材料物理性能期末复习题
材料物理性能期末复习题

期末复习题一、填空(20)1.一长30cm的圆杆,直径4mm,承受5000N的轴向拉力。
如直径拉成3.8 mm,且体积保持不变,在此拉力下名义应力值为,名义应变值为。
2.克劳修斯—莫索蒂方程建立了宏观量介电常数与微观量极化率之间的关系。
3.固体材料的热膨胀本质是点阵结构中质点间平均距离随温度升高而增大。
4.格波间相互作用力愈强,也就是声子间碰撞几率愈大,相应的平均自由程愈小,热导率也就愈介电常数一致,虚部表示了电介质中能量损耗的大小。
.当磁化强度M为负值时,固体表现为抗磁性。
8.电子磁矩由电子的轨道磁矩和自旋磁矩组成。
9.无机非金属材料中的载流子主要是电子和离子。
10.广义虎克定律适用于各向异性的非均匀材料。
•(1-m)2x。
11.设某一玻璃的光反射损失为m,如果连续透过x块平板玻璃,则透过部分应为 I12.对于中心穿透裂纹的大而薄的板,其几何形状因子。
13.设电介质中带电质点的电荷量q,在电场作用下极化后,正电荷与负电荷的位移矢量为l,则此偶极矩为 ql 。
14.裂纹扩展的动力是物体内储存的弹性应变能的降低大于等于由于开裂形成两个新表面所需的表面能。
15.Griffith微裂纹理论认为,断裂并不是两部分晶体同时沿整个界面拉断,而是裂纹扩展的结果。
16.考虑散热的影响,材料允许承受的最大温度差可用第二热应力因子表示。
17.当温度不太高时,固体材料中的热导形式主要是声子热导。
18.在应力分量的表示方法中,应力分量σ,τ的下标第一个字母表示方向,第二个字母表示应力作用的方向。
19.电滞回线的存在是判定晶体为铁电体的重要根据。
20.原子磁矩的来源是电子的轨道磁矩、自旋磁矩和原子核的磁矩。
而物质的磁性主要由电子的自旋磁矩引起。
21. 按照格里菲斯微裂纹理论,材料的断裂强度不是取决于裂纹的数量,而是决定于裂纹的大小,即是由最危险的裂纹尺寸或临界裂纹尺寸决定材料的断裂强度。
22.复合体中热膨胀滞后现象产生的原因是由于不同相间或晶粒的不同方向上膨胀系数差别很大,产生很大的内应力,使坯体产生微裂纹。
《材料物理性能》期末考试试卷A卷及参考答案A,2019年12月

第 1 页#############材料科学与工程专业 《材料物理性能》期末考试试卷(A) (后附参考答案及评分标准)考试时间:120分钟 考试日期:2019年12月一、单项选择题。
(请将正确答案填入对应题号处,共 20 分,每题 2 分) 1. 关于材料热容的影响因素,下列说法中不正确的是 。
A .热熔是一个与温度相关的物理量,因此需要用微分来精确定义B .实验证明,高温下化合物的热容可由柯普定律描述C .德拜热容模型已经能够精确描述材料热容随温度的变化D .材料热容与温度的精确关系一般由实验来确定2. 晶格的热传导必须用声子的(1) 近似来解释,此时的声子(2)理想气体, 因为声子之间 (3) 碰撞。
A .(1)简谐 (2) 是 (3)不发生B .(1)非简谐 (2)是 (3)发生C .(1)近自由电子 (2)不是 (3)发生D .(1)紧束缚 (2)不是 (3)不发生3. 在评价电介质的主要电学性能指标中,属于导电性性能指标的是_________。
A .介电常数B .耐电强度C .损耗因素D .体电阻率与表面电阻率年级 专业 姓名 学号装订线4. 附图是导体、半导体、绝缘体在热力学温度T = 0 K时的能带结构图。
