BC=,BE=,CD=6,∴CE=CD=6,∴∠CED=∠BET=45°,∴∠TEJ=90°=∠ETG=∠JGT=90°,∴四边形ETGJ是矩形,∴DE∥GT,GJ=TE=BE=,∴CJ⊥DE,∴JE=JD,∴CJ=DE=3,∴CG=CJ+GJ=+3,∴CG的最小值为+3,故答案为:+3.2.(2023•宿城区二模)如图,矩形ABCD中,AD=6,DC=8,点E为对角线AC上一动点,BE⊥BF,,BG⊥EF于点G,连接CG,当CG最小时,CE的长为.【分析】过点B作BP⊥AC于点P,连接PG,则可得△ABE∽△PBG,进而可知∠BPG为定值,因此CG⊥PG时,CG最小,通过设元利用三角函数和相似比可表示出PG、CP,即可求出结果.【解答】解:如图,过点B作BP⊥AC于点P,连接PG,∵,∠ABC=∠EBF,∴△ABC∽△EBF,∴∠CAB=∠FEB,∵∠APB=∠EGB=90°,∴△ABP∽△EBG,∴=,∠ABP=∠EBG,∴∠ABE=∠PBG,∴△ABE∽△PBG,∴∠BPG=∠BAE,即在点E的运动过程中,∠BPG的大小不变且等于∠BAC,∴当CG⊥PG时,CG最小,设此时AE=x,∵,∴PG=,∵CG⊥PG,∴∠PCG=∠BPG=∠BAC,∴,代入PG=,解得CP=x,∵CP=BC•sin∠CBP=BC•sin∠BAC=,∴x=,∴AE=∴CE=,故答案为:.考向五:胡不归类最值满分技巧胡不归模型解决步骤:模型具体化:如图,已知两定点A、B,在定直线BC上找一点P,使从B走道P,再从P走到A的总时间最小解决步骤:由系数k·PB确定分割线为PBPA在分割线一侧,在分割线PB另一侧依定点B构α角,使sinα=k,α角另一边为BD过点P作PQ⊥BD,转化kPB=PQ过定点A作AH⊥BD,转化(PA+k·PB)min=AH,再依“勾股法”求AH的长即可。
初中数学最值系列问题之瓜豆原理
![初中数学最值系列问题之瓜豆原理](https://img.taocdn.com/s3/m/90c2e2c49f3143323968011ca300a6c30c22f1b7.png)
初中数学最值系列问题之瓜豆原理初中数学中有一类动态问题叫做主从联动,这类问题非常出题,很多优秀老师都在研究它。
这是因为在很多名校模考中,这类问题经常出现。
有的老师称其为瓜豆原理,意思可能是“种瓜得瓜,种豆得豆”。
主动点运动的轨迹决定了从动点的轨迹。
这类问题需要有轨迹思想,即先明确主动点的轨迹,然后搞清楚主动点和从动点的关系,进而确定从动点的轨迹来解决问题。
但在解答问题时,要符合解不超纲的原则,因此最后解决问题还是用到了旋转相似的知识,也就是动态手拉手模型。
下面整理了一些题目,希望对你有所帮助。
涉及的知识和方法:知识:①相似;②三角形的两边之和大于第三边;③点到直线之间的距离垂线段最短;④点到圆上点共线有最值。
方法:第一步:找主动点的轨迹;第二步:找从动点与主动点的关系;第三步:找主动点的起点和终点;第四步:通过相似确定从动点的轨迹,第五步:根据轨迹确定点线、点圆最值。
在此类题目中,题目或许先描述的是主动点P,但最终问题问的可以是另一点Q(从动点)。
根据P、Q之间存在某种联系,从P点出发探讨Q点运动轨迹并求出最值。
一、轨迹之圆篇引例1:如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点。
考虑:当点P在圆O上运动时,Q点轨迹是?分析】观察动图可知点Q轨迹是个圆,而我们还需确定的是此圆与圆O有什么关系?考虑到Q点始终为AP中点,连接AO,取AO中点M,则M点即为Q点轨迹圆圆心,半径MQ是OP一半,任意时刻,均有△AMQ∽△AOP,.小结】确定Q点轨迹圆即确定其圆心与半径。
由A、Q、P始终共线可得:A、M、O三点共线,由Q为AP中点可得:AM=1/2AO。
Q点轨迹相当于是P点轨迹成比例缩放。
根据动点之间的相对位置关系分析圆心的相对位置关系;根据动点之间的数量关系分析轨迹圆半径数量关系。
引例2:如图,P是圆O上一个动点,A为定点,连接AP,作AQ⊥AP且AQ=AP。
考虑:当点P在圆O上运动时,Q点轨迹是?分析】点轨迹都是圆。
2021中考数学专题05 瓜豆原理中最值问题
![2021中考数学专题05 瓜豆原理中最值问题](https://img.taocdn.com/s3/m/b302903b102de2bd9705880a.png)
专题瓜豆原理中动点轨迹直线型最值问题【专题说明】动点轨迹问题是中考的重要压轴点.受学生解析几何知识的局限和思维能力的束缚,该压轴点往往成为学生在中考中的一个坎,致使该压轴点成为学生在中考中失分的一个黑洞.掌握该压轴点的基本图形,构建问题解决的一般思路,是中考专题复习的一个重要途径.本文就动点轨迹问题的基本图形作一详述.动点轨迹基本类型为直线型和圆弧型.【知识精讲】动点轨迹为一条直线时,利用“垂线段最短”求最值。
(1)当动点轨迹确定时可直接运用垂线段最短求最值(2)当动点轨迹不易确定是直线时,可通过以下三种方法进行确定①观察动点运动到特殊位置时,如中点,端点等位置时是否存在动点与定直线的端点连接后的角度不变,若存在该动点的轨迹为直线。
②当某动点到某条直线的距离不变时,该动点的轨迹为直线。
③当一个点的坐标以某个字母的代数式表示时,若可化为一次函数,则点的轨迹为直线。
如图,P是直线BC上一动点,连接AP,取AP中点Q,当点P在BC上运动时,Q点轨迹是?P QAB C【分析】当P点轨迹是直线时,Q点轨迹也是一条直线.可以这样理解:分别过A、Q向BC作垂线,垂足分别为M、N,在运动过程中,因为AP=2AQ,所以QN始终为AM的一半,即Q点到BC的距离是定值,故Q点轨迹是一条直线.N C B AQP M【引例】如图,△APQ 是等腰直角三角形,∠P AQ =90°且AP =AQ ,当点P 在直线BC 上运动时,求Q 点轨迹?CB AQ P【分析】当AP 与AQ 夹角固定且AP :AQ 为定值的话,P 、Q 轨迹是同一种图形.当确定轨迹是线段的时候,可以任取两个时刻的Q 点的位置,连线即可,比如Q点的起始位置和终点位置,连接即得Q 点轨迹线段.Q 2Q 1ABC【模型总结】必要条件:主动点、从动点与定点连线的夹角是定量(∠P AQ 是定值);主动点、从动点到定点的距离之比是定量(AP :AQ 是定值).结论:P 、Q 两点轨迹所在直线的夹角等于∠P AQ (当∠P AQ ≤90°时,∠P AQ 等于MN 与BC 夹角) M N ααP QAB CP 、Q 两点轨迹长度之比等于AP :AQ (由△ABC ∽△AMN ,可得AP :AQ =BC :MN ) M NααAB C【精典例题】1、如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为 .GA B CDE F2、如图,等腰Rt △ABC 中,斜边AB 的长为2,O 为AB 的中点,P 为AC 边上的动点,OQ ⊥OP 交BC 于点Q ,M 为PQ 的中点,当点P 从点A 运动到点C 时,点M 所经过的路线长为( )A .24πB .22πC .1D .23、如图,矩形ABCD 中,4AB =,6BC =,点P 是矩形ABCD 内一动点,且∆∆=PAB PCD S S ,则PC PD +的最小值为_____.4、如图,在平面内,线段AB =6,P 为线段AB 上的动点,三角形纸片CDE 的边CD 所在的直线与线段AB 垂直相交于点P ,且满足PC =P A .若点P 沿AB 方向从点A 运动到点B ,则点E 运动的路径长为______.5、如图,等边三角形ABC 的边长为4,点D 是直线AB 上一点.将线段CD 绕点D 顺时针旋转60°得到线段DE ,连结BE .(1)若点D 在AB 边上(不与A ,B 重合)请依题意补全图并证明AD=BE ;(2)连接AE ,当AE 的长最小时,求CD 的长.【精典例题】1、如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为 .GA B C DE F【分析】同样是作等边三角形,区别于上一题求动点路径长,本题是求CG 最小值,可以将F 点看成是由点B 向点A 运动,由此作出G 点轨迹:考虑到F 点轨迹是线段,故G 点轨迹也是线段,取起点和终点即可确定线段位置,初始时刻G 点在1G 位置,最终G 点在2G 位置(2G 不一定在CD 边),12G G 即为G 点运动轨迹.G 2G 1E DCB ACG 最小值即当CG ⊥12G G 的时候取到,作CH ⊥12G G 于点H ,CH 即为所求的最小值.根据模型可知:12G G 与AB 夹角为60°,故12G G ⊥1EG .过点E 作EF ⊥CH 于点F ,则HF =1G E =1,CF =1322CE =, 所以CH =52,因此CG 的最小值为52. F HG 2G 1E DCB A 2、如图,等腰Rt △ABC 中,斜边AB 的长为2,O 为AB 的中点,P 为AC 边上的动点,OQ ⊥OP 交BC 于点Q ,M 为PQ 的中点,当点P 从点A 运动到点C 时,点M 所经过的路线长为( )A .24B .22C .1D .2【答案】C【详解】连接OC ,作PE ⊥AB 于E ,MH ⊥AB 于H ,QF ⊥AB 于F ,如图,∵△ACB 为到等腰直角三角形,∴AC=BC=222,∠A=∠B=45°,∵O 为AB 的中点,∴OC ⊥AB ,OC 平分∠ACB ,OC=OA=OB=1,∴∠OCB=45°,∵∠POQ=90°,∠COA=90°,∴∠AOP=∠COQ ,在Rt △AOP 和△COQ 中A OCQ AO COAOP COQ ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴Rt △AOP ≌△COQ ,∴AP=CQ ,易得△APE 和△BFQ 都为等腰直角三角形,∴PE=22AP=22CQ ,QF=22BQ , ∴PE+QF=22(CQ+BQ )=22BC=222, ∵M 点为PQ 的中点,∴MH 为梯形PEFQ 的中位线,∴MH=12(PE+QF )=12, 即点M 到AB 的距离为12, 而CO=1,∴点M 的运动路线为△ABC 的中位线,∴当点P 从点A 运动到点C 时,点M 所经过的路线长=12AB=1, 故选C .3、如图,矩形ABCD 中,4AB =,6BC =,点P 是矩形ABCD 内一动点,且∆∆=PAB PCD S S ,则PC PD +的最小值为_____.【答案】213【详解】ABCD 为矩形,AB DC ∴=又=PAB PCD S S∴点P 到AB 的距离与到CD 的距离相等,即点P 线段AD 垂直平分线MN 上, 连接AC ,交MN 与点P ,此时PC PD +的值最小,且PC PD AC +==22224652213AB BC +=+==故答案为:2134、如图,在平面内,线段AB =6,P 为线段AB 上的动点,三角形纸片CDE 的边CD 所在的直线与线段AB 垂直相交于点P ,且满足PC =P A .若点P 沿AB 方向从点A 运动到点B ,则点E 运动的路径长为______.【答案】62 【详解】解:如图,由题意可知点C 运动的路径为线段AC ′,点E 运动的路径为EE ′,由平移的性质可知AC ′=EE ′,在Rt △ABC ′中,易知AB =BC ′=6,∠ABC ′=90°,∴EE ′=AC 2266+2故答案为:625、如图,等边三角形ABC 的边长为4,点D 是直线AB 上一点.将线段CD 绕点D 顺时针旋转60°得到线段DE ,连结BE .(1)若点D 在AB 边上(不与A ,B 重合)请依题意补全图并证明AD=BE ;(2)连接AE ,当AE 的长最小时,求CD 的长.【答案】(1)见解析;(2)27【详解】解:(1)补全图形如图1所示,AD=BE,理由如下:∵△ABC是等边三角形,∴AB=BC=AC,∠A=∠B=60°,由旋转的性质得:∠ACB=∠DCE=60°,CD=CE,∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS),∴AD=BE.(2)如图2,过点A作AF⊥EB交EB延长线于点F.∵△ACD≌△BCE,∴∠CBE=∠A=60°,∴点E的运动轨迹是直线BE,根据垂线段最短可知:当点E与F重合时,AE的值最小,此时CD=CE=CF,∵∠ACB=∠CBE=60°,∴AC∥EF,∵AF⊥BE,∴AF⊥AC,在Rt △ACF 中, ∴CF=22AC AF +=()22423+=27,∴CD=CF=27.专题 瓜豆原理中动点轨迹圆或圆弧型最值问题【专题说明】动点的轨迹为定圆时,可利用:“一定点与圆上的动点距离最大值为定点到圆心的距离与半径之和,最小值为定点到圆心的距离与半径之差”的性质求解。
