郑州大学2000年至2013年数学分析考研试题
2000考研数学二真题及答案解析
邻域内当 x < 0 时曲线 y = f (x) 是凸的,在此去心临域内 x > 0 时曲线 y = f (x) 是凹的,
点 (0, f (0)) 是曲线 y = f (x) 的拐点,选(C).
(3)【答案】A 【分析】由选项答案可知需要利用单调性证明,关键在于寻找待证的函数. 题设中已知
f '(x)g(x) − f (x)g '(x) < 0,
f ′′′(x) = (x − [ f ′(x)]2 )′ = 1− 2 f ′(x) f ′′(x)
以 x = 0 代入,有 f ′′′(0) = 1 ,所以
= f ′′′(0) lim f ′′(x)= − f ′′(0) li= m f ′′(x) 1.
x→0
x−0
x→0 x
从而知,存在 x = 0 去心邻域,在此去心邻域内, f ′′(x) 与 x 同号,于是推知在此去心
(C)点 (0, f (0)) 是曲线 y = f (x) 的拐点.
(D) f (0) 不是 f (x) 的极值,点 (0, f (0)) 也不是曲线 y = f (x) 的拐点.
(3 ) 设 f (x), g(x) 是大于零的可导函数,且 f '(x)g(x) − f (x)g '(x) < 0, 则当 a < x < b 时,
(D) y′′′ − 2 y′′ − y′ + 2 y =0.
三、(本题满分 5 分)
∫ 设 f (ln x) = ln(1+ x) ,计算 f (x)dx .
x
四、(本题满分 5 分)
{ } 设 xoy 平面上有正方= 形 D (x, y) 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 及直线 l : x + y = t(t ≥ 0) .若
2000数学四--考研数学真题详解
一、填空题
∫ (1) arcsin x dx = ____________.
x
【答】 2 x arcsin x + 2 1 − x + C
【详解】令 t = x .,则 dt = 1 dx, dx = 2tdt 故 2x
∫
arcsin x
【答】 a 2 (a − 2n )
⎡ 1 0 −1⎤
【详解 1】
因为
A = αα T
=
⎢ ⎢
0
0
0
⎥ ⎥
,
αα
T
=
2,
⎢⎣−1 0 1 ⎥⎦
故有 An = αα T ⋅αα T ⋅ αα T
= α (α Tα )n−1α T = 2n−1 A,
故有 aE − An = aE − 2n−1 A
a − 2n−1 0 2n−1 = 0 a 0 = a2(a − 2n )
b→+∞ 1 e(e2 + e2x ) e b→+∞ 2
1
= e−2 (π − π ) = π e−2. 24 4
五 、(本题满分 8 分) 假设某企业在两个相互分割的市场上出手同一种产品,两个市场的需求函数分别是
p1 = 18 − 2Q1 , p3 = 12 − 2Q2 ,其中 p1, p2 分别表示该产品在两个市场的价格(单位: 万元/顿),Q1和Q2 分别表示改产品在两个市场的销售量(即需求量,单位:顿),并且该企 业生产这种产品的总成本函数是 C = 2Q + 5 ,其中 Q 表示该产品在两个市场的销售总量,
bx
)
3 x
3 ln ax +bx
2000考研数一真题答案及详细解析
一、填空题
(1)【答案】
4
【详解】 I 1 2x x2 dx 1 1 (x 1)2 dx
0Байду номын сангаас
0
解法 1:用换元积分法:设 x 1 sin t ,当 x 0 时,sin t 1,所以下限取 ;当 x 1 2
时, sin t 0 ,所以上限取 0 .
f
(x,
y,
z)dS
若f (x, y, z)关于y为奇函数 若f (x, y, z)关于y为偶函数
其中 S1 S {y 0} .
性质 3:设 f (x, y, z) 在分块光滑曲面 S 上连续, S 关于 xoy 平面对称,则
0
S
f
(x,
y,
z)dS
2
S1
f
(x,
y,
z)dS
若f (x, y, z)关于z为奇函数 若f (x, y, z)关于z为偶函数
性无关知, r 1,, m r 1,, m m, 因此 1,, m 线性无关,充分性成立;当m
= 1时,考虑1 (1, 0)T , 1 (0,1)T 均线性无关,但1 与 1 并不是等价的,必要性不成立.
(D) 剩下(D)为正确选项. 事实上,矩阵 A 1,, m 与矩阵 B 1,, m 等价 ⇔ r A =r B ⇔ r 1,, m r 1,, m m, 因此是向量组 1,, m 线性无关的充要
1
lim
x0
2 1
ex
4
ex
sin x
x
1.
四【详解】根据复合函数的求导公式,有
z x
f1 ' y
f
2000年全国硕士研究生入学统一考试数学一、二、三、四试题完整版附答案解析及评分标准
x y2
f12)
1 y2
f2
1 y
(xf21
x y2
f
22
)
1 x2
g
y x3
g
2000 年 • 第 2 页
f1
1 y2
f2 ' xyf11
x y3
f22
1 x2
g
y x3
g .
„„5 分
五、(本题满分 6 分)
计算曲线积分 I
L
xdy ydx 4x2 y2
,其中
L
是以点(1,0)为中心,R
三、(本题满分 5 分)
1
求
lim(
x0
2
ex
4
sin x
x) .
1 ex
1
4
3
解:因
lim
x0
(
2
ex
4
sin x
2e
) lim (
x
x0
x e
4
x
sin x) 1 x
,
1 ex
e x 1
1
1
2 ex
lim (
x0
4
sin x) x
2 ex
lim (
x0
4
sin x) 2 1 1, x
(5) 设二维随机变量 X ,Y 服从二维正态分布,则随机变量 X Y 与 X Y 不相关
的充分必要条件为
(B)
(A) E(X)=E(Y)
(B) E X 2 E X 2 E Y 2 E Y 2
(C) E X 2 E Y 2
(D) E X 2 E X 2 E Y 2 E Y 2
为半径的圆周(R>1).取逆时
2000考研数二真题及解析
2000 年全国硕士研究生入学统一考试数学二试题一、填空题(本题共5小题,每小题3分,满分15分,把答案填在题中横线上) (1) 30arctan lim.ln(12)x x xx →-=+(2) 设函数()y y x =由方程2xyx y =+所确定,则0.x dy==(3)2.+∞=⎰(4) 曲线1(21)xy x e =-的斜渐近线方程为.(5) 设1000230004500067A ⎡⎤⎢⎥-⎢⎥=⎢⎥-⎢⎥-⎣⎦,E 为4阶单位矩阵,且1()()B E A E A -=+-则 1()E B -+=.二、选择题(本题共5小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.) (1) 设函数()bx xf x a e=+在(,)-∞+∞内连续,且lim ()0,x f x →-∞=则常数,a b 满足 ( ) (A)0,0.a b << (B)0,0.a b >> (C)0,0.a b ≤> (D)0,0.a b ≥<(2) 设函数()f x 满足关系式2()[()]f x f x x '''+=,且(0)0f '=,则 ( )(A)(0)f 是()f x 的极大值. (B)(0)f 是()f x 的极小值.(C)点(0,(0))f 是曲线()y f x =的拐点.(D)(0)f 不是()f x 的极值,点(0,(0))f 也不是曲线()y f x =的拐点.(3 ) 设(),()f x g x 是大于零的可导函数,且'()()()'()0,f x g x f x g x -<则当a x b << 时,有 ( )(A)()()()()f x g b f b g x > (B) ()()()()f x g a f a g x > (C)()()()()f x g x f b g b >(D) ()()()()f x g x f a g a >(4) 若30sin 6()lim 0x x xf x x →+⎛⎫=⎪⎝⎭,则206()lim x f x x →+为 ( ) (A)0. (B)6. (C)36. (D)∞.(5) 具有特解123,2,3x x xy e y xe y e --===的3阶常系数齐次线性微分方程是 ( )(A)0.y y y y ''''''--+= (B)0.y y y y ''''''+--= (C)61160.y y y y ''''''-+-= (D)220.y y y y ''''''--+=三、(本题满分5分)设ln(1)(ln )x f x x+=,计算()f x dx ⎰. 四、(本题满分5分)设xoy 平面上有正方形{}(,)01,01D x y x y =≤≤≤≤及直线:(0)l x y t t +=≥.若()S t 表示正方形D 位于直线l 左下方部分的面积,试求0(),(0)xS t dt x ≥⎰.五、(本题满分5分)求函数2()ln(1)f x x x =+在0x =处的n 阶导数(0)(3)nf n ≥.六、(本题满分6分)设函数0()|cos |xS x t dt =⎰,(1)当n 为正整数,且(1)n x n ππ≤≤+时,证明2()2(1)n S x n ≤<+; (2)求()limx S x x→+∞.七、(本题满分7分)某湖泊的水量为V ,每年排入湖泊内含污染物A 的污水量为6V,流入湖泊内不含A 的水量为6V ,流出湖泊的水量为3V,已知1999年底湖中A 的含量为05m ,超过国家规定指标.为了治理污染,从2000年初起,限定排入湖泊中含A 污水的浓度不超过0mV.问至多需要经过多少年,湖泊中污染物A 的含量降至0m 以内(注:设湖水中A 的浓度是均匀的) 八、(本题满分6分)设函数()f x 在[]0,π上连续,且()0,()cos 0f x dx f x xdx ππ==⎰⎰,试证明:在(0,)π内至少存在两个不同的点12,ξξ,使12()()0.f f ξξ== 九、(本题满分7分)已知()f x 是周期为5的连续函数,它在0x =的某个邻域内满足关系式(1sin )3(1sin )8()f x f x x x α+--=+其中()x α是当0x →时比x 高阶的无穷小,且()f x 在1x =处可导,求曲线()y f x =在点(6,(6))f 处的切线方程.十、(本题满分8分)设曲线2(0,0)y ax a x =>≥与21y x =-交于点A ,过坐标原点O 和点A 的直线与曲线2y ax =围成一平面图形.问a 为何值时,该图形绕x 轴旋转一周所得的旋转体体积最大?最大体积是多少? 十一、(本题满分8分)函数()f x 在[0,)+∞上可导,(0)1f =且满足等式01()()()0,1xf x f x f t dt x '+-=+⎰ (1)求导数()f x ';(2)证明:当0x ≥时,成立不等式()1xe f x -≤≤成立十二、(本题满分6分)设11012,,0,,2180T TA B αβγαββα⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪===== ⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭.其中T β是β的转置,求解方程22442B A x A x B x γ=++十三、(本题满7分)已知向量组12301,2,1110a b βββ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭与向量组1231392,0,6317ααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭具有相同的秩,且3β可由123,,ααα线性表出,求,a b 的值.2000 年全国硕士研究生入学统一考试数学二试题解析一、填空题(1)【答案】16-【详解】()()()33ln 1222232322000011arctan arctan 11limlim lim lim 266ln 1261x x x x x x x x x x x x x x xx x +→→→→----+====-++洛(2)设函数()y y x =由方程2xyx y =+所确定,则0.x dy==【答案】(ln 21)dx - 【详解】 方法1:对方程2xyx y =+两边求微分,有2ln 2().xy xdy ydx dx dy ⋅+=+由所给方程知,当0x =时1y =. 将0x =,1y =代入上式,有ln 2dx dx dy ⋅=+. 所以,0(ln 21)x dy dx ==-.方法2:两边对x 求导数,视y 为该方程确定的函数,有2ln 2()1.xy xy y y ''⋅+=+当0x =时1y =,以此代入,得ln 21y '=-,所以0(ln 21)x dy dx ==-. (3)【答案】3π【详解】由于被积函数在2x =处没有定义,则该积分为广义积分.对于广义积分,可以先按照不定积分计算,再对其求极限即可.作积分变量替换,2,22,t x t dx tdt =-==02202122arctan .(9)33323t t dt t t ππ+∞+∞+∞==⋅=⋅=+⎰⎰(4)【答案】21y x =+【公式】y kx b =+为()y f x =的斜渐近线的计算公式:()()lim,lim [()]x x x x x x yk b f x kx x →∞→∞→+∞→+∞→-∞→-∞==-【详解】11lim lim (2)2,x x x y k e x x→+∞→+∞==-=10122lim (2)lim[(21)2]lim()u uxx u x e b y x x e x u e x u+→+∞→→+∞-=-=--= - 令 002(1)2lim()1lim()211u u u uu u e u e e u e uu ++→→-=- - -=-= 所以,x →+∞方向有斜渐近线21y x =+. 当x →-∞时,类似地有斜渐近线21y x =+. 总之,曲线1(21)xy x e =-的斜渐近线方程为21y x =+.