其中属于绝缘体的能带结构是。
A. (1)B. (2)C. (1)、(3)D. (3)5. 如果(1)锗用锑(五价元素)掺杂,(2)硅用铝(三价元素)掺杂,则获得的半导体分别属于下述类型:。
A.(1)、(2)均为n型半导体B.(1)为n型半导体,(2)为p型半导体C. (1)为p型半导体,(2)为n型半导体D.(1)、(2)均为p型半导体6. 根据电介质的分类,H2O属于。
A.非极性电介质B.极性电介质C.铁电体D.铁磁体7. 对于顺磁体与抗磁体,下面表述正确的是__________。
A.正常顺磁体的磁化率随温度变化而变化,反常顺磁体的磁化率与温度无关B.不论是正常顺磁体,还是反常顺磁体,其磁化率都随温度变化而变化C.正常抗磁体的磁化率随温度变化而变化,反常抗磁体的磁化率与温度无关D.不论是正常抗磁体,还是反常抗磁体,其磁化率都与温度无关8. 下面列举的磁性中属于强磁性的是。
材料物理性能期末复习题

材料物理性能期末复习题材料物理性能马基申定则及表达式?固溶体电阻率看成由金属基本电阻率ρ(T)和残余电阻率ρ残组成。
不同散射机制对电阻率的贡献可以加法求和。
这一导电规律称为马基申定律,固溶体的电阻与组元的关系在形成固溶体时,与纯组元相比,合金的导电性能降低了原因:纯组元间原子半径差所引起的晶体点阵畸变,增加了电子的散射,且原子半径差越大,固溶体的电阻也越大。
这种合金化对电阻的影响还有如下几方面:一是杂质对理想晶体的局部破坏;二是合金化对能带结构起了作用,移动费米面并改变了电子能态的密度和有效导电电子数;三是合金化也影响弹性常数,因此点阵振动的声子谱要改变。
半导体测量的四探针法测量原理,设有一均匀的半导体试样,其尺寸与探针间距相比可视为无限大,探针引入点电流源的电流强度为I。
因均匀导体内恒定电场的等位面为球面,故在半径为r处等位面的面积为2πr2,则电流密度为j=I/2πr2。
电场强度E=j/σ=jρ=Iρ/2πr2,因此,距点电荷r处的电位为V=Iρ/2πr。
电阻分析的作用:电阻分析法来研究材料的成分、结构和组织变化的灵敏度很高,它能极敏感地反映出材料内部的微弱变化。
半导体特点:电阻率(ρ在10-3~109Ωm) 禁带宽度E g在0.2~3.5eV,其电学性能总是介于金属导体(ρ<10-5Ωm, E g=0)与绝缘体(ρ>109Ωm, E g>3.5eV)间。
半导体的分类?分为晶体半导体、非晶半导体及有机半导体。
晶体半导体:又分为元素(单质)半导体、化合物半导体、固溶体半导体;价电子共有化运动:在半导体晶体中,由于原子之间的距离很小,使得每一个原子中的价电子除受本身原子核及内层电子的作用外,还受到其他原子的作用。
在本身原子和相邻原子的共同作用下,价电子不再是属于各个原子,而成为晶体中原子所共有半导体中电子的能量状态-能带:在半导体晶体中,由于原子之间的距离很小,使得每一个原子中的价电子除受本身原子核及内层电子的作用外,还受到其他原子的作用。
大学《材料物理性能》复习核心知识点、习题库及期末考试试题答案解析

大学《材料物理性能》复习核心知识点、习题库及期末考试试题答案解析目录《材料物理性能》习题库(填空、判断、选择、简答计算题) (1)《材料物理性能》复习核心知识点 (15)清华大学《材料物理性能》期末考试试题及答案解析 (25)上海交通大学《材料物理性能》期末考试试题 (31)《材料物理性能》习题库(填空、判断、选择、简答计算题)一、填空1.相对无序的固溶体合金,有序化后,固溶体合金的电阻率将。