最值系列问题之轨迹问题(瓜豆原理)
![最值系列问题之轨迹问题(瓜豆原理)](https://img.taocdn.com/s3/m/919332572cc58bd63086bd89.png)
最值系列之瓜豆原理在辅助圆问题中,我们了解了求关于动点最值问题的方式之一——求出动点轨迹,即可求出关于动点的最值.⑧到两条平行线距离相等的点的轨迹是和这两条平行线平行且到这两条平行线距离相等的一条直线.本文讨论一类动点引发的最值问题,在此类题目中,题目或许先描述的是动点P,但最终问题问的可以是另一点Q,当然P、Q之间存在某种联系,从P点出发探讨Q点运动轨迹并求出最值,为常规思路.该题型常见于中考的大小压轴题中,以最值计算或函数解析式的方式出题。
一、轨迹之圆篇引例1:如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点.考虑:当点P在圆O上运动时,Q点轨迹是?【分析】观察动图可知点Q轨迹是个圆,而我们还需确定的是此圆与圆O有什么关系?考虑到Q点始终为AP中点,连接AO,取AO中点M,则M点即为Q点轨迹圆圆心,半径MQ是OP一半,任意时刻,均有△AMQ∽△AOP,QM:PO=AQ:AP=1:2.【小结】确定Q点轨迹圆即确定其圆心与半径,由A、Q、P始终共线可得:A、M、O三点共线,由Q为AP中点可得:AM=1/2AO.Q点轨迹相当于是P点轨迹成比例缩放.根据动点之间的相对位置关系分析圆心的相对位置关系;根据动点之间的数量关系分析轨迹圆半径数量关系.引例2:如图,P是圆O上一个动点,A为定点,连接AP,作AQ⊥AP且AQ=AP.考虑:当点P在圆O上运动时,Q点轨迹是?Q【分析】Q点轨迹是个圆,可理解为将AP绕点A逆时针旋转90°得AQ,故Q点轨迹与P 点轨迹都是圆.接下来确定圆心与半径.考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO.即可确定圆M位置,任意时刻均有△APO≌△AQM.引例3:如图,△APQ是直角三角形,∠P AQ=90°且AP=2AQ,当P在圆O运动时,Q点轨迹是?【分析】考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑AP:AQ=2:1,可得Q点轨迹圆圆心M满足AO:AM=2:1.即可确定圆M位置,任意时刻均有△APO∽△AQM,且相似比为2.【模型总结】为了便于区分动点P、Q,可称点P为“主动点”,点Q为“从动点”.此类问题的必要条件:两个定量主动点、从动点与定点连线的夹角是定量(∠P AQ是定值);主动点、从动点到定点的距离之比是定量(AP:AQ是定值).Q【结论】(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角:∠P AQ=∠OAM;(2)主、从动点与定点的距离之比等于两圆心到定点的距离之比:AP:AQ=AO:AM,也等于两圆半径之比.按以上两点即可确定从动点轨迹圆,Q与P的关系相当于旋转+伸缩.古人云:种瓜得瓜,种豆得豆.“种”圆得圆,“种”线得线,谓之“瓜豆原理”.【思考1】:如图,P是圆O上一个动点,A为定点,连接AP,以AP为一边作等边△APQ.考虑:当点P在圆O上运动时,Q点轨迹是?【分析】Q点满足(1)∠P AQ=60°;(2)AP=AQ,故Q点轨迹是个圆:考虑∠P AQ=60°,可得Q点轨迹圆圆心M满足∠MAO=60°;考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO.即可确定圆M位置,任意时刻均有△APO≌△AQM.【小结】可以理解AQ由AP旋转得来,故圆M亦由圆O旋转得来,旋转角度与缩放比例均等于AP与AQ的位置和数量关系.【思考2】如图,P是圆O上一个动点,A为定点,连接AP,以AP为斜边作等腰直角△APQ.考虑:当点P在圆O上运动时,如何作出Q点轨迹?【分析】Q点满足(1)∠P AQ=45°;(2)AP:AQ1,故Q点轨迹是个圆.连接AO,构造∠OAM=45°且AO:AM:1.M点即为Q点轨迹圆圆心,此时任意时刻均有△AOP∽△AMQ.即可确定点Q的轨迹圆.【练习】如图,点P(3,4),圆P半径为2,A(2.8,0),B(5.6,0),点M是圆P上的动点,点C是MB的中点,则AC的最小值是_______.【分析】M点为主动点,C点为从动点,B点为定点.考虑C是BM中点,可知C点轨迹:取BP中点O,以O为圆心,OC为半径作圆,即为点C轨迹.当A、C、O三点共线且点C在线段OA上时,AC取到最小值,根据B、P坐标求O,利用两点间距离公式求得OA,再减去OC即可.【2016武汉中考】如图,在等腰Rt △ABC 中,AC =BC=P 在以斜边AB 为直径的半圆上,M 为PC 的中点,当半圆从点A 运动至点B 时,点M 运动的路径长为________.【分析】考虑C 、M 、P 共线及M 是CP 中点,可确定M 点轨迹:取AB 中点O ,连接CO 取CO 中点D ,以D 为圆心,DM 为半径作圆D 分别交AC 、BC 于E 、F 两点,则弧EF 即为M 点轨迹.当然,若能理解M 点与P 点轨迹关系,可直接得到M 点的轨迹长为P 点轨迹长一半,即可解决问题.【2018南通中考】如图,正方形ABCD 中,AB O 是BC 边的中点,点E 是正方形内一动点,OE =2,连接DE ,将线段DE 绕点D 逆时针旋转90°得DF ,连接AE 、CF .求线段OF 长的最小值.OABCDE F【分析】E 是主动点,F 是从动点,D 是定点,E 点满足EO =2,故E 点轨迹是以O 为圆心,2为半径的圆.F考虑DE⊥DF且DE=DF,故作DM⊥DO且DM=DO,F点轨迹是以点M为圆心,2为半径的圆.直接连接OM,与圆M交点即为F点,此时OF最小.可构造三垂直全等求线段长,再利用勾股定理求得OM,减去MF即可得到OF的最小值.【练习】△ABC 中,AB =4,AC =2,以BC 为边在△ABC 外作正方形BCDE ,BD 、CE 交于点O ,则线段AO 的最大值为_____________.AB CDE O【分析】考虑到AB 、AC 均为定值,可以固定其中一个,比如固定AB ,将AC 看成动线段,由此引发正方形BCED 的变化,求得线段AO 的最大值.根据AC =2,可得C 点轨迹是以点A 为圆心,2为半径的圆.OEDCBA接下来题目求AO 的最大值,所以确定O 点轨迹即可,观察△BOC 是等腰直角三角形,锐角顶点C 的轨迹是以点A 为圆心,2为半径的圆,所以O 点轨迹也是圆,以AB 为斜边构造等腰直角三角形,直角顶点M 即为点O 轨迹圆圆心.连接AM并延长与圆M交点即为所求的点O,此时AO最大,根据AB先求AM,再根据BC与BO的比值可得圆M的半径与圆A半径的比值,得到MO,相加即得AO.此题方法也不止这一种,比如可以如下构造旋转,当A、C、A’共线时,可得AO最大值.A'或者直接利用托勒密定理可得最大值.二、轨迹之线段篇引例:如图,P是直线BC上一动点,连接AP,取AP中点Q,当点P在BC上运动时,Q点轨迹是?【分析】当P点轨迹是直线时,Q点轨迹也是一条直线.可以这样理解:分别过A、Q向BC作垂线,垂足分别为M、N,在运动过程中,因为AP=2AQ,所以QN始终为AM的一半,即Q点到BC的距离是定值,故Q点轨迹是一条直线.【引例】如图,△APQ是等腰直角三角形,∠P AQ=90°且AP=AQ,当点P在直线BC上运动时,求Q点轨迹?【分析】当AP与AQ夹角固定且AP:AQ为定值的话,P、Q轨迹是同一种图形.当确定轨迹是线段的时候,可以任取两个时刻的Q点的位置,连线即可,比如Q 点的起始位置和终点位置,连接即得Q点轨迹线段.Q2AB CQ1【模型总结】 必要条件:主动点、从动点与定点连线的夹角是定量(∠P AQ 是定值); 主动点、从动点到定点的距离之比是定量(AP :AQ 是定值). 结论:P 、Q 两点轨迹所在直线的夹角等于∠P AQ (当∠P AQ ≤90°时,∠P AQ 等于MN 与BC 夹角)P 、Q 两点轨迹长度之比等于AP :AQ (由△ABC ∽△AMN ,可得AP :AQ =BC :MN )【2017姑苏区二模】如图,在等边△ABC 中,AB =10,BD =4,BE =2,点P 从点E 出发沿EA 方向运动,连结PD ,以PD 为边,在PD 的右侧按如图所示的方式作等边△DPF ,当点P 从点E 运动到点A 时,点F 运动的路径长是________.A【分析】根据△DPF 是等边三角形,所以可知F 点运动路径长与P 点相同,P 从E 点运动到A 点路径长为8,故此题答案为8.【2013湖州中考】如图,已知点A是第一象限内横坐标为AC⊥x轴于点M,交直线y=-x于点N,若点P是线段ON上的一个动点,∠APB=30°,BA⊥P A,则点P在线段ON上运动时,A点不变,B点随之运动.求当点P从点O 运动到点N时,点B运动的路径长是________.【分析】根据∠P AB=90°,∠APB=30°可得:AP:AB,故B点轨迹也是线段,且P点轨迹路径长与B,P点轨迹长ON为B点轨迹长为【练习】如图,在平面直角坐标系中,A(-3,0),点B是y轴正半轴上一动点,点C、D在x正半轴上,以AB为边在AB的下方作等边△ABP,点B在y轴上运动时,求OP的最小值.【分析】求OP是等边三角形且B点在直线上运动,故可知P点轨迹也是直线.取两特殊时刻:(1)当点B与点O重合时,作出P点位置P1;(2)当点B在x轴上方且AB与x轴夹角为60°时,作出P点位置P2.连接P1P2,即为P点轨迹.根据∠ABP =60°可知:12P P 与y 轴夹角为60°,作OP ⊥12P P ,所得OP 长度即为最小值,OP 2=OA =3,所以OP =32.【2019宿迁中考】如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为 .