(5)【答案】1000120002300034⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦【详解】先求出1()E B -+然后带入数值,由于1()()B E A E A -=+-,所以11111()()()()()()()12()()22000100024001200104600230200680034E B E E A E A E A E A E A E A E A E A -----⎡⎤+=++-⎣⎦⎡⎤=++++-⎣⎦⎡⎤=+=+⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥ ==⎢⎥⎢⎥--⎢⎥⎢⎥--⎣⎦⎣⎦-1-1-1二、选择题 (1)【答案】D【详解】排除法:如果0a <,则在(,)-∞+∞内()f x 的分母bx a e +必有零点0x ,从而()f x 在0x x =处不连续,与题设不符.不选()A ,若0b >,则无论0a =还是0a ≠均有lim (),x f x →-∞=∞与题设lim ()0x f x →-∞=矛盾,不选()B 和()C .故选()D .(2)【答案】C【定理应用】判断极值的第二充分条件:设函数()f x 在0x 出具有二阶导数且0()0f x '=,0()0f x ''≠,那么:(1) 当0()0f x ''>时,函数()f x 在0x 处取得极大值;(2)当0()0f x ''<时,函数()f x 在0x 处取得极小值;【详解】令等式2()[()]f x f x x '''+=中0x =,得[]2(0)0(0)0f f '''=-=,无法利用判断极值的第二充分条件,故无法判断是否为极值或拐点.再求导数(因为下式右边存在,所以左边也存在):[]2()(())12()()f x x f x f x f x ''''''''=-=-以0x =代入,有(0)1f '''=,所以0()(0)()(0)limlim 10x x f x f f x f x x→→''''''-'''===-. 从而知,存在0x =去心邻域,在此去心邻域内,()f x ''与x 同号,于是推知在此去心邻域内当0x <时曲线()y f x =是凸的,在此去心临域内0x >时曲线()y f x =是凹的, 点(0,(0))f 是曲线()y f x =的拐点,选(C).(3)【答案】A【分析】由选项答案可知需要利用单调性证明,关键在于寻找待证的函数. 题设中已知'()()()'()0,f x g x f x g x -< 想到设函数为相除的形式()()f xg x . 【详解】设()()()f x F xg x =,则()2'()()()'()()0,()f x g x f x g x F x g x -'=< 则()F x 在a x b <<时单调递减,所以对a x b ∀<<,()()()F a F x F b >>,即()()()()()()f a f x f bg a g x g b >> 得 ()()()(),f x g b f b g x >a x b <<,()A 为正确选项.(4)【答案】()C【分析】本题有多种解法:(1)将含有()f x 的要求极限的表达式凑成已知极限的表达式,或反之;(2)利用极限与无穷小的关系,从已知极限中解出()f x 代入要求极限式中;(3)将具体函数用佩亚诺余项泰勒公式展开化简原极限. 【详解】方法1: 凑成已知极限2336()6()6sin 6sin 6()f x x xf x x x x xf x x x x ++-++==而 23222000012(6)6sin 666cos66(1cos6)2lim lim lim lim 3633x x x x x x x x x x x x x→→→→⋅---====洛 (由于211cos 2x x -⇒211cos(6)(6)2x x -)所以 2330006()6sin 6sin 6()lim lim lim 36036x x x f x x x x xf x x x x →→→+++=+=+=方法2:由极限与无穷小关系,由已知极限式解出3sin 6()x xf x a x+=,0lim 0x a →= 从而 3sin 6()x xf x ax +=⇒3sin 6()ax xf x x-=33223sin 666()6sin 6ax x f x ax x x x x x x-+++-== 所以 323300006()6sin 66sin 6lim lim lim lim x x x x f x ax x x x xa x x x→→→→++--==+极限的四则运算 2220012(6)66cos620lim lim 3x x x x x x→→⋅-=+=36= 方法3: 将sin 6x 在0x =处按佩亚诺余项泰勒公式展开至3x 项:3333(6)sin 66()636(),3!x x x x x x x οο=-+=-+于是 3333sin 6()6()36()x xf x x xf x x x x x ο++-+=3236()()36,f x x x x ο+=-+ 从而 32330006()sin 6()()limlim 36lim 036036.x x x f x x xf x x x x xο→→→++=+-=+-=(5)【答案】B【详解】由特解12,2x xy e y xe --==,对照常系数线性齐次微分方程的特征方程、特征根与解的对应关系知道,21r =-为特征方程的二重根;由33xy e =可知11r =为特征方程的单根,因此特征方程为232(1)(1)10,r r r r r -+=+--=由常系数齐次线性微分方程与特征方程的关系,得该微分方程为0.y y y y ''''''--+=三【详解】方法1:为了求不定积分,首先需要写出()f x 的表达式.为此,令ln x t =,有tx e =ln(1)ln(1)()(ln )t tx e f t f x x e ++===()ln(1)ln(1)x x x x f x dx e e dx e de --=+=-+⎰⎰⎰ln(1)1xxxxxe e e e dx e--=-+++⎰ 分部积分 1ln(1)1x xxxxe e e e dx e -+-=-+++⎰ 拆项ln(1)(1)1ln(1)111ln(1)111ln(1)1(1)1ln(1)ln(1)xxxxx x xxx x xxx x xxx x x e e e dxe e e e dx dx e e e dx de e e e dx d e ee e x e C-----=-++-+=-++-+=-++-+=-++-++=-++-++⎰⎰⎰⎰⎰⎰⎰ 方法2:作积分变量替换,命ln x t =,21ln(1)1()(ln )ln(1)t f x dx f t dt dt t d t t t +⎛⎫=⋅==-+ ⎪⎝⎭⎰⎰⎰⎰ ln(1)1[](1)t dt t t t +=--+⎰ 分部积分 ln(1)11()1t dt t t t +=-+-+⎰ 部分分式求和 ln(1)11(1)1t dt d t t t t +=-+-++⎰⎰ln(1)ln ln(1)t t t C t+=-+--+ln(1)ln(1).x x x e e x e C -=-++-++四【详解】先写出面积()S t 的(分段)表达式,当01t <<时,图形为三角形,利用三角形的面积公式:21()2S t t =;当12t <<时,图形面积可由正方形面积减去小三角形面 积,其中由于x y t +=与1y =交点的纵坐标为1t -,于是, 小三角形的边长为:1(1)2t t --=-,所以222111()1(2)1(44)21222S t t t t t t =--=--+=-+-;当2t >时,图形面积就是正方形的面积:()1S t =, 则221, 01,21()1(2), 12,21, 2.t t S t t t t ⎧≤≤⎪⎪⎪=--<≤⎨⎪<⎪⎪⎩当01x ≤≤时,3320011();2236xxxt x S t dt t dt ⎛⎫==⋅= ⎪⎝⎭⎰⎰当12x <≤时,1122010111()()()[1(2)]22xx x S t dt S t dt S t dt t dt t dt =+=+--⎰⎰⎰⎰⎰3321111(1)(2)66663x x x x x =+----=-+-+ 当2x >时,2022()()()11 1.xx xS t dt S t dt S t dt dt x =+=+=-⎰⎰⎰⎰因此 3320101611()126312x x x S t dt x x x x x x ⎧≤≤⎪⎪⎪=-+-+<≤⎨⎪->⎪⎪⎩⎰五【详解】方法1:按莱布尼茨高阶导数公式:()()1(1)()()()().n n n k n k k n n n uv u v C u v C u v uv --'=+++++为了求ln(1)x +的n 阶导数,设ln(1)y x =+,11y x'=+;()()221111y x x ''=-=-++;()()()33112211y x x ⋅'''=--⋅=++;()()(4)4412123311y x x ⋅⋅⋅=-=-++一般地,可得1()(1)(1)!(1)n n nn yx ---=+即 []1()(1)(1)!ln(1)(1)n n nn x x ---+=+设ln(1)u x =+,2v x =,利用上述公式对函数展开,由于对2x 求导,从三阶导数开始就为零,故展开式中只含有前三项.123()212(1)(1)!(1)(2)!(1)(1)!()2(1).(1)(1)(1)n n n n n n n n n n fx x nx n n x x x -----------=++-+++代入0x =,得:1()3(1)!(0)(1)(1)(3)!,3,4.2n n n n fn n n n n ---=---==-方法2:()y f x =带佩亚诺余项的麦克劳林公式:()2(0)(0)()(0)(0)()2!!n n n f f f x f f x x x x n ο'''=+++++求(0)(3)nf n ≥可以通过先求()y f x =的的麦克劳林展开式,则展开式中nx 项的系数与!n 的乘积就是()y f x =在点0x =处的n 阶导数值)0()(n f.由麦克劳林公式,23212ln(1)(1)(),232n n n x x x x x x n ο---+=-+++-+- 所以 452231ln(1)(1)().232n n n x x x x x x x n ο--+=-+++-+- 对照麦克劳林公式()2(0)(0)(0)()(0)(),1!2!!n nn f f f f x f x x x x n ο'''=+++++从而推知()1(0)(1)!2n n f n n --=- 得 1()(1)!(0),3,4.2n n n f n n --==-六【详解】因为cos 0x ≥,且(1)n x n ππ≤<+, 所以(1)0cos cos cos .n x n x dx x dx x dx ππ+≤<⎰⎰⎰定积分的性质又因为cos x 具有周期π,所以在长度为π的积分区间上的积分值均相等:cos cos a ax dx x dx ππ+=⎰⎰,从而20(1)cos cos cos cos n n n x dx x dx x dx x dx ππππππ-=+++⎰⎰⎰⎰202cos (cos cos )n x dx n xdx xdx ππππ==-⎰⎰⎰202(sin sin )(1(01))2n x x n n πππ=-=--= 所以(1)0cos 2(1).n xdx n π+=+⎰所以 02cos 2(1),x n xdx n ≤<+⎰即 2()2(1).n S x n ≤<+(2) 由(1)有,当(1)n x n ππ≤≤+时,2()2(1)(1)n S x n n x n ππ+<<+命n →∞取极限,222lim lim 1(1)(1)n n n n nπππ→∞→∞==++,12(1)2(1)2lim lim n n n n n πππ→∞→∞++== 由夹逼定理,得()2limx S x x π→∞=.七【详解】设从2000年初(相应0t =)开始,第t 年湖泊中污染物A 的总量为m ,浓度为mV,则在时间间隔[,]t t dt +内,排入湖泊中A 的量为:00()66m mV t dt dt dt V ⋅+-=,流出湖泊的水中A 的量为33m V mdt dt V ⋅=. 因而时间从t 到t dt +相应地湖泊中污染物A 的改变量为:0()63m mdm dt =-. 由分离变量法求解:0()63dm dt m m =-两边求积分:001100()6333ln()63()()6363m m d m dm m dt t C t C m m m m -=⇔-=+⇔--=+--⎰⎰⎰ 10013ln()63363t C m m t C m m e +-+⇔-=⇔-=-103336C tm m e e --⇔-=-+⋅110033333,(3)22C C t tm mm e e m C e C e ----⇔=-⋅⇔=-⋅=初始条件为0(0)5m m =,代入初始条件得092C m =-. 于是03(19)2tm m e -=+,要满足污染物A 的含量可降至0m 内,命0m m =,得6ln3t =. 即至多需经过6ln3年,湖泊中A 的含量降至0m 以内.八【证明】 方法1:令0()(),0xF x f t dt x π=≤≤⎰,有(0)0,F =由题设有()0F π=.又由题设()cos 0f x xdx π=⎰,用分部积分,有0()cos cos ()f x xdx xdF x ππ==⎰⎰()cos ()sin F x xF x xdx ππ=+⎰0()sin F x xdx π=⎰由积分中值定理知,存在(0,)ξπ∈使0()sin ()sin (0)F x xdx F πξξπ==⋅-⎰因为(0,)ξπ∈,sin 0ξ≠,所以推知存在(0,),ξπ∈使得()0F ξ=. 再在区间[0,]ξ与[,]ξπ上对()F x 用罗尔定理,推知存在1(0,)ξξ∈,2(,)ξξπ∈使12()0,()0F F ξξ''==,即 12()0,()0f f ξξ== 方法2:由()0f x dx π=⎰及积分中值定理知,存在1(0,)ξπ∈,使1()0f ξ=. 