七年级数学2019年秋季学期第一次周测试卷(含答案)

合集下载

24-25学年七年级数学第一次月考卷01(全解全析)【七年级上册第一章~第二章】(人教版2024)

24-25学年七年级数学第一次月考卷01(全解全析)【七年级上册第一章~第二章】(人教版2024)

2024-2025学年七年级数学上学期第一次月考卷01(人教版2024)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:人教版2024七年级上册第一章~第二章。

5.难度系数:0.8。

一、选择题(本题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.―3的相反数是()A.―13B.13C.3D.0.32.―0.5的倒数是()A.―2B.0.5C.2D.―0.53.如图所示,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准质量的是()A.B.C.D.【答案】C【详解】解:依题意,得|+0.9|=0.9,|―3.6|=3.6,|―0.8|=0.8,|+2.5|=2.5,∵3.6>2.5>0.9>0.8,∴最接近标准质量的是“―0.8g”,故选:C.4.如图,数轴上雪容融所在点表示的数可能为()A.3B.1C.―1D.―4【答案】C【详解】解:数轴上蝴蝶所在点表示的数可能为―1,故选:C.5.下列说法不正确的是()A.一个数的绝对值一定不小于它本身B.互为相反数的两个数的绝对值相等C.任何数的绝对值都不是负数D.任何有理数的绝对值都是正数【答案】D【详解】解:A、个数的绝对值一定不小于它本身,故此选项正确,不符合题意;B、互为相反数的两个数的绝对值相等,故此选项正确,不符合题意;C、任何有理数的绝对值都不是负数,故此选项正确,不符合题意;D、0的绝对值是0,0既不是正数也不是负数,故此选项错误,符合题意.故选:D.6.一个点从数轴的原点开始,先向左移动3个单位,再向右移动2个单位,这时该点所表示的数是()A.1B.2C.﹣1D.﹣5【答案】C【详解】∵0-3+2=-1,∴该点所表示的数为-1.故选C.7.不改变原式的值,省略算式中的括号和加号后,可以写成―7+4―5―6的是()A.(―7)―(+4)―(―5)+(―6)B.―(+7)―(―4)―(+5)+(―6)C.―(+7)+(+4)―(―5)+(―6)D.(―7)+(+4)+(―5)―(―6)【答案】B【详解】解:A、(―7)―(+4)―(―5)+(―6)=―7―4+5―6,不符合题意;B、―(+7)―(―4)―(+5)+(―6)=―7+4―5―6,符合题意;C、―(+7)+(+4)―(―5)+(―6)=―7+4+5―6,不符合题意;D、(―7)+(+4)+(―5)―(―6)=―7+4―5+6,不符合题意;故选:B.8.某药品说明书上标明药品保存的温度是(20±2)℃,则该药品保存的温度范围是()A.20~22℃B.18~20℃C.18~22℃D.20~24℃9.两数a,b在数轴上对应点的位置如图所示,下列判断正确的是()A.|a|>|b|B.a+b>0C.a<―b D.a―b<0【答案】C【详解】解:观察图象得:b<―1<0<a<1,∴|b|>|a|,故A选项错误,不符合题意;∴a+b<0,故B选项错误,不符合题意;∴a<―b,故C选项正确,符合题意;∴a―b>0,故D选项错误,不符合题意.故选:C10.魏晋时期数学家刘徽在《九章算术注》中用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(白色为正,黑色为负),图(1)表示的是(+23)+(―54)=―31的计算过程,则图(2)表示的计算过程是( )A.(―22)+(+23)=1B.(―22)+(+32)=10C.(+22)+(―32)=―10D.(+22)+(―23)=―111.a、b、c是有理数且abc<0,则a +b+c的值是()A.-3B.3或-1C.-3或1D.-3或-112.正方形ABCD在数轴上的位置如图所示,点D、A对应的数分别为0和1.若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为2;则翻转2023次后,数轴上数2023所对应的点是()A.点C B.点D C.点A D.点B13.如果卖出一台电脑赚钱500元,记作+500,那么亏本300元,记作元.【答案】-300【详解】解:根据题意,亏本300元,记作-300元,故答案为-300.14.比较大小:―0.65―3(填“<”、“>”或“=”).415.若(a+3)2+|b﹣2|=0,则(a+b)2011= .【详解】根据题意得,a +3=0,b −2=0,解得a =−3,b =2,所以,(a +b)2011=(―3+2)2011=―1. 故答案为−1.16.a ,b 互为相反数,c ,d 互为倒数,则cd ―a+b2023=.17.观察下面一列数,按某种规律在横线上填上适当的数:―1,34,―59,716,…,则第n 个数是.18.在数轴上,点O 表示原点,现将点A 从O 点开始沿数轴如下移动,第一次点A 向左移动1个单位长度到达点A 1,第二次将点A 1向右移动2个单位长度到达点A 2,第三次将点A 2向左移动3个单位长度到达点A 3,第四次将点A 3向右移动4个单位长度到达点A 4,按照这种移动规律移动下去,第n 次移动到点A n ,当n =100时,点A 100与原点的距离是 个单位.【答案】50【详解】解:观察发现奇数次移动为向左移动,偶数次移动为向右移动;第一次向左平移一个单位,第二次向右平移两个单位,实际向右平移―1+2个单位;第三次向左平移三个单位,第四次向右平移四个单位,实际向右平移―3+4个单位;第99次向左平移一个单位,第100次向右平移两个单位,实际向右平移―99+100单位;则第100次A 点距原点距离为:―1+2―3+4+…―99+100=(―1+2)+(―3+4)+…+(―99+100)=50.即当n =100时,点A 100与原点的距离是50个单位.三、解答题(本题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)19.(12分)计算:(1)(―8)+10+3+(―1);(2)―25÷58×―(3)1―(―3)×2+16÷(―4);(4)15―22×12+8÷(―2)2.20.(6分)在数轴上表示下列各数:―1,3,12,0,―4,―32,5,并用“<”将它们连接起来.32<―1<0<12<3<5.(6分)21.(10分)某空军举行特技飞行表演,其中一架飞机起飞0.5千米后的高度变化如下表:高度变化记作上升2.5千米+2.5km下降1千米___________上升2千米___________下降2.5千米___________(1)完成表格;(2)飞机完成上述四个表演动作后,飞机高度是多少千米?(3)如果飞机每上升1千米需消耗5升燃油,平均每下降1千米需消耗3升燃油,那么这架飞机在这4个动作表演过程中,一共消耗了多少升燃油?22.(6分)已知a,b互为相反数,c的相反数是最大的负整数,d是最小的正整数,m的绝对值等于2,且m<d,求c+md+(a+b)m的值.23.(8分)学习有理数乘法后,老师让同学们计算:392425×(―5),看谁算得又快又对,有两位同学的解法如下:小丽:原式=―99925×5=―9995=―19945;小军:原式=39×(―5)=39×(―5)+2425×(―5)=―19945.小晨经过思考后也给出了他的解法:原式=40―×(―5)=40×(―5)―①×(―5)=―200+②=③.(1)②__________③__________.(2)用你认为最合适的方法计算:―191516×8.24.(10分)阅读下面的文字,完成后面的问题:我们知道:11×2=1―12;12×3=12―13;13×4=13―14.那么:(1)14×5=______;12019×2020=______;(2)用含有n的式子表示你发现的规律______;(3)求式子11×2+12×3+13×4+⋯+12019×2020的值.25.(10分)某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减(单位:个)+5―2―5+15―10+16―9(1)写出该厂星期一生产工艺品的数量;(2)本周产量最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺厂在本周实际生产工艺品的数量;(4)已知该厂实行每日计件工资制,每生产一个工艺品可得60元,若超额完成任务,则超过部分每个另奖50元,少生产一个扣80元.试求该工艺厂在这一周应付出的工资总额.【详解】(1)平均每天生产300个,超产记为正,减产记为负,周一的产量为:300+5=305个;答:该厂星期一生产工艺品的数量为305个.(2分)(2)由表格可知:星期六产量最高为300+(+16)=316(个),星期五产量最低为300+(-10)=290(个),则产量最多的一天比产量最少的一天多生产316―290=26(个);答:本周产量最多的一天比最少的一天多生产26个工艺品.(4分)(3)根据题意得一周生产的工艺品为:300×7+[(+5)+(―2)+(―5)+(+15)+(―10)+(+16)+(―9)]=2100+10=2110(个)答:服装厂这一周共生产工艺品2110个;(6分)(4)(5+15+16)×50―(2+5+10+9)×80(8分)=36×50―26×80=―280(元),则该工艺厂在这一周应付出的工资总额为:2110×60―280=126320,(9分)答:该工艺厂在这一周应付出的工资总额为126320元.(10分)26.(10分)同学们都知道,|5―(―2)|表示5与―2之差的绝对值,实际上也可理解为5与―2两数在数轴上所对的两点之间的距离.(1)求|5―(―2)|=______;(2)同样道理|x+1008|=|x―1005|表示数轴上有理数x所对点到―1008和1005所对的两点距离相等,则x=______;(3)类似的|x+5|+|x―2|表示数轴上有理数x所对点到―5和2所对的两点距离之和,请你找出所有符合条件的正整数x,使得|x+5|+|x―2|=7,这样的正整数是______;(4)由以上探索猜想对于任何有理数x,|x―3|+|x―6|是否有最小值?如果有,写出最小值;如果没有,说明理由.。

太原市2019_2020学年第一学期七年级期中考试数学(试卷)

太原市2019_2020学年第一学期七年级期中考试数学(试卷)

2019-2020学年第一学期第一次测评初一数学——试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将其字母标号填入下列相应位置)1.有理数-3的绝对值是()A.3B.-3 C.13D.132.下表是某年1月份我国几个城市的平均气温,在这些城市中,平均气温最低的城市是()城市北京上海沈阳广州太原平均气温-5.6℃ 2.3℃-16.8℃17.6℃-11.2℃A.北京B.沈阳C.广州D.太原3.如图,在数学活动课上,同学们用一个平面分别去截下列四个几何体,所得截面是三角形的是()4.下列运算正确的是()A.x2+x2=x4B.4x+(x-3y)=3x+3yC.x2y-2x2y=-x2yD.2(x+2)=2x+25.化简14(16x-12)-2(x-1)的结果是()A.2x-1B.x+1C.5x+3D.x-36.下列四个几何体,同一个几何体从正面看和从左面看的形状图相同,这样的几何体共有()A.1个B.2个C.3个D.4个7.有一个两位数,个位数字是n,十位数字是m,则这个两位数可表示为()。

A.mn B.10m+n C.10n+m D.m+n8.今年 9月世界计算机大会在湖南省长沙市开幕,大会的主题是“计算万物,湘约未来”.从心算、珠算的古老智慧到“银河”“天河”“神威”创造的中国速度,“中国计算”为世界瞩目.超级计算机“天河一号”的性能是 4700万亿次,换算成人工做四则运算,相当于60亿人算一年,它1秒就可以完成.数 4700万亿用科学记数法表示为( )。

A.4.7×107B.4.7×1011C.4.7×1014D..7×10159.“1285个服务站点”,“4.1万辆公共自行车”,“日均租骑量 32.54万次”,“1小时内免费”,···,自 2012年开通运营以来,太原公共自行车已经伴随太原市民走过近七个春秋,课外活动小组的同学们,在某双休日 11:30—12:00对我市某个公共自行车服务站点的租骑量进行了观察记录.用“-6”表示骑走了6辆自行车,记录结果如下表:(时间段不含前一时刻但含后一时刻,如 11:30—11:35不含 11:30但含 11:35)时间段11:30—11:35 11:35—11:40 11:40—11:45 11:45—11:50 11:50—11:55 11:55—12:00 自行车数量-15+8-11+10-6+13假设此服务站点在11:30时有自行车30辆,则在12:00时该站点有自行车()A.31辆B.30辆C. 29辆D.27辆10.和谐公园内有一段长方形步道,它由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成.如图表示此步道地砖的排列方式,若正方形地砖为连续排列且总共有 40块,则这段步道用了白色等腰直角三角形地砖( )A.80块B.81块C.82块D.84块二、填空题(本大题含5个小题,每小题3分,共15分)把结果直接填在横线上.11.如图,汽车的雨刮器能把前挡风玻璃上的雨水刮干净.这一现象,抽象成数学事实是.12.如图是小明设计的运算程序,若输入x的值为-2,则输出的结果是.13.代数式-2x+3的值随着x的值的逐渐变大而.(填“变大”或“变小”)14.成语“运筹帷幄”中“筹”的原意是指《孙子算经》中记载的“算筹”.算筹是中国古代用来计算的工具,它是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵、横两种形式(如图).当表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的算筹需要纵、横相间;个位,百位,万位数用纵式表示;十位,千位,十万位数用横式表示;“0”用空位来代替,以此类推.如:数3306用算筹表示成.用算筹表示的数是.15.如图是一个去掉盖子的长方体礼品盒的展开图(单位:cm).从A,B两题中任选一题作答.cm.A.该长方体礼品盒的容积为3B.如果把这个去掉盖子的礼品盒沿某些棱重新剪开,可以得到周长最大的展开图,则周长最大为cm.三、解答题(本大题含8个小题,共55分)解答时应写出必要的文字说明、演算步骤或推理过程. 16.(本题共4个小题,每小题3分,共12分)(1)3(4)(5)--+-;(2)118()6(2)3⨯--÷-(3)572(36)12183⎛⎫-+⨯- ⎪⎝⎭;(4)321(2)8(3)3⎡⎤-÷-+-⨯⎢⎣⎦17.(本题6分)先化简,再求值:322232(2)2()n mn m n mn n -+---,其中31005m n==-,. 18.(本题4分)下面是小颖计算25( 3.4)(1)( 1.6)()33--+-+++的过程,请你在运算步骤后的括号内填写运算依据.解:原式=25( 3.4)(1)( 1.6)()33-+-+-++()=25( 3.4)( 1.6)(1)()33-+-+-++()=[]25( 3.4)( 1.6)(1)()33⎡⎤-+-+-++⎢⎥⎣⎦()=(5)0-+ ()=5-今年假期某校对操场进行了维修改造,如图是操场的一角,在长为a米,宽为b米的长方形场地中间,并排着两个大小相同的篮球场,这两个篮球场之间以及篮球场与长方形场地边沿的距离都为c米.(1)直接写出一个篮球场的长和宽;(用含字母a、b、c的代数式表示)(2)用含字母a、b、c的代数式表示这两个篮球场占地面积的和,并求出当a=42,b=36,c=4时,这两个篮球场占地面积的和.20.(本题6分)如图是用8个大小相同的小立方块搭成的几何体,请分别画出从正面,左面和上面看到的这个几何的形状图.从正面看从左面看从上面看21.(本题7分)某中学为打造体育特色学校,落实每天锻炼1小时的规定,经调查研究后决定在七、八、九年级分别开展跳绳、羽毛球、毽球项目,七年级共有六个班,每班的人数以a人为标准,各班人数情况如下表,八年级学生人数比七年级学生人数的2倍少240人,九年级学生人数的2倍刚好是七、八年级学生人数的和.(说明:1901班表示七年级一班)班级1901班1902班1903班1904班1905班1906班与标准人数的差(人)+3+2-2+20 -1(1)用含a的代数式表示七年级学生人数;(2)学校按每人一根跳绳、一个毽球,两人一副羽毛球拍的标准,购买相应的体育器材以满足学生锻炼需要,已知跳绳每根5元,毽球每个3元,羽毛球拍每副18元,当a=40时,求购买器材的总费用.下列等式:11222215513333-=⨯+-=⨯+,,…,具有a-b=1ab+的结构特征,我们把满足这一特征的一对有理数,a b称为“共生有理数对”,记作(a、b)如:数对12 25 33(,),(,)都是“共生有理数对”(1)在两个数对(-2,1),1 3 2(,)中,“共生有理数对”是;(2)若(m,n)是“共生有理数对”,则(-n,-m)“共生有理数对”;(填“是”或“不是”)(3)从AB两题中任选一题作答A.请再写出一对“共生有理数对” (要求:不与题目中已有的“共生有理数对”重复)B.是否存在“共生有理数对”(n,n),若存在,求出n的值;若不存在,请说明理由.23.(本题8分)如图,数轴的单位长度为1,点C,D表示的数互为相反数,结合数轴回答下列问题:(1)请在数轴上标出原点 O的位置;(2)直接写出点 A、B、C、D所表示的数,并判断哪一点表示的数的平方最大,最大是多少?(3)从 AB两题中任选一题作答.A.①若点 F在数轴上,与点 C的距离 C F =3.5,求点 F表示的数;设动点 P从点 B出发,以每秒 3个单位长度的速度沿数轴的正方向匀速向终点 D运动,运动时间为t秒,求P,C之间的距离CP.(用含t的代数式表示)B.设点M,N都从点A出发沿数轴的正方向匀速向终点D运动,点M的速度为每秒2个单位长度,点N的速度为每秒5个单位长度,当点M运动到点B时点N开始运动,设点M运动时间为t秒,求点M,N之间的距离MN(用含t的代数式表示)。