【分析】同样是作等边三角形,区别于上一题求动点路径长,本题是求CG 最小值,可以将F 点看成是由点B 向点A 运动,由此作出G 点轨迹:考虑到F 点轨迹是线段,故G 点轨迹也是线段,取起点和终点即可确定线段位置,初始时刻G 点在1G 位置,最终G 点在2G 位置(2G 不一定在CD 边),12G G 即为G 点运动轨迹.G 2CG 最小值即当CG ⊥12G G 的时候取到,作CH ⊥12G G 于点H ,CH 即为所求的最小值.GABCDEF根据模型可知:12G G 与AB 夹角为60°,故12G G ⊥1EG .过点E 作EF ⊥CH 于点F ,则HF =1G E =1,CF =1322CE =,所以CH =52,因此CG 的最小值为52.G 2三、轨迹之其他图形篇所谓“瓜豆原理”,就是主动点的轨迹与从动点的轨迹是相似性,根据主、从动点与定点连线形成的夹角以及主、从动点到定点的距离之比,可确定从动点的轨迹,而当主动点轨迹是其他图形时,从动点轨迹必然也是.【2016乐山中考】如图,在反比例函数2y x=-的图像上有一个动点A ,连接AO 并延长交图像的另一支于点B ,在第一象限内有一点C ,满足AC =BC ,当点A 运动时,点C 始终在函数ky x=的图像上运动,若tan ∠CAB =2,则k的值为( )A .2B .4C .6D .8【分析】∠AOC=90°且AO:OC=1:2,显然点C的轨迹也是一条双曲线,分别作AM、CN垂直x轴,垂足分别为M、N,连接OC,易证△AMO∽△ONC,∴CN=2OM,ON=2AM,∴ON·CN=4AM·OM,故k=4×2=8.【思考】若将条件“tan∠CAB=2”改为“△ABC是等边三角形”,k会是多少?【练习】如图,A(-1,1),B(-1,4),C(-5,4),点P是△ABC边上一动点,连接OP,以OP为斜边在OP的右上方作等腰直角△OPQ,当点P在△ABC边上运动一周时,点Q的轨迹形成的封闭图形面积为________.【分析】根据△OPQ是等腰直角三角形可得:Q点运动轨迹与P点轨迹形状相同,根据OP:OQ,可得P点轨迹图形与Q,故面积比为2:1,△ABC面积为1/2×3×4=6,故Q点轨迹形成的封闭图形面积为3.【小结】根据瓜豆原理,类似这种求从动点轨迹长或者轨迹图形面积,根据主动点轨迹推导即可,甚至无需作图.【练习】如图所示,AB =4,AC =2,以BC 为底边向上构造等腰直角三角形BCD ,连接AD 并延长至点P ,使AD =PD ,则PB 的取值范围为___________.ABCDP【分析】固定AB 不变,AC =2,则C 点轨迹是以A 为圆心,2为半径的圆,以BC 为斜边作等腰直角三角形BCD ,则D 点轨迹是以点M考虑到AP =2AD ,故P 点轨迹是以N 为圆心,即可求出PB 的取值范围.。
瓜豆原理中动点轨迹直线型最值问题以及逆向构造(解析版)
![瓜豆原理中动点轨迹直线型最值问题以及逆向构造(解析版)](https://img.taocdn.com/s3/m/f016e7a8dbef5ef7ba0d4a7302768e9950e76e71.png)
瓜豆原理中动点轨迹直线型最值问题以及逆向构造【专题说明】近些年的中考中,经常出现动点的运动轨迹类问题,通常出题以求出轨迹的长度或最值最为常见。
很多考生碰到此类试题常常无所适从,不知该从何下手。
动点轨迹问题是中考的重要压轴点.受学生解析几何知识的局限和思维能力的束缚,该压轴点往往成为学生在中考中的一个坎,致使该压轴点成为学生在中考中失分的一个黑洞.掌握该压轴点的基本图形,构建问题解决的一般思路,是中考专题复习的一个重要途径.本文就动点轨迹问题的基本图形作一详述.动点轨迹基本类型为直线型和圆弧型.其实初中阶段如遇求轨迹长度仅有2种类型:“直线型”和“圆弧型”(两种类型中还会涉及点往返探究“往返型”),对于两大类型该如何断定,通常老师会让学生画图寻找3处以上的点来确定轨迹类型进而求出答案,对于填空选择题而言不外乎是个好方法,但如果要进行说理很多考生难以解释清楚。
瓜豆原理:一个主动点,一个从动点(根据某种约束条件,跟着主动点动),当主动点运动时,从动点的轨迹相同.只要满足:1.两“动”,一“定”;2.两动点与定点的连线夹角是定角3.两动点到定点的距离比值是定值。
【引例】(选讲)如图,△APQ是等腰直角三角形,∠P AQ=90°且AP=AQ,当点P在直线BC上运动时,求Q点轨迹?【分析】当AP与AQ夹角固定且AP:AQ为定值的话,P、Q轨迹是同一种图形.当确定轨迹是线段的时候,可以任取两个时刻的Q点的位置,连线即可,比如Q点的起始位置和终点位置,连接即得Q点轨迹线段.【模型总结】必要条件:主动点、从动点与定点连线的夹角是定量(∠P AQ是定值);主动点、从动点到定点的距离之比是定量(AP:AQ是定值).结论:P、Q两点轨迹所在直线的夹角等于∠P AQ(当∠P AQ≤90°时,∠P AQ等于MN与BC夹角)P、Q两点轨迹长度之比等于AP:AQ(由△ABC∽△AMN,可得AP:AQ=BC:MN)如图,D、E是边长为4的等边三角形ABC上的中点,P为中线AD上的动点,把线段PC 绕C点逆时针旋转60°,得到P’,EP’的最小值【分析】结合这个例题我们再来熟悉一下瓜豆模型第一层:点P’运动的轨迹是直线吗?答:是直线,可以通过P在A,D时,即始末位置时P’对应的位置得到直线轨迹,对于选填题,可找出从动点的始末位置,从而快速定位轨迹,若要说理则需要构造手拉手证明.第二层:点P’的运动长度和点P的运动长度相同吗?答:因为点P’与点P到定点C的距离相等,则有运动路径长度相等,若要说理则同样需要构造手拉手结构,通过全等证明.第三层:手拉手模型怎么构造?答:以旋转中心C为顶点进行构造,其实只要再找一组对应的主从点即可,简单来说就是从P点的轨迹即P'P'线段AD 中再找一个点进行与P 点类似的的旋转,比如把线段AD 中的点A 绕C 点逆时针旋转60°,即为点B ,连接BP ’即可得到一组手拉手模型,虽然前面说是任意点,但一般来说我们选择一个特殊位置的点进行旋转后的点位置也是比较容易确定的,比如说点D 进行旋转也是比较方便的.第四层:分析∠CAP 和∠CBP ’答:由全等可知∠CAP =∠CBP ’,因为B 为定点,所以得到P ’轨迹为直线BP ’第五层:点P 和点P ’轨迹的夹角和旋转角的关系P'D'P'答:不难得出本题主动点与从动点轨迹的夹角等于旋转角,要注意的是如果旋转角是钝角,那么主动点与从动点轨迹的夹角等于旋转角的补角,这个在后面的例题中会出现.大气层:前面提到,如果是选填题,可以通过找从动点的始末位置快速定位轨迹线段,或者通过构造手拉手,通过全等或相似得出相等角然后得出轨迹,这两种方法都是先找出从动点P’的轨迹,再作垂线段并求出垂线段的长得到最小值,那么还有其他方法吗?答:还可以对关键点进行旋转来构造手拉手模型,从而代换所求线段,构造如下.将点EC绕点C顺时针旋转60°,构造手拉手模型(SAS全等型),从而得到P’E=PG,最小值即为点G到AD的距离.要注意的是因为要代换P’E,所以E点的旋转方式应该是从P’ P,所以是顺时针旋转,求轨迹时的旋转方式则是P P’,注意区分.策略一:找从动点轨迹连接BP ’,由旋转可得,CP =CP’,∠P’CP =60°,∵△ABC 是等边三角形,∴AC =BC ,∠ACB =60°,∴∠ACB =∠PCP’,∴△ACP ≌△BCP’(SAS ),∴∠CBP’=∠CAP ,∵边长为4的等边三角形ABC 中,P 是对称轴AD 上的一个动点,∴∠CAP =30°,BD =2,∴∠CBP’=30°,即点P’的运动轨迹为直线BP’,∴当D P’⊥B P’时,EP’最短, 此时,EP’=12BD +ED =122×+2=3∴EP’的最小值是3P'策略二:代换所求线段将点E绕C点顺时针旋转60°得到点G,连接PG,CG,EP’由旋转可得EC=CG,CP=CP’,∠P’CP=60°,∠ECG=60°,∴△ECG是等边三角形,EG=2∵∠PCP’=∠ECG∴∠PCG=∠EC P’∴△GCP≌△ECP’(SAS),∴EP’=GP,过点G作AD的垂线GH垂足为H,GH即为所求.∵∠GEC=∠ACD∴HE∥DC∵∠GHD=∠ADC∴HG∥DC故G,E,H三点共线,则有HE∥DC又E是AC中点,分线段成比例可知H是AD中点∴HE=11 2DC='=21=3EP GP HE EG==++∴EP’的最小值是3总共提到了3种处理方式:1.找始末,定轨迹2.在轨迹上找一点旋转,构造手拉手模型,再通过角度相等得到从动点轨迹.3.反向旋转相关定点,构造手拉手模型,代换所求线段,即逆向构造.那么什么具体选择什么方法更合适呢?我们再看一道例题【例题2 宿迁中考】如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为.【分析】现在,我们分别用上面提到的3种策略来处理这个题目策略一:找始末,定轨迹我们分别以BE,AE为边,按题目要求构造等边三角形得到G1与G2,连接G1与G2得到点G的轨迹,再作垂线CH得到最小值.前面提到过从动点轨迹和主动点轨迹的夹角与旋转角有关,我们可以调用这个结论,得到∠AMG1=60°,进一步得到△MBG1为等腰三角形后,求CH就不难了,可得5=2 CHB A222策略二:在点F 轨迹上找一点进行旋转.我们分别对A ,B 顺时针旋转60°,构造手拉手模型,再通过角度相等得到从动点轨迹,对A 点旋转会得到一个正切值为14的角,即1tan tan 4∠G M E =∠A FE=,然后进一步算出最值或【简证】311202EM AE EN NEC IC ⇒°⇒∠,则5=2CH 对B 点旋转得到∠EMG =∠FBE =90°,相对来说要容易一些.策略三:反向旋转相关定点,构造手拉手模型,代换所求线段.2N22BABABABABA将点C逆时针旋转60°,得到点H,易证△CGE≌△HFE,则有CG=HF,作MH⊥AB于M,HM即为所求.相比之下,先求轨迹后再求垂线段时,比较麻烦,而反向旋转代换所求线段感觉清爽很多.如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为底向右侧作等腰直角△EFG,连接CG,则CG的最小值为.策略一:反向构造+伸缩如图从主动点F到从动点G可以理解为,将线段FE绕定点E顺时针旋转了45,反向构造则需要把CE绕点E逆时针旋转45倍,得到EH,显然△ECH为等腰直角三角形,进一步得到FEH GEC△△∽CG≥.策略二:求轨迹——以BE 为底向上作等腰Rt △BHE ,易得G 点轨迹所在直线为BD ,故CG最小值为如图,正方形ABCD 的边长为4,E 为BC 上一点,F 为AB 边上一点,连接EF ,以EF 为底向右侧作等腰直角△EFG ,连接CG ,则AG 的最小值为 .【分析】虽然是双动点,仍可以操作操作策略一:代换所求线段 ,取AH =AF ,易知FG HFE △A △∽,则有AG HE ≥,变中有不变. 主动点策略二:求轨迹,以BE 为底向上作等腰直角三角形BHE ,显然H 点在对角线BD 上,由相似可知∠EHG =90°,故G 点轨迹为BD , 其本质还是旋转相似.其他方法:对角互补+邻边相等可得全等,显然MG =NE ,故BG 平分∠ABC ,则点G 轨迹对应直线B D .