2.马基申定则指出,金属材料的电阻来源于两个部分,其中一个部分对应于声子散射与电子散射,此部分是与温度的金属基本电阻,另一部分来源于与化学缺陷和物理缺陷而与温度的残余电阻。
3.某材料的能带结构是允带内的能级未被填满,则该材料属于。
4.离子晶体的导电性主要是离子电导,离子电导可分为两大类,其中第一类源于离子点阵中基本离子的运动,称为或,第二类是结合力比较弱的离子运动造成的,这些离子主要是,因而称为。
在低温下,离子晶体的电导主要由决定。
5.绝缘体又叫电介质,按其内部正负电荷的分布状况又可分为,,与。
6.半导体的导电性随温度变化的规律与金属,。
在讨论时要考虑两种散射机制,即与。
7.超导体的三个基本特性包括、与。
金属的电阻8.在弹性范围内,单向拉应力会使金属的电阻率;单向压应力会使率。
9.某合金是等轴晶粒组成的两相机械混合物,并且两相的电导率相近。
其中一相电导率为σ1,所占体积分数为φ,另一相电导率为σ2,则该合金的电导率σ = 。
10.用双臂电桥法测定金属电阻率时,测量精度不仅与电阻的测量有关,还与试样的的测量精度有关,因而必须考虑的影响所造成的误差。
11.适合测量绝缘体电阻的方法是。
12.适合测量半导体电阻的方法是。
13.原子磁矩包括、与三个部分。
14.材料的顺磁性来源于。
15.抗磁体和顺磁体都属于弱磁体,可以使用测量磁化率。
16.随着温度的增加,铁磁体的饱和磁化强度。
17.弹性的铁磁性反常是由于铁磁体中的存在引起所造成的。
材料科学与工程材料物理期末考试复习重点及答案

材料物理第四章材料强化比较材料强化的方法加工硬化适用材料:位错能够滑移的塑性材料原理:塑性变形时由于位错增殖,提高材料密度,使位错间相互作用力增大,使对位错进行滑移的阻力也增大,起到强化作用加工技术:冷加工(低温下使金属发生形变),轧制、锻造、冲压、拉拔等。
冷加工既经济又方便,可用退火消除冷加工产生塑性变形;通过控制变形量控制加工硬化的程度。
(通过每次增加一点应力以使金属发生塑性形变从而提高到屈服强度的方式,高温下失去强化效果)随变形强度↑→强硬度↑→塑韧性↓的现象性能变化:抗张强度、屈服强度和硬度有所增加,但是塑性和金属形变的总的性能下降,同时物理性能如电导率、密度等也都有所下降。
固溶强化通过形成固溶体合金,可是实现固溶强化的目的。
(高温不明显损害固溶强化效果)原理:溶质原子进入溶剂,造成晶格畸变,从而使位错滑移困难,基体的变形抗力随之提高(有些固溶体会出现明显的屈服点和应变时效现象)。
效果:溶质、溶剂原子尺寸差别越大,固溶强化效果越好(差别大的尺寸的溶质原子进入溶剂后,造成晶格畸变大,位错滑移越困难);添加的合金元素越多,固溶强化效果越好。
加工技术:形成固溶体合金性能变化:合金的屈服强度、抗拉强度、硬度等会超过纯金属;几乎所有合金的塑性都低于纯金属,铜锌合金除外;合金的电导率大大低于纯金属;改善合金的抗蠕变性能。
弥散强化将多相组织混合在一起所获得的材料强化效应。
(特别适应高温材料)原理:添加合金元素的量大于固溶度,析出新相形成两相合金,两相界面上的原子排列无晶格完整性,阻碍位错的滑移,从而实现材料强化。
加工技术:通过使金属间化合物在塑性基体中弥散分布或共晶反应能够获得弥散强化的材料。