七年级数学试卷+答题卡+答案(2019-2020)第一学期期末试卷上册惠州惠城区

七年级数学试卷+答题卡+答案(2019-2020)第一学期期末试卷上册惠州惠城区

惠城区2019-2020学年度第一学期期末教学质量检测七年级数学试题说明:1、答卷前,考生必须将自己的学校、班级、学号按要求填写在左边密封线内的空格内. 2.答题可用黑色或蓝色钢笔、圆珠笔按各题要求答在试卷(或答题卡)上,但不能用铅笔或红笔.(注:画图用铅笔)3.本试卷共五大题,25小题,满分120分,100分钟内完成,相信你一定会有出色的表现!一、选择题:(本大题共10小题,每小题3分,共30分)在每小题给出的四个选择项中,只有一个是正确的,请将正确选择项前的字母填在下面表格中相应的位置. 1.2-等于( )A .-2B .12-C .2D .122.如图是由几个正方体组成的立体图形,则这个立体图形从左看到的平面图形是( )A .B .C .D .3.地球上的海洋面积约为36100000km 2,用科学记数法可表示为( )km 2A .3.61×106B .3.61×107C .0.361×108D .3.61×109 4.下面运算正确的是( )A .3ab +3ac =6abcB . 4a 2b -4b 2a =0C .2x 2+7x 2=9x 4D .3y 2-2y 2=y 2 5.多项式xy 2+xy +1是( )A .二次二项式B .二次三项式C .三次二项式D .三次三项式6.下列方程为一元一次方程的是( )A .y +3= 0B .x +2y =3C .x 2=2x D .21=+y y7.在解方程123123x x -+-=时,去分母正确的是( ) A .3(x ﹣1)﹣2(2+3x )=1B .3(x ﹣1)+2(2x +3)=1C .3(x ﹣1)+2(2+3x )=6D .3(x ﹣1)﹣2(2x +3)=68.如图所示,某同学的家在A 处,书店在B 处,星期日他到书店去买书,想尽快赶到书店请你帮助他选择一条最近的路线是( ) A .A →C →D →B B .A →C →F →B C .A →C →E →F →BD .A →C →M →B第8题图 第9题图9.如图,把两块三角板按如图所示那样拼在一起,则∠ABC 等于( ) A .70° B .90° C .105° D .120°10. 下表中,填在各正方形中的四个数之间都有相同的规律,根据此规律,m 的值是( )A .58B .66C .74D .112二、填空题:(本大题共6小题,每小题4分,共24分)请把答案直接填写在相应位置上,不需写出解答过程.11.13-______-0.3 ( 用“<”,“>”,“=”填空 ). 12.若212n ab +与3222n a b --是同类项,则=n .13.小红在计算3+2a 的值时,误将“+”号看成“-”号,结果得13,那么3+2a 的值应为 .14.一个角的5倍等于71°4′30″,这个角的余角是 .15.因为∠1+∠2=180°,∠2+∠3=180°,所以∠1=∠3,根据是 . 16.若25x xy -=,426xy y +=-,则23x xy y -+= .B2 8424 62246 844m 6三、解答题:(每小题6分,共18分) 17.计算:2321353752⎛⎫⎛⎫-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭18.先化简,再求值:()()222321231x y x y xy ---+,其中,12x =-,2y =-19.如图,小雅家(图中点O 处)门前有一条东西走向的公路,测得学校(图中点A 处)在距她家北偏西60°方向的500米处,文具商店在距她家正东方向的1500米处,请你在图中标出文具商店的位置(保留画图痕迹).四、解答题:(每小题7分,共21分) 20.已知方程23101124x x -+-=与关于x 的方程23xax -=的解相同,求a 的值.21.如图,点M 为AB 中点,BN =12AN ,MB =3 cm ,求AB 和MN 的长.22.100cm )年数(n )高度(cm ) 1 100+12 2 100+24 3 100+36 4 100+48 …………假设以后各年树苗高度的变化与年数的关系保持上述关系,回答下列问题:⑴ 生长了10年的树高是 cm ,用式子表示生长了n 年的树高是 cm ⑵ 种植该种树多少年后,树高才能达到2.8m ?五、解答题:(每小题9分,共27分)23.某电器商场以150元/台的价格购进某款电风扇若干台,很快售完.商场用相同的货款再次购进这款电风扇,因价格提高30元,故进货量减少了10台. ⑴ 商场第二次购进这款电风扇时,进货价为 元; ⑵ 这两次各购进电风扇多少台?⑶ 商场以210元/台的售价卖完这两批电风扇,商场获利多少元?24. 如图,已知O 为直线AD 上一点,∠AOC 与∠AOB 互补,OM 、ON 分别是∠AOC 、 ∠AOB 的平分线,∠MON =56°.⑴ ∠COD 与∠AOB 相等吗?请说明理由; ⑵ 求∠BOC 的度数;⑶ 求∠AOB 与∠AOC 的度数.25.阅读下面材料并回答问题.Ⅰ 阅读:数轴上表示-2和-5的两点之间的距离等于(-2)-(-5)=3 数轴上表示1和-3的两点之间的距离等于1-(-3)=4一般地,数轴上两点之间的距离等于右边点对应的数减去左边点对应的数. Ⅱ 问题:如图,O 为数轴原点,A 、B 、C 是数轴上的三点,A 、C 两点对应的数互为相反数,且A 点对应的数为-6,B 点对应的数是最大负整数. ⑴ 点B 对应的数是 ,并请在数轴上标出点B 位置;⑵ 已知点P 在线段BC 上,且PB =25PC ,求线段AP 中点对应的数; ⑶ 若数轴上一动点Q 表示的数为x ,当QB =2时,求22100a c x bx +⋅-+的值(a,b,c 是点A 、B 、C 在数轴上对应的数).密封线内不要答题2019~2020学年度第一学期期末教学质量检查七年级数学试题答卷说明:1.答卷共4页.考试时间为100分钟,满分120分.2.答卷前必须将自己的姓名、座号等信息按要求填写在密封线左边的空格内一、选择题(本题共10小题,每小题3分,共30分.)二、填空题(本题共6小题,每小题4分,共24分.11.12.13.14.15. 16.三、解答题(一)(本题共3小题,每小题6分,共18分)19.解:四、解答题(二)(本题共3小题,每小题7分,共21分)20.解:21.解:22.解:五、解答题(三)(本题共3小题,每小题9分,共27分)23.解:五、解答题(三)(本题共3小题,每小题9分,共27分)24.解:25.解:密封线内不要答题惠城区2019-2020学年度第一学期期末教学质量检测七年级数学答案与评分标准一、选择题:(本大题共10小题,每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案CABDDADBDC二、填空题:(本大题共6小题,每小题4分,共24分)11. < 12.3 13.-714. 75°47′6″ 15.同角的补角相等 (或等量减等量差相等)16.12三、解答题:(每小题6分,共18分) 17.解:原式=()118-+-……4分 =19=-……6分18.解:原式=22263622x y x y xy --+- =225xy -……4分当12x =-,2y =-时, 原式=()2122592⎛⎫⨯-⨯--=- ⎪⎝⎭……6分19.解:……5分如图点B 为文具商店的位置……6分四、解答题:(每小题7分,共21分)20.解:解方程23101124x x -+-=,得3x =-……4分 将3x =-代入方程23xax -=,得231a +=- 解得:1a =-……7分21.解:∵点M 为AB 中点∴ AB =2MB =6……3分 ∴ AN +NB =6∵ BN =12AN ∴ 2BN +NB =6 ∴ NB =2……6分∴ MN =MB -NB =1……7分22解.⑴ 220 cm ,(100+12 n ) cm ……4分⑵ 设种植该种树n 年后,树高达到2.8m 由100+12 n =280,得 n =15答:种植该种树15年后,树高才能达到2.8m ……7分五、解答题:(每小题9分,共27分)23.解:⑴ 180元……1分⑵ 设第一次购进了x 台,根据题意得:150x =(150+30)(x -10) ……4分化简得 30x =1800, 解得 x =60.所以 x -10=60-10=50.答:第一次购进了60台,第二次购进了50台. ……5分 ⑶(210-150)×60+(210-180)×50=3600+1500=5100(元). ……7分24.解:⑴ ∠COD =∠AOB .理由如下: 如图 ∵点O 在直线AD 上∴∠AOC +∠COD =180°又∵∠AOC 与∠AOB 互补 ∴∠AOC +∠AOB =180° ∴∠COD =∠AOB⑵ ∵ OM 、ON 分别是∠AOC 、∠AOB 的平分线 ∴∠AOM =∠COM ,∠AON =∠BON∴∠BOC =∠BOM +∠COM11 =∠BOM +∠AOM=(∠MON -∠BON )+(∠MON +∠AON ) =2 ∠MON=112°⑶由⑴得:∠COD =∠AOB∵ ∠AOB +∠BOC + +∠COD =180°∴ ∠AOB =12(180°-∠B OC )=12(180°-112°)=34° ∴ ∠AOC =180°-∠AOB =180°-34°=146°.25.解:⑴点B 对应的数是 -1 ……1分点B 位置如图:……2分⑵ 设点P 对应的数为p∵ 点P 在线段BC 上∴ PB =p -(-1)=p +1PC =6-p ∵ PB =25PC ∴ p +1=25(6-p ) ∴p =1设AP 中点对应的数为t则t -(-6)=1-t∴ t =-2.5∴AP 中点对应的数为-2.5……5分⑶ 由题意:a +c =0,b =-1当点Q 在点B 左侧时,-1 - x =2,x =-3∴ 22100a c x bx +⋅-+=0-(-1)×(-3)+2=-1……7分 当点Q 在点B 右侧时,x -(-1)=2,x =1∴ 22100a c x bx +⋅-+=0-(-1)×1+2=3……9分。

2019年七年级沪科新版数学上册《第4章直线与角》单元测试卷(解析版)

2019年七年级沪科新版数学上册《第4章直线与角》单元测试卷(解析版)