如图,在△ABC 中,∠ACB =90°,AC =BC =4,点D 是BC 边的中点,点P 是AC 边上一个动点,连接PD ,以PD 为边在PD 的下方作等边△PDQ ,连接CQ .则CQ 的最小值是M【分析】解法一:求轨迹在CD 的下方作等边△CDT ,作射线TQ .证明△CDP ≌△TDQ (SAS ),推出∠DCP =∠DTQ =90°,推出∠CTQ =30°,推出点Q 在射线TQ 上运动,当CQ ⊥TQ 时,CQ 的值最小.解法二:反向构造代换所求线段在CD 的上方,作等边△CDM ,连接PM ,过点M 作MH ⊥CB 于H .利用全等三角形的性质解决问题即可.解:解法一:如图在CD 的下方作等边△CDT ,作射线TQ .∵∠CDT =∠QDP =60°,DP =DQ ,DC =DT ,∴∠CDP =∠QDT ,在△CDP 和△TDQ 中,DP =DQ∠CDP =∠TDQ DC =DT, ∴△CDP ≌△TDQ (SAS ),∴∠DCP =∠DTQ =90°,∵∠CTD =60°,∴∠CTQ =30°,∴点Q 在射线TQ 上运动(点T 是定点,∠CTQ 是定值),当CQ ⊥TQ 时,CQ 的值最小,最小值=12CT =12CD =14BC =1,解法二:如图,CD 的上方,作等边△CDM ,连接PM ,过点M 作MH ⊥CB 于H .∵△DPQ ,△DCM 都是等边三角形,∴∠CDM =∠PDQ =60°,∵DP =DQ ,DM =DC ,∴△DPM ≌△DQC (SAS ),∴PM =CQ ,∴PM 的值最小时,CQ 的值最小,当PM ⊥MH 时,PM 的最小值=CH =12CD =1,∴CQ 的最小值为1.如图,在矩形ABCD中,AB=5,BC=53,点P在线段BC上运动(含B、C两点),连接AP,以点A 为中心,将线段AP逆时针旋转60°到AQ,连接DQ,则线段DQ的最小值为()【分析】法1:以AB为边向右作等边△ABF,作射线FQ交AD于点E,过点D作DH⊥QE于H.利用全等三角形的性质证明∠AFQ=90°,推出∠AEF=60°,推出点Q在射线FE上运动,求出DH,可得结论.法2:逆向构造,以AD为边向右作等边△ADF法1:如图,以AB为边向右作等边△ABF,作射线FQ交AD于点E,过点D作DH⊥QE于H.∵四边形ABCD是矩形,∴∠ABP=∠BAD=90°,∵△ABF,△APQ都是等边三角形,∴∠BAF =∠PAQ =60°,BA =FA ,PA =QA ,∴∠BAP =∠FAQ ,在△BAP 和△FAQ 中,BA =FA∠BAP =∠FAQ PA =QA, ∴△BAP ≌△FAQ (SAS ),∴∠ABP =∠AFQ =90°,∵∠FAE =90°-60°=30°,∴∠AEF =90°-30°=60°,∵AB =AF =5,AE =AF ÷cos 30°=10 33,∴点Q 在射线FE 上运动,∵AD =BC =5 3,∴DE =AD -AE =5 33,∵DH ⊥EF ,∠DEH =∠AEF =60°,∴DH =DE ﹒sin 60°=5 33× 32=52, 根据垂线段最短可知,当点Q 与H 重合时,DQ 的值最小,最小值为52,法2:反向构造代换所求线段,将点D 绕A 点逆时针旋转 60°,得到点F ,故△AQD ≌△APF ,52DQ PF =≥3、如图,在矩形ABCD 中,AB=3,BC=4,P 是对角线AC 上的动点,连接DP,将直线DP 绕点P 顺时针旋转,使∠1=∠2,且过点D 作DG ⊥PG,连接CG.则CG 最小值为旋转相似:如图,作DH⊥AC于H,连接HG延长HG交CD于F,作HE⊥CD于E.∵DG⊥PG,DH⊥AC,∴∠DGP=∠DHA,∵∠DPG=∠DAH,∴△ADH∽△PDG,∴ADDP=DHDG,∠ADH=∠PDG,∴∠ADP=∠HDG,∴△ADP∽△DHG,∴∠DHG=∠DAP=定值,∴点G在射线HF上运动,∴当CG⊥HF时,CG的值最小,∵四边形ABCD是矩形,∴∠ADC=90°,∴∠ADH+∠HDF=90°,∵∠DAH +∠ADH =90°,∴∠HDF =∠DAH =∠DHF ,∴FD =FH ,∵∠FCH +∠CDH =90°,∠FHC +∠FHD =90°, ∴∠FHC =∠FCH ,∴FH =FC =DF =1.5,在Rt △ADC 中,∵∠ADC =90°,AD =4,CD =3,∴AC =32+42=5,DH =A D ﹒DC AC =125,∴CH =CD 2-DH 2=95,∴EH =DH ﹒CH CD =3625,∵∠CFG =∠HFE ,∠CGF =∠HEF =90°,CF =HF , ∴△CGF ≌△HEF (AAS ),∴CG =HE =3625,∴CG 的最小值为3625,故答案为3625.。
2021年中考数学重难点专项突破专题71 瓜豆原理中动点轨迹不确定型最值问题(解析版)
![2021年中考数学重难点专项突破专题71 瓜豆原理中动点轨迹不确定型最值问题(解析版)](https://img.taocdn.com/s3/m/a5dc362df61fb7360b4c65f6.png)
专题71 瓜豆原理中动点轨迹不确定型最值问题【专题说明】动点轨迹非圆或直线时,基本上将此线段转化为一个三角形中,(1)利用三角形两边之和大于第三边,两边之差小于第三边求最值。
(2)在转化较难进行时,可借助直角三角形斜边上的中线及中位线或构建全等图形进一步转化求最值。
【知识精讲】所谓“瓜豆原理”,就是主动点的轨迹与从动点的轨迹是相似性,根据主、从动点与定点连线形成的夹角以及主、从动点到定点的距离之比,可确定从动点的轨迹,而当主动点轨迹是其他图形时,从动点轨迹必然也是.【精典例题】1、如图,在反比例函数2yx=−的图像上有一个动点A,连接AO并延长交图像的另一支于点B,在第一象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数kyx=的图像上运动,若tan∠CAB=2,则k的值为()A.2 B.4 C.6 D.8【分析】∠AOC=90°且AO:OC=1:2,显然点C的轨迹也是一条双曲线,分别作AM、CN垂直x轴,垂足分别为M、N,连接OC,易证△AMO∽△ONC,∴CN=2OM,ON=2AM,∴ON·CN=4AM·OM,故k=4×2=8.【思考】若将条件“tan∠CAB=2”改为“△ABC是等边三角形”,k会是多少?【模型】一、借助直角三角形斜边上的中线1、如图,在△ABC中,∠C=90°,AC=4,BC=2,点A、C分别在x轴、y轴上,当点A在x轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点的最大距离是()A.6 B.C.D.【答案】D【解析】解:如图,取CA的中点D,连接OD、BD,则OD=CD=AC=×4=2,由勾股定理得,BD==2,当O、D、B三点共线时点B到原点的距离最大,所以,点B到原点的最大距离是2+2.故答案为2+2.【模型】二、借助三角形两边之和大于第三边,两边之差小于第三边1、如图,已知等边三角形ABC边长为,两顶点A、B分别在平面直角坐标系的x轴负半轴、轴的正半轴上滑动,点C在第四象限,连接OC,则线段OC长的最小值是()A−1 B.3C.3 D【答案】B【详解】解:如图所示:过点C作CE⊥AB于点E,连接OE,∵△ABC 是等边三角形,∴CE=AC×sin60°=3=,AE=BE , ∵∠AOB=90°,∴EO 12=AB = ∴EC-OE ≥OC ,∴当点C ,O ,E 在一条直线上,此时OC 最短,故OC 的最小值为:OC =CE ﹣EO =3故选B .2、如图,∠MON=90°,矩形ABCD 的顶点A 、B 分别在边OM 、ON 上,当B 在边ON 上运动时,A 随之在OM 上运动,矩形ABCD 的形状保持不变,其中AB=4,BC=2.运动过程中点D 到点O 的最大距离是______.【答案】【详解】如图,取AB 的中点E ,连接OE 、DE 、OD ,∵OD ≤OE+DE ,∴当O 、D 、E 三点共线时,点D 到点O 的距离最大,此时,∵AB=4,BC=2,∴OE=AE=12AB=2,∴OD 的最大值为:,故答案为3、如图,在ABC △中,90ACB ∠=°,30CAB ∠=°,6AB =,以线段AB 为边向外作等边ABD △,点E 是线段AB 的中点,连结CE 并延长交线段AD 于点F .(1)求证:四边形BCFD 为平行四边形;(2)求平行四边形BCFD 的面积;(3)如图,分别作射线CM ,CN ,如图中ABD △的两个顶点A ,B 分别在射线CN ,CM 上滑动,在这个变化的过程中,求出线段CD 的最大长度.【答案】(1)证明见解析;(2);(3)333+.【详解】(1)在ABC �中,ACB 90∠=°,CAB 30∠=°,ABC 60∠∴=°,在等边ABD �中,BAD 60∠=°,BAD ABC 60∠∠∴==°,E 为AB 的中点,AE BE ∴=,又AEF BEC ∠∠= ,AEF BEC ∴��≌,在ABC �中,ACB 90∠=°,E 为AB 的中点,1CE AB 2∴=,1BE AB 2=,CE AE ∴=,EAC ECA 30∠∠∴==°,BCE EBC 60∠∠∴==°,又AEF BEC ��≌,AFE BCE 60∠∠∴==°,又D 60∠=° ,AFE D 60∠∠∴==°,FC BD ∴�,又BAD ABC 60∠∠==° ,AD BC ∴�,即FD BC �,∴四边形BCFD 是平行四边形;(2)在Rt ABC �中,BAC 30∠=° ,AB 6=,1BC AB 32∴==,∴AC ==,BCFD S 3∴==平行四边形(3)取AB 的中点G ,连结CG ,DG ,CDCD CG DG ≤+ ,CD ∴的最大长度CG DG 3=+=+4、如图,在Rt ABC ∆中,90ACB ∠=A ,将ABC ∆绕顶点C 逆时针旋转得到'',A B C M ∆是BC 的中点,N 是''A B 的中点,连接MN ,若4,60BC ABC =∠=°,则线段MN 的最大值为( )A .4B .8C .D .6【答案】D【详解】连接CN , ∵将ABC ∆绕顶点C 逆时针旋转得到''A B C ∆,∴''=90A CB ACB ∠=∠°,''460'B C BC A B C ABC ==∠=∠=°,, ∴'30A ∠=°,''8A B =,∵N 是''A B 的中点, ∴1''42CN A B ==, ∵在∆C MN 中,MN <CM+CN ,当且仅当M ,C ,N 三点共线时,MN=CM+CN=6,∴线段MN 的最大值为6.故选D .【模型】三、借助构建全等图形1、如图,在△ABC 中,∠ACB =90°,∠A =30°,AB =5,点P 是AC 上的动点,连接BP ,以BP 为边作等边△BPQ ,连接CQ ,则点P 在运动过程中,线段CQ 长度的最小值是______.【答案】54.【详解】解:如图,取AB的中点E,连接CE,PE.∵∠ACB=90°,∠A=30°,∴∠CBE=60°,∵BE=AE,∴CE=BE=AE,∴△BCE是等边三角形,∴BC=BE,∵∠PBQ=∠CBE=60°,∴∠QBC=∠PBE,∵QB=PB,CB=EB,∴△QBC≌△PBE(SAS),∴QC=PE,∴当EP⊥AC时,QC的值最小,在Rt△AEP中,∵AE=52,∠A=30°,∴PE=12AE=54,∴CQ的最小值为54.