固态相变强化通过控制固态相变来强化材料的方法,可以多次采用;而通过控制凝固过程实现材料强化的方法,只能在材料冶炼制备中采用一次。
原理:通过控制第二相或析出物的析出获得所需的强化性能。
加工技术:利用时效强化、共析反应或非平衡态的马氏体相变等固态相变来强化材料。
无机材料物理性能考试复习题

无机材料物理性能考试复习题无机材料物理性能考试复习题(含答案)一、名词解释(选做5个,每个3分,共15分)1. K IC :平面应变断裂韧度,表示材料在平面应变条件下抵抗裂纹失稳扩展的能力。
2.偶极子(电偶极子):正负电荷的平均中心不相重合的带电系统。
3.电偶极矩:偶极子的电荷量与位移矢量的乘积,ql =μ。
(P288)4.格波:原子热振动的一种描述。
从整体上看,处于格点上的原子的热振动可描述成类似于机械波传播的结果,这种波称为格波。
格波的一个特点是,其传播介质并非连续介质,而是由原子、离子等形成的晶格,即晶格的振动模。
晶格具有周期性,因而,晶格的振动模具有波的形式。
格波和一般连续介质波有共同的波的特性,但也有它不同的特点。
5.光频支:格波中频率很高的振动波,质点间的相位差很大,邻近的质点运动几乎相反时,频率往往在红外光区,称为“光频支振动”。
(P109)6.声频支:如果振动着的质点中包含频率很低的格波,质点之间的相位差不大,则格波类似于弹性体中的应变波,称为“.声频支振动”。
(P109)7.色散:材料的折射率随入射光频率的减小(或波长的增加)而减小的性质,称为折射率的色散。
8.光的散射:物质中存在的不均匀团块使进入物质的光偏离入射方向而向四面八方散开,这种现象称为光的散射,向四面八方散开的光,就是散射光。
与光的吸收一样,光的散射也会使通过物质的光的强度减弱。
9.双折射:光进入非均匀介质时,一般要分为振动方向相互垂直、传播速度不等的两个波,它们分别构成两条折射光线,这个现象就称为双折射。
(P172)10.本征半导体(intrinsic semiconductor):完全不含杂质且无晶格缺陷的、导电能力主要由材料的本征激发决定的纯净半导体称为本征半导体。
N 型半导体:在半导体中掺入施主杂质,就得到N 型半导体;在半导体中掺入受主杂质,就得到P 型半导体。
12.超导体:超导材料(superconductor ),又称为超导体,指可以在特定温度以下,呈现电阻为零的导体。
材料物理性能期末试卷A

大连理工大学课程名称:材料物理性能试卷: A授课院(系):材料学院考试日期:2010年6月24日试卷共 4 页一二三四总分标准分30 30 20 20 / / / / / / 100 得分一、名词解释(每题3分,共30分)1、有效电子2、能级密度3、费米能级4、静态弹性模量5、电子有效质量6、格波7、晶格热振动的简谐近似8、铁磁质9、退磁能10、磁弹性能二、判断以下命题真伪(每题2分,共30分)(认为命题正确的划√;认为错误的划×)1、根据量子导电理论,只有自由电子近似下材料中所有的价电子才能全部参与导电。
()2、根据导电的能带理论,在k空间,电子的等能面形状会发生畸变。
()3、由量子导电理论的紧束缚近似,材料的能带交叠有可能会使其禁带消失。
()4、量子导电理论中的自由电子近似认为,自由电子的运动行为是一种等幅平面波。
()5、热膨胀是晶格简谐热振动叠加的结果。
()6、k 空间中的倒易结点数与晶体中自由电子包含自旋的能态数相同。
()7、实测的材料等压热容曲线只能反映原子热振动的热容和自由电子对热容的贡献。