2019年七年级沪科新版数学上册《第4章直线与角》单元测试卷一.选择题(共10小题)1.如图,都是由边长为1的正方体叠成的立体图形,例如第(1)个图形由1个正方体叠成,第(2)个图形由4个正方体叠成,第(3)个图形由10个正方体叠成,依次规律,第(7)个图形由()个正方体叠成.A.86B.87C.85D.842.如图,在矩形ABCD中,EF∥AB,GH∥BC,EF、GH的交点P在BD上,图中面积相等的矩形有()A.1对B.2对C.3对D.4对3.如图,是一个正方体的展开图,这个正方体可能是()A.B.C.D.4.已知一个不透明的正方体的六个面上分别写着1﹣6六个数字,如图是我们能看到的三种情况,那么数字5的对面的数字是()A .6B .4C .3D .6或4或3 5.将一个棱长为m (m >2且m 为正整数)的正方体木块的表面染上红色,然后切成m 3个棱长为1的小正方体,发现只有一个表面染有红色的小正方体的数量是恰有两个表面染有红色的小正方体的数量的12倍,则m 等于( )A .16B .18C .26D .326.平面内的9条直线任两条都相交,交点数最多有m 个,最少有n 个,则m +n 等于( ) A .36 B .37 C .38 D .397.已知A 、B 为平面上的2个定点,且AB =5.若点A 、B 到直线l 的距离分别等于2、3,则满足条件l 的直线共有( )条.A .2B .3C .4D .58.如图,一条街道旁有A ,B ,C ,D ,E 五幢居民楼.某大桶水经销商统计各楼居民每周所需大桶水的数量如下表:他们计划在这五幢楼中租赁一间门市房,设立大桶水供应点.若仅考虑这五幢楼内的居民取水所走路程之和最小,可以选择的地点应在( )A .B 楼 B .C 楼 C .D 楼 D .E 楼9.如图,将一根绳子对折以后用线段AB 表示,现从P 处将绳子剪断,剪断后的各段绳子中最长的一段为60cm ,若AP =PB ,则这条绳子的原长为( )A .100cmB .150cmC .100cm 或150cmD .120cm 或150cm10.如图,依据尺规作图的痕迹,计算∠α=( )A.56°B.68°C.28°D.34°二.填空题(共8小题)11.一个棱柱有12个面,它有个顶点,条棱.12.如图所示的三角形绕边AB所在直线旋转一周所形成的几何体是.13.“舒肤佳”香皂盒的长、宽、高分别是10cm、4cm、6cm,将这样的四个盒子拼成一个大的长方体,那么在这个大长方体的各种拼法中,表面积的最小值为cm2.14.如图,图中共有个梯形.15.一个无盖的长方形包装盒展开后如图所示(单位:cm),则其容积为cm3.16.如图,在Rt△ABC纸片上可按如图所示方式剪出一正方体表面展开图,直角三角形的两直角边与正方体展开图左下角正方形的边共线,斜边恰好经过两个正方形的顶点,已知BC=24cm,则这个展开图可折成的正方体的体积为cm3.17.如图是一个正方体的表面展开图,若正方体中相对的面上的数互为相反数,则2x﹣y的值为.18.如图,一个5×5×5的正方体,先在它的前后方向正中央开凿一个“十字形”的孔(打通),再在它的上下方向正中央也开凿一个“十字形”的孔(打通),最后在它的左右方向正中央开凿一个“十字形”的孔(打通),这样得到一个被凿空了的几何体,则所得几何体的体积为.三.解答题(共8小题)19.[问题提出]一个边长为ncm(n≥3)的正方体木块,在它的表面涂上颜色,然后切成边长为1cm的小正方体木块,没有涂上颜色的有多少块?只有一面涂上颜色的有多少块?有两面涂上颜色的有多少块?有三面涂上颜色的多少块?[问题探究]我们先从特殊的情况入手(1)当n=3时,如图(1)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有1×1×1=1个小正方体;一面涂色的:在面上,每个面上有1个,共有6个;两面涂色的:在棱上,每个棱上有1个,共有12个;三面涂色的:在顶点处,每个顶点处有1个,共有8个.(2)当n=4时,如图(2)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有2×2×2=8个小正方体:一面涂色的:在面上,每个面上有4个,6个面,共有24个;两面涂色的:在棱上,每个楼上有2个,共有24个;三面涂色的:在顶点处,每个顶点处有1个,共有8个.…[问题解决]一个边长为ncm(n≥3)的正方体木块,没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有个小正方体;一面涂色的:在面上,共有个;两面涂色的:在棱上,共有个;三面涂色的:在顶点处,共个.[问题应用]一个大的正方体,在它的表面涂上颜色,然后把它切成棱长1cm的小正方体,发现有两面涂色的小正方体有96个,请你求出这个大正方体的体积.[问题拓展]把一个长16cm、宽10cm、高8cm的长方体表面涂上红漆,然后把它切成棱长2cm的小正方体,没有面涂色有几块,一面涂色有几块,两面涂色有几块,三面涂色有几块?20.在下列两行图形中,分别找出相互对应的图形,并用线连接.21.如图所示的五棱柱的底面边长都是5cm,侧棱长12cm,它有多少个面?它的所有侧面的面积之和是多少?22.小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.23.已知∠ABC.(1)用尺规作图:作∠DEF,使∠DEF=∠ABC(不写作法,保留作图痕迹);(2)在上述作图过程中,得到哪些相等的线段?24.如图,已知∠AOB.(1)利用直尺和圆规在图①中画图:在OA,OB上分别截取OC,OD,并且使OC=OD,连接CD,过点O作OP⊥CD垂足为P;(2)根据(1)的作图,试说明∠AOP=∠BOP;(3)运用你所学的数学知识,在图②中再设计一种方法,作出∠AOB的平分线.(上述(1)的方法除外,不必说明理由,只在图中保留作图痕迹)25.已知:如图:∠AOB.求作:∠AOB的平分线OC.(不写作法,保留作图痕迹)26.如图,请你在下列各图中,过点P画出射线AB或线段AB的垂线.2019年七年级沪科新版数学上册《第4章直线与角》单元测试卷参考答案与试题解析一.选择题(共10小题)1.如图,都是由边长为1的正方体叠成的立体图形,例如第(1)个图形由1个正方体叠成,第(2)个图形由4个正方体叠成,第(3)个图形由10个正方体叠成,依次规律,第(7)个图形由()个正方体叠成.A.86B.87C.85D.84【分析】根据图形的变换规律,可知第n个图形中的正方体的个数为1+3+6+…+,据此可得第(7)个图形中正方体的个数.【解答】解:由图可得:第(1)个图形中正方体的个数为1;第(2)个图形中正方体的个数为4=1+3;第(3)个图形中正方体的个数为10=1+3+6;第(4)个图形中正方体的个数为20=1+3+6+10;故第n个图形中的正方体的个数为1+3+6+…+,第(7)个图形中正方体的个数为1+3+6+10+15+21+28=84.故选:D.【点评】本题主要考查了图形变化类问题以及正方体,解决问题的关键是依据图形得到变换规律.解题时注意:第n个图形中的正方体的个数为1+3+6+…+.2.如图,在矩形ABCD中,EF∥AB,GH∥BC,EF、GH的交点P在BD上,图中面积相等的矩形有()A .1对B .2对C .3对D .4对【分析】根据矩形的性质,由全等三角形的判定得出△EPD ≌△HDP ,则S △EPD =S △HDP ,通过对各图形的拼凑,得到的结论.【解答】解:在矩形ABCD 中,∵EF ∥AB ,AB ∥DC ,∴EF ∥DC ,则EP ∥DH ;故∠PED =∠DHP ;同理∠DPH =∠PDE ;又PD =DP ;所以△EPD ≌△HDP ;则S △EPD =S △HDP ; 同理S △GBP =S △FPB ;则(1)S 梯形BPHC =S △BDC ﹣S △HDP =S △ABD ﹣S △EDP =S 梯形ABPE ;S ▱AGPE =S 梯形ABPE ﹣S △GBP =S 梯形BPHC ﹣S △FPB =S ▱FPHC ;(2)S ▱AGHD =S ▱AGPE +S ▱HDPE =S ▱PFCH +S ▱PHDE =S ▱EFCD ;(3)S ▱ABFE =S ▱AGPE +S ▱GBFP =S ▱PFCH +S ▱GBFP =S ▱GBCH .故选:C .【点评】考查了矩形的性质,本题是一道结论开放题,掌握矩形的性质,很容易得到答案.3.如图,是一个正方体的展开图,这个正方体可能是( )A .B .C .D .【分析】结合正方体的展开图中圆点所在面的位置,把展开图折叠再观察其位置,即可得到这个正方体.【解答】解:把展开图折叠后,只有B 选项符合图形,故选:B .【点评】此题考查几何体展开图,对于正方体的展开图再折叠成几何体的问题,可以多动手具体折一折,增强空间想象能力.4.已知一个不透明的正方体的六个面上分别写着1﹣6六个数字,如图是我们能看到的三种情况,那么数字5的对面的数字是()A.6B.4C.3D.6或4或3【分析】本题可从图形进行分析,结合正方体的基本性质,得到底面的数字,即可求得结果.【解答】解:第一个正方体已知1,2,5,第二个正方体已知1,2,4,第三个正方体已知1,4,6,且不同的面上写的数字各不相同,可求得第一个正方体底面的数字为3,∴4相邻的数字是1,2,3,6,∴数字5的对面的数字是4.故选:B.【点评】本题考查了正方体相对两个面上的文字,立意新颖,是一道不错的题.5.将一个棱长为m(m>2且m为正整数)的正方体木块的表面染上红色,然后切成m3个棱长为1的小正方体,发现只有一个表面染有红色的小正方体的数量是恰有两个表面染有红色的小正方体的数量的12倍,则m等于()A.16B.18C.26D.32【分析】只有一个表面染有红色的小正方体的数量为6(m﹣2)2,恰有两个表面染有红色的小正方体的数量12(m﹣2),根据只有一个表面染有红色的小正方体的数量是恰有两个表面染有红色的小正方体的数量的12倍,即可得到m的值.【解答】解:将一个棱长为m(m>2且m为正整数)的正方体木块的表面染上红色,然后切成m3个棱长为1的小正方体,则只有一个表面染有红色的小正方体的数量为6(m﹣2)2,恰有两个表面染有红色的小正方体的数量12(m﹣2),∵只有一个表面染有红色的小正方体的数量是恰有两个表面染有红色的小正方体的数量的12倍,∴6(m﹣2)2=12×12(m﹣2),解得m1=26,m2=2(舍去),故选:C.【点评】本题主要考查了正方体,解决问题的关键是抓住表面涂色的正方体切割小正方体的特点:1面涂色的在面上,2面涂色的在棱长上,3面涂色的在顶点处,没有涂色的在内部,由此即可解决此类问题.6.平面内的9条直线任两条都相交,交点数最多有m个,最少有n个,则m+n等于()A.36B.37C.38D.39【分析】求出平面内的9条直线任两条都相交,交点数最多的个数,再求得最少的个数;则即可求得m+n的值.【解答】解:三条最多交点数的情况.就是第三条与前面两条都相交:1+2四条最多交点数的情况.就是第四条与前面三条都相交:1+2+3五条最多交点数的情况.就是第五条与前面四条都相交:1+2+3+4六条最多交点数的情况.就是第六条与前面五条都相交:1+2+3+4+5七条最多交点数的情况.就是第七条与前面六条都相交:1+2+3+5+6八条最多交点数的情况.就是第八条与前面七条都相交:1+2+3+5+6+7九条最多交点数的情况.就是第九条与前面八条都相交:1+2+3+4+5+6+7+8=36则m+n=1+36=37故选:B.【点评】此题考查了平面图形,主要培养学生的观察能力和几何想象能力.7.已知A、B为平面上的2个定点,且AB=5.若点A、B到直线l的距离分别等于2、3,则满足条件l的直线共有()条.A.2B.3C.4D.5【分析】根据题意,可以分别以A、B为圆心,以2cm,3cm为半径画圆,然后求两圆的公切线,公切线的条数就是直线l 的条数.【解答】解:如图所示:∵AB =5,点A 、B 到直线l 的距离分别等于2、3,∴⊙A 与⊙B 外切,共有3条公切线,∴满足条件l 的直线共有3条.故选:B .【点评】本题考查的是两点确定一条直线,题中数据AB =5与点A 、B 到直线l 的距离分别等于2、3起到了关键的限制作用,利用数形结合进行解答更形象直观.8.如图,一条街道旁有A ,B ,C ,D ,E 五幢居民楼.某大桶水经销商统计各楼居民每周所需大桶水的数量如下表:他们计划在这五幢楼中租赁一间门市房,设立大桶水供应点.若仅考虑这五幢楼内的居民取水所走路程之和最小,可以选择的地点应在() A .B 楼 B .C 楼 C .D 楼 D .E 楼【分析】此题为数学知识的应用,由题意设立大桶水供应点,肯定要尽量缩短居民取水所走路程之间的里程,即需应用两点间线段最短定理来求解.【解答】解:设AB =a ,BC =b ,CD =c ,DE =d .每户居民每次取一桶水.以点A 为取水点,则五幢楼内的居民取水所走路程之和=55AB +50AC +72AD +85AE =262a +207b +157c +85d ,以点B 为取水点,则五幢楼内的居民取水所走路程之和=38AB +50BC +72BD +85BE =38a +207b +157c +85d ,以点C为取水点,则五幢楼内的居民取水所走路程之和=38AC+55BC+72CD+85CE=38a+93b+157c+85d,以点D为取水点,则五幢楼内的居民取水所走路程之和=38AD+55BD+50CD+85DE=38a+93b+143c+85d,以点E为取水点,则五幢楼内的居民取水所走路程之和=38AE+55BE+50CE+72DE=38a+93b+143c+215d,以点D为取水点,五幢楼内的居民取水所走路程之和最小.故选:C.【点评】此题为数学知识的应用,考查知识点两点之间线段最短.9.如图,将一根绳子对折以后用线段AB表示,现从P处将绳子剪断,剪断后的各段绳子中最长的一段为60cm,若AP=PB,则这条绳子的原长为()A.100cm B.150cmC.100cm或150cm D.120cm或150cm【分析】根据绳子对折以后用线段AB表示,可得绳长是AB的2倍,分类讨论,PB的2倍最长,可得PB,AP的2倍最长,可得AP的长,再根据线段间的比例关系,可得答案.【解答】解:当PB的2倍最长时,得PB=30cm,AP=PB=20cm,AB=AP+PB=50cm,这条绳子的原长为2AB=100cm;当AP的2倍最长时,得AP=30cm,AP=PB,PB=AP=45cm,AB=AP+PB=75cm,这条绳子的原长为2AB=150cm.故选:C.【点评】本题考查了两点间的距离,分类讨论是解题关键.10.如图,依据尺规作图的痕迹,计算∠α=()A.56°B.68°C.28°D.34°【分析】先根据矩形的性质得出AD∥BC,故可得出∠DAC的度数,由角平分线的定义求出∠EAF的度数,再由EF是线段AC的垂直平分线得出∠AEF的度数,根据三角形内角和定理得出∠AFE的度数,进而可得出结论.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠DAC=∠ACB=68°.∵由作法可知,AF是∠DAC的平分线,∴∠EAF=∠DAC=34°.∵由作法可知,EF是线段AC的垂直平分线,∴∠AEF=90°,∴∠AFE=90°﹣34°=56°,∴∠α=56°.故选:A.【点评】本题考查的是作图﹣基本作图,熟知角平分线及线段垂直平分线的作法是解答此题的关键.二.填空题(共8小题)11.一个棱柱有12个面,它有20个顶点,30条棱.【分析】一个直棱柱有12个面,故为十棱柱.根据十棱柱的概念和特点求解即可.【解答】解:∵棱柱有12个面,∴它是十棱柱.∴十棱柱有20个顶点,30条棱.故答案为:20;30.【点评】本题主要考查的是棱柱的概念,掌握棱柱的概念是解题的关键.12.如图所示的三角形绕边AB所在直线旋转一周所形成的几何体是圆锥.【分析】根据旋转的性质、圆锥体的特征即可求解.【解答】解:如图所示的三角形绕边AB所在直线旋转一周所形成的几何体是圆锥.故答案为:圆锥.【点评】考查了点、线、面、体,关键是熟悉点动成线,线动成面,面动成体的知识点.13.“舒肤佳”香皂盒的长、宽、高分别是10cm、4cm、6cm,将这样的四个盒子拼成一个大的长方体,那么在这个大长方体的各种拼法中,表面积的最小值为592cm2.【分析】表面积要最小,一定要用最大的面重叠.先2个香皂盒重叠,用最大的面(10x6)重叠,可以组成了2个较大的长方体,长是10cm,宽是6cm,高是4+4=8(cm).再把这2个较大的长方体重叠,用最大的面(10x8)重叠,长是10cm,宽是8cm,高是6+6=12(cm),由此计算即可;【解答】解:表面积要最小,一定要用最大的面重叠.先2个香皂盒重叠,用最大的面(10×6)重叠,可以组成了2个较大的长方体,长是10cm,宽是6cm,高是4+4=8(cm).再把这2个较大的长方体重叠,用最大的面(10×8)重叠,长是10cm,宽是8cm,高是6+6=12(cm).这个大长体的表面积是:(10×8+10×12+8×12)×2=(80+120+96)x2=296×2=592(平方厘米),故答案为592.【点评】本题考查几何体的表面积,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.14.如图,图中共有10个梯形.【分析】根据图形认真分析由图中可知一个梯形需一个平行四边形和一个三角形组成.【解答】解:由图形的特点可知,一个平行四边形和一个三角形可组成一个梯形,且图形中的梯形的形状、大小相同,共有10个.故答案为10.【点评】有一组对边平行,另一组对边不平行的四边形是梯形.15.一个无盖的长方形包装盒展开后如图所示(单位:cm),则其容积为800cm3.【分析】先用20cm减去15cm求出高为5cm,再用15cm减去5cm求出宽为10cm,再用26cm减去10cm求出长为16cm,再根据长方体的体积公式计算即可求解.【解答】解:20﹣15=5(cm),15﹣5=10(cm),26﹣10=16(cm),16×10×5=800(cm3).答:其容积为800cm3.故答案为:800.【点评】考查了几何体的展开图,解题的关键是得到长方体的长宽高.16.如图,在Rt△ABC纸片上可按如图所示方式剪出一正方体表面展开图,直角三角形的两直角边与正方体展开图左下角正方形的边共线,斜边恰好经过两个正方形的顶点,已知BC=24cm,则这个展开图可折成的正方体的体积为27cm3.【分析】首先设这个展开图围成的正方体的棱长为xcm,然后延长FE交AC于点D,根据三角函数的性质,可求得AC的长,然后由相似三角形的对应边成比例,即可求得答案.【解答】解:如图,设这个展开图围成的正方体的棱长为xcm,延长FE交AC于点D,则EF=2xcm,EG=xcm,DF=4xcm,∵DF∥BC,∴∠EFG=∠B,∵tan∠EFG==,∴tan B==,∵BC=24cm,∴AC=12cm,∴AD=AC﹣CD=12﹣2x(cm)∵DF∥BC,∴△ADF∽△ACB,∴=,即=,解得:x=3,即这个展开图围成的正方体的棱长为3cm,∴这个展开图可折成的正方体的体积为27cm3.故答案为:27.【点评】此题考查了相似三角形的判定与性质以及三角函数等知识.此题难度适中,注意掌握辅助线的作法,注意数形结合思想与方程思想的应用.17.如图是一个正方体的表面展开图,若正方体中相对的面上的数互为相反数,则2x﹣y的值为﹣3.【分析】根据正方体的展开图中相对面不存在公共点可找出5对面的数字,从而可根据相反数的定义求得x的值,进一步求得y的值,最后代入计算即可.【解答】解:∵“5”与“2x﹣3”是对面,“x”与“y”是对面,∴2x﹣3=﹣5,y=﹣x,解得x=﹣1,y=1,∴2x﹣y=﹣2﹣1=﹣3.故答案为:﹣3.【点评】本题主要考查的是正方体相对面上的文字,掌握正方体的展开图中相对面不存在公共点是解题的关键.18.如图,一个5×5×5的正方体,先在它的前后方向正中央开凿一个“十字形”的孔(打通),再在它的上下方向正中央也开凿一个“十字形”的孔(打通),最后在它的左右方向正中央开凿一个“十字形”的孔(打通),这样得到一个被凿空了的几何体,则所得几何体的体积为76.【分析】从5×5×5的正方体的8个顶点进行分割,可得8个2×2×2的正方体,再加上12条棱中间的12个小正方体,依此求得小正方体的个数,再乘以1个小正方体的体积即可求解.【解答】解:如图所示:该正方体可按如图方式分割,则体积为(1×1×1)×(8×8+12)=1×76=76故所得几何体的体积为76.故答案为:76.【点评】考查了截一个几何体,正方体的体积,关键是得到小正方体的个数.三.解答题(共8小题)19.[问题提出]一个边长为ncm(n≥3)的正方体木块,在它的表面涂上颜色,然后切成边长为1cm的小正方体木块,没有涂上颜色的有多少块?只有一面涂上颜色的有多少块?有两面涂上颜色的有多少块?有三面涂上颜色的多少块?[问题探究]我们先从特殊的情况入手(1)当n=3时,如图(1)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有1×1×1=1个小正方体;一面涂色的:在面上,每个面上有1个,共有6个;两面涂色的:在棱上,每个棱上有1个,共有12个;三面涂色的:在顶点处,每个顶点处有1个,共有8个.(2)当n=4时,如图(2)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有2×2×2=8个小正方体:一面涂色的:在面上,每个面上有4个,6个面,共有24个;两面涂色的:在棱上,每个楼上有2个,共有24个;三面涂色的:在顶点处,每个顶点处有1个,共有8个.…[问题解决]一个边长为ncm(n≥3)的正方体木块,没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有(n﹣2)3个小正方体;一面涂色的:在面上,共有6(n﹣2)2个;两面涂色的:在棱上,共有12(n﹣2)个;三面涂色的:在顶点处,共8个.[问题应用]一个大的正方体,在它的表面涂上颜色,然后把它切成棱长1cm的小正方体,发现有两面涂色的小正方体有96个,请你求出这个大正方体的体积.[问题拓展]把一个长16cm、宽10cm、高8cm的长方体表面涂上红漆,然后把它切成棱长2cm的小正方体,没有面涂色有几块,一面涂色有几块,两面涂色有几块,三面涂色有几块?【分析】[问题解决]依据正方体内部的小正方体的体积之和,可得没有涂色的正方体数量;依据正方体每个面上的内部的小正方体的面积,即可得到一面涂色的正方体的数量;依据正方体的棱上处于中间部分的小正方体的数量,可得两面涂色的小正方体数量;依据正方体的顶点数量,即可得到三面涂色的小正方体的数量;[问题应用]设正方体棱长为ncm,依据有两面涂色的小正方体有96个,可得方程12(n ﹣2)=96,再根据棱长即可得到体积;[问题拓展]依据一个长16cm、宽10cm、高8cm的长方体表面涂上红漆,把它切成棱长2cm的小正方体,类比上述问题的解决方法,即可得到没有面涂色有几块,一面涂色有几块,两面涂色有几块,三面涂色有几块.【解答】解:[问题解决]一个边长为ncm(n≥3)的正方体木块,没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有(n﹣2)3个小正方体;一面涂色的:在面上,共有6(n﹣2)2个;两面涂色的:在棱上,共有12(n﹣2)个;三面涂色的:在顶点处,共8个.故答案为:(n﹣2)3,6(n﹣2)2,12(n﹣2),8;[问题应用]设正方体棱长为ncm,∵有两面涂色的小正方体有96个,∴12(n﹣2)=96,∴n=10,∴这个大正方体的体积为1000cm3.[问题拓展]把一个长16cm、宽10cm、高8cm的长方体表面涂上红漆,把它切成棱长2cm的小正方体,没有面涂色有(16﹣4)(10﹣4)(8﹣4)÷8=36块,一面涂色有2[(16﹣4)(8﹣4)÷4+(16﹣4)(10﹣4)÷4+(10﹣4)(8﹣4)÷4]=72块,两面涂色有4[(16﹣4)÷2+(10﹣4)÷2+(8﹣4)÷2]=44块,三面涂色有8块.【点评】本题主要考查了正方体,解决问题的关键是抓住表面涂色的正方体切割小正方体的特点:1面涂色的在面上,2面涂色的在棱长上,3面涂色的在顶点处,没有涂色的在内部,由此即可解决此类问题.20.在下列两行图形中,分别找出相互对应的图形,并用线连接.【分析】利用面动成体解答即可.【解答】解:如图,【点评】本题主要考查了点,线,面,体,解题的关键是培养学生的空间想象能力.21.如图所示的五棱柱的底面边长都是5cm,侧棱长12cm,它有多少个面?它的所有侧面的面积之和是多少?【分析】结合图形、根据矩形的面积公式计算即可.【解答】解:这个五棱柱有7个面,它的所有侧面的面积之和是:5×12×5=300(cm2),答:这个五棱柱有7个面,它的所有侧面的面积之和是300cm2.【点评】本题考查的是几何体的表面积的计算,认识立体图形是解题的关键.22.小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了8条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.【分析】(1)根据平面图形得出剪开棱的条数,(2)根据长方体的展开图的情况可知有四种情况,(3)设最短的棱长高为acm,则长与宽相等为5acm,根据棱长的和是880cm,列出方程可求出长宽高,即可求出长方体纸盒的体积.【解答】解(1)小明共剪了8条棱,故答案为:8.(2)如图,四种情况.(3)∵长方体纸盒的底面是一个正方形,∴设最短的棱长高为acm,则长与宽相等为5acm,∵长方体纸盒所有棱长的和是880cm,∴4(a+5a+5a)=880,解得a=20cm,∴这个长方体纸盒的体积为:20×100×100=200000立方厘米.【点评】本题主要考查了几何展开图,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.23.已知∠ABC.(1)用尺规作图:作∠DEF,使∠DEF=∠ABC(不写作法,保留作图痕迹);(2)在上述作图过程中,得到哪些相等的线段?【分析】(1)首先作射线DH;再以B为圆心,任意长为半径作弧交AB、BC于点A′、。

2019-2020浙教版初中数学七年级上册《有理数的运算》专项测试(含答案) (12)

2019-2020浙教版初中数学七年级上册《有理数的运算》专项测试(含答案) (12)