故答案为:542、如图,边长为12的等边三角形ABC中,M是高CH所在直线上的一个动点,连结MB,将线段BM绕点B 逆时针旋转60°得到BN,连结HN.则在点M运动过程中,线段HN长度的最小值是()A.6 B.3 C.2 D.1.5 【答案】B【详解】解:如图,取BC的中点G,连接MG,∵旋转角为60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等边△ABC的对称轴,∴HB=12 AB,∴HB=BG,又∵MB旋转到BN,∴BM=BN,在△MBG 和△NBH 中,BG BH MBG NBH MB NB = ∠=∠ =, ∴△MBG ≌△NBH (SAS ),∴MG=NH ,根据垂线段最短,当MG ⊥CH 时,MG 最短,即HN 最短,此时∠BCH=12×60°=30°,CG=12AB=12×12=6, ∴MG=12CG=12×6=3, ∴HN=3;故选:B .【模型】四、借助中位线1、如图,在等腰直角∆ABC 中,斜边 AB 的长度为 8,以 AC 为直径作圆,点P 为半圆上的动点,连接 BP ,取 BP 的中点 M ,则CM 的最小值为( )A.B.C− D.−【答案】C【详解】解:连接AP 、CP ,分别取AB 、BC 的中点E 、F ,连接EF 、EM 和FM ,∴EM 、FM 和EF 分别是△ABP 、△CBP 和△ABC 的中位线∴EM ∥AP ,FM ∥CP ,EF ∥AC ,EF=12AC∴∠EFC=180°-∠ACB=90°∵AC 为直径∴∠APC=90°,即AP ⊥CP∴EM ⊥MF ,即∠EMF=90°∴点M 的运动轨迹为以EF 为直径的半圆上取EF 的中点O ,连接OC ,点O 即为半圆的圆心当O 、M 、C 共线时,CM 最小,如图所示,CM 最小为CM 1的长, ∵等腰直角∆ABC 中,斜边 AB 的长度为 8,∴AB =∴EF=12AC =,FC=12BC =,∴OM 1=OF=12EF根据勾股定理可得∴CM 1=OC -OM 1即CM 故选C .2、如图,抛物线2119y x =−与x 轴交于A B ,两点,D 是以点()0,4C 为圆心,1为半径的圆上的动点,E 是线段AD 的中点,连接,OE BD ,则线段OE 的最小值是()A .2BC .52D .3 【答案】A【详解】 ∵2119y x =−,∴当0y =时,21019x =−,解得:=3x ±,∴A 点与B 点坐标分别为:(3−,0),(3,0),即:AO=BO=3,∴O 点为AB 的中点,又∵圆心C 坐标为(0,4),∴OC=4,∴BC长度5=,∵O点为AB的中点,E点为AD的中点,∴OE为△ABD的中位线,即:OE=12 BD,∵D点是圆上的动点,由图可知,BD最小值即为BC长减去圆的半径,∴BD的最小值为4,∴OE=12BD=2,即OE的最小值为2,故选:A.。
最值模型之瓜豆模型(原理)圆弧轨迹型-2024年中考数学常见几何模型及参考答案
![最值模型之瓜豆模型(原理)圆弧轨迹型-2024年中考数学常见几何模型及参考答案](https://img.taocdn.com/s3/m/2948e924cbaedd3383c4bb4cf7ec4afe05a1b144.png)
最值模型之瓜豆模型(原理)圆弧轨迹型动点轨迹问题是中考和各类模拟考试的重要题型,学生受解析几何知识的局限和思维能力的束缚,该压轴点往往成为学生在中考中的一个坎,致使该压轴点成为学生在中考中失分的集中点。
掌握该压轴题型的基本图形,构建问题解决的一般思路,是中考专题复习的一个重要途径。
本专题就最值模型中的瓜豆原理(动点轨迹为圆弧型)进行梳理及对应试题分析,方便掌握。
【模型解读】模型1、运动轨迹为圆弧模型1-1. 如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点.Q点轨迹是?如图,连接AO,取AO中点M,任意时刻,均有△AMQ∽△AOP,QM:PO=AQ:AP=1:2.则动点Q是以M为圆心,MQ为半径的圆。
模型1-2. 如图,△APQ是直角三角形,∠PAQ=90°且AP=k⋅AQ,当P在圆O运动时,Q点轨迹是?如图,连结AO,作AM⊥AO,AO:AM=k:1;任意时刻均有△APO∽△AQM,且相似比为k。
则动点Q是以M为圆心,MQ为半径的圆。
模型1-3. 定义型:若动点到平面内某定点的距离始终为定值,则其轨迹是圆或圆弧。
(常见于动态翻折中)如图,若P为动点,但AB=AC=AP,则B、C、P三点共圆,则动点P是以A圆心,AB半径的圆或圆弧。
模型1-4. 定边对定角(或直角)模型1)一条定边所对的角始终为直角,则直角顶点轨迹是以定边为直径的圆或圆弧.如图,若P为动点,AB为定值,∠APB=90°,则动点P是以AB为直径的圆或圆弧。
2)一条定边所对的角始终为定角,则定角顶点轨迹是圆弧.如图,若P为动点,AB为定值,∠APB为定值,则动点P的轨迹为圆弧。
【模型原理】动点的轨迹为定圆时,可利用:“一定点与圆上的动点距离最大值为定点到圆心的距离与半径之和,最小值为定点到圆心的距离与半径之差”的性质求解。
1(2023·山东泰安·统考中考真题)如图,在平面直角坐标系中,Rt△AOB的一条直角边OB在x轴上,点A的坐标为(-6,4);Rt△COD中,∠COD=90°,OD=43,∠D=30°,连接BC,点M是BC中点,连接AM.将Rt△COD以点O为旋转中心按顺时针方向旋转,在旋转过程中,线段AM的最小值是()A.3B.62-4C.213-2D.22(2023·四川广元·统考一模)如图,线段AB为⊙O的直径,点C在AB的延长线上,AB=4,BC=2,点P是⊙O上一动点,连接CP,以CP为斜边在PC的上方作Rt△PCD,且使∠DCP=60°,连接OD,则OD长的最大值为.3(2023·四川宜宾·统考中考真题)如图,M是正方形ABCD边CD的中点,P是正方形内一点,连接BP,线段BP以B为中心逆时针旋转90°得到线段BQ,连接MQ.若AB=4,MP=1,则MQ的最小值为.4(2023·湖南·统考中考真题)如图,在矩形ABCD中,AB=2,AD=7,动点P在矩形的边上沿B→C→D→A运动.当点P不与点A、B重合时,将△ABP沿AP对折,得到△AB P,连接CB ,则在点P的运动过程中,线段CB 的最小值为.5(2023·山东·统考中考真题)如图,在四边形ABCD中,∠ABC=∠BAD=90°,AB=5,AD=4,AD< BC,点E在线段BC上运动,点F在线段AE上,∠ADF=∠BAE,则线段BF的最小值为.6(2023·浙江金华·九年级校考期中)如图,点A,C,N的坐标分别为(-2,0),(2,0),(4,3),以点C为圆心、2为半径画⊙C,点P在⊙C上运动,连接AP,交⊙C于点Q,点M为线段QP的中点,连接MN,则线段MN的最小值为.7(2023上·江苏连云港·九年级校考阶段练习)已知矩形ABCD,AB=6,BC=4,P为矩形ABCD内一点,且∠BPC=135°,若点P绕点A逆时针旋转90°到点Q,则PQ的最小值为.8(2023下·陕西西安·九年级校考阶段练习)问题提出:(1)如图①,在△ABC中,AB=AC,∠BAC=120°,BC=43,则AB的长为;问题探究:(2)如图②,已知矩形ABCD,AB=4,BC=5,点P是矩形ABCD内一点,且满足∠APB= 90°,连接CP,求线段CP的最小值;问题解决:(3)如图③所示,我市城市绿化工程计划打造一片四边形绿地ABCD,其中AD∥BC,AD= 40m,BC=60m,点E为CD边上一点,且CE:DE=1:2,∠AEB=60°,为了美化环境,要求四边形ABCD的面积尽可能大,求绿化区域ABCD面积的最大值.课后专项训练1(2023·安徽合肥·校考一模)如图,在△ABC中,∠B=45°,AC=2,以AC为边作等腰直角△ACD,连BD,则BD的最大值是()A.10-2B.10+3C.22D.10+22(2023春·广东·九年级专题练习)已知:如图,在△ABC中,∠BAC=30°,BC=4,△ABC面积的最大值是( ).A.8+43B.83+4C.83D.8+833(2022秋·江苏扬州·九年级校考阶段练习)如图,A是⊙B上任意一点,点C在⊙B外,已知AB=2,BC=4,△ACD是等边三角形,则△BCD的面积的最大值为()A.43+4B.4C.43+8D.64(2023·山东济南·一模)正方形ABCD中,AB=4,点E、F分别是CD、BC边上的动点,且始终满足DE=CF,DF、AE相交于点G.以AG为斜边在AG下方作等腰直角△AHG使得∠AHG=90°,连接BH.则BH的最小值为()A.25-2B.25+2C.10-2D.10+25(2023上·江苏连云港·九年级统考期中)如图,在矩形ABCD中,已知AB=3,BC=4,点P是BC边上一动点(点P不与点B,C重合),连接AP,作点B关于直线AP的对称点M,连接CM,则CM的最小值为.6(2023春·广东深圳·九年级专题练习)如图,点G是△ABC内的一点,且∠BGC=120°,△BCF是等边三角形,若BC=3,则FG的最大值为.7(2023·江苏泰州·九年级专题练习)如图,在矩形ABCD中,AD=10,AB=16,P为CD的中点,连接BP.在矩形ABCD外部找一点E,使得∠BEC+∠BPC=180°,则线段DE的最大值为.8(2023·陕西渭南·三模)如图,在矩形ABCD中,AB=6,BC=5,点E在BC上,且CE=4BE,点M 为矩形内一动点,使得∠CME=45°,连接AM,则线段AM的最小值为.9(2023江苏扬州·三模)如图,在等边△ABC和等边△CDE中,AB=6,CD=4,以AB、AD为邻边作平行四边形ABFD,连接AF.若将△CDE绕点C旋转一周,则线段AF的最小值是.10(2023秋·湖北武汉·九年级校考阶段练习)如图,△ABC为等腰直角三角形,∠BAC=90°,AB= AC=22,点D为△ABC所在平面内一点,∠BDC=90°,以AC、CD为边作平行四边形ACDE,则CE的最小值为.11(2023·福建泉州·统考模拟预测)如图,点E是正方形ABCD的内部一个动点(含边界),且AD= EB=8,点F在BE上,BF=2,则以下结论:①CF的最小值为6;②DE的最小值为82-8;③CE= CF;④DE+CF的最小值为10;正确的是.12(2021·广东·中考真题)在△ABC中,∠ABC=90°,AB=2,BC=3.点D为平面上一个动点,∠ADB=45°,则线段CD长度的最小值为.13(2023·广东·深圳市二模)如图,在矩形ABCD中,AB=3,BC=4,E为边BC上一动点,F为AE 中点,G为DE上一点,BF=FG,则CG的最小值为.14(2023秋·广东汕头·九年级校考期中)如下图,在正方形ABCD中,AB=6,点E是以BC为直径的圆上的点,连接DE,将线段DE绕点D逆时针旋转90°,得到线段DF,连接CF,则线段CF的最大值与最小值的和.15(2023·陕西渭南·统考一模)如图,在矩形ABCD中,AB=2,BC=4,Q是矩形ABCD左侧一点,连接AQ、BQ,且∠AQB=90°,连接DQ,E为DQ的中点,连接CE,则CE的最大值为.16(2023·安徽亳州·统考模拟预测)等腰直角△ABC 中,BAC =90°,AB =5,点D 是平面内一点,AD =2,连接BD ,将BD 绕D 点逆时针旋转90°得到DE ,连接AE ,当DAB =(填度数)度时,AE 可以取最大值,最大值等于.17(2023·河北廊坊·统考二模)已知如图,△ABC 是腰长为4的等腰直角三角形,∠ABC =90°,以A 为圆心,2为半径作半圆A ,交BA 所在直线于点M ,N .