若在区间(0,)π内()f x 仅有一个零点1ξ,则在区间1(0,)ξ与1(,)ξπ内()f x 异号. 不妨设在1(0,)ξ内()0f x >,在1(,)ξπ内()0f x <. 于是由()0,()cos 0f x dx f x xdx ππ==⎰⎰,有111101100()cos ()cos ()(cos cos )()(cos cos )()(cos cos )f x xdx f x dx f x x dxf x x dx f x x dxπππξπξξξξξ=-=-=-+-⎰⎰⎰⎰⎰当10x ξ<<时,1cos cos x ξ>,1()(cos cos )0f x x ξ->;当1x ξπ<<时,1cos cos x ξ<,仍有1()(cos cos )0f x x ξ->,得到:00>. 矛盾,此矛盾证明了()f x 在(0,)π仅有1个零点的假设不正确,故在(0,)π内()f x 至少有2个不同的零点.九【详解】为了求曲线()y f x =在点(6,(6))f 处的切线方程,首先需要求出()y f x =在6x =处的导数,即切线斜率. 而函数又是以周期为5的函数,且在1x =处可导,则在6x =处可导,且其导数值等于函数在1x =处的导数值.将(1sin )3(1sin )8()f x f x x x α+--=+两边令0x →取极限,由f 的连续性得(1)3(1)lim(8())0x f f x x α→-=+= ⇒ 2(1)0f -=故(1)0f =,又由原设()f x 在1x =处可导,两边同除sin x ,000(1sin )(1)(1sin )(1)8()lim3lim lim limsin sin sin sin x x x x f x f f x f x x x x x xα→→→→+---+=+- 根据导数的定义,得008()(1)3(1)limlim 8sin sin x x x x x x f f x x x xα→→''+=⋅+⋅= ⇒ 4(1)8f '= 所以(1)2f '=,又因(6)(51)(1)f f f '''=+=,所以(6)2f '=,由点斜式,切线方程为((6))(6)(6).y f f x '-=-以(6)(1)0,(6)2f f f '===代入得2(6).y x =- 即 2120.x y --=十【详解】首先联立两式,求直线与曲线的交点:221x ax -=,得:x =,而0x ≥,则交点坐标为:(,))1a x y a =+. 由点斜式,故直线OA的方程为y =由旋转体体积公式2()b aV f x dx π=⎰,要求的体积就是用大体积减去小体积:()2222224000()1a x V dx ax dx a x dx a =-=-+232525223(1)515(1)a x a x a a a ππ⎛=-=+⎝+为了求V 的最大值,对函数关于a 求导,225522221515(1)(1)dV a a da a a ππ''⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭53222552(1)(1)2215(1)a a a a a π⋅+-⋅+=⋅+ 322275255(1)[2(1)][2(1)]222215(1)15(1)a a a a a a a a a ππ++-+-=⋅=⋅++ 222277722251[22][2]22[4]22151515(1)(1)(1)a a a a a a a a a a πππ+---=⋅=⋅=⋅+++ 0a > 命0,dVda=得唯一驻点4a =,所以4a =也是V 的最大值点,最大体积为41875a V ==.十一【详解】(1) 为了求()f x ',将01()()()01xf x f x f t dt x '+-=+⎰两边同乘(1)x +,得 0(1)()(1)()()0,xx f x x f x f t dt '+++-=⎰两边对x 求导,得()(1)()()(1)()()0f x x f x f x x f x f x ''''+++++-=即 (1)()(2)()0x f x x f x '''+++=.上述方程为二阶可降阶微分方程,令()u f x '=,化为(1)(2)0x u x u '+++=,即(2)(1)du x dx u x +=-+ 两边求积分:(2)1(1)(1)1du x dx dx u x x +=-=-+++⎰⎰⎰即 1ln (ln(1))u x x C =-+++ 所以 11(ln(1))1()1x x C C x u ee e x --++-=±=±⋅⋅+ 令1C C e =±,则1xCe u x -=+,于是()1x Ce f x u x -'==+.再以0x =代入原方程001(0)(0)()(0)(0)01f f f t dt f f ''+-=+=⎰,由(0)1f =,有(0)1f '=-,于是1,()1xe Cf x x -'=-=-+. (2)方法1:用积分证.()(0)()1.1tx xe f x f f t dt dt t -'=+=-+⎰⎰而 0-000011t t xx x tt x e dt e dt e e t ->---≤≤=-=-+⎰⎰牛莱公式两边同乘以(1)-,得:101txxe e dt t ---≤-≤+⎰, 即 0()111txxe ef x dt t --≤=-≤+⎰方法2 :用微分学方法证.因(0)1,()0f f x '=<,即()f x 单调递减,所以当0x ≥时()1f x ≤. 要证()xf x e-≥,可转化为证明()0xf x e--≥,令()()x x f x e ϕ-=-,则(0)110ϕ=-=,且()()()01xxe xf x ef x x ϕ--'''=+≥+=+ (0x ≥)所以,当0x ≥时()0x ϕ≥,即()xf x e -≥. 结合两个不等式,推知当0x ≥时,()1xef x -≤≤. 证毕.十二【详解】由题设得110121210210211102T A αβ⎡⎤⎢⎥⎛⎫⎢⎥⎡⎤ ⎪===⎢⎥⎢⎥ ⎪⎣⎦ ⎪⎢⎥⎝⎭⎢⎥⎣⎦,11102221T B βα⎛⎫⎡⎤ ⎪===⎢⎥ ⎪⎣⎦ ⎪⎝⎭. 所以 ()22T T T A A αβαβααββ===,48AA =;24B =,216B =代入原方程22442B A x A x B x γ=++中,得16816Ax Ax x γ=++,即()82A E x γ-=其中E 是三阶单位矩阵,令[]123Tx x ,x ,x =,代入上式,得线性非齐次方程组1212123102201212x x x x x x x ⎧-+=⎪⎪-=⎨⎪⎪+-=⎩(1) 显然方程组得同解方程为12123201212x x x x x -=⎧⎪⎨+-=⎪⎩ (2) 令自由未知量 1x k,=解得23122x k,x k ==- 故方程组通解为1231022011122x k x k k x k ⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦--⎢⎥⎢⎥⎣⎦⎣⎦,(k 为任意常数)十三【详解】方法1:先求()123,,,γααα将矩阵作初等行变换,得()123139139139206061201231701020000,,ααα⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=→--→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦知()1232,,.γααα= 故()()1231232,,,,γβββγααα==,[]123,,βββ作初等行变换[]1230110121031110030a b ,,a b βββ-⎡⎤⎡⎤⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦因为()1232,,γβββ=,所以3a b =又3β可由123,,ααα线性表出,故()()12331232,,,,,γαααβγααα== 将[]1233,,,αααβ作初等行变换13913920610612123170110203b b b b ⎡⎤⎡⎤⎢⎥⎢⎥→---⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦()13912012600053123bb b b ⎡⎤⎢⎥⎢⎥-⎢⎥→⎢⎥-⎢⎥⎢⎥+-⎣⎦由()12332,,,γαααβ=,得()531203b b +-=,解得5b =,及315a b .== 方法2:由方法1中的初等变换结果可以看出12,αα线性无关,且31232ααα=+,故()1232,,γααα=,12,αα是123,,ααα的极大线性无关组. 又()()1231232,,,,γβββγααα==,123,,βββ线性相关. 从而得12301211310110100a ba b ,,,βββ===--计算三阶行列式得30a b -+=,得3a b =又3β可由123,,ααα线性表出 ,即可由12,αα线性表出,12,αα3β线性相关,有()123131313201061206120310010310003126b b b,,b b b b b ααβ==--=--=-+-行列式展开得()10631206b b ⎛⎫-+-= ⎪⎝⎭,所以()531203b b +-=,得5b =及315a b .== 方法3:先利用3β可由123,,ααα线性表出,故方程组()123,,X αααβ=有解,即12313920613170x b x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦有解. 对其增广矩阵施行初等行变化13913920610612123170110203b b b b ⎡⎤⎡⎤⎢⎥⎢⎥→---⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦()13921012600053123bb b b ⎡⎤⎢⎥⎢⎥-⎢⎥→⎢⎥-⎢⎥⎢⎥+-⎣⎦由其次线性方程组有解的条件(系数矩阵的秩等于增广矩阵的秩),知()53123b b +-51033b =-= 解得5b .=又因为1α和2α线性无关,且31232ααα=+,所以向量组123,,ααα的秩为2 ,由题设条件知()1232,,γβββ=,从而123001211310110100a b a b ,,,βββ===--解得15a =。
郑州大学655数学分析和915高等代数2018年考研真题试题考研参考书
2019郑州大学655数学分析和915高等代数2018考研真题试题考研参考书《2019郑州大学考研655数学分析和915高等代数考研复习指导》(收录郑大考研真题答案)由郑大考研尚研教育联合郑州大学优秀研究生经过半年时间共同合作整理编写而成。
郑大各专业考研复习指导,包含郑大考研分数线、报录比、考研大纲、导师信息等,内容紧凑权威细致,编排结构科学合理,为参加2019郑州大学考研的考生量身定做的必备专业课资料。
《2019郑州大学考研655数学分析和915高等代数复习》参考书目:《数学分析》复旦大学数学系欧阳光中等编,高教出版社(2007年4月第三版)《数学分析》马建国编,科学出版社(2011年6月版)《高等代数》北京大学数学系王萼芳等编,高教出版社(2013年8月第四版)适用科目:专业:070101★▲基础数学、070102▲计算数学、070103概率论与数理统计、070104应用数学、070105运筹学与控制论、071400统计学说明:☆表示该专业为国家级重点学科,▲表示该专业是省重点学科,★表示该专业有博士点。
※专业课初试考试科目:③655数学分析④915高等代数内容详情本书包括了以下几个部分内容:Part1-考试重难点:1、郑州大学《数学分析》老师上课讲义(欧阳光中第三版)2、郑州大学《数学分析》考研笔记3、郑州大学《高等代数》老师上课讲义(电子版)4、郑州大学《高等代数》考研总复习重难点习题精讲5、郑州大学《数学分析》期末考试试题及答案(18份)6、郑州大学《高等代数》期末考试试题和答案(4份)7、郑州大学《高等代数》考研内部习题集8、郑州大学《数学分析》考研内部习题集9、《数学分析》选讲(郑大数序系。
卜春霞编写)(电子版)10、《高等代数》选讲(郑大数序系。
陈铁生编写)(电子版)Part2-郑州大学历年考研真题与部分答案:汇编郑州大学考研专业课考试科目的数学分析1997——2018年考研真题+高等代数考研1996-2018年试题考研真题试卷,并配备数学分析2002——2018年和高等代数考研2002-2018年真题答案,方便考生检查自身的掌握情况及不足之处,并借此巩固记忆加深理解,培养应试技巧与解题能力。
2000年全国硕士研究生入学统一考试数学三试题及解析
2000年全国硕士研究生入学统一考试数学三试题及解析一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)设(,)()xyz f xy g y x=+,其中,f g 均可微,则_______z x ∂=∂。
【分析】本题考查抽象函数求偏导数的问题,直接利用复合函数求偏导公式进行. 【详解】1221z y yf f g x y x∂'''=+-∂(2)21_______xxdx e e+∞-=+⎰。
【分析】考查无穷区间上的反常积分。
利用换元法进行计算即可。
【详解】2222211limlim (arctan )xt eb bexxeeb b dx dt dtte et et e e e=+∞+∞-→+∞→+∞===+++⎰⎰⎰1l i m ()b πππ→+∞=-=(3)若四阶矩阵A 与B 相似; 矩阵为A 的特征值为1111,,,2345,则行列式1______BE --=。
【分析】利用相似矩阵的性质及矩阵特征值的性质先求出1B E --的特征值,然后利用特征值的公式计算行列式:12n A λλλ= ,其中12,,,n λλλ 是矩阵A 的n 个特征值。