浙教版初中数学试卷2019-2020年浙教版七年级数学上册《有理数的运算》精选试题学校:__________一、选择题1.(2分)下列近似数中,含有3个有效数字的是( ) A .5.430B .65.43010⨯C . 0.5430D .5.43万2.(2分)下列各式中,计算结果为正数的是( ) A .(3)(5)(7)-⨯-⨯- B .101(5)-C .23-D .3(5}(2)-⨯-3.(2分)若-2减去一个有理数的差是-5,则-2乘这个有理数的积是( ) A .10 B .-10 C .6 D .-6 4.(2分)形如dc b a 的式子叫做二阶行列式,它的运算法则用公式表示为dc b a =ad -bc ,依此法则计算4132-的结果为( )A .11B .-11C .5D .-25.(2分)下列计算:①0-(-5)=-5;②(-3)+(-9)=-12;③293()342⨯-=-;④(-36)÷(-9)=-4.其中正确的个数是( ) A .1个B .2个 C .3个D .4个6.(2分)某人第一次向南走 40 km ,第二次向北走30 km ,第三次向北走 40 km.那么最后相当 于这人( )A .向南走 110 kmB .向北走 50 kmC .向南走 30 kmD .向北走30 km 7.(2分) 任何一个有理数的二次幂是( ) A .正数 B .非负数 C .负数D .无法确定8.(2分)432()()()7143-÷-÷-=( )A .169-B .449-C .4D .-49.(2分)7 的相反数的14减去-8 的倒数的 2 倍的差等于( ) A .2B . -2C .112-D .11210.(2分) 下列说法正确的是( ) A .两个负数相加,绝对值相减B. 正数加负数,和为正数;负数加正数,和为负数 C .两正数相加,和为正数;两负数相加,和为负数 D .两个有理数相加等于它们的绝对值相加11.(2分)若 3 个不相等的有理数的代数和为 0,则下面结论正确的是( ) A .3 个加数全为 0 B .最少有 2 个加数是负数 C .至少有 1 个加数是负数 D .最少有 2 个加数是正数 12.(2分)下列说法正确的是( ) A .零减去一个数,仍得这个数 B .减去一个数,等于加上这个数 C .两个相反数相减得0D .有理数的加减法中,和不一定比加数大,差不一定比被减数小二、填空题13.(2分)写出三个有理数,使它们都同时满足:①是负数;②是整数;③能被2、3、5整除. 它们是 .14.(2分)计算:(1)(5)(2)-⨯-= ; (2)136()3÷-= .15.(2分)如果2x =,3y =,且20xy<,那么x y += . 16.(2分)根据如图所示的程序计算,若输入x 的值为1,则输出y 的值为 .17.(2分)根据“二十四点”游戏规则,3,4,—6,10每个数用且只能用一次,用有理数的混合运算方法(加、减、乖、除、乘方)写出一个算式:_______ ______________,使其结果等于24.18.(2分)数轴上A ,B 两点表示的有理数分别是-5和7,则A ,B 两点之间的距离实际是 .19.(2分)把139 500四舍五人取近似数,保留 3个有效数字是 . 20.(2分)如果13a =-,那么a -= ;如果5||2a =,那么a = . 21.(2分)用四舍五入法取l00955的近似数,保留2个有效数字是 ,保留4个有效数字是 .22.(2分)若a 满足2008(2006)1a -=,则a= .23.(2分)41()2-表示的意义是 ,22223333⨯⨯⨯可写成 .24.(2分)某次数学测验,以 90 分为标准,老师公布的成绩为:小明+10 分,小刚 0分,小敏-2 分,则小明的实际得分为 分,小刚的实际得分为 分,小敏的实际得分为 分.25.(2分)计算:(1)5+(-3)= ; (2)(-4)+(-5)= ; (3)(-2)+6= ; (4)11()()23-++= ;(5)1(0.125)()8-+= ;(6)0+ (-9.7)= . 评卷人 得分三、解答题26.(8分)高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米)+17,-9,+7,-15,-3,+11,-6,-8,+5,+16 (1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远? (2)若汽车耗油量为0.04L/km ,则这次养护共耗油多少升?27.(8分)计算:(1) -10+8÷(-2)2-3 ×(-4)-15; (2)321()(8)433-⨯-+-;(3)1313[1()24]524864-+-⨯÷ (4)4211(10.5)[2(3)]3---⨯⨯--28.(8分)在-2.2,-2.02,-2.002,-2.020 2,-2.002 02五个数中,若最大的数除以最小的数的商为x ,求59[1()|10x ÷-的值,并用科学记数法表示出它的结果.29.(8分)若 a-1 的相反数是 2,b 的绝对值是 3,求a-b 的值.30.(8分)求下列每对数在数轴上对应点之间的距离. (1)3 与-2. 2 (2)142与124(3)-4 与-4. 5(4)132-与123你能发现两点之间的距离与这两数的差有什么关系吗?【参考答案】***试卷处理标记,请不要删除一、选择题1.D2.D3.D4.A5.B6.D7.B8.D9.C10.C11.C12.D二、填空题13.答案不唯一,如:-30,-60,-9014.10,-10815.1或-116.答案:417.3×(4-6+10)(答案不惟一)18.1219.51.4010⨯20.13,5 2±21.1.O×1O5,1.OlO×1O522.2007 或 200523.4个(12-)相乘,42()324.100,90,8825.(1)2 (2)-9 (3)4 (4)16- (5)0 (6)-9.7三、解答题26.(1)在出发点的向东方向,距出发点15千米;(2)3.88升 27.(1)3 (2)354(3)5124 (4)1628.这一列数中最大的数是-2.002,最小的数是-2.2,它们的商是 2.002912.2100x -==-, ∴555510991901[1()][1()](1)10011010100100100x ÷-=÷-=÷==⨯ 29.-4或230.(1)5.2 (2)124 (3)0. 5 (4)556两点之间的距离等于两数之差的绝对值。

(2019秋)度第一学期七年级期末数学试卷(有答案)-精编.doc

(2019秋)度第一学期七年级期末数学试卷(有答案)-精编.doc

第一学期七年级期末评价数 学 试 卷一、选择题:(本大题10个小题,每小题3分,共30分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中。

1.(-2)×3的结果是…………………………………………………………………………【 】A . - 6 B. – 5 C. - 1 D. l2.下列说法中①小于90°的角是锐角; ②等于90°的角是直角;③大于90°的角是钝角; ④平角等于180°;⑤周角等于360°,正确的有………………………………………………【 】 A .5个 B .4个C .3个D .2个3.用代数式表示“m 的3倍与n 的差的平方”,正确的是…………………………………【 】 A .(3m -n )2B .3(m -n )2C .3m -n 2D .(m -3n )24.如图,∠AOB =120°,OC 是∠AOB 内部任意一条射线,OD ,OE 分别是∠AOC ,∠BOC 的角平分线,下列叙述正确的是【 】 A .∠DOE 的度数不能确定 B .∠AOD =12∠EOC C .∠AOD +∠BOE =60°D .∠BOE =2∠COD5..有理数a ,b 在数轴的位置如图,则下面关系中正确的个数为……………………………【 】①a -b >0; ②ab <0; ③11a b>; ④a 2>b 2.A .1B .2C .3D .46.一件商品按成本价提高30%后标价,再打8折(标价的80%)销售,售价为312元,设这件商品的成本价为x 元,根据题意,下面所列的方程正确的是……………………………【 】 A .x ·30%×80%=312 B .x ·30%=312×80% C .312×30%×80%=xD .x (1+30%)×80%=3127..下列等式变形正确的是…………………………………………………………………【 】 A .如果s= 2ab,那么b=2s a B .如果12x=6,那么x=3 C .如果x-3 =y-3,那么x-y =0 D .如果mx= my ,那么x=y8.下列方程中,以x =-1为解的方程是………………………………………………………【 】 A .13222xx +=- B .7(x -1)=0 C .4x -7=5x +7D .133x =-9.如图,边长为2m +3的正方形纸片剪出一个边长为m +3的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m ,则另一边长为…………………………………………………【 】 A .2m +6B .3m +6C .2m 2+9m +6D .2m 2+9m +910.下列图案是用长度相同的火柴按一定规律拼搭而成,第一个图案需8根火柴,第二个图案需15根火柴,…,按此规律,第n 个图案需几根火柴棒………………………………………………………………………………………【 】A .2+7nB .8+7nC .7n +1D .4+7n二、填空题:(本大题8个小题,每小题4分,共32分)在每小题中,请将答案直接填在题后的横线上。

部编数学七年级上册【单元测试】第一章有理数(夯实基础过关卷)(解析版)含答案

部编数学七年级上册【单元测试】第一章有理数(夯实基础过关卷)(解析版)含答案

【冲刺高分】2021—2022学年人教版七年级数学上册培优拔高必刷卷第一章有理数【单元测试】夯实基础过关卷(考试时间:90分钟试卷满分:100分)学校:___________姓名:___________班级:___________考号:___________一、选择题:本题共8个小题,每小题4分,共32分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

a+表示,且1.(2020·无锡市第一中学七年级期中)点A在数轴上,点A所对应的数用21点A到原点的距离等于3,则a的值为()A.2-D.1 -或1B.2-或2C.2【答案】A【分析】根据绝对值的几何意义列绝对值方程解答即可.【详解】解:由题意得:|2a+1|=3当2a+1>0时,有2a+1=3,解得a=1当2a+1<0时,有2a+1=-3,解得a=-2所以a的值为1或-2.故答案为A.【点睛】本题考查了绝对值的几何意义,根据绝对值的几何意义列出绝对值方程并求解是解答本题的关键.2.(2020·酒泉市第二中学)下列各组数中,互为相反数的有()①-(-2)和-|-2|;②(-1)2和-12;③23和32;④(-2)3和-23A.④B.①②C.①②③D.①②④【分析】先利用去括号法则、绝对值运算、有理数的乘方运算进行计算,再根据相反数的定义即可得.【详解】解:①(2)2,22--=--=-,则这组数互为相反数,②22(1)1,11-=-=-,则这组数互为相反数,③3228,39==,则这组数不互为相反数,④33(2)8,28-=--=-,则这组数不互为相反数,综上,互为相反数的有①②,故选:B .【点睛】本题考查了去括号法则、绝对值运算、有理数的乘方运算、相反数的定义,熟练掌握各运算法则和定义是解题关键.3.(2020·浙江)在3,1,1,3--这四个数中,比2-小的数是( )A .3-B .1-C .1D .3【答案】A【分析】根据有理数的大小关系求解即可.【详解】解:在这四个数中32-<-故答案为:A .【点睛】本题考查了比较有理数大小的问题,掌握比较有理数大小的方法是解题的关键.4.(2020·多伦县第四中学七年级期中)当n 为正整数时,(﹣1)2n+1﹣(﹣1)2n 的值为( )A .0B .2C .﹣2D .2或﹣2【答案】C 【分析】1、 由n 为正整数, 得2n 是偶数, 2n+1是奇数;2、 根据 “指数是偶数时, 负数的幂是正数” 以及 “指数是奇数时, 负数的幂是负数"可得(-1)2n+1=-1,(-1)2n=1;3、 接下来根据有理数的加法法则进行计算即可.【详解】解:原式=(﹣1)2n+1﹣(﹣1)2n = -1-1= - 2,【点睛】本题主要考查负数的幂运算: 指数是偶数时, 负数的幂是正数,指数是奇数时, 负数的幂是负数.5.(2020·银川英才学校)如图,数轴的单位长度为1,若点A 和点C 所表示的两个数的绝对值相等,则点B 表示的数是( )A .-3B .-1C .1D .3【答案】B 【分析】找到AC 的中点即为原点,进而看B 点在原点的哪边,距离原点几个单位即可.【详解】解:设AC 的中点为O 点,表示的数是0,所以点C 表示的数是-3,所以点B 表示的数是-1.故选:B【点睛】本题考查数轴上点的确定;找到原点的位置是解决本题的关键;用到的知识点为:两个数的绝对值相等,那么这两个数到原点的距离相等.6.(2020·靖江市靖城中学)如图,数轴上的,,A B C 三点所表示的数分别为a b c 、、,其中AB BC =,如果||||||a c b >>那么该数轴的原点O 的位置应该在( )A .点A 的左边B .点A 与点B 之间C .点B 与点C 之间D .点C 的右边【答案】C 【分析】根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A 、B 、C 到原点的距离的大小,从而得到原点的位置,即可得解.【详解】解:∵|a|>|c|>|b|,∴点A 到原点的距离最大,点C 其次,点B 最小,又∵AB=BC ,∴原点O的位置是在点B、C之间且靠近点B的地方.故选:C.【点睛】此题考查了实数与数轴,理解绝对值的定义是解题的关键.7.(2020·湖南天心·长郡中学七年级期中)如图,点A所表示的数的绝对值是( )A.3B.﹣3C.13D.13-【答案】A【分析】根据负数的绝对值是其相反数解答即可.【详解】|-3|=3,故选A.【点睛】此题考查绝对值问题,关键是根据负数的绝对值是其相反数解答.8.(2020·重庆市荣昌区荣隆镇初级中学七年级期中)4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为()A.0.439×106B.4.39×106C.4.39×105D.139×103【答案】C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将439000用科学记数法表示为4.39×105.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.二、填空题:本题共6个小题,每题3分,共18分。

2019-2020学年河南省郑州市桐柏一中七年级(上)第一次月考数学试卷(解析版)

2019-2020学年河南省郑州市桐柏一中七年级(上)第一次月考数学试卷(解析版)