点E 是半圆A 上仟意一点.连接BE ,把BE 绕点B 顺时针旋转90°到BD 的位置,连接AE ,CD .(1)求证:△EBA ≌△DBC ;(2)当BE 与半圆A 相切时,求弧EM的长;(3)直接写出△BCD 面积的最大值.18(2022·北京·中考真题)在平面直角坐标系xOy 中,已知点M (a ,b ),N .对于点P 给出如下定义:将点P 向右(a ≥0)或向左(a <0)平移a 个单位长度,再向上(b ≥0)或向下(b <0)平移b 个单位长度,得到点P ',点P '关于点N 的对称点为Q ,称点Q 为点P 的“对应点”.(1)如图,点M (1,1),点N 在线段OM 的延长线上,若点P (-2,0),点Q 为点P 的“对应点”.①在图中画出点Q;②连接PQ,交线段ON于点T.求证:NT=12 OM;(2)⊙O的半径为1,M是⊙O上一点,点N在线段OM上,且ON=t12<t<1,若P为⊙O外一点,点Q为点P的“对应点”,连接PQ.当点M在⊙O上运动时直接写出PQ长的最大值与最小值的差(用含t的式子表示)19(2023下·广东广州·九年级校考阶段练习)如图,△ABC为等边三角形,点P是线段AC上一动点(点P不与A,C重合),连接BP,过点A作直线BP的垂线段,垂足为点D,将线段AD绕点A逆时针旋转60°得到线段AE,连接DE,CE.(1)求证:BD=CE;(2)连接CD,延长ED交BC于点F,若△ABC的边长为2;①求CD的最小值;②求EF的最大值.20(2023·江苏常州·统考二模)如图,在平面直角坐标系中,二次函数y=-13x2+bx-3的图像与x轴交于点A和点B9,0,与y轴交于点C.(1)求二次函数的表达式;(2)若点P是抛物线上一点,满足∠PCB+∠ACB=∠BCO,求点P的坐标;(3)若点Q在第四象限内,且cos∠AQB=35,点M在y轴正半轴,∠MBO=45°,线段MQ是否存在最大值,如果存在,直接写出最大值;如果不存在,请说明理由.最值模型之瓜豆模型(原理)圆弧轨迹型动点轨迹问题是中考和各类模拟考试的重要题型,学生受解析几何知识的局限和思维能力的束缚,该压轴点往往成为学生在中考中的一个坎,致使该压轴点成为学生在中考中失分的集中点。
中考专题:最值问题之瓜豆原理
![中考专题:最值问题之瓜豆原理](https://img.taocdn.com/s3/m/7309bfbee43a580216fc700abb68a98271feac05.png)
中考专题 ----- 路径之瓜豆原理知识必备一、旋转及性质1.旋转的定义:一个图形绕点沿定方向旋转定的角度;2.旋转三要素:①旋转中心(绕哪个点转);②旋转方向(顺时针或逆时针);③旋转角度;3.旋转的性质:①旋转不改变图形的大小与形状,只改变图形的位置,即旋转前后图形全等;②对应点与旋转中心所连线段间的夹角等于旋转角.二、位似及性质1.位似的定义:若两个图形F和F的点之间可以建立一对应关系,并且满足:①每组对应点的连线所在的直线都经过同一点O;②每组对应点都在点O的同侧或异侧;③对每组对应点A 和OAA',有4 k(k为常数),则称图形F和F位似,k叫位似比;OA2.位似三要素:①位似中心(关于哪个点位似);②位似方向(同侧或异侧);③位似比(等于相似比);3.位似的性质:成位似的两个图形必相似:把一个几何图形变换成与之位似的图形,叫做位似变换;利用位似变换可把一个图形放大或缩小,若位似比大于1,则通过位似变换把原图形放大;若位似比小于1.则通过位似变换把原图形缩小。
方法提炼一.旋转作图问题1:在平面内有两点A.B.请将点B绕点人按顺时针方向旋转40°.二、位似作图1问题2:如图:.已知线段AB,请以点A为位似中心1为位似比,在同侧将线段AB进行位似3变换。
「三、模型建立1 / 13(一)旋转变换问题3:(1)如图14-2-5,已知等腰Rt^APQ.其中A为定点,根据旋转作图的经验,请你说说: 点Q可以看作点P经过怎样的变换得到?(2)如图14-2-6.若改为等边AAPQ呢?⑶如图1-27.若改为任意等腰4APQ(其顶角为o)呢?问题4:在问题3中,若点P在一条定直线l上运动,其他条件不变如图14-2-8至图14-2-10 所示,请问:点Q的运动路径是什么?它可以看作点P的路径如何而来?问题5:在问题4中,若将“定直线1”改为“定。
0〃 .其他条件不变,结果如何?反思:这里是“圆生圆”;注意:点Q所在的轨迹圆圆心0’也是原来的圆心0定点A经过相应的旋转而来;2 / 13总结:这里仅牵扯到“旋转变换”不妨称P 为主动点。
中考数学专题《几何模型-瓜豆模型》
![中考数学专题《几何模型-瓜豆模型》](https://img.taocdn.com/s3/m/beb7c220f68a6529647d27284b73f242336c3129.png)
知识点二
【例2】如图,在等边△ABC中,AB=10,BD=4,BE=2,点P从点E出发
沿EA方向运动,连结PD,以PD为边,在PD的右侧按如图所示的方式
作等边△DPF,当点P从点E运动到点A时,点F运动的路径长是__8__. A
值,为常规思路.
01
知识点
02
03
种圆得圆 种线得线 种形得形
知识归纳
种圆得圆
知识点一
1.如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点.
【思考】当点P在圆O上运动时,Q点轨迹是?
QP
【分析】观察动图可知点Q轨迹是个圆,而我
A 们还需确定的是此圆与圆O有什么关系?考虑
MO
到Q点始终为AP中点,连接AO,取AO中点M,连
【结论】(1)主、从动点与定点连线的夹角等于两圆心与定点连
线的夹角:∠PAQ=∠OAM;
QM
(2)主、从动点与定点的距离之比等于两圆心
P
到定点的距离之比:AP:AQ=AO:AM,也等于两
圆半径之比.按以上两点即可确定从动点轨
O
迹圆,Q与P的关系相当于旋转+伸缩.
古人云:种瓜得瓜,种豆得豆.
A
“种”圆得圆,“种”线得线,谓之“瓜豆原理”.
知识归纳
种圆得圆
知识点一
【思考1】如图,P是圆O上一个动点,A为定点,连接AP,以AP为一
边作等边△APQ.
【考虑】当点P在圆O上运动时,Q点轨迹是? Q
【分析】Q点满足(1)∠PAQ=60º;(2)AP=AQ,
M P
故Q点轨迹是个圆:
1)当∠PAQ=60º,可得Q点轨迹圆圆心M满足
∠MAO=60º; 2)当AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且
2021年中考数学重难点专项突破专题70 瓜豆原理中动点轨迹圆或圆弧型最值问题(解析版)
![2021年中考数学重难点专项突破专题70 瓜豆原理中动点轨迹圆或圆弧型最值问题(解析版)](https://img.taocdn.com/s3/m/61da3f32551810a6f42486a9.png)
【分析】观察动图可知点 Q 轨迹是个圆,而我们还需确定的是此圆与圆 O 有什么关系? 考虑到 Q 点始终为 AP 中点,连接 AO,取 AO 中点 M,则 M 点即为 Q 点轨迹圆圆心,半径 MQ 是 OP 一半,任 意时刻,均有△AMQ∽△AOP,QM:PO=AQ:AP=1:2.
8
当点 A,P,C 在一条直线上时,CP 有最小值, CP 的最小值是 AC-AP=4-2=2. 故选 D.
4、如图,在矩形 ABCD 中,AB=4,AD=6,E 是 AB 边的中点,F 是线段 BC 上的动点,将 ΔEBF 沿 EF 所 在直线折叠得到 ΔEB' F,连接 B' D,则 B' D 的最小值是_____.
A.1
B.√3
C.3
2
D.2
【答案】D 【详解】
连接 AD,因为∠ACB=30°,所以∠BCD=60°, 因为 CB=CD,所以△CBD 是等边三角形, 所以 BD=DC. 因为 DE=CF,∠EDB=∠FCD=60°, 所以△EDB≌△FCD,所以∠EBD=∠FDC, 因为∠FDC+∠BDF=60°, 所以∠EBD+∠BDF=60°,所以∠BPD=120°, 所以点 P 在以 A 为圆心,AD 为半径的弧 BD 上, 直角△ABC 中,∠ACB=30°,BC=2√3,所以 AB=2,AC=4, 所以 AP=2.
【模型总结】 为了便于区分动点 P、Q,可称点 P 为“主动点”,点 Q 为“从动点”. 此类问题的必要条件:两个定量 主动点、从动点与定点连线的夹角是定量(∠PAQ 是定值); 主动点、从动点到定点的距离之比是定量(AP:AQ 是定值).
中考数学几何最值简析五:“瓜豆原理”
![中考数学几何最值简析五:“瓜豆原理”](https://img.taocdn.com/s3/m/f4d75a75bd64783e09122bd4.png)
中考数学几何最值简析五:“瓜豆原理”瓜豆原理:若两动点到某定点的距离比是定值,夹角是定角,则两动点的运动路径相同。
瓜豆原理是主从联动轨迹问题。
主动点叫做瓜,从动点叫做豆,瓜在直线上运动,豆的运动轨迹也是直线。
瓜在圆周上运动,豆的运动轨迹也是圆。
关键是作出从动点的运动轨迹,根据主动点的特殊位置点,作出从动点的特殊点,从而连成轨迹。
类型一:点直线上运动1.线段+直线条件:线段AB上A为直线l上的动点。
C为线段AB中点,B为定点,A为动点。
结论:1.点C的轨迹为A轨迹的一半2.C的轨迹与A的轨迹平行2.角+直线条件:A为定点,B为主动点,C为从动点,并且A与B,C的连线的夹角为定值,且AB≠AC 。
条件:A为定点,B为主动点,C为从动点,并且A与B,C的连线的夹角为定值,且AB=AC结论:1.C的运动轨迹和B的运动轨迹一样,都是直线2.B运动的直线和C运动的直线之间的夹角=∠A3.AB/AC=k4.C运动的长度和B运动长度之比等于k5.若AB不等于AC,则有△ABM∽△AM'C,相似比为k6.若AB=AC,则有△ABM≌△AM'C类型二:点在圆上运动1.线段+圆条件:线段AB中,A为⊙O上一动点,B为定点,C为AB中点结论:1.点C的运动轨迹与点A的运动轨迹都是圆2. 两圆半径之比为2:13. △ABO∽△BCO,相似比为2:12.角+圆条件:A为定点,B为主动点,C为从动点,并且A与B,C的连线的夹角为定值,且AB≠AC 。
结论:1.C的运动轨迹和B的运动轨迹一样,都是圆2.B圆和C圆上对应线段的夹角=∠A3.AB/AC=k4.C运动的长度和B运动长度之比=k5.B圆的半径和C圆的半径之比=k6.若AB≠AC,则有△ABM∽△AM'C,相似比=k7.若AB=AC,则有△ABM≌△AM'C8.若k=1,B圆和C圆是等圆,若k≠1,那么B圆和C圆不是等圆。
总结:瓜豆原理主要掌握好从动点的变化规律,从动点轨迹到底是直线还是圆。
中考数学专题:瓜豆原理解析
![中考数学专题:瓜豆原理解析](https://img.taocdn.com/s3/m/fc50ab660029bd64793e2c42.png)
A
Q
P
O
【分析】观察动图可知点 Q 轨迹是个圆,而我们还需确定的是此圆与圆 O 有什么关系?