【详解】因为矩阵A 与B 相似,而相似矩阵具有相同的特征值,所以矩阵B 的特征值为1111,,,2345,又由,(0)Bx x λλ=≠可得:11()(1)B E x x λ--=-,可见矩阵1B E --的特征值为1,2,3,4,从而有行列式14!24B E --==1,[0,1]32(),[3,6]90,x f x x ⎧∈⎪⎪⎪=∈⎨⎪⎪⎪⎩其它若k 使{}23P X k ≥=,则k 的取值范围是_____________【分析】考查随机变量概率密度与概率分布的概念.若将条件{}23P X k ≥=改换成{}21133P X k <=-=,则与分布函数就完全对应起来了,就可以得到答案.【详解】由题设{}23P X k ≥=,知{}21133P X k <=-=,而{}()k P X k f x dx -∞<=⎰,再由()f x 定义可知,13k ≤≤(5)设随机变量X 在区间[−1,2]上服从均匀分布;随机变量1,00,01,0X Y X X >⎧⎪==⎨⎪-<⎩,则方差()_______D Y =。
郑州大学2000-2009年硕士研究生入学考试数学分析与高等代数部分试题
郑州大学2003-2009年硕士研究生入学考试数学分析1. 试用极限的δε-定义证明:xx f 1sin )(=在),0(∞上连续2. 确定常数13sin 1lim 0220=+-⎰→dt t a t x bx xx 3. 设),(v u f 有二阶连续偏导数且满足Laplace 方程:02222=∂∂+∂∂vfu f ,试证:)2,(22xy y x f Z -=也满足Laplace 方程:02222=∂∂+∂∂yzx z4.dx x f xx x f )(13)(122⎰--=,求)(x f5.设)(0x f ''存在,试证:)()(2)()(lim020000x f hx f h x f h x f h ''=--++→ 6.求nn n x n n)cos )1(1(02+-+∑∞=的收敛域 7.计算积分:))2()(2322dxdy z y xy dzdx z y x dydz xz S++-+⎰⎰,其中)0(:2222≥=++z a z y x S 的上侧以下五题任选四题:8.试用两种不同的方法计算积分:dt e xdx I xt⎰⎰-=1129.设)(x f 在]1,0[有n 阶连续导数,0)2()0(==f f ,记)()1()(1x f x x F n --=,试证:0)(..),2,0()(=∈∃ξξn F t s 10.设)(x f 在),[b a 上连续,试证:(1))(x f 在),[b a 上一致连续当且仅当)(lim x f b x -→存在且有限 (2)当+∞=b 时,若)(lim x f x +∞→存在且有限,则)(x f 在),[+∞a 上一致连续,反之如何?11.dx yx yI ⎰+∞+=0221,试证:该广义积分在),[0+∞a 上一致收敛)0(0>a ,而在),0(+∞上非一致收敛12.设)(x f 在),0(+∞上可微,且0)(lim='+∞→x f x 试证:0)(lim =+∞→xx f x 2007郑大高代1. 填空题(1)设四阶行列式0532421043211021=D ,ij M 为元素ij a 的余下子式。
2000-2013年考研数学三历年真题及真题解析(世上最全收录)
研究生入学考试2000到2013年最新最全数学三考试试题2000年全国硕士研究生入学统一考试数学三试题一、填空题二、选择题2001年全国硕士研究生入学统一考试数学三试题一、填空题二、选择题2002年全国硕士研究生入学统一考试数学三试题一、填空题二、选择题2003年考研数学(三)真题一、 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设,0,0,0,1cos )(=≠⎪⎩⎪⎨⎧=x x xx x f 若若λ其导函数在x=0处连续,则λ的取值范围是_____. (2)已知曲线b x a x y +-=233与x 轴相切,则2b 可以通过a 表示为=2b ________.(3)设a>0,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而D 表示全平面,则⎰⎰-=Ddxdy x y g x f I )()(=_______.(4)设n 维向量0,),0,,0,(<=a a a TΛα;E 为n 阶单位矩阵,矩阵 TE A αα-=, T aE B αα1+=, 其中A 的逆矩阵为B ,则a=______.(5)设随机变量X 和Y 的相关系数为0.9, 若4.0-=X Z ,则Y 与Z 的相关系数为________.(6)设总体X 服从参数为2的指数分布,n X X X ,,,21Λ为来自总体X 的简单随机样本,则当∞→n 时,∑==n i i n X n Y 121依概率收敛于______.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设f(x)为不恒等于零的奇函数,且)0(f '存在,则函数xx f x g )()(=(A) 在x=0处左极限不存在. (B) 有跳跃间断点x=0.(C) 在x=0处右极限不存在. (D) 有可去间断点x=0. [ ] (2)设可微函数f(x,y)在点),(00y x 取得极小值,则下列结论正确的是(A) ),(0y x f 在0y y =处的导数等于零. (B )),(0y x f 在0y y =处的导数大于零. (C) ),(0y x f 在0y y =处的导数小于零. (D) ),(0y x f 在0y y =处的导数不存在. [ ] (3)设2nn n a a p +=,2nn n a a q -=,Λ,2,1=n ,则下列命题正确的是(A) 若∑∞=1n na条件收敛,则∑∞=1n np与∑∞=1n nq都收敛.(B) 若∑∞=1n na绝对收敛,则∑∞=1n np与∑∞=1n nq都收敛.(C) 若∑∞=1n na条件收敛,则∑∞=1n np与∑∞=1n nq敛散性都不定.(D) 若∑∞=1n na绝对收敛,则∑∞=1n np与∑∞=1n nq敛散性都不定. [ ](4)设三阶矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a b b b a b b b a A ,若A 的伴随矩阵的秩为1,则必有 (A) a=b 或a+2b=0. (B) a=b 或a+2b ≠0.(C) a ≠b 且a+2b=0. (D) a ≠b 且a+2b ≠0. [ ] (5)设s ααα,,,21Λ均为n 维向量,下列结论不正确的是(A) 若对于任意一组不全为零的数s k k k ,,,21Λ,都有02211≠+++s s k k k αααΛ,则s ααα,,,21Λ线性无关.(B) 若s ααα,,,21Λ线性相关,则对于任意一组不全为零的数s k k k ,,,21Λ,都有.02211=+++s s k k k αααΛ(C) s ααα,,,21Λ线性无关的充分必要条件是此向量组的秩为s.(D) s ααα,,,21Λ线性无关的必要条件是其中任意两个向量线性无关. [ ] (6)将一枚硬币独立地掷两次,引进事件:1A ={掷第一次出现正面},2A ={掷第二次出现正面},3A ={正、反面各出现一次},4A ={正面出现两次},则事件(A) 321,,A A A 相互独立. (B) 432,,A A A 相互独立.(C) 321,,A A A 两两独立. (D) 432,,A A A 两两独立. [ ] 三、(本题满分8分) 设).1,21[,)1(1sin 11)(∈--+=x x x x x f πππ 试补充定义f(1)使得f(x)在]1,21[上连续.四 、(本题满分8分)设f(u,v)具有二阶连续偏导数,且满足12222=∂∂+∂∂v f u f ,又)](21,[),(22y x xy f y x g -=,求.2222ygx g ∂∂+∂∂ 五、(本题满分8分) 计算二重积分 .)sin(22)(22dxdy y x e I Dy x +=⎰⎰-+-π其中积分区域D=}.),{(22π≤+y x y x六、(本题满分9分)求幂级数∑∞=<-+12)1(2)1(1n nnx n x 的和函数f(x)及其极值.七、(本题满分9分)设F(x)=f(x)g(x), 其中函数f(x),g(x)在),(+∞-∞内满足以下条件: )()(x g x f =',)()(x f x g =',且f(0)=0, .2)()(xe x g xf =+(1) 求F(x)所满足的一阶微分方程; (2) 求出F(x)的表达式. 八、(本题满分8分)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3, f(3)=1.试证必存在)3,0(∈ξ,使.0)(='ξf九、(本题满分13分) 已知齐次线性方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++++=+++++=+++++=+++++,0)(,0)(,0)(,0)(332211332211332211332211nn nn n n n n x b a x a x a x a x a x b a x a x a x a x a x b a x a x a x a x a x b a ΛΛΛΛΛΛΛΛΛΛΛΛΛΛ 其中.01≠∑=ni ia试讨论n a a a ,,,21Λ和b 满足何种关系时,(1) 方程组仅有零解;(2) 方程组有非零解. 在有非零解时,求此方程组的一个基础解系. 十、(本题满分13分) 设二次型)0(222),,(31232221321>+-+==b x bx x x ax AX X x x x f T ,中二次型的矩阵A 的特征值之和为1,特征值之积为-12. (1) 求a,b 的值;(2) 利用正交变换将二次型f 化为标准形,并写出所用的正交变换和对应的正交矩阵.十一、(本题满分13分) 设随机变量X 的概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x fF(x)是X 的分布函数. 求随机变量Y=F(X)的分布函数.十二、(本题满分13分)设随机变量X 与Y 独立,其中X 的概率分布为⎪⎪⎭⎫⎝⎛7.03.021~X ,而Y 的概率密度为f(y),求随机变量U=X+Y 的概率密度g(u).2004年全国硕士研究生入学统一考试数学三试题一、填空题:本题共6小题,每小题4分,满分24分. 请将答案写在答题纸指定位置上.(1) 若()0sin limcos 5x x xx b e a→-=-,则a =______,b =______.(2) 函数(),f u v 由关系式()(),f xg y y x g y =+⎡⎤⎣⎦确定,其中函数()g y 可微,且()0g y ≠,则2fu v∂=∂∂______. (3) 设()211,,2211,,2x xe x f x x ⎧-≤<⎪⎪=⎨⎪-≥⎪⎩ 则()2121f x dx -=⎰_____.(4) 二次型()()()()222123122331,,f x x x x x x x x x =++-++的秩为______. (5) 设随机变量X 服从参数为λ的指数分布,则{P X >=______.(6) 设总体X 服从正态分布()21,N μσ,总体Y 服从正态分布()22,N μσ,112,,,n X X X L 和212,,,n Y Y Y L 分别是来自总体X 和Y 的简单随机样本,则()()122211122n n i j i j X X Y Y E n n ==⎡⎤-+-⎢⎥⎢⎥=⎢⎥+-⎢⎥⎣⎦∑∑______. 二、选择题:本题共8小题,每小题4分,满分24分. 在每小题给出的四个选项中,只有一项符合题目要求,请把所选项前的字母填在答题纸指定位置上.(7) 函数()()()()2sin 212x x f x x x x -=--在下列哪个区间内有界.(A )()1,0- (B )()0,1 (C )()1,2 (D )()2,3(8) 设()f x 在(),-∞+∞内有定义,且()lim x f x a →∞=,()1,0,0,0,fx g x x x ⎧⎛⎫≠⎪ ⎪=⎝⎭⎨⎪=⎩则(A )0x =必是()g x 的第一类间断点 (B )0x =必是()g x 的第二类间断点 (C )0x =必是()g x 的连续点 (D )()g x 在点0x =处的连续性与a 的值有关.(9) 设()()1f x x x =-,则(A )0x =是()f x 的极值点,但()0,0不是曲线()y f x =的拐点 (B )0x =不是()f x 的极值点,但()0,0是曲线()y f x =的拐点 (C )0x =是()f x 的极值点,且()0,0是曲线()y f x =的拐点 (D )0x =不是()f x 的极值点,()0,0也不是曲线()y f x =的拐点 (10) 设有以下命题: ① 若()2121n n n uu ∞-=+∑收敛,则1n n u ∞=∑收敛② 若1nn u∞=∑收敛,则10001n n u∞+=∑收敛③ 若1lim1n n nu u +→∞>,则1n n u ∞=∑发散 ④ 若()1nn n uv ∞=+∑收敛,则1n n a ∞=∑,1n n v ∞=∑都收敛则以上命题中正确的是(A )①② (B )②③ (C )③④ (D )①④(11) 设()f x '在[],a b 上连续,且()()0,0f a f b ''><,则下列结论中错误的是 (A )至少存在一点()0,x a b ∈,使得()()0f x f a > (B )至少存在一点()0,x a b ∈,使得()()0f x f b > (C )至少存在一点()0,x a b ∈,使得()00f x '= (D )至少存在一点()0,x a b ∈,使得()00f x = (12) 设n 阶矩阵A 与B 等价,则必有(A )当()0A a a =≠时,B a = (B )当()0A a a =≠时,B a =- (C )当0A ≠时,0B = (D )当0A =时,0B =(13) 设n 阶矩阵A 的伴随矩阵*0A ≠,若1234,,,ξξξξ是非齐次线性方程组Ax b =的互不相等的解,则对应的齐次线性方程组0Ax =的基础解系(A )不存在 (B )仅含一个非零解向量 (C )含有两个线性无关的解向量 (D )含有三个线性无关的解向量(14) 设随机变量X 服从正态分布()0,1N ,对给定的()0,1α∈,数n u 满足{}P X u αα>=,若{}P X x α<=,则x 等于(A )2u α (B )12uα-(C )12u α- (D )1u α-三、解答题:本题共9小题,满分94分. 