2019-2020学年河南省郑州市桐柏一中七年级(上)第一次月考数学试卷一、单项选择题:(本题共10小题,每小题3分,共30分)1.在下列各数:﹣(+2019),﹣|﹣2019|,﹣,﹣(﹣2019),2019中,负数的个数是()个A.2B.3C.4D.52.主视图、左视图和俯视图完全相同的几何体是()A.圆锥B.长方体C.圆柱D.正方体3.﹣2的相反数等于()A.﹣2B.2C.D.4.四位同学画数轴如图所示,你认为正确的是()A.B.C.D.5.用一个平面去截一个几何体,截面的形状是三角形,那么这个几何体不可能是()A.圆锥B.五棱柱C.正方体D.圆柱6.为庆祝郑州一中建校70周年,桐一学子制作了精美纪念胸章,质量要求是“70±0.25克”,则有理数中大小合格的有()A.69.70克B.70.30克C.70.51克D.69.80克7.下列各图中,()是四棱柱的侧面展开图.A.B.C.D.8.一个棱柱有10个面,那么它的棱数是()A.16B.20C.22D.249.在立方体六个面上,分别标上“我、爱、郑、州、一、中”,如图是立方体的三种不同摆法,则“州”字相对面是()A.我B.爱C.一D.中10.用小立方块搭成的几何体,从正面和上面看的形状图如图,则组成这样的几何体需要立方块个数为()A.最多需要8块,最少需要6块B.最多需要9块,最少需要6块C.最多需要8块,最少需要7块D.最多需要9块,最少需要7块二、填空题:(本题共6小题,每题3分,共18分.)11.有理数可分为:、、.12.比较大小:﹣2019﹣2018(填=,>,<号)13.圆柱的侧面展开图是形.14.在数轴上到表示﹣2的点的距离为4的点所表示的数是.15.已知|a+2019|=﹣|b﹣2020|,a+b=.16.张老师在黑板上写出以下四个结论:①﹣3的绝对值为;②一个负数的绝对值一定是正数;③若|a|=﹣a,则a一定是负数;④一个五棱柱的截面最多是七边形,认为张老师写的结论正确的有(填序号)三、解答题.(共6道题,52分.)17.(8分)计算:(1)﹣5+2×(﹣3)+(﹣12)÷[﹣2](2)﹣|﹣2|×[÷(﹣)+0×(﹣2019)+]÷()18.(9分)画出如图图形的三视图.19.(8分)如图,已知数轴上点A表示的数为a,点B表示的数为b,且满足|a﹣8|+|b+5|=0.(1)写出a、b及AB的距离:a=b=AB=;(2)若动点P从点A出发,以每秒3个单位长度沿数轴向右匀速运动,动点Q从点B出发,以每秒5个单位长度向右匀速运动.若P、Q同时出发,问点Q运动多少秒追上点P?20.(8分)如图所示,圆柱的高4cm,底面半径3cm,请求出该圆柱的表面积和体积.21.(9分)“十•一”黄金周期间,郑州市绿博园在7天假期中每天旅游的人数变化如表(正数表示比前一天多的人数,负数表示比前一天少的人数):日期1日2日3日4日5日6日7日人数变化(单位:万人)+1.6+0.8﹣0.4﹣0.4﹣1.4+0.2﹣0.9(1)第3天与假期前的游客人数相比,是增加了还是减少了?增加(减少)了多少万人?(2)7天假期中平均每天的游客数相较假期前是增加还是减少了?增加(减少)了多少万人?(3)请判断七天内游客人数最多的是日.22.(10分)在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答题目后提出的“探究”【提出问题】三个有理数a、b、c满足abc>0,求++的值.【解决问题】解:由题意得:a,b,c三个有理数都为正数或其中一个为正数,另两个为负数.①当a,b,c都是正数,即a>0,b>0,c>0时,则:++=++=1+1+3;②当a,b,c有一个为正数,另两个为负数时,设a >0,b<0,c<0,则:++=++=1﹣1﹣1=﹣1所以:++的值为3或﹣1.【探究】请根据上面的解题思路解答下面的问题:(1)三个有理数a,b,c满足abc<0,求++的值;(2)已知|a|=9,|b|=4,且a<b,求a﹣2b的值.2019-2020学年河南省郑州市桐柏一中七年级(上)第一次月考数学试卷参考答案与试题解析一、单项选择题:(本题共10小题,每小题3分,共30分)1.在下列各数:﹣(+2019),﹣|﹣2019|,﹣,﹣(﹣2019),2019中,负数的个数是()个A.2B.3C.4D.5【分析】根据负数的定义即小于0的数是负数,再把所给的数进行计算,即可得出答案.【解答】解:﹣(+2019)=﹣2019,﹣|﹣2019|=﹣2019,﹣,﹣(﹣2019)=2019,∴在所列实数中负数有3个,故选:B.【点评】此题主要考查了绝对值以及有理数的乘方运算,正确化简各数是解题关键.2.主视图、左视图和俯视图完全相同的几何体是()A.圆锥B.长方体C.圆柱D.正方体【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:A、圆锥的主视图和左视图是相同的,都为一个三角形,但是俯视图是一个圆形,不符合题意;B、长方体的主视图和左视图是相同的,都为一个长方形,但是俯视图是一个不一样的长方形,不符合题意;C、圆柱的主视图和左视图都是矩形,但俯视图也是一个圆形,不符合题意;D、正方体的三视图都是大小相同的正方形,符合题意.故选:D.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.﹣2的相反数等于()A.﹣2B.2C.D.【分析】根据相反数的概念解答即可.【解答】解:﹣2的相反数是﹣(﹣2)=2.故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.4.四位同学画数轴如图所示,你认为正确的是()A.B.C.D.【分析】数轴的定义:规定了原点、单位长度和正方向的直线.【解答】解:A中,无原点;B中,无正方向;D中,数的顺序错了.故选:C.【点评】考查了数轴的定义.注意数轴的三要素:原点、正方向和单位长度.5.用一个平面去截一个几何体,截面的形状是三角形,那么这个几何体不可能是()A.圆锥B.五棱柱C.正方体D.圆柱【分析】根据圆柱体的主视图只有矩形或圆,即可得出答案.【解答】解:∵圆柱体的主视图只有矩形或圆,∴如果截面是三角形,那么这个几何体不可能是圆柱.故选:D.【点评】此题主要考查了截一个几何体,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法.6.为庆祝郑州一中建校70周年,桐一学子制作了精美纪念胸章,质量要求是“70±0.25克”,则有理数中大小合格的有()A.69.70克B.70.30克C.70.51克D.69.80克【分析】计算精美纪念胸章的质量标识的范围:在70﹣0.25和70+0.25之间,即:从69.75到70.25之间.【解答】解:70﹣0.25=69.75(克),70+0.25=70.25(克),所以精美纪念胸章,质量标识范围是:在69.75到70.25之间.故选:D.【点评】此题考查了正数和负数,解题的关键是:求出精美纪念胸章的质量标识的范围.7.下列各图中,()是四棱柱的侧面展开图.A.B.C.D.【分析】根据四棱柱的侧面展开图是矩形图进行解答即可.【解答】解:由分析知:四棱柱的侧面展开图是矩形图;故选:A.【点评】本题考查了几何体的展开图,此题应根据四棱柱的侧面展开图,进行分析、解答.8.一个棱柱有10个面,那么它的棱数是()A.16B.20C.22D.24【分析】根据八棱柱的定义可知,一个棱柱有10个面,那么这个棱柱是八棱柱,即可得出答案.【解答】解:一个棱柱有10个面,那么这个棱柱是八棱柱,它的棱数为3×8=24;故选:D.【点评】本题考查了棱柱的特征:n棱柱有(n+2)个面,有3n条棱;熟记棱柱的特征是解题的关键.9.在立方体六个面上,分别标上“我、爱、郑、州、一、中”,如图是立方体的三种不同摆法,则“州”字相对面是()A.我B.爱C.一D.中【分析】根据与“我”相邻的字是“中”“州”“爱”“一”可以得到“我”的对面是“郑”,同理可以找出与“中”相邻的四个字,然后找出“中”的对面是“一”,从而得出“州”与“爱”相对即可得解.【解答】解:根据图形,“我”相邻的字是“中”“州”“爱”“一”,∴“我”的对面是“郑”,“中”相邻的字是“我”“郑”“州”“爱”,∴“中”的对面是“一”,∴“州”与“爱”相对.故选:B.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相邻面入手找出四个相邻的字,从而得到对面的字是解题的关键.10.用小立方块搭成的几何体,从正面和上面看的形状图如图,则组成这样的几何体需要立方块个数为()A.最多需要8块,最少需要6块B.最多需要9块,最少需要6块C.最多需要8块,最少需要7块D.最多需要9块,最少需要7块【分析】易得这个几何体共有3层,由俯视图可得第一层正方体的个数为4,由主视图可得第二层最少为2块,最多的正方体的个数为3块,第三层只有一块,相加即可.【解答】解:有两种可能;由主视图可得:这个几何体共有3层,由俯视图可得:第一层正方体的个数为4,由主视图可得第二层最少为2块,最多的正方体的个数为3块,第三层只有一块,∴最多为3+4+1=8个小立方块,最少为个2+4+1=7小立方块.故选:C.【点评】此题主要考查了由三视图判断几何体,关键是掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就很容易得到答案.二、填空题:(本题共6小题,每题3分,共18分.)11.有理数可分为:正有理数、零、负有理数.【分析】根据有理数的分类即可解答.【解答】解:有理数包括整数和分数,可以分为正有理数、零、负有理数.故答案为:正有理数,零,负有理数.【点评】此题主要考查了有理数的分类,解题时熟练掌握有理数的定义及不同的分类标准即可解决问题.12.比较大小:﹣2019<﹣2018(填=,>,<号)【分析】两个负数作比较,绝对值大的反而小.据此可得.【解答】解:∵|﹣2019|>|﹣2018|,∴﹣2019<﹣2018.故答案为:<【点评】此题考查了两个负数比较大小:两个负数作比较,绝对值大的反而小.13.圆柱的侧面展开图是长方形.【分析】由圆柱的侧面展开图的特征知它的侧面展开图为长方形.【解答】解:圆柱的侧面展开图为长方形.故答案为:长方.【点评】本题考查了圆柱的展开图,熟练掌握常见立体图形的侧面展开图的特征是解决本题的关键.14.在数轴上到表示﹣2的点的距离为4的点所表示的数是﹣6或2.【分析】根据数轴的特点,数轴上与表示﹣2的点的距离为4的点有两个:一个在数轴的左边,一个在数轴的右边,分两种情况讨论即可求出答案.【解答】解:该点可能在﹣2的左侧,则为﹣2﹣4=﹣6;也可能在﹣2的右侧,即为﹣2+4=2.故答案为:﹣6或2.【点评】此题主要考查了实数与数轴之间的对应关系,解题应该会根据距离和已知的一点的坐标确定另一点的坐标方法:左减右加.15.已知|a+2019|=﹣|b﹣2020|,a+b=1.【分析】直接利用绝对值的性质得出b的值,进而得出a的值,即可得出答案.【解答】解:∵|a+2019|=﹣|b﹣2020|,∴b﹣2020=0,∴b=2020,∴a=﹣2019,∴a+b=1.故答案为:1.【点评】此题主要考查了绝对值,正确掌握绝对值的性质是解题关键.16.张老师在黑板上写出以下四个结论:①﹣3的绝对值为;②一个负数的绝对值一定是正数;③若|a|=﹣a,则a一定是负数;④一个五棱柱的截面最多是七边形,认为张老师写的结论正确的有②④(填序号)【分析】根据乘积为1的数互为倒数;负数的绝对值是它的相反数;五棱柱有7个面,用平面去截长方体时最多与7个面相交得七边形判断即可.【解答】解:①﹣3×(﹣)=1,∴﹣3的倒数为﹣,故不符合题意;②负数的绝对值一定是正数,正确;故符合题意;③若|a|=﹣a,则a一定是非正数,故不符合题意;④截面可以经过三个面,四个面,五个面,六个面或七个面,那么得到的截面的形状最多是七边形,故符合题意;故答案为:②④.【点评】本题考查倒数,绝对值的定义及有关几何体的截面等知识,正确的理解题意是解题的关键.三、解答题.(共6道题,52分.)17.(8分)计算:(1)﹣5+2×(﹣3)+(﹣12)÷[﹣2](2)﹣|﹣2|×[÷(﹣)+0×(﹣2019)+]÷()【分析】(1)根据有理数的混合运算顺序即可求解;(2)根据有理数的混合运算顺序:先算括号内的和绝对值,再算乘除即可.【解答】解:(1)原式=﹣5﹣6+6=﹣5;(2)原式=﹣2×(﹣×4+0+)×3=﹣2×(﹣+)×3=﹣2×(﹣)×3=4.【点评】本题考查了有理数的混合运算,严格按运算顺序进行计算是关键.18.(9分)画出如图图形的三视图.【分析】从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图,分别画出即可.【解答】解:如图所示:【点评】此题主要考查了三视图,关键是把握好三视图所看的方向.19.(8分)如图,已知数轴上点A表示的数为a,点B表示的数为b,且满足|a﹣8|+|b+5|=0.(1)写出a、b及AB的距离:a=8b=﹣5AB=13;(2)若动点P从点A出发,以每秒3个单位长度沿数轴向右匀速运动,动点Q从点B出发,以每秒5个单位长度向右匀速运动.若P、Q同时出发,问点Q运动多少秒追上点P?【分析】(1)利用绝对值的非负性,可求出a,b的值,进而可得出线段AB的长;(2)由点P,Q的出发点、速度可得出:当运动时间为t秒时,点P表示的数为3t+8,点Q表示的数为5t﹣5,根据点Q追上点P,即可得出关于t的一元一次方程,解之即可得出结论.【解答】解:(1)∵|a﹣8|+|b+5|=0,∴a=8,b=﹣5,∴AB=8﹣(﹣5)=13.故答案为:8;﹣5;13.(2)当运动时间为t秒时,点P表示的数为3t+8,点Q表示的数为5t﹣5,依题意,得:3t+8=5t﹣5,解得:t=.答:点Q运动秒追上点P.【点评】本题考查了一元一次方程的应用、数轴以及绝对值的非负性,解题的关键是:(1)利用绝对值的非负性,求出a,b的值;(2)找准等量关系,正确列出一元一次方程.20.(8分)如图所示,圆柱的高4cm,底面半径3cm,请求出该圆柱的表面积和体积.【分析】根据圆柱表面积=底面周长×高,底面积=πr2公式计算表面积,根据底面积乘以高计算体积.【解答】解:根据圆柱表面积的计算公式可得π×2×3×4+π×32×2=42π(cm2).体积π×32×4=36π(cm3)【点评】本题主要考查了圆柱表面积和体积的计算方法.熟练运用圆柱面积公式与体积公式是解题的关键.21.(9分)“十•一”黄金周期间,郑州市绿博园在7天假期中每天旅游的人数变化如表(正数表示比前一天多的人数,负数表示比前一天少的人数):日期1日2日3日4日5日6日7日人数变化(单位:万人)+1.6+0.8﹣0.4﹣0.4﹣1.4+0.2﹣0.9(1)第3天与假期前的游客人数相比,是增加了还是减少了?增加(减少)了多少万人?(2)7天假期中平均每天的游客数相较假期前是增加还是减少了?增加(减少)了多少万人?(3)请判断七天内游客人数最多的是2日.【分析】(1)求出第3天的变化人数,即可得出结论;(2)求出7天假期中平均每天的游客数,即可得出答案;(3)由1.6+0.8=2.4,以后连续3天减少,第6日增加不多,即可得出答案.【解答】解:(1)第3天的游客人数为1.6+0.8﹣0.4=2.0>0,∴第3天与假期前的游客人数相比,是增加了,增加了2.0万人;(2)7天假期中平均每天的游客数为(1.6+0.8﹣0.4﹣0.4﹣1.4+0.2﹣0.9)≈﹣0.07<0,∴7天假期中平均每天的游客数相较假期前是减少了,减少了约0.07万人;(3)∵1.6+0.8=2.4,以后连续3天减少,第6日增加不多,∴七天内游客人数最多的是2日;故答案为:2.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性.22.(10分)在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答题目后提出的“探究”【提出问题】三个有理数a、b、c满足abc>0,求++的值.【解决问题】解:由题意得:a,b,c三个有理数都为正数或其中一个为正数,另两个为负数.①当a,b,c都是正数,即a>0,b>0,c>0时,则:++=++=1+1+3;②当a,b,c有一个为正数,另两个为负数时,设a >0,b<0,c<0,则:++=++=1﹣1﹣1=﹣1所以:++的值为3或﹣1.【探究】请根据上面的解题思路解答下面的问题:(1)三个有理数a,b,c满足abc<0,求++的值;(2)已知|a|=9,|b|=4,且a<b,求a﹣2b的值.【分析】(1)根据阅读材料分情况讨论计算即可;(2)根据绝对值的意义,先求出a、b的值,进而可得结果.【解答】解:(1)由题意得:a,b,c三个有理数都为负数或其中一个为负数,另两个为正数.①当a,b,c都是负数,即a<0,b<0,c<0时,则:++=﹣﹣﹣=﹣1﹣1﹣1=﹣3;②当a,b,c有一个为负数,另两个为正数时,设a>0,b>0,c<0,则:++=++=1+1﹣1=1所以:++的值为﹣3或1.(2)因为|a|=9,|b|=4,所以a=±9,b=±4,因为a<b,所以a=﹣9,b=±4,所以a﹣2b=﹣9﹣2×4=﹣17或a﹣2b=﹣9﹣2×(﹣4)=﹣1.答:a﹣2b的值为﹣17或﹣1.【点评】本题考查了有理数的混合运算、绝对值的意义,解决本题的关键是读懂阅读材料.。

人教版数学七年级上学期单元测试卷-第三章 一元一次方程【A卷】(原卷版+解析版)

人教版数学七年级上学期单元测试卷-第三章 一元一次方程【A卷】(原卷版+解析版)

第三章 一元一次方程 单元A 卷一、单选题(共10题;共50分)1. ( 5分 ) 若力程2x+1=-2与关于x 的方程1-2(x-a)=2的解相同,则a 的值是( ) A. 1 B. -1 C. -2 D. -2. ( 5分 ) 已知实数 a ,b 满足 a+1>b+1,则下列选项可能错误....的是( ) A. a>b B. -3a<-3b C. a+2>b+2 D. ac 2>bc 23. ( 5分 ) 如果am=an,那么下列等式不一定成立的是( )A. am-3=an-3B. 5+am=5+anC. m=nD. −12am =−12an4. ( 5分 ) 方程2-2x−43=x−76去分母得( )A. 2-2(2x -4)=-(x -7)B. 12-2(2x -4)=-x -7C. 12-4x -8=-(x -7)D. 12-2(2x -4)=x -7 5. ( 5分 ) 已知关于x 的方程7﹣kx=x+2k 的解是x=2,则k 的值为( )A. ﹣3B. 45 C. 1 D. 546. ( 5分 ) 已知5是关于x 的方程ax+b=0的解,则关于x 的方程a (x+3)+b=0的解是( ) A. ﹣3 B. 0 C. 2 D. 57. ( 5分 ) 一双运动鞋先按成本提高40%标价,再以8折(标价的80%)出售,结果获利27元,若设这双运动鞋的成本价是x 元,根据题意,可得到的方程是( )A. (1+40%)x•80%=x ﹣27B. (1+40%)x•80%=x+27C. (1﹣40%)x•80%=x -27D. (1﹣40%)x•80%=x+278. ( 5分 ) 某车间有26名工人,每人每天可以生产800个螺栓或1 000个螺母,1个螺栓需要配2个螺母,为使每天生产的螺栓和螺母刚好配套,设安排x 名工人生产螺栓,则下面所列方程正确的是( ) A. 2×1 000(26-x )=800x B. 1 000(13-x )=800x C. 1 000(26-x )=2×800x D. 1 000(26-x )=800x9. ( 5分 ) 当a 取什么范围时,关于x 的方程|x ﹣4|+2|x ﹣2|+|x ﹣1|+|x|=a 总有解?( ) A. a≥4.5 B. a≥5 C. a≥5.5 D. a≥610. ( 5分) 某市在“五水共治”中新建成一个污水处理厂.已知该厂库池中存有待处理的污水a吨,另有从城区流入库池的待处理污水(新流入污水按每小时b吨的定流量增加).若污水处理厂同时开动2台机组,需30小时处理完污水;若同时开动3台机组.需15小时处理完污水.现要求恰好用5个小时将污水处理完毕,则需同时开动的机组数为()A. 6台B. 7台C. 8台D. 9台二、填空题(共6题;共30分)11. ( 5分) 当x=________时,代数式x+12与x﹣3的值互为相反数.12. ( 5分) 若x=3是关于x的方程x−2a=7的解,则a=________.13. ( 5分) 一张方桌由一个桌面和四条桌腿组成,如果1立方米木料可制作方桌的桌面50个或制作桌腿300条,现有5立方米木料,设用x立方米木料做桌面,那么桌腿用木料(5-x)立方米,这里x应满足的方程是________.14. ( 5分) 如图是由若干个粗细均匀的铁环最大限度地拉伸组成的链条.已知铁环粗1厘米,每个铁环长5厘米.设铁环间处于最大限度的拉伸状态.若要组成2米长的链条,则需要________个铁环.15. ( 5分) 已知关于x的一元一次方程x2019+5=2019x+m的解为x=2018,那么关于y的一元一次方程5−y2019﹣5=2019(5﹣y)﹣m的解为________.16. ( 5分) 有理数a,b,c在数轴上的对应点如图所示,计算a-b+c________0(填“>”“<”或“=”).三、计算题(共1题;共8分)17. ( 8分) 解方程:(1)3−4x=2x−3(2)−12x+1=16x−3四、解答题(共2题;共16分)18. ( 8分) 制作一张桌子需要一个桌面和四个桌腿,1m3木材可制作20个桌面或制作400条桌腿,现有12m3的木材,应怎样计划才能使桌面和桌腿刚好配套?能制成多少套桌椅?19. ( 8分) 家具厂制作一张桌子需要一个桌面和3条桌腿,1立方米木材可制作20个桌面,或者制作360条桌腿,现有7立方米木材,应该用多少立方米木材生产桌面,才能使所有木材生产出的桌面与桌腿正好配套?五、综合题(共1题;共16分)20. ( 16分) 某中学开学初到商场购买A.B两种品牌的额温枪,购买A种品牌的额温枪50个,B种品牌的额温枪25个,共花费4500元,已知购买一个B种品牌的额温枪比购买两个A种品牌的额温枪少花20元.(1)如果购买一个A种品牌的额温枪a元,则购买一个B种品牌额温枪________元(用含a的式了表示).(2)求购买一个A种品牌的额温枪和一个B种品牌的额温枪各需多少元;(3)由于疫情比预计的时间要长,学校决定第二次购买A、B两种品牌额温枪共50个.正好赶上商场对商品价格进行调整,A种品牌额温枪售价比第一次购买时提高了8%,B种品牌额温枪按第一次购买时售价的九折出售.如果学校第二次购买A、B两种品牌额温枪的总费用是第一次购买额温枪总费用的70%,求学校第二次购买A种品牌的额温枪多少个.第三章一元一次方程单元A卷一、单选题(共10题;共50分)1. ( 5分) 若力程2x+1=-2与关于x的方程1-2(x-a)=2的解相同,则a的值是( )A. 1B. -1C. -2D. -【答案】B【考点】一元一次方程的解,解一元一次方程【解析】【解答】解:方程2x+1=-2,,解得:x= −32代入方程得:1+3+2a=2,解得:a=-1故答案为:B.【分析】求出第一个方程的解得到x的值,代入第二个方程计算即可求出a的值.2. ( 5分) 已知实数a,b 满足a+1>b+1,则下列选项可能错误....的是()A. a>bB. -3a<-3bC. a+2>b+2D. ac2>bc2【答案】D【考点】等式的性质【解析】【解答】解:A、∵ a+1>b+1∴a>b,故A不符合题意;B、∵a>b,∴ -3a<-3b ,故B不符合题意;C、∵a>b,∴ a+2>b+2 ,故C不符合题意;D、∵a>b,当c=0时则ac2=bc2,故D符合题意;故答案为:D.【分析】利用不等式的性质1,可得到a>b,可对A作出判断;利用不等式的性质3,可对B作出判断;利用不等式的性质2,可对C作出判断;利用不等式的性质2,分情况讨论当c=0和c≠0,可对D作出判断。