()8、在由N个单胞原子数为P的原胞组成的晶体中,有3PN种格波。
()9、构成某种材料的原子,若其原子(或本征)磁矩为零,则该材料在被磁化时的抗磁磁化率为零。
()10、温度对顺磁质的磁化率没有影响。
()11、纯铁在770℃的磁性转变是由其结构转变引起的。
()12、磁畴壁的迁移过程是通过原子扩散完成的。
()13、滞弹性是一种与时间有关的弹性行为。
()14、阻尼共振型内耗的弛豫时间与温度有关。
()15、静滞后型内耗的弛豫时间与加载频率有关。
()三、简略分析并回答以下问题(每题4分,共20分)1、试分析为什么温度变化会对材料的导电性产生影响。
2、简述材料热膨胀为什么必须用原子热振动的非简谐近似理论解释?3、如图,请选择()a 和()b 哪一个是n 型掺杂半导体的能带结构示意图,并解释为什么半导体的导电性对温度特别敏感?4、简述交变磁场作用下,交变频率对铁磁质磁滞回线形状的影响规律和原因。
材料物理性能复习

无机材料物理性能复习考试题(含答案)一、名词解释(选做5个,每个5分,共15分)1. KIC:平面应变断裂韧度,表示材料在平面应变条件下抵抗裂纹失稳扩展的能力。
2.偶极子(电偶极子):正负电荷的平均中心不相重合的带电系统。
3.电偶极矩:偶极子的电荷量与位移矢量的乘积,。
(P288)4.格波:原子热振动的一种描述。
从整体上看,处于格点上的原子的热振动可描述成类似于机械波传播的结果,这种波称为格波。
格波的一个特点是,其传播介质并非连续介质,而是由原子、离子等形成的晶格,即晶格的振动模。
晶格具有周期性,因而,晶格的振动模具有波的形式。
格波和一般连续介质波有共同的波的特性,但也有它不同的特点。
5.光频支:格波中频率很高的振动波,质点间的相位差很大,邻近的质点运动几乎相反时,频率往往在红外光区,称为“光频支振动”。
(P109)6.声频支:如果振动着的质点中包含频率很低的格波,质点之间的相位差不大,则格波类似于弹性体中的应变波,称为“.声频支振动”。
(P109)7.色散:材料的折射率随入射光频率的减小(或波长的增加)而减小的性质,称为折射率的色散。
8.光的散射:物质中存在的不均匀团块使进入物质的光偏离入射方向而向四面八方散开,这种现象称为光的散射,向四面八方散开的光,就是散射光。
与光的吸收一样,光的散射也会使通过物质的光的强度减弱。
9.双折射:光进入非均匀介质时,一般要分为振动方向相互垂直、传播速度不等的两个波,它们分别构成两条折射光线,这个现象就称为双折射。
(P172)10.本征半导体(intrinsic semiconductor):完全不含杂质且无晶格缺陷的、导电能力主要由材料的本征激发决定的纯净半导体称为本征半导体。
11.P/N型半导体:在半导体中掺入施主杂质,就得到N型半导体;在半导体中掺入受主杂质,就得到P型半导体。
12.超导体:超导材料(superconductor),又称为超导体,指可以在特定温度以下,呈现电阻为零的导体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期末复习题一、填空(20)1.一长30cm的圆杆,直径4mm,承受5000N的轴向拉力。
如直径拉成3.8 mm,且体积保持不变,在此拉力下名义应力值为,名义应变值为。
2.克劳修斯—莫索蒂方程建立了宏观量介电常数与微观量极化率之间的关系。