请将解答写在答题纸指定的位置上. 解答应写出文字说明、证明过程或演算步骤.(15)(本题满分8分)求22201cos lim sin x x x x →⎛⎫-⎪⎝⎭.(16)(本题满分8分)求)Dy d σ⎰⎰,其中D 是由圆224x y +=和()2211x y ++=所围成的平面区域(如图).(17)(本题满分8分)设()(),f x g x 在[],a b 上连续,且满足()()xxa a f t dt g t dt ≥⎰⎰,[),x ab ∈,()()bb aaf t dtg t dt =⎰⎰证明:()()bbaaxf x dx xg x dx ≤⎰⎰.(18)(本题满分9分)设某商品的需求函数为1005Q P =-,其中价格()0,20P ∈,Q 为需求量. (Ⅰ)求需求量对价格的弹性()0d d E E >;(Ⅱ)推导()1d dRQ E dP=-(其中R 为收益),并用弹性d E 说明价格在何范围内变化时,降低价格反而使收益增加.(19)(本题满分9分)设级数()468242462468x x x x +++-∞<<+∞⋅⋅⋅⋅⋅⋅L 的和函数为()S x .求: (Ⅰ)()S x 所满足的一阶微分方程; (Ⅱ)()S x 的表达式.(20)(本题满分13分)设()()()1231,2,0,1,2,3,1,2,2TTTa ab a b ααα==+-=---+,()1,3,3Tβ=-. 试讨论当,a b 为何值时,(Ⅰ)β不能由123,,ααα线性表示;(Ⅱ)β可由123,,ααα唯一地线性表示,并求出表示式;(Ⅲ)β可由123,,ααα线性表示,但表示式不唯一,并求出表示式.(21)(本题满分13分)设n 阶矩阵111b b bb A bb ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦L L M M M L. (Ⅰ)求A 的特征值和特征向量;(Ⅱ)求可逆矩阵P ,使得1P AP -为对角矩阵.(22)(本题满分13分)设,A B 为两个随机事件,且()()()111,,432P A P B A P A B ===,令 1,0,.A X A ⎧=⎨⎩发生,不发生 1,0,.B Y B ⎧=⎨⎩发生,不发生求:(Ⅰ)二维随机变量(),X Y 的概率分布; (Ⅱ)X 与Y 的相关系数XY ρ; (Ⅲ)22Z X Y =+的概率分布.(23)(本题满分13分) 设随机变量X 的分布函数为()1,,;,0,.x F x x x βαααβα⎧⎛⎫->⎪ ⎪=⎨⎝⎭⎪≤⎩其中参数0,1αβ>>. 设12,,,n X X X L 为来自总体X 的简单随机样本. (Ⅰ)当1α=时,求未知参数β的矩估计量; (Ⅱ)当1α=时,求未知参数β的最大似然估计量; (Ⅲ)当2β=时,求未知参数α的最大似然估计量.2005年全国硕士研究生入学统一考试数学三试题一、填空题:本题共6小题,每小题4分,满分24分. 请将答案写在答题纸指定位置上.(1) 极限22lim sin1x xx x →∞=+______. (2) 微分方程0xy y '+=满足初始条件()12y =的特解为______. (3) 设二元函数()()1ln 1x yz xex y +=+++,则()1,0dz =______.(4) 设行向量组()()()()2,1,1,1,2,1,,,3,2,1,,4,3,2,1a a a 线性相关,且1a ≠,则a =______.(5) 从数1,2,3,4中任取一个数,记为X ,再从1,,X L 中任取一个数,记为Y ,则{}2P Y ==______.(6) 设二维随机变量(),X Y 的概率分布为若随机事件{}0X =与{}1X Y +=相互独立,则a =______,b =______.二、选择题:本题共8小题,每小题4分,满分24分. 在每小题给出的四个选项中,只有一项符合题目要求,请把所选项前的字母填在答题纸指定位置上.(7) 当a 取下列哪个值时,函数()322912f x x x x a =-+-恰有两个不同的零点.(A )2 (B )4 (C )6 (D )8(8) 设()()22222123,cos ,cos DDDI I x y d I x y d σσσ==+=+⎰⎰⎰⎰⎰⎰,其中(){}22,1D x y xy =+≤,则(A )321I I I >> (B )123I I I >> (C )213I I I >> (D )312I I I >> (9) 设0,1,2,,n a n >=L 若1nn a∞=∑发散,()111n n n a ∞-=-∑收敛,则下列结论正确的是(A )211n n a∞-=∑收敛,21nn a∞=∑发散 (B )21nn a∞=∑收敛,211n n a∞-=∑发散(C )()2121n n n aa ∞-=+∑收敛 (D )()2121n n n a a ∞-=-∑收敛(10) 设()sin cos f x x x x =+,下列命题中正确的是 (A )()0f 是极大值,2f π⎛⎫⎪⎝⎭是极小值 (B )()0f 是极小值,2f π⎛⎫⎪⎝⎭是极大值 (C )()0f 是极大值,2f π⎛⎫⎪⎝⎭也是极大值 (D )()0f 是极小值,2f π⎛⎫⎪⎝⎭也是极小值 (11) 以下四个命题中,正确的是(A )若()f x '在()0,1内连续,则()f x 在()0,1内有界 (B )若()f x 在()0,1内连续,则()f x 在()0,1内有界 (C )若()f x '在()0,1内有界,则()f x 在()0,1内有界 (D )若()f x 在()0,1内有界,则()f x '在()0,1内有界 (12) 设矩阵()33ijA a ⨯=满足*T A A =,其中*A 为A 的伴随矩阵,TA 为A 的转置矩阵.若111213,,a a a 为三个相等的正数,则11a 为(A )3 (B )3 (C )13(D (13) 设12,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为12,αα,则()112,A ααα+线性无关的充分必要条件是(A )10λ= (B )20λ= (C )10λ≠ (D )20λ≠ (14)(注:该题已经不在数三考纲范围内)三、解答题:本题共9小题,满分94分. 请将解答写在答题纸指定的位置上. 解答应写出文字说明、证明过程或演算步骤.(15)(本题满分8分)求011lim 1x x x e x -→+⎛⎫- ⎪-⎝⎭.(16)(本题满分8分)设()f u 具有二阶连续导数,且(),y x g x y f yfx y ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,求222222g g x y x y ∂∂-∂∂.(17)(本题满分9分) 计算二重积分221Dx y d σ+-⎰⎰,其中(){},01,01D x y x y =≤≤≤≤.(18)(本题满分9分) 求幂级数211121n n x n ∞=⎛⎫-⎪+⎝⎭∑在区间()1,1-内的和函数()S x .(19)(本题满分8分)设()(),f x g x 在[]0,1上的导数连续,且()()()00,0,0f f x g x ''=≥≥.证明:对任何[]0,1α∈,有()()()()()()11ag x f x dx f x g x dx f a g ''+≥⎰⎰(20)(本题满分13分) 已知齐次线性方程组(ⅰ)123123123230,2350,0,x x x x x x x x ax ++=⎧⎪++=⎨⎪++=⎩ 和 (ⅱ)()12321230,210,x bx cx x b x c x ++=⎧⎪⎨+++=⎪⎩ 同解,求,,a b c 的值.(21)(本题满分13分) 设T AC D C B ⎛⎫= ⎪⎝⎭为正定矩阵,其中,A B 分别为m 阶,n 阶对称矩阵,C 为m n ⨯阶矩阵.(Ⅰ)计算T P DP ,其中1mn E A C P OE -⎛⎫-=⎪⎝⎭; (Ⅱ)利用(Ⅰ)的结果判断矩阵1T B C A C --是否为正定矩阵,并证明你的结论.(22)(本题满分13分)设二维随机变量(),X Y 的概率密度为()0,01,02,,1,x y x f x y <<<<⎧=⎨⎩其它. 求:(Ⅰ)(),X Y 的边缘概率密度()(),X Y f x f y ; (Ⅱ)2Z X Y =-的概率密度()Z f z ; (Ⅲ)1122P Y X ⎧⎫≤≤⎨⎬⎩⎭.(23)(本题满分13分)设()12,,,2n X X X n >L 为来自总体()20,N σ的简单随机样本,其样本均值为X ,记,1,2,,i i Y X X i n =-=L .(Ⅰ)求i Y 的方差,1,2,,i DY i n =L ; (Ⅱ)求1Y 与n Y 的协方差()1,n Cov Y Y ;(Ⅲ)若()21n c Y Y +是2σ的无偏估计量,求常数c .2006年全国硕士研究生入学统一考试数学三试题一、填空题:1-6小题,每小题4分,共24分. 把答案填在题中横线上. (1) ()11lim ______.nn n n -→∞+⎛⎫=⎪⎝⎭(2) 设函数()f x 在2x =的某邻域内可导,且()()ef x f x '=,()21f =,则()2____.f '''=(3) 设函数()f u 可微,且()102f '=,则()224z f x y =-在点(1,2)处的全微分()1,2d _____.z=(4) 设矩阵2112A ⎛⎫=⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则=B . (5)设随机变量X Y 与相互独立,且均服从区间[]0,3上的均匀分布,则{}{}max ,1P X Y ≤=_______.(6) 设总体X 的概率密度为()()121,,,,2xn f x e x X X X -=-∞<<+∞L 为总体X 的简单随机样本,其样本方差为2S ,则2____.ES =二、选择题:7-14小题,每小题4分,共32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7) 设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在点0x 处的增量,d y y ∆与分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则()(A) 0d y y <<∆. (B) 0d y y <∆<.(C) d 0y y ∆<<. (D) d 0y y <∆< .(8) 设函数()f x 在0x =处连续,且()22lim1h f h h →=,则()(A) ()()000f f -'=且存在 (B) ()()010f f -'=且存在 (C) ()()000f f +'=且存在 (D)()()010f f +'=且存在 (9) 若级数1nn a∞=∑收敛,则级数()(A)1nn a∞=∑收敛 . (B )1(1)nn n a ∞=-∑收敛.(C)11n n n a a∞+=∑收敛. (D)112n n n a a ∞+=+∑收敛. (10) 设非齐次线性微分方程()()y P x y Q x '+=有两个不同的解12(),(),y x y x C 为任意常数,则该方程的通解是()(A) []12()()C y x y x -. (B) []112()()()y x C y x y x +-. (C) []12()()C y x y x +. (D) []112()()()y x C y x y x ++ (11) 设(,)(,)f x y x y ϕ与均为可微函数,且(,)0y x y ϕ'≠,已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是()(A) 若00(,)0x f x y '=,则00(,)0y f x y '=. (B) 若00(,)0x f x y '=,则00(,)0y f x y '≠. (C) 若00(,)0x f x y '≠,则00(,)0y f x y '=.(D) 若00(,)0x f x y '≠,则00(,)0y f x y '≠. (12) 设12,,,s αααL 均为n 维列向量,A 为m n ⨯矩阵,下列选项正确的是() (A) 若12,,,s αααL 线性相关,则12,,,s A A A αααL 线性相关. (B) 若12,,,s αααL 线性相关,则12,,,s A A A αααL 线性无关. (C) 若12,,,s αααL 线性无关,则12,,,s A A A αααL 线性相关.(D) 若12,,,s αααL 线性无关,则12,,,s A A A αααL 线性无关.(13) 设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的1-倍加到第2列得C ,记110010001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则()(A) 1C P AP -=. (B) 1C PAP -=.(C) T C P AP =. (D) T C PAP =.(14) 设随机变量X 服从正态分布211(,)N μσ,随机变量Y 服从正态分布222(,)N μσ,且{}{}1211P X P Y μμ-<>-<则必有()(A) 12σσ< (B) 12σσ> (C) 12μμ< (D) 12μμ>三、解答题:15-23小题,共94分. 解答应写出文字说明、证明过程或演算步骤. (15)(本题满分7分)设()1sin,,0,01arctan xy y yf x y x y xy xπ-=->>+,求: (Ⅰ)()()lim ,y g x f x y →+∞=;(Ⅱ)()0lim x g x +→。
2000年数学三真题答案解析
A T A bi2 0. i 1
故有 bi 0 , i 1,2,n 从而有 A 0 ,即 也是方程组 (I ) : AX 0 的解.