2019-2020年七年级上学期9月份月考数学试卷

2019-2020年七年级上学期9月份月考数学试卷

2019-2020年七年级上学期9月份月考数学试卷教师寄语:亲爱的同学们,考试只是老师了解你掌握知识多少的一种方式,请你放松心情,认真、细心答题,相信你定能在这里展示出你的风采!一、选择题(每小题3分,共计30分)1.下列四个式子中,是方程的是( )(A )2x -6 (B )2x +y=5 (C )-3+1=-2 (D )3264= 2.下列方程中,解为2x =的方程是( )(A )24=x (B ) 063=+x (C ) 021=x (D )0147=-x3.下列等式变形正确的是( )(A )如果12S ab =,那么2Sb a = (B )如果162x =,那么3x =(C )如果mx my =,那么x y = (D )如果33x y -=-,那么0x y -=4.将(32)2(21)x x +--去括号正确的是( )(A )3221x x +-+ (B )3241x x +-+(C )3242x x +-- (D )3242x x +-+5.若关于x 的一元一次方程k(x+4)-2k-x=5的解为x=-3,则k 的值是( )(A )-2 (B )2 (C )51(D )51-6.在解方程21x --332x +=1时,去分母正确的是( )(A )3(x -1)-2(2+3x )=1 (B )3(x -1)-2(2x +3)=6(C) 3x -1-4x +3=1 (D )3x -1-4x +3=67.某小组分若干本书,若每人分一本,则余一本,若每人分给2本,则缺3本,那么共有图书() (A )6本 (B )5本 (C )4本 (D )3本8.某商贩在一次买卖中,同时卖出两件上衣,每件都以80元出售,若按成本计算,其中一件赢利60%,另一件亏本20%,在这次买卖中,该商贩( )(A )不盈不亏 (B )盈利10元 (C )亏损10元 (D )盈利50元.9.已知1+x +23y x ()—+=0,那么2y x )(+的值是( ) (A )0 (B )1 (C )9 (D )4 10.如图所示,第一个天平的两侧分别放2个球体和5个圆柱体,第二个天平的两侧分别放2个正方体和3个圆柱体,两个天平都平衡,则12个球体的质量等于( )个正方体的质量.(A )12 (B )16(C )20 (D )24二、填空题(每小题3分,共计30分)11.方程052=+x 的解是=x .12.若x=-3是方程3(x-a )=7的解,则a= .13.若方程04x )2a (1a =+--是关于x 的一元一次方程,则a=_______.14.当n = 时,多项式2217n x y +2513x y -可以合并成一项. 15.一张试卷只有25道选择题,做对一题得4分,做错1题倒扣1分,某同学做了全部试题共得85分,他做对了 道题.16.如果关于x 的方程3x+4=0与方程3x+4k=18的解相同,则k= .17.有一列数,按一定规律排成1,-3,9,-27,81,-243,…,其中某三个相邻数的和是-1 701,这三个数中最小数为 .18.甲队有31人,乙队有26人,现另调24人分配给甲、乙两队,使甲队的人数是乙队人数的2倍,则应分配给甲队 人.19.A 、B 两地相距64千米,甲从A 出发,每小时行14千米,乙从B 地出发,每小时行18千米,若两人同时出发相向而行,则需_________小时两人相距16千米.20.一个通讯员骑自行车需要在规定时间内把信件送到某地,每小时走15公里早到24分钟,如果每小时走12公里,就要迟到15分钟,原定时间是________分.三、解答题(21题8分,22题10分,23题6分,24题8分,25题8分,26题10分,27题10分,共计60分)(第10题图)21.解方程(每小题4分,共8分)(1)52682x x -=-; (2) 37322x x +=-.22.解方程(每小题5分,共10分)(1)2(10)5+2(1)x x x x -+=-; (2)53210232213+--=-+x x x .23.(本题6分)已知:方程2=+k x 的解比方程k k x 2321=+-的解大1,求k 的值.24.(本题8分)某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?25. (本题8分) 有一些相同的房间需要粉刷墙面,一天3名一级技工可粉刷8个房间,结果其中有50平方米墙面没来得及粉刷;同样时间内5名二级技工可粉刷了10间房之外,还多刷了40平方米的墙.已知每名一级技工比二级技工一天多粉刷10平方米的墙面,求每个房间需要粉刷的墙面面积.26.(本题10分)某商场经销甲、乙两种商品,甲种商品每件进价20元,售价35元;乙种商品每件进价30元,售价50元.(1)若该商场同时购进甲、乙两种商品共100件,且使这100件商品的总利润(利润=售价进价)为1800元,需购进甲、乙两种商品各多少件?(2)在“十一”期间,该商场对甲、乙两种商品进行如下优惠促销活动:打折前一次性购物总金额优惠措施不超过300元不优惠超过300元且不超过500元售价一律打九折超过500元售价一律打八折按上述优惠条件,若小李第一天只购买甲种商品一次性付款210元,第二天只购买乙种商品打折后一次性付款440元,那么这两天他在该商场购买甲、乙两种商品一共多少件?27.(本题10分)十一黄金周(7天)期间,萧红中学7年3班某同学计划租车去旅行,在看过租车公司的方案后,认为有以下两种方案比较适合(注:两种车型的油耗相同):周租金(单位:元)免费行驶里程(单位:千米)超出部分费用(单位:元/千米)A型1740 100 1.5B型2640 220 1.2解决下列问题:(1)如果此次旅行的总行程为800千米,请通过计算说明租用哪种型号的车划算;(2)设本次旅行行程为x千米(x是正整数),请通过计算说明如何根据旅行行程选择省钱的租车方案.答案一、选择题:1.B2.D3.D4.D5.A6.B7.B8.B9.B 10.C二、填空题:11.-2.5 12.-16/3 13.-2 14.2 15.2216.5.5 17.-2187 18.23 19.1.5或2.5 20.180三、解答题:21.(1)x=4 (2)x=522. (1)x=-4/3 (2)x=7/1623.由方程(1)得X=2-K 由(2)得X=6K-6由题知:2-K=6K-6+1 得K=124.解:设应该安排X名工人生产螺钉2000(22-X)=2×1200XX=1022-10=12(人)答:25.解:设每个房间需要粉刷X平方米(8X-50)÷3=(10X+40)÷5+10X=52 答:26.(1)设该商场购进甲种商品a件,则购进乙种商品(100-a)件. 根据题意得(35-20)a+(50-30)(100-a)=1800--------------------------------------------2分解得,a=40,100-a=60. ------------------------------------------------------------2分答:(2)根据题意得,第一天只购买甲种商品不享受优惠条件∴210÷35=6(件)--------------------------------------------------------------------2分第二天只购买乙种商品有以下两种可能:①:若购买乙商品打九折,440÷90%÷50=889(件),不符合实际,舍去;②:购买乙商品打八折,440÷80%÷50=11(件)-------------------------------2分∴一共可购买甲、乙两种商品6+11=17(件)---------------------------------2分27.(1)1740+(800-100)×1.5=2790----------------------2分2640+(800-220)×1.2=3336-------------------2分∵3336>2790∴选择A型号车划算------------------------1分(2)1740+1.5×(X-100)=1.5X+1590--------------------------1分2640+1.2×(X-220)=1.2X+2376--------------------------1分1.5X+1590=1.2X+2376X=2620------------------------------------2分当X>2620时,选择B型号车划算当X=2620时,选择A、B型号车均可当X<2620时,选择A型号车划算--------------------------------------1分。

七年级数学上册第一章测试题(含答案)

七年级数学上册第一章测试题(含答案)

七年级数学上册第一章测试题(含答案)满分120分,考试时间120分钟一、选择题。

(每小题3分,共30分)1.下列四个数中最大的数是( )A .0B .-2C .-4D. -62.若实数a 与-3互为相反数,则a 的值为( )A. 31B. 0.3C. -3D. 3 3.﹣的倒数是( )A .2B .C .﹣2D .﹣4. 下列各组数中,相等的是( ).A.–1与(–4)+(–3)B.3-与–(–3)C.432与169 D.2)4(-与–165.一个数和它的倒数相等,则这个数是( ).A .1B .1-C .±1D .±1和0 6.下面说法正确的有( ).① π的相反数是-3.14;②符号相反的数互为相反数;③ -(-3.8)的相反数是3.8;④ 一个数和它的相反数不可能相等;⑤正数与负数互为相反数.A .0个B .1个C .2个D .3个7.大树的价值很多,可以吸收有毒气体,防止大气污染,增加土壤肥力,涵养水源,为鸟类及其他动物提供繁衍场所等价值,累计计算,一棵50年树龄的大树总计创造价值超过160万元,其中160万元用科学记数法表示为( )A. 1.6×105B. 1.6×106C. 1.6×107D. 1.6×1088.-52表示( )A. 2个-5的积B. -5与2的积C. 2个-5的和D. 5⨯5的相反数9.设n 是自然数, 则n n 1(1)(1)2+-+-的值为( )A. 0B. 1C. -1D. 1或-110.如图,数轴上的两个点A 、B 所表示的数分别是a 、b ,那么a ,b ,—a ,—b 的大小关系是( )A. b<—a<—b<aB. b<—b<—a<aC. b<—a<a<—bD. —a<—b<b<a二、填空题:(每小题3分,共24分)11.如果上升3米记作+3米,那么下降4米记作_____________.A12.比较大小:﹣ ﹣.13.计算:1-2+3- 4 +…+2017-2018+2019=__________.14.取圆周率π=3.1415926…的近似值时,若要求精确到0.001,则π≈ .15.的相反数是 .16.已知3x -8与2互为相反数,则x = _.17.化简:ππ-+-34= .18. 已知()0422=-++y x ,求y x 的值为 .三、解答题:(本大题共66分)19.(12分)计算:(1)﹣20+(﹣14)﹣(﹣18)﹣13 (2)4﹣8×(﹣)3(3)(4)20.(6分)已知a ,b 互为相反数,c 、d 互为倒数,x 的绝对值为5.试求下式的值:201720162)()()(cd b a cd b a x -+++++-.21.(6分)把下列各数填入相应集合的括号内:﹣7.5,﹣2,0.35,0,3.14,17,﹣6,0.4,﹣5,π,23%. 正有理数集合:{ …}; 负分数集合:{ …}; 有理数集合:{ …}.22.(6分)某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数):32--23.(6分)已知│a│=2,│b│=5,且ab<0,求a+b的值.24.(7分)如图,A、B、C三点在数轴上对应的数分别为a、b、c.(1)若-a=5,|b|=5,1110c=,求a、b、c的值;(2)化简:a|b|c|a|b|c|++;25.(9分)如图所示,在数轴上有三个点A,B,C.(1)将B点向左移动4个单位,此时该点表示的数是多少?(2)将C点向左移动6个单位得到数x1,再向右移2个单位得到数x2,那么x1,x2分别是多少?请用“>”把B ,x 1,x 2表示的数连接起来.(3)怎样移动A ,B ,C 中的两点,才能使3个点表示的数相同?有几种方法?26.(6分)设[]x 为不超过x 的最大整数,如[][]35.2,28.2-=-=. (1)填空: []=2.9__________,[]=-14.3__________; (2)计算:[][][]25.76.47.3⨯---+.27.(8分);;(1)请在理解上面计算方法的基础上,把下面两个数表示成两个分数的和的形式(分别写出表示的过程和结果) = = ,= = .(2)利用以上所得的规律进行计算:答案一、选择题:(每小题3分,共30分)1.下列四个数中最大的数是( A )A .0B .-2C .-4D. -62.若实数a 与-3互为相反数,则a 的值为( D ) 7A. 31B. 0.3C. -3D. 33.﹣的倒数是( C )A .2B .C .﹣2D .﹣4. 下列各组数中,相等的是( B ).A.–1与(–4)+(–3)B.3-与–(–3)C.432与169 D.2)4(-与–16 5.一个数和它的倒数相等,则这个数是( C ).A .1B .1-C .±1D .±1和0 6.下面说法正确的有( A ).① π的相反数是-3.14;②符号相反的数互为相反数;③ -(-3.8)的相反数是3.8;④ 一个数和它的相反数不可能相等;⑤正数与负数互为相反数.A .0个B .1个C .2个D .3个7.大树的价值很多,可以吸收有毒气体,防止大气污染,增加土壤肥力,涵养水源,为鸟类及其他动物提供繁衍场所等价值,累计计算,一棵50年树龄的大树总计创造价值超过160万元,其中160万元用科学记数法表示为( B )A. 1.6×105B. 1.6×106C. 1.6×107D. 1.6×1088.-52表示( D )A. 2个-5的积B. -5与2的积C. 2个-5的和D. 5⨯5的相反数9.设n 是自然数, 则n n 1(1)(1)2+-+-的值为( A )A. 0B. 1C. -1D. 1或-110.如图,数轴上的两个点A 、B 所表示的数分别是a 、b ,那么a ,b ,—a ,—b 的大小关系是( C )A. b<—a<—b<aB. b<—b<—a<aC. b<—a<a<—bD. —a<—b<b<a二、填空题:(每小题3分,共24分)11.如果上升3米记作+3米,那么下降4米记作_____-4米________. 12.﹣<﹣.13. 计算:1-2+3-4 +…+2017-2018+2019=___1010_______. 14.取圆周率π=3.1415926…的近似值时,若要求精确到0.001,则π≈ 3.142 .的相反数是 32.15.16.已知3x -8与2互为相反数,则x = 2 _. 17.化简:ππ-+-34= 1 .18. 已知()0422=-++y x ,求y x 的值为 16 ..A32--三.解答题:(本大题共66分)19.(12分)计算:(1)﹣20+(﹣14)﹣(﹣18)﹣13 (2)4﹣8×(﹣)3(3)(4)解:(1)原式=﹣20﹣14+18﹣13=﹣47+18=﹣29;(2)原式=4﹣8×(﹣)=4+1=5;(3)原式=(﹣﹣+)×36=﹣×36﹣×36+×36=﹣27﹣20+21=﹣26;(4)原式=÷﹣×16=×﹣=﹣=﹣.20.(6分)已知a,b互为相反数,c、d互为倒数,x的绝对值为5.试求下式的值:2)20162017++x-+-.++a)()(b(cdcdab解:∵a,b互为相反数,c、d互为倒数,x的绝对值为5∴a+b=0, cd=1,x=±5∴x2-(a+b+cd)+(a+b) 2016+(-cd) 2017=(±5)2-(0+1)+0 2016+(-1) 2017=25-1+0+(-1)=2321.(6分)解:正有理数集合:{0.35,3.14,17,0.4,23%};负分数集合:{﹣7.5,﹣2};有理数集合:{﹣7.5,﹣2,0.35,0,3.14,17,﹣6,0.4,﹣5,23%};22.(6分)某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数):解:(1)7-(-10)=17(辆);(2)100×7+(-1+3-2+4+7-5-10)=696(辆)23.(6分)已知│a │=2,│b │=5,且ab<0,求a +b 的值.解:∵|a|=2,|b|=5∴a=±2,b=±5 ∵ab<0∴a=2,b=-5或a=-2,b=5.∴a +b =2+(-5) =-3或a +b =(-2)+5=3.24.(7分)如图,A 、B 、C 三点在数轴上对应的数分别为a 、b 、c .(1)若-a =5,|b |=5,1110c=,求a 、b 、c 的值; (2)化简:a |b|c |a |b |c |++;(3)在(1)的条件下,点B 、C 同时出发向点A 运动,结果同时到达, 求点B 、C 的运动速度有何关系? 解:(1)a =-5,b =5,c =10;(2)原式=1;25. (9分)如图所示,在数轴上有三个点A ,B ,C .(1)将B 点向左移动4个单位,此时该点表示的数是多少?(2)将C 点向左移动6个单位得到数x 1,再向右移2个单位得到数x 2,那么x 1,x 2分别是多少?请用“>”把B ,x 1,x 2表示的数连接起来.(3)怎样移动A ,B ,C 中的两点,才能使3个点表示的数相同?有几种方法?解:(1)﹣1﹣4=﹣5,此时该点表示的数是﹣5; (2)C 点表示的数是4,向左移动6个单位得到数x 1=4﹣6=﹣2; 再向右移2个单位得到数x 2=﹣2+2=0; ∵0>﹣1>﹣2 ∴x 2>B >x 1;(3)①A 向右移动7个单位,B 向右移动5个单位,能使3个点表示的数相同; ②A 向右移动2个单位,C 向左移动5个单位,能使3个点表示的数相同; ③B 向左移动2个单位,C 向左移动7个单位,能使3个点表示的数相同; 有3种移动方法.26.(6分)设[]x 为不超过x 的最大整数,如;[][]35.2,28.2-=-=.(1)填空:[]=2.9__________,[]=-14.3__________;(2)计算:[][][]25.76.47.3⨯---+. 解:(1)9 , 4- ;……………………………………………2分 (2)[][][]25.76.47.3⨯---+()()()1621622853+-=---=⨯---+=14=.27.(8分);;(1)请在理解上面计算方法的基础上,把下面两个数表示成两个分数的和的形式(分别写出表示的过程和结果) = = ,= = .(2)利用以上所得的规律进行计算:解:(1)=+=;=+=;故答案为:+,;+,; (2)=1+﹣(+)+(+)﹣(+)+(+)﹣(+)+(+)﹣(+) =1﹣=.。

辽宁省阜新实验中学2019-2020学年七年级(上)第一次月考数学试卷(含解析)

辽宁省阜新实验中学2019-2020学年七年级(上)第一次月考数学试卷(含解析)