3.固体材料的热膨胀本质是点阵结构中质点间平均距离随温度升高而增大。
4.格波间相互作用力愈强,也就是声子间碰撞几率愈大,相应的平均自由程愈小,热导率也就愈低。
.复介电常数由实部和虚部这两部分组成,实部与通常应用的介电常数一致,虚部表示了电介质中能量损耗的大小。
.当磁化强度M为负值时,固体表现为抗磁性。
8.电子磁矩由电子的轨道磁矩和自旋磁矩组成。
9.无机非金属材料中的载流子主要是电子和离子。
10.广义虎克定律适用于各向异性的非均匀材料。
11.设某一玻璃的光反射损失为m,如果连续透过x块平板玻璃,则透过部分应为I0•(1-m)2x。
12.对于中心穿透裂纹的大而薄的板,其几何形状因子Y= 。
13.设电介质中带电质点的电荷量q,在电场作用下极化后,正电荷与负电荷的位移矢量为l,则此偶极矩为ql 。
14.裂纹扩展的动力是物体储存的弹性应变能的降低大于等于由于开裂形成两个新表面所需的表面能。
15.Griffith微裂纹理论认为,断裂并不是两部分晶体同时沿整个界面拉断,而是裂纹扩展的结果。
16.考虑散热的影响,材料允许承受的最大温度差可用第二热应力因子表示。
17.当温度不太高时,固体材料中的热导形式主要是声子热导。
18.在应力分量的表示方法中,应力分量σ,τ的下标第一个字母表示方向,第二个字母表示应力作用的方向。
19.电滞回线的存在是判定晶体为铁电体的重要根据。
20.原子磁矩的来源是电子的轨道磁矩、自旋磁矩和原子核的磁矩。
而物质的磁性主要由电子的自旋磁矩引起。
21. 按照格里菲斯微裂纹理论,材料的断裂强度不是取决于裂纹的数量,而是决定于裂纹的大小,即是由最危险的裂纹尺寸或临界裂纹尺寸决定材料的断裂强度。
22.复合体中热膨胀滞后现象产生的原因是由于不同相间或晶粒的不同方向上膨胀系数差别很大,产生很大的应力,使坯体产生微裂纹。
23.晶体发生塑性变形的方式主要有滑移和孪生。
24.铁电体是具有自发极化且在外电场作用下具有电滞回线的晶体。
25.自发磁化的本质是电子间的静电交换相互作用。
二、名词解释(20)自发极化:极化并非由外电场所引起,而是由极性晶体部结构特点所引起,使晶体中的每个晶胞存在固有电偶极矩,这种极化机制为自发极化。
断裂能:是一种织构敏感参数,起着断裂过程的阻力作用,不仅取决于组分、结构,在很大程度上受到微观缺陷、显微结构的影响。
包括热力学表面能、塑性形变能、微裂纹形成能、相变弹性能等。
滞弹性:当应力作用于实际固体时,固体形变的产生与消除需要一定的时间,这种与时间有关的弹性称为滞弹性。
格波:处于格点上的原子的热振动可描述成类似于机械波传播的结果,这种波称为格波,格波的一个特点是,其传播介质并非连接介质,而是由原子、离子等形成的晶格。
电介质:指在电场作用下能建立极化的一切物质。
电偶极子:是指相距很近但有一距离的两个符号相反而量值相等的电荷。
蠕变(creep)(缓慢变形):固体材料在保持应力不变的条件下,应变随时间延长而增加的现象。
它与塑性变形不同,塑性变形通常在应力超过弹性极限之后才出现,而蠕变只要应力的作用时间相当长,它在应力小于弹性极限时也能出现。
突发性断裂:断裂源处的裂纹尖端所受的横向拉应力正好等于结合强度时,裂纹产生突发性扩展。
一旦扩展,引起周围应力的再分配,导致裂纹的加速扩展,这种断裂称为突发性断裂。
压电效应:不具有对称中心的晶体在沿一定方向上受到外力的作用而变形时,其部会产生极化现象,同时在它的两个相对表面上出现正负相反的电荷。