(5)【答案】C
【详解】随机变量 T(1) ,T(2) ,T(3) ,T(4) 为 4 个温控器显示的按递增顺序排列的温度值,事件 E 表
示事件“电炉断电”,即有两个温控器显示的温度不低于 t0 ,此时必定两个显示较高的温度大
3
2.) 3
所以,答案应该填1 k 3 或1,3.
(5)【答案】 8 . 9
【详解】由于题中 Y 是离散型随机变量,其所取值的概率分别为 PX 0, P X 0 和
2
PX 0 .又由于 X 是均匀分布,所以可以直接得出这些概率,从而实现由 X 的概率计算
过渡到 Y 的概率.
PY 1 P X 0 0 (1) 1;
即 f (a) 0 所以当 f (a) 0 时必不可导,选 (B) .
(3)【答案】(C)
【详解】 因为 1 1,2,3,4T 是非齐次方程 组的解向量所以我们有 A1 b ,故 1 是
AX b 的一个特解
又 r A 3,n 4 (未知量的个数),故 AX b 的基础解系由一个非零解组成. 即基础
f (x)
x6 2x2 x4 1
,
满足条件
但是由于
lim
x
x6 2x2 x4 1
x6 x2 x4 1
lim
x
x2 x4 1
0
,
f
(x)
x6 x2 x4 1
x2 ,
有 lim f (x) ,极限不存在,故不选 (B) ,所以选 (D) . x
因为最终结论是“ (D) :不一定存在”,所以只能举例说明“可以这样”“可以那样”,无法给
2000考研数学二真题及答案
y x3
g .
„„5 分
五、(本题满分 6 分)
计算曲线积分 I
L
xdy ydx 4x2 y2
,其中
L
是以点(1,0)为中心,R
为半径的圆周(R>1).取逆时
针方向.
解: P
y 4x2 y2
,Q
x 4x2
y2
P
.
y
y2 4x2 (4x2 y2)2
Q , x
(x, y) (0, 0) . „„1 分
解: z x
yf1
1 y
f
2
y x2
g ',
„„2 分
2z xy
f1 y(xf11
x y2
f12)
1 y2
f2
1 y
(
xf21
x y2
f
22
)
1 x2
g
y x3
g
2000 年 • 第 2 页
.2000 年数学试题参考解答及评分标准
f1
1 y2
f2 ' xyf11
x y3
f22
1 x2
g
„„2 分
即 f (x) (1 1) f (x) 1 e2x, x 0 .按一阶线性非齐次微分方程通解公式,有
x
x
f
(x)
(1 1 )dx
e x
1 x
e2x
e
(
1 x
1) d x
dx
C
ex x
1 x
e2 x .xe x dx
C
ex x
(ex
C)
.
„„5
分
2000 年 • 第 3 页
2000年-2013年考研数学一历年真题
2000年-2013年考研数学一历年真题2000年-2013年考研数学一历年真题2000年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)202x x dx -?=_____________.(2)曲面2222321xy z ++=在点(1,2,2)--的法线方程为_____________.(3)微分方程30xy y '''+=的通解为_____________.(4)已知方程组12312112323120x a x a x +=-??????无解,则a = _____________. (5)设两个相互独立的事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相等,则()P A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设()f x 、()g x 是恒大于零的可导函数,且()()()()0f x g x f x g x ''-<,则当a x b <<时,有( )(A)()()()()f x g b f b g x >(B)()()()()f x g a f a g x >(C)()()()()f x g x f b g b >(D)()()()()f x g x f a g a >(2)设22221:(0),S x y z a z S ++=≥为S 在第一卦限中的部分,则有( )(A)14SS xdS xdS =(B)14SS ydS xdS =(C)14SS zdS xdS =(D)14SS xyzdS xyzdS =(3)设级数1nn u∞=∑收敛,则必收敛的级数为( )(A)1(1)nnn un ∞=-∑ (B)21nn u∞=∑(C)2121()n n n uu ∞-=-∑(D)11()nn n uu ∞+=+∑(4)设n 维列向量组1,,()m m n <ααL 线性无关,则n 维列向量组1,,m ββL 线性无关的充分必要条件为( )(A)向量组1,,m ααL 可由向量组1,,m ββL 线性表示 (B)向量组1,,m ββL可由向量组1,,m ααL 线性表示(C)向量组1,,m ααL与向量组1,,m ββL 等价(D)矩阵1(,,)m =AααL 与矩阵1(,,)m =B ββL 等价(5)设二维随机变量(,)X Y 服从二维正态分布,则随机变量X Y ξ=+与X Y η=-不相关的充分必要条件为( )(A)()()E X E Y =(B)2222()[()]()[()]E X E X E Y E Y -=-(C)22()()E X E Y =(D)2222()[()]()[()]E XE X E Y E Y +=+三、(本题满分6分)求142e sin lim().1exx xxx→∞+++四、(本题满分5分)设(,)()x xz f xy g y y=+,其中f具有二阶连续偏导数,g 具有二阶连续导数, 求2.zx y五、(本题满分6分)计算曲线积分224L xdy ydx Ix y -=+?,其中L 是以点(1,0)为中心,R 为半径的圆周(1),R>取逆时针方向.六、(本题满分7分)设对于半空间x >内任意的光滑有向封闭曲面,S 都有2()()e 0,xSxf x dydz xyf x dzdx zdxdy --=??ò其中函数()f x 在(0,)+∞内具有连续的一阶导数,且0lim ()1,x f x +→=求()f x .七、(本题满分6分)求幂级数113(2)nnnn x n ∞=+-∑的收敛区间,并讨论该区间端点处的收敛性.八、(本题满分7分)设有一半径为R 的球体0,P 是此球的表面上的一个定点,球体上任一点的密度与该点到0P 距离的平方成正比(比例常数0k>),求球体的重心位置.九、(本题满分6分) 设函数()f x 在[0,]π上连续,且0()0,()cos 0.f x dx f x xdx ππ==??试证:在(0,)π内至少存在两个不同的点12,,ξξ使12()()0.f f ξξ==十、(本题满分6分)设矩阵A 的伴随矩阵*10000100,10100308=??-??A 且113--=+ABA BA E ,其中E 为4阶单位矩阵,求矩阵B .十一、(本题满分8分)某适应性生产线每年1月份进行熟练工与非熟练工的人数统计,然后将16熟练工支援其他生产部门,其缺额由招收新的非熟练工补齐.新、老非熟练工经过培训及实践至年终考核有25成为熟练工.设第n 年1月份统计的熟练工与非熟练工所占百分比分别为n x 和,n y 记成向量.n n x y ??(1)求11n n x y ++??与n n x y ?? 的关系式并写成矩阵形式:11.n n n n x x y y++= ? ?????A(2)验证1241,11-== ? ?ηη是A 的两个线性无关的特征向量,并求出相应的特征值.(3)当111212x y ??= ? ? ?时,求11.n n x y ++?? ???十二、(本题满分8分)某流水线上每个产品不合格的概率为(01)p p <<,各产品合格与否相对独立,当出现1个不合格产品时即停机检修.设开机后第1次停机时已生产了的产品个数为X,求X 的数学期望()E X 和方差()D X .十三、(本题满分6分)设某种元件的使用寿命X的概率密度为2()2e (;)0x x f x x θθθθ-->?=?≤?,其中0θ>为未知参数.又设12,,,n x x x L 是X的一组样本观测值,求参数θ的最大似然估计值.2001年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)设e (sin cos )(,x y a x b x a b =+为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为_____________.(2)222z y x r++=,则(1,2,2)div(grad )r -= _____________.(3)交换二次积分的积分次序:?--0112),(y dx y x f dy =_____________.(4)设24+-=A A E O ,则1(2)--A E = _____________.(5)()2D X =,则根据车贝晓夫不等式有估计≤≥-}2)({X E X P_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设函数)(x f 在定义域内可导,)(x f y =的图形如右图所示,则)(x f y '=的图形为(A)(B)(C)(D)(2)设),(y x f 在点(0,0)的附近有定义,且1)0,0(,3)0,0(='='y x f f 则(A)(0,0)|3dz dx dy =+ (B)曲面),(y x f z=在(0,0,(0,0))f 处的法向量为{3,1,1} (C)曲线(,)z f x y y ==在(0,0,(0,0))f 处的切向量为{1,0,3}(D)曲线(,)z f x y y ==在(0,0,(0,0))f 处的切向量为{3,0,1}(3)设0)0(=f 则)(x f 在x =0处可导?(A)20(1cos )limh f h h →-存在(B)(1e )limhh f h→-存在(C)2(sin )limh f h h h →-存在(D)hh f h f h )()2(lim-→存在(4)设1111400011110000,11110000111100???? ?== ? ? ?A B ,则A 与B (A)合同且相似 (B)合同但不相似 (C)不合同但相似(D)不合同且不相似(5)将一枚硬币重复掷n 次,以X 和Y 分别表示正面向上和反面向上的次数, 则X 和Y 相关系数为 (A) -1(B)0(C)12(D)1三、(本题满分6分)求2arctan e exxdx ?.四、(本题满分6分) 设函数),(y x f z =在点(1,1)可微,且3)1,1(,2)1,1(,1)1,1(='='=y x f f f ,)),(,()(x x f x f x =?,求3)(=x x dxd ?.五、(本题满分8分)设()f x =21arctan 010x x x xx +≠=,将)(x f 展开成x的幂级数,并求∑∞=--1241)1(n n n的和.六、(本题满分7分) 计算222222()(2)(3)LI y z dx z x dy x y dz=-+-+-??,其中L是平面2=++z y x 与柱面1=+y x 的交线,从Z 轴正向看去,L 为逆时针方向.七、(本题满分7分) 设)(x f 在(1,1)-内具有二阶连续导数且0)(≠''x f .证明:(1)对于1,0()0,1(Y -∈?x ,存在惟一的)1,0()(∈x θ,使)(x f =)0(f +))((x x f x θ'成立.(2)5.0)(lim 0=→x x θ.八、(本题满分8分) 设有一高度为tt h )((为时间)的雪堆在融化过程,其侧面满足方程)()(2)(22t h y x t h z +-=(设长度单位为厘米,时间单位为小时),已知体积减少的速率与侧面积成正比(系数为0.9),问高度为130厘米的雪堆全部融化需多少时间?九、(本题满分6分) 设12,,,s αααL为线性方程组=AX O 的一个基础解系,1112221223121,,,s s t t t t t t =+=+=+βααβααβααL ,其中21,t t 为实常数,试问21,t t 满足什么条件时12,,,s βββL 也为=AX O 的一个基础解系?十、(本题满分8分) 已知三阶矩阵A和三维向量x,使得2,,A A x x x线性无关,且满足3232=-A A A x x x .(1)记2(,,),=PA A x x x 求B 使1-=A PBP .(2)计算行列式+A E .十一、(本题满分7分) 设某班车起点站上客人数X 服从参数为(0)λλ>的泊松分布,每位乘客在中途下车的概率为(01),p p <<且中途下车与否相互独立.Y 为中途下车的人数,求:(1)在发车时有n 个乘客的条件下,中途有m 人下车的概率. (2)二维随机变量(,)X Y 的概率分布.