考虑到 Q 点始终为 AP 中点,连接 AO,取 AO 中点 M,则 M 点即为 Q 点轨迹圆圆心,半 径 MQ 是 OP 一半,任意时刻,均有△AMQ∽△AOP,QM:PO=AQ:AP=1:2.
此类问题的必要条件:两个定量 主动点、从动点与定点连线的夹角是定量(∠PAQ 是定值); 主动点、从动点到定点的距离之比是定量(AP:AQ 是定值).
Q
α A
P O
Q M
α Aα
P O
【结论】(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角: ∠PAQ=∠OAM ; (2)主、从动点与定点的距离之比等于两圆心到定点的距离之比: AP: AQ=AO: AM ,也等于两圆半径之比 . 按以上两点即可确定从动点轨迹圆,Q 与 P 的关系相当于旋转+伸缩.
A
D
E
B
O
C
F
M
【练习】△ABC 中,AB=4,AC=2,以 BC 为边在△ABC 外作正方形 BCDE,BD、CE 交于 点 O,则线段 AO 的最大值为_____________.
A
B
C
O
E
D
【分析】考虑到 AB、AC 均为定值,可以固定其中一个,比如固定 AB,将 AC 看 成动线段,由此引发正方形 BCED 的变化,求得线段 AO 的最大值.
引例 2:如图,P 是圆 O 上一个动点,A 为定点,连接 AP,作 AQ⊥AP 且 AQ=AP. 考虑:当点 P 在圆 O 上运动时,Q 点轨迹是?
剖析瓜豆原理,探究动点轨迹
![剖析瓜豆原理,探究动点轨迹](https://img.taocdn.com/s3/m/addd4115f56527d3240c844769eae009581ba2c3.png)
剖析瓜豆原理,探究动点轨迹作者:宋璨来源:《数学教学通讯·初中版》2021年第05期[摘要] “瓜豆原理”是解析主从联动轨迹问题重要的数学原理,解析过程涉及几何旋转、相似、全等、共线等几何知识,综合性极强. 探究时要挖掘动点关联,确定动点轨迹,实现问题的静态转化. 文章将深入剖析“瓜豆原理”,探究轨迹模型,总结方法策略,应结合实例应用探究,并深入反思.[关键词] 瓜豆原理;轨迹;整体思想;主从关系;相似几何动点是初中数学的重难点问题,把握动点轨迹是问题突破的关键. 部分问题中往往描述的是动点P,但最终需要探究另一点Q,实际上两点之间是“主从”关系,其中隐含了数学的“瓜豆原理”,即由古语“种瓜得瓜,种豆得豆”衍生出的“种”圆得“圆”,“种”线得“线”. 深入探究“瓜豆原理”,提炼轨迹模型,对于相关几何动点问题的突破有一定帮助,下面逐步探究.问题引例例题如图1所示,点P是⊙O上的一个动点,点A为定点,连接AP,设AP的中点为Q.探究当点P在⊙O上运动时,点Q的轨迹是什么?分析点Q是始终是AP的中点,点P和Q之间是“主从”运动关系,联想物理上的“连杆”,可猜想点Q的轨迹也是圆. 实际探究时可连接AO,取AO的中点为M,则点M就是动点Q轨迹的圆心,再连接PO和QM,如图2所示. 分析可知△AQM和△APO为相似三角形,且相似比为AM∶AO=1∶2,可推知QM= OP,即显然任意时刻上述三角形相似关系均成立,则点Q 的轨迹为圆,且半径为 OP.总结点P和Q运动过程中,始终有点A,Q,P三点共线,且QM= OP. 从几何视角分析可知,动点Q的轨迹为点P轨迹的成比例缩放. 对于主从动点问题,可从动点之间的相关关系来分析运动轨迹,动点之间的数量关系反映在轨迹曲线特性上.深入剖析上述主从动点可视为常见的“连杆”运动,若主从动点与定点之间不共线,又会出现怎样的运动轨迹,这也是常见动点轨迹问题的构建形式,下面深入探究.问题如图3所示,点P是⊙O上的一个动点,点A为定点,连接AP,作AQ⊥AP,且AQ=AP,当点P在圆上运动时,点Q的轨迹又是怎样的?分析上述动点P和Q之间依然符合“主从”运动关系,可理解成线段AP绕着点A进行旋转. 考虑到“AQ⊥AP,AQ=AP”始终成立,初步可确定点Q的轨迹也是圆. 设点M为动点Q轨迹圆的圆心,连接AM和AO,如图4所示,则可证△APO≌△AQM,显然任意时刻均成立,可推知半径MQ=PO,即动点Q的轨迹是半径为MQ的圆,轨迹圆大小与点P的轨迹相同.进一步思考:上述轨迹半径是由“AQ=AP”来决定的,若将其替换为AP=nAQ,则△APO 与△AQM不再全等,而变为相似关系,即△APO∽△AQM,且相似比AP∶AQ=AO∶AM=n∶1,任意时刻Q点轨迹圆圆心M满足QM= OP.模型总结:基于上述分析,对于图5所示的动点运动,可称点P为“主动点”,点Q为“从动点”,点Q运动时会带动点P运动.在该模型中有如下两个定量:主动点、从动点与定点连接的夹角是固定的(即∠PAQ为定值);主动点、从动点到定点距离之比为定值(即为定值).解析策略在实际分析时,可从几何视角来看,“主从”动点的轨迹图形是相似或全等关系,两动点之间可视为几何“旋转+伸缩”的衍生. 可结合整体思想,定性探究“主从”动点之间的运动规律,确定轨迹的形状;然后结合几何性质,定量计算运动轨迹的大小.应用探究上述深入探究了“瓜豆原理”,并总结了“主从”动点问题的模型及探究策略,探究“主从”动点的运动关系,确定动点轨迹是问题突破的关键. 由“主从”动点为基础构造的问题类型也较为众多,总体上可分为几何轨迹相似和全等两种情形. 解析时可分两步进行:第一步,根据“瓜豆原理”确定动点轨迹;第二步,借助直观的图像,利用几何性质模型加以突破.1. “瓜豆原理”之旋转全等例1 如图6所示,已知正方形ABCD中AB=2 ,点O是BC边上的中点,点E是正方形内的一个动点,OE=2,将线段DE绕着点D逆时针旋转90°,得到DF,在连接AE和CF,则线段OF的最小值为______.分析上述求点E运动过程OF的最小值,由题意可知点E为主动点,而点F是从动点,点D是定点,始终有OE=2,则点E的轨迹是以点O为圆心,2为半径的圆. 由于DF⊥DE,DE=DF可作DM⊥DO,且DM=DO,由“瓜豆原理”可知点F的轨迹是以点M为圆心,2为半径的圆,如图7所示. 后续直观分析动点轨迹,直接确定OF取得最小值时的情形即可.解线段OF中,点O为定点,点F是⊙M上的动点,则根据经验可知连接OM,OM与⊙M的交点就为OF最小时点F的位置. 可构造“三垂直”全等模型,如图7所示. 阴影部分的两个三角形始终垂直,则DO=DM,即△DOM为等腰直角三角形. 在Rt△DOM中,已知CD=2 ,CO= ,由勾股定理可得OD=DM=5,所以OM=5 ,OF的最小值为OM-MF=5 -2.2. “瓜豆原理”之旋转相似例2 如图8所示,已知点C是半圆O的圆弧AB上的一个动点,现以BC为边作正方形BCDE(弧BC位于正方形内),再连接OD,如果AB=4,则OD的最大值为________.分析本题目中点C的轨迹是确定的,是圆弧AB,而点D是由动点所在边为基础构造的正方形BCDE的一个顶点,显然符合“瓜豆原理”,初步由“主从联动”可确定点D的轨迹也为半圆. 根据题干信息可知,点D可由点C绕点B顺时针旋转45°获得,故可连接BD,分析可知BD= CB,即点D的轨迹是点C轨迹绕点B顺时针旋转45°,且半径扩大倍的半圆.解根据上述分析点D的轨迹同为半圆,将OB顺时针旋转45°,半径扩大倍,可得O′B,如图9所示. 点O′就为点D轨迹半圆的圆心,且点O′位于点O正上方的半圆弧上. 分析可知,当点O,O′和D三点共线,且点D位于OO′延长线上时,OD可取得最大值. 此时OB=2,O′B=2 ,OO′=2,O′D=2 ,OD≤OO′+O′D,所以OD的最大值为2+2 .解后反思“瓜豆原理”是破解动点轨迹问题的常用模型策略,该策略准确把握运动本质,剖析动点规律,借助几何直观“化动为静”. 同时解析过程,注重整体思想、数形结合思想,深入探究有利于培养学生的核心素养,下面进行深入反思.1. 关于动点问题的策略总结“瓜豆原理”常用于解析轨迹为线段和圆弧的动点问题,实际应用时可结合整体思想和数形结合思想逐步剖析. 分析過程可分如下五步进行:第一步,确定主动点的轨迹;第二步,挖掘主、从动点的几何关系;第三步,确定主动点的起点和终点,结合几何相似或全等来推导从动点的轨迹;第四步,根据动点轨迹求解点、线、最值等问题. 同时,轨迹探究过程可结合“猜想—验证”的方法,提取问题中的运动条件,基于“几何不变量”猜想动点轨迹,然后结合条件严格论证. “共线原理”是动点最值问题常用的几何原理,实际求解时可合理利用,巧妙确定最值情形.2. 关于“瓜豆原理”的教学建议“瓜豆原理”及动点轨迹问题的教学应立足知识基础,重视模型剖析,强化解题策略,渗透思想方法,通过知识探究来提升学生的综合能力. 因此,教学中可设置四个环节逐步开展:环节一,预备知识引入,强化“瓜豆原理”的基础知识,如点圆最值、旋转相似或全等、轨迹意识,为后续原理探究作铺垫;环节二,探究轨迹模型,剖析模型的解析过程,总结方法策略;环节三,开展应用探究,归纳“瓜豆原理”适用的问题类型,帮助学生积累解题技巧;环节四,开展拓展探究,可设置变式问题,引导学生充分感知原理,感受模型思想. 总之,教学过程要合理设问引导,让学生参与课堂讨论,充分思考问题,以提升学生的数学素养为教学根本.。
2021年中考数学一轮复习 瓜豆原理处理动点最值问题 专题讲义
![2021年中考数学一轮复习 瓜豆原理处理动点最值问题 专题讲义](https://img.taocdn.com/s3/m/7c49326b571252d380eb6294dd88d0d233d43cf3.png)
专题瓜豆原理知识梳理【类型一】点在直线上运动:线段+直线模型:如图,P是直线BC上一动点,连接AP,取AP中点Q,当点P在BC上运动时,Q点轨迹是什么?【结论】当P点轨迹是直线时,Q点轨迹也是一条直线。
【分析】可以这样理解:分别过A、Q向BC作垂线,垂足分别为M、N,在运动过程中,因为AP=2AQ,所以QN始终为AM的一半,即Q点到BC的距离是定值,故Q点轨迹是一条直线。
【类型二】点在直线上运动:角+直线模型:如图,△APQ是等腰直角三角形,∠PAQ=90°且AP=AQ,当点P在直线BC上运动时,Q点轨迹是什么?【分析】当确定轨迹是线段的时候,可以任取两个时刻的Q点的位置,连线即可,比如Q点的起始位置和终点位置,连接即得Q点轨迹线段。
Q2AB CQ1【模型总结】必要条件:主动点、从动点与定点连线的夹角是定值(∠PAQ是定值);主动点、从动点到定点的距离之比是定值(AP:AQ是定值)。