当外力去掉后,它又会恢复到不带电的状态,这种现象称为正压电效应。
当作用力的方向改变时,电荷的极性也随之改变。
相反,当对不具有对称中心晶体的极化方向上施加电场,晶体也会发生变形,电场去掉后,晶体的变形随之消失,这种现象称为逆压电效应,或称为电致伸缩现象。
电致伸缩:当在不具有对称中心晶体的极化方向上施加电场时,晶体会发生变形,电场去掉后,晶体的变形随之消失,这种现象称为电致伸缩现象,或称为逆压电效应。
铁电体:具有自发极化且在外电场作用下具有电滞回线的晶体。
三、问答题(每题5分,共20分)1.简述K I和K IC的区别。
答:K I应力场强度因子:反映裂纹尖端应力场强度的参量。
K IC断裂韧度:当应力场强度因子增大到一临界值时,带裂纹的材料发生断裂,该临界值称为断裂韧性。
K I是力学度量,它不仅随外加应力和裂纹长度的变化而变化,也和裂纹的形状类型,以及加载方式有关,但它和材料本身的固有性能无关。
而断裂韧性K IC则是反映材料阻止裂纹扩展的能力,因此是材料的固有性质。
2.简述位移极化和松驰极化的特点。
答:位移式极化是一种弹性的、瞬时完成的极化,不消耗能量;松弛极化与热运动有关,完成这种极化需要一定的时间,并且是非弹性的,因而消耗一定的能量。
3.铁磁性与铁电性的本质差别是什么?答:⑴铁电性由离子位移引起,铁磁性由原子取向引起。
⑵铁电性在非对称性的晶体中发生,铁磁性发生在次价电子的非平衡自旋中。
⑶铁电体的居里点是由于晶体相变引起的,铁磁性的居里点是原子的无规则振动破坏了原子间的“交换”作用,从而使自发磁化消失引起的。
4.为什么金属材料有较大的热导率,而非金属材料的导热不如金属材料好?答:固体中导热主要是由晶格振动的格波和自由电子运动来实现的。
在金属中由于有大量的自由电子,而且电子的质量很轻,所以能迅速地实现热量的传递。
虽然晶格振动对金属导热也有贡献,但只是很次要的。
在非金属晶体,如一般离子晶体的晶格中,自由电子是很少的,晶格振动是它们的主要导热机构。
因此,金属一般都具有较非金属材料更大的热导率。
5.说明图中三条应力-应变曲线的特点,并举例说明其对应的材料。
答:受力情况下,绝大多数无机材料的变形行为如图中曲线(a)所示,即在弹性变形后没有塑性形变(或塑性形变很小),接着就是断裂,总弹性应变能非常小,这是所有脆性材料的特征,包括离子晶体和共价晶体等。
在短期承受逐渐增加的外力时,有些固体的变形分为两个阶段,在屈服点以前是弹性变形阶段,在屈服点后是塑性变形阶段。
包括大多数金属结构材料如图中曲线(b)所示。
橡皮这类高分子材料具有极大的弹性形变,如图中曲线(c)所示,是没有残余形变的材料,称为弹性材料。
6.如果要减少由多块玻璃组成的透镜系统的光反射损失,通常可以采取什么方法?为什么?答:有多块玻璃组成的透镜系统,常常用折射率和玻璃相近的胶粘起来,这样除了最外和最的两个表面是玻璃和空气的相对折射率外,部各界面均是玻璃和胶的较小的相对折射率,从而大大减少了界面的反射损失。
7.阐述大多数无机晶态固体的热容随温度的变化规律。
答:根据德拜热容理论,在高于德拜温度θD时,热容趋于常数(25J/(K·mo1),低于θD时与T3成正比。
因此,不同材料的θD是不同的。
无机材料的热容与材料结构的关系是不大的,绝大多数氧化物、碳化物,热容都是从低温时的一个低的数值增加到1273K左右的近似于25J/K·mol的数值。