十二、(本题满分7分) 设2~(,)X N μσ抽取简单随机样本122,,,(2),n X X X n ≥K样本均值∑==ni i X n X 2121,∑=+-+=ni i n i X X X Y 12)2(,求().E Y2002年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)∞+exx dx2ln = _____________.(2)已知2e 610yxy x ++-=,则(0)y ''=_____________.(3)02='+''y y y 满足初始条件1(0)1,(0)2y y '==的特解是_____________. (4)已知实二次型323121232221321444)(),,(x x x x x x x x x a x x x f +++++=经正交变换可化为标准型216y f =,则a =_____________.(5)设随机变量),(~2σμN X ,且二次方程042=++X y y 无实根的概率为0.5,则μ=_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)考虑二元函数),(y x f 的四条性质:①),(y x f 在点),(00y x 处连续, ②),(y x f 在点),(00y x 处的一阶偏导数连续,③),(y x f 在点),(00y x 处可微, ④),(y x f 在点),(00y x 处的一阶偏导数存在.则有:(A)②?③?① (B)③?②?① (C)③?④?①(D)③?①?④(2)设0≠nu ,且1lim=∞→n n u n ,则级数)11()1(11+++-∑n n n u u 为(A)发散 (B)绝对收敛 (C)条件收敛(D)收敛性不能判定.(3)设函数)(x f 在+R 上有界且可导,则(A)当0)(lim =+∞→x f x 时,必有0)(lim ='+∞→x f x(B)当)(lim x f x '+∞→存在时,必有0)(lim ='+∞→x f x(C) 当0)(lim 0=+→x f x 时,必有0)(lim 0='+→x f x(D) 当)(lim 0x f x '+→存在时,必有0)(lim 0='+→x f x .(4)设有三张不同平面,其方程为i i i i d zc y b x a =++(3,2,1=i )它们所组成的线性方程组的系数矩阵与增广矩阵的秩都为2,则这三张平面可能的位置关系为(5)设X 和Y 是相互独立的连续型随机变量,它们的密度函数分别为)(x f X 和)(y f Y ,分布函数分别为)(x F X 和)(y F Y ,则(A))(x f X +)(y f Y 必为密度函数 (B) )(x f X )(y f Y 必为密度函数(C))(x F X+)(y F Y 必为某一随机变量的分布函数 (D) )(x F X )(y F Y 必为某一随机变量的分布函数.三、(本题满分6分) 设函数)(x f 在0x =的某邻域具有一阶连续导数,且0)0()0(≠'f f ,当0→h 时,若)()0()2()(h o f h bf h af =-+,试求b a ,的值.四、(本题满分7分)已知两曲线)(x f y =与2arctan 0e x t y dt -=?在点(0,0)处的切线相同.求此切线的方程,并求极限)2(limnnf n ∞→.五、(本题满分7分)计算二重积分22max{,}y Ddxdy,其中}10,10|),{(≤≤≤≤=y x y x D .六、(本题满分8分) 设函数)(x f 在R 上具有一阶连续导数,L 是上半平面(y >0)内的有向分段光滑曲线,起点为(b a ,),终点为(d c ,).记dy xy f y yxdx xy f y y I]1)([)](1[1222-++=?,(1)证明曲线积分I 与路径L 无关. (2)当cd ab =时,求I 的值.七、(本题满分7分) (1)验证函数∑∞==03)!3()(n nn x x y (+∞<<∞-x )满足微分方程e x y y y '''++=. (2)求幂级数∑∞==03)!3()(n nn x x y 的和函数.八、(本题满分7分)设有一小山,取它的底面所在的平面为xoy 面,其底部所占的区域为}75|),{(22≤-+=xy y x y x D ,小的高度函数为),(y x h xy y x +--=2275.(1)设),(00y x M 为区域D 上一点,问),(y x h 在该点沿平面上何方向的方向导数最大?若此方向的方向导数为),(00y x g ,写出),(00y x g 的表达式.(2)现欲利用此小山开展攀岩活动,为此需要在山脚下寻找一山坡最大的点作为攀登的起点.也就是说要在D 的边界线上找出使(1)中),(y x g 达到最大值的点.试确定攀登起点的位置.九、(本题满分6分) 已知四阶方阵1234(,,,)=A αααα, 1234,,,αααα均为四维列向量,其中234,,ααα线性无关,1232=-ααα.若1234=+++βαααα,求线性方程组x =A β的通解.十、(本题满分8分) 设,A B 为同阶方阵,(1)若,A B 相似,证明,A B 的特征多项式相等. (2)举一个二阶方阵的例子说明(1)的逆命题不成立.(3)当,A B 为实对称矩阵时,证明(1)的逆命题成立.十一、(本题满分7分) 设维随机变量X的概率密度为()f x =1cos 0220 xx x对X 独立地重复观察4次,用Y 表示观察值大于3π的次数,求2Y 的数学期望.十二、(本题满分7分) 设总体的概率分布为X123P 2θ)1(2θθ-2θθ21-其中θ(12θ<<)是未知参数,利用总体X的如下样本值3,1,3,0,3,1,2,3.求θ的矩估计和最大似然估计值.2003年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1))1ln(102)(cos lim x x x +→ = .22y x z +=与平面42=-+z y x 平行的切平面的方程是 .(3)设)(cos 02ππ≤≤-=∑∞=x nx a xn n ,则2a = .(4)从2R 的基1211,01== ? ?-αα到基1211,12== ? ?????ββ的过渡矩阵为 .(5)设二维随机变量(,)X Y 的概率密度为(,)f x y =60x 01x y ≤≤≤其它,则=≤+}1{Y X P .(6)已知一批零件的长度X (单位:cm)服从正态分布)1,(μN ,从中随机地抽取16个零件,得到长度的平均值为40 (cm),则μ的置信度为0.95的置信区间是 .(注:标准正态分布函数值.)95.0)645.1(,975.0)96.1(=Φ=Φ二、选择题(本题共6小题,每小题4分,满分24分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)设函数()f x 在),(+∞-∞内连续,其导函数的图形如图所示,则()f x 有(A)一个极小值点和两个极大值点(B)两个极小值点和一个极大值点 (C)两个极小值点和两个极大值点 (D)三个极小值点和一个极大值点(2)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A)n n b a <对任意n 成立(B)n n c b <对任意n 成立(C)极限n n n c a ∞→lim 不存在(D)极限n n n c b ∞→lim 不存在(3)已知函数(,)f x y 在点(0,0)的某个邻域内连续,且1)(),(lim2220,0=+-→→y x xyy x f y x ,则(A)点(0,0)不是(,)f x y 的极值点(B)点(0,0)是(,)f x y 的极大值点(C)点(0,0)是(,)f x y 的极小值点(D)根据所给条件无法判断点(0,0)是否为(,)f x y 的极值点(4)设向量组I:12,,,r αααL 可由向量组II:12,,,s βββL 线性表示,则(A)当s r <时,向量组II 必线性相关 (B)当s r >时,向量组II 必线性相关(C)当s r <时,向量组I 必线性相关(D)当s r>时,向量组I 必线性相关(5)设有齐次线性方程组0x =A 和0x =B ,其中,A B 均为n m ?矩阵,现有4个命题:① 若0x=A 的解均是0x =B 的解,则秩()≥A 秩()B② 若秩()≥A 秩()B ,则0x =A 的解均是0x =B 的解③ 若0x=A 与0x =B 同解,则秩()=A 秩()B④ 若秩()=A 秩()B , 则0x =A 与0x =B 同解以上命题中正确的是(A)①②(B)①③(C)②④(D)③④(6)设随机变量21),1)((~X Y n n t X =>,则(A)2~()Y n χ(B)2~(1)Yn χ-(C)~(,1)Y F n(D)~(1,)Y F n三、(本题满分10分) 过坐标原点作曲线ln y x =的切线,该切线与曲线ln y x =及x 轴围成平面图形D .(1)求D 的面积A .(2)求D 绕直线e x =旋转一周所得旋转体的体积V.四、(本题满分12分) 将函数x xx f 2121arctan)(+-=展开成x 的幂级数,并求级数∑∞=+-012)1(n n n 的和.五、(本题满分10分)已知平面区域}0,0),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界.试证:(1)sin sin sin sin ee e e yx y x LLx dy y dx x dy y dx ---=-??蜒.(2)sin sin 2e e 2.y x Lx dy y dx π--≥??六、(本题满分10分)某建筑工程打地基时,需用汽锤将桩打进土层.汽锤每次击打,都将克服土层对桩的阻力而作功.设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为.0k k >).汽锤第一次击打将桩打进地下a m.根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的功之比为常数(01)r r<<.问 (1)汽锤击打桩3次后,可将桩打进地下多深? (2)若击打次数不限,汽锤至多能将桩打进地下多深? (注:m 表示长度单位米.)七、(本题满分12分) 设函数()y y x =在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是()y y x =的反函数.(1)试将()x x y =所满足的微分方程0))(sin (322=++dy dx x y dyx d 变换为()y y x =满足的微分方程.(2)求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解.八、(本题满分12分) 设函数()f x 连续且恒大于零,+++=Ω)(22)(222)()()(t D t d y xf dvz y x f t F σ,?-+=tt D dxx f d y x f t G 12)(22)()()(σ,其中}),,{()(2222t z y x z y x t ≤++=Ω,}.),{()(222t y x y x t D ≤+=(1)讨论()F t 在区间),0(+∞内的单调性. (2)证明当0t >时,).(2)(t G t F π>九、(本题满分10分)设矩阵322232223=??A ,010101001??=P ,1*-=B P A P ,求2+B E 的特征值与特征向量,其中*A 为A 的伴随矩阵,E 为3阶单位矩阵.十、(本题满分8分)已知平面上三条不同直线的方程分别为:1l 032=++c by ax ,:2l 032=++a cy bx , :3l 032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++cb a十一、(本题满分10分)已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品. 从甲箱中任取3件产品放入乙箱后,求:(1)乙箱中次品件数的数学期望.(2)从乙箱中任取一件产品是次品的概率.十二、(本题满分8分) 设总体X的概率密度为()f x =2()2e 0x θ-- 0x x θ>≤ 其中0>θ是未知参数.从总体X中抽取简单随机样本n X X X ,,,21Λ,记).,,,min(?21nX X X Λ=θ (1)求总体X 的分布函数()F x .(2)求统计量θ?的分布函数)(?x F θ. (3)如果用θ作为θ的估计量,讨论它是否具有无偏性.2004年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上) (1)曲线ln y x =上与直线1=+y x 垂直的切线方程为__________ .(2)已知(e )e x x f x -'=,且(1)0f =,则()f x =__________ .(3)设L为正向圆周222=+y x 在第一象限中的部分,则曲线积分-Lydx xdy 2的值为__________.