2019-2020学年七年级(上)第一次月考数学试卷一、填空(每题3分,共30分)1.下列图形经过折叠不能围成一个棱柱的是()A.B.C.D.2.在﹣(﹣),95%,﹣|﹣|,﹣,0中正数有()A.1个B.2个C.3个D.4个3.下列说法,其中正确的个数是()①整数和分数统称为有理数;②绝对值是它本身的数只有0;③两数之和一定大于每个加数;④如果两个数积为0,那么至少有一个因数为0;⑤0是最小的有理数,;⑥数轴上表示互为相反数的点位于原点的两侧;⑦几个有理数相乘,如果负因数的个数是奇数,那么积为负数,A.5个B.4个C.3个D.2个4.若x为有理数,|x|﹣x表示的数是()A.正数B.非正数C.负数D.非负数5.几个棱长为1的正方体组成的几何体的三视图如图所示,则这个几何体的体积是()A.4 B.5 C.6 D.76.图①是由白色纸板拼成的立体图形,将它的两个面的外表面涂上颜色,如图②.则下列图形中,是图②的表面展开图的是()A.B.C.D.7.下列说法中,正确的是()A.﹣与2互为相反数B.任何负数都小于它的相反数C.数轴上表示﹣a的点一定在原点左边D.5的相反数是|﹣5|8.有理数a,b在数轴上的位置如图所示,则下列各式:①a+b>0;②a﹣b>0;③|b|>a;④ab<0.一定成立的是()A.①②③B.③④C.②③④D.①③④9.一个圆柱的侧面展开图是两邻边长分别为6和8的矩形,则该圆柱的底面圆半径是()A.B.C.或D.或10.若ab≠0,则+的值不可能是()A.2 B.0 C.﹣2 D.1二、填空题(每题3分,共24分)11.的绝对值最小,的绝对值是它本身,的相反数是它本身.12.在图中增加1个小正方形使所得图形经过折叠能够围成一个正方体.则一共有种方式.13.用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为:①正方体;②圆柱;③圆锥;④正三棱柱(写出所有正确结果的序号).14.若|a﹣1|+|b+2|=0,则a﹣b=.15.若一个棱柱有十个顶点,且所有侧棱长的和为30cm,则每条侧棱长为cm.16.下列各数中:1.2,,0,,1.010010001,5%,0.,分数有个,有理数有个.17.﹣,﹣,﹣的大小关系是.18.观察下列各式﹣1×,﹣,﹣…写出第4个等式;用含有n的等式表示规律.三.解答题(共66分)19.计算:(1)9﹣(﹣5)﹣(+2)+(﹣4)﹣5(2)﹣|﹣7|+(+3)﹣5(3)﹣|﹣1|﹣(+2)﹣(﹣2.75)(4)﹣9÷3+(﹣)×12+(﹣3)2(5)﹣5×(﹣3)+(﹣9)×(3)+17×(﹣3)(6)()÷(﹣)20.(1)如图是由一些小正方体搭的几何体从上面看到的平面图形,小正方形内的数字表示在该位置上小正方体的个数,请画出它从正面和左面看到的平面图形.(2)把下列各数在数轴上表示出来,并用“<”号连接.1,+3,0,﹣(﹣2.5),﹣|﹣5|21.小张第一次用180元购买了8套儿童服装,以一定价格出售,如果以每套儿童服装80元的价格为标准,超出的记作整数,不足的记作负数,记录如下(单位:元):+12,﹣13,+15,+11,﹣17,﹣11,0,﹣13.请通过计算说明:(1)小张卖完这8套儿童服装后是盈利还是亏损?盈利(或亏损)了多少钱?(2)每套儿童服装的平均售价是多少元?(3)小张第二次用第一次的进价再次购买900元的儿童服装,如果他预计第二次每套服装的平均售价75元,按他的预计第二次售价可获利多少元?22.根据给出的数轴及已知条件,解答下面的问题:(1)已知点A,B,C表示的数分别为1,﹣2.5,﹣3观察数轴,B,C两点之间的距离为;与点A的距离为3的点表示的数是;(2)若将数轴折叠,使得A点与C点重合,则与B点重合的点表示的数是;若此数轴上M,N两点之间的距离为2020(M在N的左侧),且当A点与C点重合时,M点与N点也恰好重合,则MM两点表示的数分别是:M:,N:.(3)若数轴上P,Q两点间的距离为m(P在Q左侧),表示数n的点到P,Q两点的距离相等,则将数轴折叠,使得P点与Q点重合时,P,Q两点表示的数分别为:P,Q.(用含m,n的式子表示这两个数)参考答案与试题解析一.选择题(共10小题)1.下列图形经过折叠不能围成一个棱柱的是()A.B.C.D.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:A、D可以围成四棱柱,C可以围成三棱柱,B选项侧面上多出一个长方形,故不能围成一个五棱柱.故选:B.2.在﹣(﹣),95%,﹣|﹣|,﹣,0中正数有()A.1个B.2个C.3个D.4个【分析】根据相反数的定义,绝对值的性质分别进行化简,然后根据正数的定义进行判断出即可得解.【解答】解:﹣(﹣)=,﹣|﹣|=﹣,所以,在﹣(﹣),95%,﹣|﹣|,﹣,0中正数有﹣(﹣),95%,共2个.故选:B.3.下列说法,其中正确的个数是()①整数和分数统称为有理数;②绝对值是它本身的数只有0;③两数之和一定大于每个加数;④如果两个数积为0,那么至少有一个因数为0;⑤0是最小的有理数,;⑥数轴上表示互为相反数的点位于原点的两侧;⑦几个有理数相乘,如果负因数的个数是奇数,那么积为负数,A.5个B.4个C.3个D.2个【分析】①⑤根据有理数的分类可判断正误;②根据绝对值的性质可判断正误;③根据有理数的加法法则可判断出正误;④⑦根据有理数的乘法法则可判断出正误;⑥根据相反数的定义可判断正误.【解答】解:①整数和分数统称为有理数是正确的;②绝对值是它本身的数有正数和0,原来的说法是错误的;③两数之和可能小于每个加数,原来的说法是错误的;④如果两个数积为0,那么至少有一个因数为0是正确的;⑤没有最小的有理数,原来的说法是错误的;⑥数轴上表示互为相反数的点位于原点的两侧(0除外),原来的说法是错误的;⑦几个有理数(非0)相乘,如果负因数的个数是奇数,那么积为负数,原来的说法是错误的.故选:D.4.若x为有理数,|x|﹣x表示的数是()A.正数B.非正数C.负数D.非负数【分析】先根据绝对值的定义化简丨x丨,再合并同类项.【解答】解:(1)若x≥0时,丨x丨﹣x=x﹣x=0;(2)若x<0时,丨x丨﹣x=﹣x﹣x=﹣2x>0;由(1)(2)可得丨x丨﹣x表示的数是非负数.故选:D.5.几个棱长为1的正方体组成的几何体的三视图如图所示,则这个几何体的体积是()A.4 B.5 C.6 D.7【分析】根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行三列,故可得出该几何体的小正方体的个数,即可得出这个几何体的体积.【解答】解:综合三视图可知,这个几何体的底层应该有3+1=4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体所用小正方体的个数是4+1=5个,所以这个几何体的体积是5.故选:B.6.图①是由白色纸板拼成的立体图形,将它的两个面的外表面涂上颜色,如图②.则下列图形中,是图②的表面展开图的是()A.B.C.D.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:由图中阴影部分的位置,首先可以排除C、D,又阴影部分正方形在左,三角形在右,而且相邻,故只有选项B符合题意.故选:B.7.下列说法中,正确的是()A.﹣与2互为相反数B.任何负数都小于它的相反数C.数轴上表示﹣a的点一定在原点左边D.5的相反数是|﹣5|【分析】根据相反数、数轴和绝对值的概念判断各选项即可得出答案.【解答】解:A、﹣与互为相反数,故本选项错误;B、任何负数都小于它的相反数,本选项正确;C、数轴上表示﹣a的点不一定在原点左边,故本选项错误;D、5的相反数是﹣5,故本选项错误.故选:B.8.有理数a,b在数轴上的位置如图所示,则下列各式:①a+b>0;②a﹣b>0;③|b|>a;④ab<0.一定成立的是()A.①②③B.③④C.②③④D.①③④【分析】根据数轴可得a>0,b<0,|b|>|a|,从而可作出判断.【解答】解:由数轴可得,a>0,b<0,|b|>|a|,故可得:a﹣b>0,|b|>a,ab<0;即②③④正确.故选:C.9.一个圆柱的侧面展开图是两邻边长分别为6和8的矩形,则该圆柱的底面圆半径是()A.B.C.或D.或【分析】分8为底面周长与6为底面周长两种情况,求出底面半径即可.【解答】解:若6为圆柱的高,8为底面周长,此时底面半径为=;若8为圆柱的高,6为底面周长,此时底面半径为=,故选:C.10.若ab≠0,则+的值不可能是()A.2 B.0 C.﹣2 D.1【分析】由于ab≠0,则有两种情况需要考虑:①a、b同号;②a、b异号;然后根据绝对值的性质进行化简即可.【解答】解:①当a、b同号时,原式=1+1=2;或原式=﹣1﹣1=﹣2;②当a、b异号时,原式=﹣1+1=0.则+的值不可能的是1.故选:D.二.填空题(共8小题)11.0 的绝对值最小,非负数的绝对值是它本身,0 的相反数是它本身.【分析】根据绝对值的性质,相反数的定义分别填空即可.【解答】解:0的绝对值最小,非负数绝对值是它本身,0相反数是它本身.故答案为:0;非负数;0.12.在图中增加1个小正方形使所得图形经过折叠能够围成一个正方体.则一共有 4 种方式.【分析】结合正方体的平面展开图的特征,只要折叠后能围成正方体即可.【解答】解:如图所示:故答案为:4.13.用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为:①正方体;②圆柱;③圆锥;④正三棱柱①③④(写出所有正确结果的序号).【分析】当截面的角度和方向不同时,圆柱体的截面无论什么方向截取圆柱都不会截得三角形.【解答】解:①正方体能截出三角形;②圆柱不能截出三角形;③圆锥沿着母线截几何体可以截出三角形;④正三棱柱能截出三角形.故截面可能是三角形的有3个.故答案为:①③④.14.若|a﹣1|+|b+2|=0,则a﹣b= 3 .【分析】本题可根据非负数的性质“两个非负数相加和为0,这两个非负数的值都为0”解出a、b的值,再把a、b的值代入a﹣b中即可.【解答】解:∵|a﹣1|+|b+2|=0,∴a﹣1=0,b+2=0,解得a=1,b=﹣2,∴a﹣b=1﹣(﹣2)=3.故答案为:3.15.若一个棱柱有十个顶点,且所有侧棱长的和为30cm,则每条侧棱长为 6 cm.【分析】根据棱柱顶点的个数确定出是五棱柱,然后根据棱柱的每一条侧棱都相等列式求解即可.【解答】解:∵棱柱共有10个顶点,∴该棱柱是五棱柱,∵所有的侧棱长的和是30cm,∴每条侧棱长为30÷5=6cm.故答案为:6.16.下列各数中:1.2,,0,,1.010010001,5%,0.,分数有 5 个,有理数有 6 个.【分析】根据分数和有理数的意义与分类分别填空即可.【解答】解:下列各数中:1.2,,0,﹣,1.010010001,5%,0.,分数有1.2,﹣,1.010010001,5%,0.,共5个,有理数有1.2,0,﹣,1.010010001,5%,0.,共6个.故答案为:5,6.17.﹣,﹣,﹣的大小关系是.【分析】先变形为﹣=﹣1+,﹣=﹣1+,﹣=﹣1+,再比较,,的大小即可求解.【解答】解:∵﹣=﹣1+,﹣=﹣1+,﹣=﹣1+,>>,∴.故答案为:.18.观察下列各式﹣1×,﹣,﹣…写出第4个等式﹣×=﹣+;用含有n的等式表示规律﹣×=﹣+.【分析】观察三个等式即可写出第4个和第n个等式.【解答】解:第4个等式为:﹣×=﹣+,所以规律式为:﹣×=﹣+.故答案为﹣×=﹣+,﹣×=﹣+.三.解答题(共4小题)19.计算:(1)9﹣(﹣5)﹣(+2)+(﹣4)﹣5(2)﹣|﹣7|+(+3)﹣5(3)﹣|﹣1|﹣(+2)﹣(﹣2.75)(4)﹣9÷3+(﹣)×12+(﹣3)2(5)﹣5×(﹣3)+(﹣9)×(3)+17×(﹣3)(6)()÷(﹣)【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的加减法可以解答本题;(3)根据有理数的加减法可以解答本题;(4)根据有理数的乘方、有理数的乘除法和加减法可以解答本题;(5)根据乘法分配律可以解答本题;(6)先把除法转化为乘法,然后根据乘法分配律可以解答本题.【解答】解:(1)9﹣(﹣5)﹣(+2)+(﹣4)﹣5=9+5+(﹣2)+(﹣4)+(﹣5)=3;(2)﹣|﹣7|+(+3)﹣5=﹣7+3+(﹣5)=﹣7+3+(﹣5)=﹣9;(3)﹣|﹣1|﹣(+2)﹣(﹣2.75)=+(﹣2)+2=﹣;(4)﹣9÷3+(﹣)×12+(﹣3)2=﹣3+×12+9=﹣3+2+9=8;(5)﹣5×(﹣3)+(﹣9)×(3)+17×(﹣3)=5×3﹣9×3﹣17×3=(5﹣9﹣17)×3=(﹣21)×=﹣75;(6)()÷(﹣)=()×(﹣60)=(﹣40)+5+4=﹣31.20.(1)如图是由一些小正方体搭的几何体从上面看到的平面图形,小正方形内的数字表示在该位置上小正方体的个数,请画出它从正面和左面看到的平面图形.(2)把下列各数在数轴上表示出来,并用“<”号连接.1,+3,0,﹣(﹣2.5),﹣|﹣5|【分析】(1)由已知条件可知,主视图有3列,每列小正方数形数目分别为3,2,2,左视图有2列,每列小正方形数目分别为3,1.据此可画出图形;(2)直接在数轴上表示出各数进而得出大小关系.【解答】解:(1)如图所示:;(2)如图所示:,﹣|﹣5|<0<1<﹣(﹣2.5)<+3.21.小张第一次用180元购买了8套儿童服装,以一定价格出售,如果以每套儿童服装80元的价格为标准,超出的记作整数,不足的记作负数,记录如下(单位:元):+12,﹣13,+15,+11,﹣17,﹣11,0,﹣13.请通过计算说明:(1)小张卖完这8套儿童服装后是盈利还是亏损?盈利(或亏损)了多少钱?(2)每套儿童服装的平均售价是多少元?(3)小张第二次用第一次的进价再次购买900元的儿童服装,如果他预计第二次每套服装的平均售价75元,按他的预计第二次售价可获利多少元?【分析】(1)所得的正负数相加,再加上预计销售的总价,减去总进价即可得到是盈利还是亏损.(2)用销售总价除以8即可得到每套儿童服装的平均售价;(3)根据题意列式计算即可.【解答】解:(1)售价:80×8+(12﹣13+15+11﹣17﹣11+0﹣13)=624,盈利:624﹣180=444(元);答:当他卖完这八套儿童服装后是盈利了,盈利了444元;(2)平均售价:624÷8=78(元),答:每套儿童服装的平均售价是78元;(3)900÷(180÷8)×(75﹣180÷8)=2100(元),答:按他的预计第二次售价可获利210元.22.根据给出的数轴及已知条件,解答下面的问题:(1)已知点A,B,C表示的数分别为1,﹣2.5,﹣3观察数轴,B,C两点之间的距离为0.5 ;与点A的距离为3的点表示的数是4或﹣2 ;(2)若将数轴折叠,使得A点与C点重合,则与B点重合的点表示的数是0.5 ;若此数轴上M,N两点之间的距离为2020(M在N的左侧),且当A点与C点重合时,M点与N点也恰好重合,则MM两点表示的数分别是:M:﹣1011 ,N:1009 .(3)若数轴上P,Q两点间的距离为m(P在Q左侧),表示数n的点到P,Q两点的距离相等,则将数轴折叠,使得P点与Q点重合时,P,Q两点表示的数分别为:P n﹣,Q n+.(用含m,n的式子表示这两个数)【分析】(1)根据数轴上两点之间的距离即可求解;(2)根据折叠后点A与点C重合,点M与点N也重合,即可求解;(3)根据(2)表示﹣1的点到A、C的距离相等所列算式,即可求表示数n的点到P、Q 两点的距离相等的算式.【解答】解:(1)观察数轴可知:B、C两点之间的距离为﹣2.5﹣(﹣3)=0.5,与点A的距离为3的点表示的数是1+3=4或1﹣3=﹣2.故答案为0.5,4或﹣2.(2)与点B重合的点表示的数是:﹣1+[﹣1﹣(﹣2.5)]=0.5;M=﹣1﹣=﹣1011,N=﹣1+=1009;故答案为﹣1011,1009.(3)根据题意,得P=n﹣,Q=n+.故答案为n﹣,n+.。

七年级上册数学段考试卷(含答案)

七年级上册数学段考试卷(含答案)

2019年秋季学期七年级上册数学段考试卷(含答案)七年级学情调研数学试题注意事项:1.本试卷共4页,包含选择题(第1题~第8题,计24分)、非选择题(第9题—第26题,共16题,计96分)两部分.本次考试时间为120分钟,满分为120分.2.答题前,请你务必将自己的姓名、考证号用书写黑色字迹的0.5毫米签字笔填写在答题卡上.考试结束后,请将答题卡交回.3.作答非选择题必须用书写黑色字迹的0.5毫米签字笔写在答题卡上的指定位置,在其它位置作答一律无效.作答选择题必须用2B铅笔把答题卡上对应选项的方框涂满涂黑.如需改动,请用橡皮擦干净后,再选涂其它答案.一、选择题(每题3分,计24分)1.如果零上2℃记作+2℃,那么零下3℃记作A.-3℃B.-2℃C.+3℃D.+2℃2. 下列式子,符合代数式书写格式的是A. B. C.a×3 D.3.下列说法中,正确的是A.0是最小的自然数B.倒数等于它本身的数是1C .立方等于本身的数是±1 D.任何有理数的绝对值都是正数4.据科学家估计,地球的年龄大约是4600000000年,这个数用科学记数法表示为A.4.6×108B.46×108C.4.6×109D.0.46×10105.把一张厚度为0.05mm 的白纸连续对折四次后的厚度为A.0.5 mmB.0.8 mmC.1.6 mmD.3.2 mm6. 下面的计算正确的是A. B.C. D.7.火车票上的车次号有两个意义,一是数字越小表示车速越快,1~298次为特快列车,301~398次为普快列车,401~498次为普客列车;二是单数与双数表示不同的行驶方向,其中单数表示从北京开出,双数表示开往北京。

根据以上规定,北京开往阜宁的某一特快列车的车次号可能是A.0B.118C.215D.3198.如图,将一块正方形纸片沿对角线折叠一次,然后在得到的三角形的三个角上各挖去一个圆洞,最后将正方形纸片展开,得到的图案是二、填空题(每题3分,计30分)9. 的相反数是。

人教版数学七年级上册第一章有理数综合检测卷(含答案)

人教版数学七年级上册第一章有理数综合检测卷(含答案)