【结论】P、Q两点轨迹所在直线的夹角等于∠PAQ(当∠PAQ≤90°时,∠PAQ等于MN与BC夹角)P、Q两点轨迹长度之比等于AP:AQ(由△ABC∽△AMN,可得AP:AQ=BC:MN)典型例题【例1】(2021年3月新区实验初三月考)如图,点C为线段AB的中点,E为直线AB上方的一点,且满足CE=CB,连接AE,以AE为腰,A为顶角顶点作等腰Rt△ADE,连接CD,当CD最大时,∠DEC的度数为()A. 60°B. 75°C. 67.5°D. 90°【例2】(2017姑苏区二模)如图,在等边△ABC中,AB=10,BD=4,BE=2,点P从点E出发沿EA 方向运动,连结PD,以PD为边,在PD的右侧按如图所示的方式作等边△DPF,当点P从点E运动到点A 时,点F运动的路径长是________.A【例3】如图,已知点A是第一象限内横坐标为2√3的一个定点,AC⊥x轴于点M,交直线y=−x于点N,若点P是线段ON上的一个动点,∠APB=30°,BA⊥PA,则点P在线段ON上运动时,A点不变,B点随之运动.求当点P从点O运动到点N时,点B运动的路径长是________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题71 瓜豆原理中动点轨迹不确定型最值问题【专题说明】动点轨迹非圆或直线时,基本上将此线段转化为一个三角形中,(1)利用三角形两边之和大于第三边,两边之差小于第三边求最值。
(2)在转化较难进行时,可借助直角三角形斜边上的中线及中位线或构建全等图形进一步转化求最值。
【知识精讲】所谓“瓜豆原理”,就是主动点的轨迹与从动点的轨迹是相似性,根据主、从动点与定点连线形成的夹角以及主、从动点到定点的距离之比,可确定从动点的轨迹,而当主动点轨迹是其他图形时,从动点轨迹必然也是.【精典例题】1、如图,在反比例函数2yx=−的图像上有一个动点A,连接AO并延长交图像的另一支于点B,在第一象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数kyx=的图像上运动,若tan∠CAB=2,则k的值为()A.2 B.4 C.6 D.8【分析】∠AOC=90°且AO:OC=1:2,显然点C的轨迹也是一条双曲线,分别作AM、CN垂直x轴,垂足分别为M、N,连接OC,易证△AMO∽△ONC,∴CN=2OM,ON=2AM,∴ON·CN=4AM·OM,故k=4×2=8.【思考】若将条件“tan∠CAB=2”改为“△ABC是等边三角形”,k会是多少?【模型】一、借助直角三角形斜边上的中线1、如图,在△ABC中,∠C=90°,AC=4,BC=2,点A、C分别在x轴、y轴上,当点A在x轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点的最大距离是()A.6 B.C.D.【答案】D【解析】解:如图,取CA的中点D,连接OD、BD,则OD=CD=AC=×4=2,由勾股定理得,BD==2,当O、D、B三点共线时点B到原点的距离最大,所以,点B到原点的最大距离是2+2.故答案为2+2.【模型】二、借助三角形两边之和大于第三边,两边之差小于第三边1、如图,已知等边三角形ABC边长为,两顶点A、B分别在平面直角坐标系的x轴负半轴、轴的正半轴上滑动,点C在第四象限,连接OC,则线段OC长的最小值是()A−1 B.3C.3 D【答案】B【详解】解:如图所示:过点C作CE⊥AB于点E,连接OE,∵△ABC 是等边三角形,∴CE=AC×sin60°=3=,AE=BE , ∵∠AOB=90°,∴EO 12=AB = ∴EC-OE ≥OC ,∴当点C ,O ,E 在一条直线上,此时OC 最短,故OC 的最小值为:OC =CE ﹣EO =3故选B .2、如图,∠MON=90°,矩形ABCD 的顶点A 、B 分别在边OM 、ON 上,当B 在边ON 上运动时,A 随之在OM 上运动,矩形ABCD 的形状保持不变,其中AB=4,BC=2.运动过程中点D 到点O 的最大距离是______.【答案】【详解】如图,取AB 的中点E ,连接OE 、DE 、OD ,∵OD ≤OE+DE ,∴当O 、D 、E 三点共线时,点D 到点O 的距离最大,此时,∵AB=4,BC=2,∴OE=AE=12AB=2,∴OD 的最大值为:,故答案为3、如图,在ABC △中,90ACB ∠=°,30CAB ∠=°,6AB =,以线段AB 为边向外作等边ABD △,点E 是线段AB 的中点,连结CE 并延长交线段AD 于点F .(1)求证:四边形BCFD 为平行四边形;(2)求平行四边形BCFD 的面积;(3)如图,分别作射线CM ,CN ,如图中ABD △的两个顶点A ,B 分别在射线CN ,CM 上滑动,在这个变化的过程中,求出线段CD 的最大长度.【答案】(1)证明见解析;(2);(3)333+.【详解】(1)在ABC �中,ACB 90∠=°,CAB 30∠=°,ABC 60∠∴=°,在等边ABD �中,BAD 60∠=°,BAD ABC 60∠∠∴==°,E 为AB 的中点,AE BE ∴=,又AEF BEC ∠∠= ,AEF BEC ∴��≌,在ABC �中,ACB 90∠=°,E 为AB 的中点,1CE AB 2∴=,1BE AB 2=,CE AE ∴=,EAC ECA 30∠∠∴==°,BCE EBC 60∠∠∴==°,又AEF BEC ��≌,AFE BCE 60∠∠∴==°,又D 60∠=° ,AFE D 60∠∠∴==°,FC BD ∴�,又BAD ABC 60∠∠==° ,AD BC ∴�,即FD BC �,∴四边形BCFD 是平行四边形;(2)在Rt ABC �中,BAC 30∠=° ,AB 6=,1BC AB 32∴==,∴AC ==,BCFD S 3∴==平行四边形(3)取AB 的中点G ,连结CG ,DG ,CDCD CG DG ≤+ ,CD ∴的最大长度CG DG 3=+=+4、如图,在Rt ABC ∆中,90ACB ∠=A ,将ABC ∆绕顶点C 逆时针旋转得到'',A B C M ∆是BC 的中点,N 是''A B 的中点,连接MN ,若4,60BC ABC =∠=°,则线段MN 的最大值为( )A .4B .8C .D .6【答案】D【详解】连接CN , ∵将ABC ∆绕顶点C 逆时针旋转得到''A B C ∆,∴''=90A CB ACB ∠=∠°,''460'B C BC A B C ABC ==∠=∠=°,, ∴'30A ∠=°,''8A B =,∵N 是''A B 的中点, ∴1''42CN A B ==, ∵在∆C MN 中,MN <CM+CN ,当且仅当M ,C ,N 三点共线时,MN=CM+CN=6,∴线段MN 的最大值为6.故选D .【模型】三、借助构建全等图形1、如图,在△ABC 中,∠ACB =90°,∠A =30°,AB =5,点P 是AC 上的动点,连接BP ,以BP 为边作等边△BPQ ,连接CQ ,则点P 在运动过程中,线段CQ 长度的最小值是______.【答案】54.【详解】解:如图,取AB的中点E,连接CE,PE.∵∠ACB=90°,∠A=30°,∴∠CBE=60°,∵BE=AE,∴CE=BE=AE,∴△BCE是等边三角形,∴BC=BE,∵∠PBQ=∠CBE=60°,∴∠QBC=∠PBE,∵QB=PB,CB=EB,∴△QBC≌△PBE(SAS),∴QC=PE,∴当EP⊥AC时,QC的值最小,在Rt△AEP中,∵AE=52,∠A=30°,∴PE=12AE=54,∴CQ的最小值为54.故答案为:542、如图,边长为12的等边三角形ABC中,M是高CH所在直线上的一个动点,连结MB,将线段BM绕点B 逆时针旋转60°得到BN,连结HN.则在点M运动过程中,线段HN长度的最小值是()A.6 B.3 C.2 D.1.5 【答案】B【详解】解:如图,取BC的中点G,连接MG,∵旋转角为60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等边△ABC的对称轴,∴HB=12 AB,∴HB=BG,又∵MB旋转到BN,∴BM=BN,在△MBG 和△NBH 中,BG BH MBG NBH MB NB = ∠=∠ =, ∴△MBG ≌△NBH (SAS ),∴MG=NH ,根据垂线段最短,当MG ⊥CH 时,MG 最短,即HN 最短,此时∠BCH=12×60°=30°,CG=12AB=12×12=6, ∴MG=12CG=12×6=3, ∴HN=3;故选:B .【模型】四、借助中位线1、如图,在等腰直角∆ABC 中,斜边 AB 的长度为 8,以 AC 为直径作圆,点P 为半圆上的动点,连接 BP ,取 BP 的中点 M ,则CM 的最小值为( )A.B.C− D.−【答案】C【详解】解:连接AP 、CP ,分别取AB 、BC 的中点E 、F ,连接EF 、EM 和FM ,∴EM 、FM 和EF 分别是△ABP 、△CBP 和△ABC 的中位线∴EM ∥AP ,FM ∥CP ,EF ∥AC ,EF=12AC∴∠EFC=180°-∠ACB=90°∵AC 为直径∴∠APC=90°,即AP ⊥CP∴EM ⊥MF ,即∠EMF=90°∴点M 的运动轨迹为以EF 为直径的半圆上取EF 的中点O ,连接OC ,点O 即为半圆的圆心当O 、M 、C 共线时,CM 最小,如图所示,CM 最小为CM 1的长, ∵等腰直角∆ABC 中,斜边 AB 的长度为 8,∴AB =∴EF=12AC =,FC=12BC =,∴OM 1=OF=12EF根据勾股定理可得∴CM 1=OC -OM 1即CM 故选C .2、如图,抛物线2119y x =−与x 轴交于A B ,两点,D 是以点()0,4C 为圆心,1为半径的圆上的动点,E 是线段AD 的中点,连接,OE BD ,则线段OE 的最小值是()A .2BC .52D .3 【答案】A【详解】 ∵2119y x =−,∴当0y =时,21019x =−,解得:=3x ±,∴A 点与B 点坐标分别为:(3−,0),(3,0),即:AO=BO=3,∴O 点为AB 的中点,又∵圆心C 坐标为(0,4),∴OC=4,∴BC长度5=,∵O点为AB的中点,E点为AD的中点,∴OE为△ABD的中位线,即:OE=12 BD,∵D点是圆上的动点,由图可知,BD最小值即为BC长减去圆的半径,∴BD的最小值为4,∴OE=12BD=2,即OE的最小值为2,故选:A.。