(4)欧拉方程)0(024222>=++x y dx dyx dx y d x的通解为__________ . (5)设矩阵210120001??=??A ,矩阵B 满足**2=+ABA BA E ,其中*A 为A 的伴随矩阵,E 是单位矩阵,则B=__________ .(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >= __________ .二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt t xx x===0302sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A)γβα,,(B)βγα,, (C)γαβ,,(D)αγβ,,(8)设函数()f x 连续,且,0)0(>'f 则存在0>δ,使得(A)()f x 在(0,)δ内单调增加(B)()f x 在)0,(δ-内单调减少(C)对任意的),0(δ∈x 有()(0)f x f >(D)对任意的)0,(δ-∈x 有()(0)f x f >(9)设∑∞=1n na为正项级数,下列结论中正确的是(A)若n n na ∞→lim=0,则级数∑∞=1n na 收敛(B)若存在非零常数λ,使得λ=∞→n n na lim,则级数∑∞=1n na 发散(C)若级数∑∞=1n na 收敛,则0lim2=∞→n n a n(D)若级数∑∞=1n na发散, 则存在非零常数λ,使得λ=∞→n n na lim(10)设()f x 为连续函数,??=ttydx x f dy t F 1)()(,则)2(F '等于(A)2(2)f(B)(2)f(C)(2)f -(D) 0(11)设A 是3阶方阵,将A 的第1列与第2列交换得B ,再把B 的第2列加到第3列得C ,则满足=AQ C 的可逆矩阵Q 为(A)101001010(B)100101010(C)110001010(D)100001110 (12)设,A B 为满足=AB O 的任意两个非零矩阵,则必有 (A)A 的列向量组线性相关,B 的行向量组线性相关(B)A 的列向量组线性相关,B 的列向量组线性相关(C)A 的行向量组线性相关,B 的行向量组线性相关(D)A 的行向量组线性相关,B 的列向量组线性相关 (13)设随机变量X 服从正态分布(0,1),N 对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A)2αu(B)21α-u(C)21α-u(D)α-1u(14)设随机变量)1(,,,21>n X X X n Λ独立同分布,且其方差为.02>σ 令∑==ni iX n Y 11,则(A)21Cov(,)X Y nσ=(B)21Cov(,)X Y σ=(C)212)(σnn Y X D +=+(D)211)(σnn Y X D +=-三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤) (15)(本题满分12分) 设2e e a b <<<,证明2224ln ln ()e b a b a ->-. (16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).100.66?=k 问从着陆点算起,飞机滑行的最长距离是多少?(注:kg 表示千克,km/h 表示千米/小时) (17)(本题满分12分) 计算曲面积分,)1(322233dxdy z dzdx y dydz x I ??∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧.(18)(本题满分11分) 设有方程10nxnx +-=,其中n 为正整数.证明此方程存在惟一正实根n x ,并证明当1α>时,级数1nn x α∞=∑收敛.(19)(本题满分12分) 设(,)z z x y =是由2226102180x xy y yz z -+--+=确定的函数,求(,)z z x y =的极值点和极值.(20)(本题满分9分) 设有齐次线性方程组121212(1)0,2(2)20,(2),()0,n n n a x x x x a x x n nx nx n a x ++++=??++++=?≥?++++=?L L L L L L L L L试问a 取何值时,该方程组有非零解,并求出其通解.(21)(本题满分9分)设矩阵12314315a -=--??A 的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化.(22)(本题满分9分) 设,A B 为随机事件,且111(),(|),(|)432P A P B A P A B ===,令;,,0,1不发生发生A A X ??= .,,0,1不发生发生B B Y = 求:(1)二维随机变量(,)X Y 的概率分布.(2)X和Y 的相关系数.XY ρ。
2000-数学二真题、标准答案及解析
【答】
因此对任意的 x ∈ ( −∞, +∞ ) , 有, , 这只需 a ≥ 0 【详解】 由题设,f ( x ) 在 ( −∞, +∞ ) 内连续,
飞
即可.
翔 考
应选(D)
研
梦
另外,由 lim f ( x ) = 0 知, lim a + e
x →−∞ x →−∞
(
bx
所以必有 b < 0 故正确答案为(D) (2)设函数 f ( x ) 满足关系式 f (A) f ( 0 ) 是 f ( x ) 的极大值 (B) f ( 0 ) 是 f ( x ) 的极小值
x →0
sin 6 x + xf ( x ) 6 + f ( x) = 0, 则 lim 为 3 0 x → x x2
(B)6 (C)36 (D) ∞ 【 】
(A)0 【答】 【详解】 应选(C) 方法一:
因为 sin 6 x = 6 x − 所以有
1 3 ( 6 x ) + o ( x3 ) 3!
x 0
【详解】
梦
飞
根据题设,有
1 2 ⎧ t ,0 ≤ t ≤1 ⎪ 2 ⎪ ⎪ 1 S ( t ) = ⎨− t 2 + 2t − 1,1 < t ≤ 2 ⎪ 2 1, t > 2 ⎪ ⎪ ⎩
翔 考
S ( t ) 表示正方形 D 位于直线 l 的左下方部分的面积,试求 ∫ S ( t )dt ( x ≥ 0 ) .
可见正确选项为(B)
【详解】设 ln x = t , 则 x = e ,于是
t
et
从而
e
x
= x − (1 + e x ) ln (1 + e x ) + C
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f
(t )dt
.
四.设 f ( x) 在 (−∞, +∞) 内可导,且 f ′(0) = a (常数),对任意 x, y ∈(−∞, +∞) ,
都有 f ( x + y=) f ( x) + f ( y) + 2xy ,试求:函数 f ( x) 的表达式.
五.设 u = x , v= 1 − 1 , w = 1 ,
到 f ( x) 的定义;
2.设{ fn ( x)}在[0,1]上一致收敛到 f ( x) ,且每个 fn ( x) 在[0,1]上有界,
求证:(1)极限函数 f ( x) 在[0,1]上有界;
(2)函数列{ fn ( x)}在[0,1]上一致有界.
郑州大学 2002 年数学分析考研试题
( x − 2)( x −1)
∫ Pdx + Qdy ≤ LM ,其中L是曲线的l 长,M= max P2 + Q2
l
( x, y)∈l
∫ ( )2 证明:lim ( ) R→∞
x2 + y2 = R2
ydx − xdy x2 + xy + y2
2
=0
6.设是{x收n} 敛数列,则对于任何数列
————
( ) 成立 lim n→∞
3.试证:函数列 fn = ( x) nx (1− x)n 在区间 a ≤ x ≤ 1 上一致收敛( 0 < a < 1);
4.试证:函数 f ( x) = ex cos 1 在 (0,1) 内不一致收敛.
x
三.设 f ( x) 在 [a,b] 上连续,在 (a,b) 内可导,且 f= (a) f= (b) 0 ,试证:存在
xn + yn =
lim
n→∞
xn
+
lim
n→∞
yn
{ yn } ,
∞
= 7.证明:f在(开x)区∑间,n−内x 连续,且(1有+连∞)续导数。 n=1
= 8.设证lni→m明∞ a:n
a= , lim a1 + a2 + ... + an
n→∞
n
a
9.设f在(闭x)区间,上满[0 足2]以及 f ( x) ≤ 1,
f ( x0 += ∆x)
f
( x0 ) +
f
′( x0
+θ∆x) ∆x
,试证 lim θ ∆x→0
( ∆x )
=1 . 2
8.设函数列{ fn ( x)} 在区间[a,b] 上点点收敛,且存在常数 M > 0 ,使对 ∀n 及
∀x ∈[a,b] 成立
f
′
n
(
x
)
≤M
,试证:{ fn ( x)}在[a,b] 上一致收敛.
x2 + y2 + z2 = a2 , z ≥ 0 的上侧.
∑ 6.设
f
(x)
=
∞ n=1
cos nx n2
,
(1)试证: f ( x) 在[0,π ] 上连续;
(2)证明 f ( x) 在[0,π ] 有连续导数.
7.设 f ( x) 在 x0 附近有二阶连续导数, f ′′( x0 ) ≠ 0 ,
郑州大学 2000 年数学分析考研试题
一.计算下列各题
1.求
lim
x→0
1 x2
−
cot x
x
;
∫ 2.求 a x2 a2 − x2 dx , (a > 0) ; 0
( )4 x+ y
3.求二重积分 ∫∫ D
x2
dxdy ,其中 D 是由 x 轴, y = x , x + y = 1和
x + y = 2 所围有界闭区域.
f '' ( x) ≤ 1,则在,[0上2] f ' ( x) ≤ 2
10.设在 f (,x)上可[0积1] ,且而在 m ≤ f ( x) ≤ M , g ( x)
( ) [m, M ]上连续且下凸,证明g
1
∫0
f
(
x)
dx
≤
1
∫0
g
(
f
(
x))dx
郑州大学数学分析 2008 年试卷
一、 计算极限(每题 10 分,共 20 分)
x2 a2
−
y2 b2
−
z2 c2
dxdydz,
x2 V 是椭球体 a2
+
y2 b2
+
z2 c2
≤ 1,(a,b, c
>
0)
4.设0级≤数µ收n <敛1,。(n = 1, 2,3,...),
∞
∑ µn
n=1
∑∞
证明:收敛
un
n=1 n (1− un )
5.(1)设、P 是Q二元连续函数,是平l 面光滑曲线,则
ξ ∈(a,b) ,使得 f ′(ξ ) + f 2 (ξ ) = 0 .
证明
设F (x) =
f
( )x
x f (t )dt
e∫a
,则有 F ( x) 在[a,b] 上连续,在 (a,b) 内可导,
( ) F (a) = 0 , F (b) = 0 , F= ′( x)
f ′(x)+
f 2 (x)
x
1.用定义证明: lim
=0.
x→1 ( x − 3)
2.设
g
(
x)
有二阶连续导数,且
g
(0)
= 1,
f
(x)
=
g
(
x)
− x
cos
x
,
x
≠
0
,
a, x = 0
(1)确定 a 的值,使 f ( x) 在 x = 0 处连续;
(2)求 f ′( x) ;
(3)讨论 f ′( x) 的连续性.
3.设
( ) ∫∫ 4.求曲面积分 xz2dydz + x2 ydzdx + xy + y2z dxdy 其中 S 是中心在原点,半径为 S
a 的上半球的上侧.
二.解答下列各题
∑ 1.求级数
∞
( −1)n
3n (n +1)
之和;
n=0
n!
∫ 2.判别广义积分
+∞ 1
1− x
ln
1
+
1 x
dx
的敛散性;
郑州大学数学分析 2007 年试卷
各题均为 15 分,共计 150 分
∫ 1.求
lim
x→0
1 x5
x e−t2 dt
0
−
1 x4
+
1 3x2
( ) 2.设f有连续的二阶偏导数, µ = f x − y, x2 − y2
求
∂2µ ∂x2
,
∂2µ ∂y 2
∫∫∫ 3.计算 V
1−
z
为由方程
F
y x
,
z x
=
0
所决定的隐函数,试证:xBiblioteka ∂z ∂x+
y
∂z ∂y
= z .
4.计算二重积分 ∫∫ y − x2 dxdy ,其中 D : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. D
( ) ( ) ∫∫ 5.计算曲面积分 xz2dydz + x2 y − z3 dzdx + 2xy + y2z dxdy ,其中 S 为上半球面: S
yx
z
以 w 为新函数, u, v 为新自变量,试变换方程 x2 ∂z + y2 ∂z = z2 . ∂x ∂y
∫ 六.试证: lim n→∞
1 0
e−x
1
+
x n
n
dx
= 1.
八.1.设{ fn ( x)}和 f ( x) 为定义于区间 I 上的函数,叙述{ fn ( x)}在 I 上一致收敛