温度进一步增加,热容基本上没有什么变化。
8.有关介质损耗描述的方法有哪些?其本质是否一致?答:损耗角正切、损耗因子、损耗角正切倒数、损耗功率、等效电导率、复介电常数的复项。
多种方法对材料来说都涉及同一现象。
即实际电介质的电流位相滞后理想电介质的电流位相。
因此它们的本质是一致的。
9.简述提高陶瓷材料抗热冲击断裂性能的措施。
答:(1) 提高材料的强度σf,减小弹性模量E。
(2) 提高材料的热导率。
(3) 减小材料的热膨胀系数。
(4) 减小表面热传递系数h。
(5) 减小产品的有效厚度r m。
10.为什么含有未满壳层的原子组成的物质中只有一部分具有铁磁性?含有未满壳层原子组成的物质包括顺磁性物质和有序磁性物质。
由于顺磁性物质中原子做无规则热振动,原子磁矩排列杂乱无章,宏观上不表现磁性;有序磁性物质包括反铁磁性、亚铁磁性和铁磁性物质,由于在反铁磁性或亚铁磁性物质中磁性有序的原子排列形成的磁矩平行和反平行相间排列,其磁矩完全或部分抵消,故只有部分磁矩(或自旋电子)方向相同的有序磁性物质具有铁磁性。
四、论述题:(本题共两题,共20分)1.何为相变增韧?论述氧化锆增韧陶瓷的机理。
答:利用多晶多相陶瓷中某些成分在不同温度的相变,从而增韧的效果,这统称为相变增韧。
第二相颗粒相变韧化(transformation toughening)是指将亚稳的四方ZrO2颗粒引入到陶瓷基体中,当裂纹扩展进入含有t-ZrO2晶粒的区域时,在裂纹尖端应力场的作用下,将会导致t-ZrO2发生t→m 相变,因而除了产生新的断裂表面而吸收能量外,还因相变时的体积效应(膨胀)而吸收能量,可见,应力诱发的这种组织转变消耗了外加应力。
同时由于相变粒子的体积膨胀而对裂纹产生压应力,阻碍裂纹扩展。
结果这种相变韧化作用使在该应力水平下在无相变粒子的基体中可以扩展的裂纹在含有氧化锆t→m相变粒子的复合材料中停止扩展,如要使其继续扩展,必须提高外加应力水平,具体体现在提高了材料的断裂韧性。
2.说明下图中各个参量,数字及曲线所代表的含义。
答:B s——饱和磁感应强度,当外加磁场H增加到一定程度时,B值就不再上升,也就是这块材料磁化的极限。
B r ——剩余磁感应强度,当外加磁场降为0时,材料依然保留着磁性,其强度为B r 。
H c ——矫顽力(矫顽磁场强度),表示材料保持磁化、反抗退磁的能力。
据此大小可以区分软磁和硬磁。
µ——磁导率(=B/H ),表示材料能够传导和通过磁力线的能力。
Oabc 段表示材料从宏观无磁性到有磁性的磁化过程;cdefghc 段表示物质在外加磁场中磁化、退磁再磁化的过程,因为退磁的过程滞后于磁化曲线,故又称此曲线为磁滞回线。
由该曲线围成的空间有明确的物理意义,即曲线围起的面积越大,矫顽力(H c )越大,要求的矫顽场强越大,磁化所需的能量越大,磁性材料就越“硬”;反之,曲线围起的面积越小,磁性材料就越“软”。
3.论述大多数无机非金属材料在常温下不能产生塑性形变的原因。
答:无机非金属材料的组成主要是晶体材料,原则上讲可以通过位错的滑移实现塑性变形。
但是由于陶瓷晶体多为离子键或共价键,具有明显的方向性。
同号离子相遇,斥力极大,只有个别滑移系能满足位错运动的几何条件和静电作用条件。
晶体结构愈复杂,满足这种条件就愈困难。
另外,陶瓷材料一般呈多晶状态,而且还存在气孔、微裂纹、玻璃相等。
其晶粒在空间随机分布,不同方向的晶粒,其滑移面上的剪应力差别很大。