人教版数学七年级上学期第一章有理数测试一.选择题(共12小题)1.如果收入150元记作+150元,那么支出100元记作( )A. +100元B. +50元C. ﹣50元D. ﹣100元2.某种大米包装袋上的质量标识为“25±0.5kg ”,现从超市随机检测到四袋大米中不合格的是( ) A. 24.5kg B. 24.8kg C. 25.5kg D. 26.1kg 3.若a 的相反数为1,则a 2019是( )A. 2019B. ﹣2019C. 1D. ﹣14.武汉轨道交通7号线一期工程,线路全长31公里,全部地下线,总投资达321亿元,将321亿元用科学记数法可以表示( )A. 0.321×1010元B. 3.21×108元C. 3.21×109元D. 3.21×1010元5.某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌由1个分裂64个,则这个过程要经过( )A. 1小时B. 2小时C. 3小时D. 4小时 6.下列各组数中:①﹣22与22;②(﹣3)2与32;③|﹣2|与﹣|﹣2|;④(﹣3)3与﹣33;⑤﹣3与﹣(+3),其中相等的共有( )A. 4对B. 3对C. 2对D. 1对 7.在﹣(﹣8),﹣|﹣7|,0,(﹣2)2,﹣32这五个数中,负数共有( )A. 4个B. 3个C. 2个D. 1个8.计算12﹣7×(﹣4)+8÷(﹣2)的结果是( ) A. 36 B. ﹣20C. 6D. ﹣24 9.若与互为倒数,则()20072008a b ⋅-的值是( ) A. B. a -C. D. b - 10.点A 、B 在数轴上的位置如图所示,其对应的数分别是a 和b ,则以下结论:①0b a ->;②b a ->;③a b ->-;④0b a >,正确的是( ) A. ①② B. ②③ C. ②④ D. ③④11. 下列说法中正确的有( )①同号两数相乘,符号不变;②异号两数相乘,积取负号;③互为相反数的两数相乘,积一定为负;④两个有理数的积的绝对值,等于这两个有理数的绝对值的积.A. 1个B. 2个C. 3个D. 4个12.能使式子|5+x|=|5|+|x|成立的数x 是( )A. 任意一个非正数B. 任意一个正数C. 任意一个非负数D. 任意一个负数二.填空题(共6小题)13.若a 、b 互为倒数,则2ab ﹣6=_____.14.甲、乙两同学进行数字猜谜游戏:甲说一个数a 的相反数就是它本身,乙说一个数b 的倒数也等于本身,请你猜一猜|a ﹣b|=_____.15.如果A 表示最小的正整数,B 表示最大的负整数,C 表示绝对值最小的有理数,那么计算(A ﹣B)×C=_____. 16.已知|a|=1,|b|=2,且ab <0.则a ﹣b 的值为_____.17.下列说法正确的是_____(填写符合要求的序号)(1)两个有理数的和为负数时,这两个数都是负数;(2)如果两个数的差是正数,那么这两个数都是正数;(3)几个有理数相乘,当负因数个数为奇数时,乘积一定为负;(4)数轴上到原点的距离为3的点表示的数是3或﹣3;(5)0乘以任何数都是0.18.如图,是一个简单的数值运算程序,当输入x 的值为﹣3时,则输出的数值为_____.三.解答题(共8小题)19.计算(1)5.6+(﹣0.9)+4.4+(﹣8.1)+(﹣0.1)(2)5+(﹣34 )﹣7﹣(﹣2.5) (3)(﹣145)×(﹣27)+(﹣145)×(+177) (4)2213133()()(24)3468-⨯-+-+⨯- (5)8﹣23÷(﹣4)3+18 (6)(﹣1)2018+(﹣5)×[(﹣2)3+2]﹣(﹣4)2÷(﹣12 ) 20.将有理数﹣12,0,20,﹣1.25,134,﹣|﹣12|,﹣(﹣5)放入恰当集合中.21.列式计算:(1)4119-减去163与499-的和,所得的差是多少? (2)求142与132的相反数的商. 22.已知a =﹣312,b =﹣6.25,c =﹣2.5,求|b|﹣(a ﹣c )的值. 23.今抽查10袋盐,每袋盐标准质量是100克,超出部分记为正,统计成表:盐的袋数2 3 3 1 1每袋超出标准的克数+1﹣0.5 0 +2.5 ﹣2问:①这10袋盐以100克为标准质量,总计超过多少克或不足多少克?②这10袋盐一共多少克?24.检修组乘汽车,沿公路检修线路,约定向东为正,向西为负,某天自A 地出发,到收工时,行走记录为(单位:千米):+8、﹣9、+4、﹣7、﹣2、﹣10、+11、﹣12.回答下列问题:(1)收工时在A地的哪边?距A地多少千米?(2)若每千米耗油02升,问从A地出发到收工时,共耗油多少升?25.已知不相等的两数a,b互为相反数,c,d互为倒数,x的绝对值和倒数都是它本身,求:2016a+2018cd﹣2017x+2016b﹣2017的结果.26.某仓库本周运进货物件数和运出货物件数如下表:(1)如果用正数表示运进货物件数,负数表示运出货物件数,请你分别表示出周二、周五当天进出货物后变化的量;(2)若经过一周的时间,仓库货物总量相比上周末库存量减少了5件,求a的值;(3)若本周运进货物总件数比运出货物件数一半多15件,本周运进货物总件数比上周减少16,而本周运出货物总件数比上周多23,这两周内,该仓库货物共增加了3件,求a、b的值.答案与解析一.选择题(共12小题)1.如果收入150元记作+150元,那么支出100元记作( )A. +100元B. +50元C. ﹣50元D. ﹣100元【答案】D【解析】【分析】利用相反意义量的定义判断即可.【详解】解:如果收入150元记作+150元,那么支出100元记作﹣100元.故选D.【点睛】考查具有相反意义的量,解决本题的关键突破口是理解用正数和负数表示具有相反意义的量.2.某种大米包装袋上的质量标识为“25±0.5kg”,现从超市随机检测到四袋大米中不合格的是( )A. 24.5kgB. 24.8kgC. 25.5kgD. 26.1kg【答案】D【解析】【分析】先求出面粉的合格重量的范围,再据此对四个选项逐一判断.【详解】解:质量标识为“25±0.5kg”表示25上下0.5,即24.5到25.5之间为合格;分析答案可得26.1kg不在此范围内,不合格.故选:D.【点睛】考查正数和负数的实际应用,根据面粉包装袋上的质量标识为“25±0.5kg”,求出面粉的合格重量的范围是解题的关键.3.若a的相反数为1,则a2019是( )A. 2019B. ﹣2019C. 1D. ﹣1【答案】D【解析】【分析】先根据相反数的定义求出a,再代入计算即可求解.【详解】∵a的相反数为1,∴a=−1,∴a 2019=(−1)2019=−1.故答案选:D.【点睛】本题考查了相反数的定义,解题的关键是根据相反数的定义求出a 的值.4.武汉轨道交通7号线一期工程,线路全长31公里,全部地下线,总投资达321亿元,将321亿元用科学记数法可以表示( )A. 0.321×1010元B. 3.21×108元C. 3.21×109元D. 3.21×1010元【答案】D【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值>1时,是正数;当原数的绝对值<1时,是负数.【详解】解:321亿元=32100000000元,32100000000元这个数用科学记数法可以表示为3.21×1010元.故选D .【点睛】考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.5.某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌由1个分裂为64个,则这个过程要经过( )A. 1小时B. 2小时C. 3小时D. 4小时 【答案】C【解析】【分析】根据已知可知1个细胞从第1次到第3次所分裂的细胞个数分别为21个,22个,23个,从而得出第n 次细胞分裂后的细胞个数.【详解】解:根据已知可知:一个细胞第一次分裂成21个,第二次分裂成22个,第三次分裂成23个,由上述规律可知,第n次时细胞分裂的个数为2n个,设第x次分裂成64个,由题意得2x=64,解得x=6,即第6次分裂细菌分裂成64个,答:由每半小时分裂一次,此细菌由1个分裂成64个,共花费了3个小时.故答案选C.【点睛】本题考查了有理数的乘方,解题的关键是熟练的掌握有理数的乘方的相关知识点.6.下列各组数中:①﹣22与22;②(﹣3)2与32;③|﹣2|与﹣|﹣2|;④(﹣3)3与﹣33;⑤﹣3与﹣(+3),其中相等的共有( )A. 4对B. 3对C. 2对D. 1对【答案】B【解析】【分析】各式计算得到结果,比较即可.详解】解:①−22=−4,22=4,不相等;②(−3)2=32=9,相等;③|−2|=2,−|−2|=−2,不相等;④(−3)3=−33=−27,相等;⑤−(+3)= −3,相等.故答案选B.【点睛】本题考查了相反数、绝对值与有理数的乘方,解题的关键是熟练度掌握相反数、绝对值与有理数的乘方的性质.7.在﹣(﹣8),﹣|﹣7|,0,(﹣2)2,﹣32这五个数中,负数共有( )A. 4个B. 3个C. 2个D. 1个【答案】C【解析】【分析】根据负数的定义可以判断题目中的哪些数据是负数,从而可以解答本题.【详解】解:在()()228,702,3------,,中, 负数有:27,3---,共2个,故选:C.【点睛】考查有理数的分类,掌握负数的定义是解题的关键.8.计算12﹣7×(﹣4)+8÷(﹣2)的结果是( ) A. 36B. ﹣20C. 6D. ﹣24 【答案】A【解析】【分析】根据运算顺序先计算乘除运算,最后算加减运算,即可得到结果.【详解】原式()()122841228436.=--+-=+-=故选A.【点睛】考查有理数的混合运算,掌握运算法则是解题的关键.9.若与互为倒数,则()20072008a b ⋅-的值是( ) A.B. a -C.D. b - 【答案】B【解析】【分析】由a 与b 互为倒数,得ab=1,然后逆用积的乘方公式即可求解.【详解】解:∵a 与b 互为倒数,∴ab=1,则原式=()20072007a a b ⋅⋅-=()2007ab a -⋅=()20071-•=a -.故选B .【点睛】本题考查倒数的定义以及积的乘方公式,正确对所求的式子进行变形是关键.10.点A 、B 在数轴上的位置如图所示,其对应的数分别是a 和b ,则以下结论:①0b a ->;②b a ->;③a b ->-;④0ba >,正确的是( )A. ①②B. ②③C. ②④D. ③④ 【答案】B【解析】由点A 、B 在数轴上的位置可知,505b a <-<<<,∴(1)0b a -<;(2)b a ->;(3)a b ->-;(4)0ba <.∴原来四个结论中成立的是②③.故选B.11. 下列说法中正确的有( )①同号两数相乘,符号不变;②异号两数相乘,积取负号;③互为相反数的两数相乘,积一定为负;④两个有理数的积的绝对值,等于这两个有理数的绝对值的积.A. 1个B. 2个C. 3个D. 4个 【答案】B【解析】①错误,如,符号改变; ③错误,如0×0,积为0;②④正确.12.能使式子|5+x|=|5|+|x|成立的数x 是( )A. 任意一个非正数B. 任意一个正数C. 任意一个非负数D. 任意一个负数【答案】C【解析】【分析】根据题意利用具特殊值的方法,即可判断出答案.【详解】当x =2时,|5+x |=|5+2|=7,而|5|+|x |=5+2=7,7=7,当x =0时,|5+x |=|5+0|=5,而|5|+|x |=5+0=5,故B 错误.当x =−2时,|5+x |=|5+(−2)|=3,而|5|+|x |=5+2=7,37,≠故A. D 错误;当x 是正数或0时,式子|5+x|=|5|+|x|成立.故选C.【点睛】考查绝对值的定义以及应用,注意分类讨论思想在解题中的应用.二.填空题(共6小题)13.若a 、b 互为倒数,则2ab ﹣6=_____.【答案】-4【解析】【分析】根据乘积为1的两个数互为倒数,可得互为倒数的两个数的积是1,可得答案.【详解】解:若a 、b 互为倒数,则2ab-6=2-6=-4.故答案为−4.【点睛】本题考查了倒数的定义,解题的关键是熟练的掌握倒数的定义.14.甲、乙两同学进行数字猜谜游戏:甲说一个数a 的相反数就是它本身,乙说一个数b 的倒数也等于本身,请你猜一猜|a ﹣b|=_____.【答案】1【解析】a 等于0,b 等于1.15.如果A 表示最小的正整数,B 表示最大的负整数,C 表示绝对值最小的有理数,那么计算(A ﹣B)×C=_____. 【答案】0.【解析】【分析】根据小的正整数是1,最大的负整数是﹣1,绝对值最小的有理数是0.得到A,B,C 的值,代入运算即可.【详解】A 表示最小的正整数,A=1B 表示最大的负整数 B=﹣1C 表示绝对值最小的有理数,C=0()()1100.A B C ⎡⎤-⨯=--⨯=⎣⎦故答案为0.【点睛】本题需掌握的知识点是:最小的正整数是1,最大的负整数是﹣1,绝对值最小的有理数是0. 16.已知|a|=1,|b|=2,且ab <0.则a ﹣b 的值为_____.【解析】【分析】根据题意,利用绝对值的代数意义化简求出a 与b 的值,即可确定出a-b 的值.【详解】∵|a |=1,|b |=2,且ab <0,∴a =1,b =−2;a =−1,b =2,则a −b =3或−3.故答案为3或−3.【点睛】考查[有理数的乘法, 绝对值, 有理数的减法,得到a 与b 的值是解题的关键.17.下列说法正确的是_____(填写符合要求的序号)(1)两个有理数的和为负数时,这两个数都是负数;(2)如果两个数的差是正数,那么这两个数都是正数;(3)几个有理数相乘,当负因数个数为奇数时,乘积一定为负;(4)数轴上到原点的距离为3的点表示的数是3或﹣3;(5)0乘以任何数都是0.【答案】(4)(5).【解析】【分析】根据有理数加法,减法,乘法法则以及数轴的性质进行判断即可.【详解】(1)两个有理数的和为负数时,这两个数不一定都是负数;例如()32,+-故错误.(2)如果两个数的差是正数,那么这两个数不一定都是正数;例如()12,--故错误.(3)几个有理数相乘,当负因数个数为奇数时,乘积不一定为负;当有一个因数为0时,结果为0.(4)数轴上到原点的距离为3的点表示的数是3或﹣3;正确.(5)0乘以任何数都是0.正确.故答案为(4)(5).【点睛】考查有理数的加法,减法,乘法法则以及数轴的性质,比较基础,难度不大.18.如图,是一个简单的数值运算程序,当输入x 的值为﹣3时,则输出的数值为_____.【解析】【分析】根据题中运算程序,将3x =-代入列出关系式中计算,即可得到输出的结果.【详解】根据题意列得:()()232418414.-⨯-+=-+=-则输出的数值为14.-故答案为:14.-【点睛】此题考查了代数式的求值,弄清题中的运算程序是解本题的关键. 三.解答题(共8小题)19.计算(1)5.6+(﹣0.9)+4.4+(﹣8.1)+(﹣0.1)(2)5+(﹣34)﹣7﹣(﹣2.5) (3)(﹣145)×(﹣27)+(﹣145)×(+177) (4)2213133()()(24)3468-⨯-+-+⨯- (5)8﹣23÷(﹣4)3+18 (6)(﹣1)2018+(﹣5)×[(﹣2)3+2]﹣(﹣4)2÷(﹣12) 【答案】(1)0.9;(2)﹣0.25;(3)﹣6;(4)﹣24;(5)814;(6)63. 【解析】分析】(1)利用加法结合律,进行加减运算即可求解;(2)把减法转化为加法,根据法则进行运算即可.(3)首先计算乘法,最后进行加减运算即可求解;(4)首先计算乘方,再利用分配律计算即可; (5)首先计算乘方,计算括号内的式子,再计算除法,最后进行加减运算即可;(6)首先计算乘方,计算括号内的式子,再计算除法,最后进行加减运算即可;【详解】(1)原式=(5.6+4.4)+(﹣0.9﹣8.1﹣0.1)=10﹣9.1=0.9;(2)原式=5﹣0.75﹣7+2.5 =7.5﹣7.75=﹣0.25;(3)原式434306. 555=-=-=-(4)原式191849,9=-⨯-+-=﹣1﹣18+4﹣9, =﹣24;(5)原式()18864,8=-÷-+118,88=++184=;(6)原式=1+(﹣5)×(﹣8+2)﹣16×(﹣2)=1+(﹣5)×(﹣6)+32=1+30+32=63.【点睛】考查有理数的混合运算,掌握运算法则是解题的关键.20.将有理数﹣12,0,20,﹣1.25,134,﹣|﹣12|,﹣(﹣5)放入恰当的集合中.【答案】详见解析.【解析】【分析】根据小于零的数是负数,可得负数集合;根据形如-1,-2,0,1,3,5…是整数,可得整数集合.【详解】解:∵﹣12=﹣1,﹣|﹣12|=﹣12,﹣(﹣5)=5,∴负数集合有:﹣12,﹣1.25,﹣|﹣12|,…整数集合有:﹣12,0,20,﹣|﹣12|,﹣(﹣5)|,…所以【点睛】考查有理数的分类,熟练掌握正数以及负数的定义是解题的关键.21.列式计算:(1)4119-减去163与499-的和,所得的差是多少?(2)求142与132的相反数的商.【答案】(1)183-;(2)9-7【解析】【分析】(1)根据题意列出算式即可求出正确答案;(2)先求132的相反数,再将依据题意作商即可得出答案.【详解】解:(1)由题意可得:(4119--163)+(499-),则(4119--163)+(499-)=411(9-+-163)+(499-)=183-;(2)∵132的相反数是132-,∴142与132的相反数的商即为14921732=--.故本题答案为:(1)183-;(2)9-7.【点睛】掌握有理数加减乘除运算和相反数的含义,以及会根据题意列出相应的算式是解答本题的关键.22.已知a=﹣312,b=﹣6.25,c=﹣2.5,求|b|﹣(a﹣c)的值.【答案】7.25【解析】分析】把a、b、c的值代入代数式,再根据绝对值的性质和有理数的减法运算法则进行计算即可得解.【详解】解:∵a=﹣312,b=﹣6.25,c=﹣2.5,∴|b|﹣(a﹣c)=﹣b﹣a+c=6.25+312﹣2.5=7.25.【点睛】本题考查了绝对值的性质与有理数的减法,解题的关键是熟练的掌握绝对值的性质与有理数的减法运算法则.23.今抽查10袋盐,每袋盐的标准质量是100克,超出部分记为正,统计成表:问:①这10袋盐以100克为标准质量,总计超过多少克或不足多少克?②这10袋盐一共多少克?【答案】(1)总计不足3千克;(2)997千克.【解析】【分析】(1)根据正数表示超出100克的重量,负数表示比100克差的重量,计算出10袋盐一共超出标准重量的重量;(2)根据(1)可得10袋盐一共超出标准重量的重量,然后用100×10加上这个数即可.【详解】解:(1)2×(﹣1)+3×(﹣0.5)+3×0+1×2.5+1×(﹣2)=﹣3,答:这10袋盐以100克为标准质量,总计不足3千克;(2)10×100﹣3=997千克.答:这10袋盐一共997千克.【点睛】本题考查了正数与负数,解题的关键是熟练的掌握正数与负数相关知识点.24.检修组乘汽车,沿公路检修线路,约定向东为正,向西为负,某天自A地出发,到收工时,行走记录为(单位:千米):+8、﹣9、+4、﹣7、﹣2、﹣10、+11、﹣12.回答下列问题:(1)收工时在A地的哪边?距A地多少千米?(2)若每千米耗油0.2升,问从A地出发到收工时,共耗油多少升?【答案】(1)收工时在A地的西边,距A地17千米;(2)若每千米耗油0.2升,从A地出发到收工时,共耗油12.6升.【解析】【分析】(1)根据题中的数据,将各个数据相加看最后的结果,即可解答本题;(2)根据题中的数据将它们的绝对值相加,然后乘以0.2即可解答本题.【详解】解:(1)+8﹣9+4﹣7﹣2﹣10+11﹣12=﹣17.答:收工时在A地的西边,距A地17千米.(2)|+8|+|﹣9|+|+4|+|﹣7|+|﹣2|+|﹣10|+|+11|+|﹣12|=63,63×0.2=12.6(升),答:若每千米耗油0.2升,从A地出发到收工时,共耗油12.6升.【点睛】本题考查了正数与负数,解题的关键是熟练的掌握正数与负数相关知识点.25.已知不相等的两数a,b互为相反数,c,d互为倒数,x的绝对值和倒数都是它本身,求:2016a+2018cd﹣2017x+2016b﹣2017的结果.【答案】﹣2016.【解析】【分析】先根据已知条件求出a+b=0,cd=1,x=1,再把这些数值代入所求式子,计算即可.【详解】解:∵不相等的两数a,b互为相反数,c,d互为倒数,x的绝对值和倒数都是它本身,∴a+b=0,cd=1,x=1,∴2016a+2018cd﹣2017x+2016b﹣2017=2016(a+b)+2018cd﹣2017(x+1)=2016×0+2018×1﹣2017×(1+1)=0+2018﹣4034=﹣2016.【点睛】考查代数式求值, 根据相反数, 绝对值, 倒数的定义得到a+b=0,cd=1,x=1,是解题的关键.26.某仓库本周运进货物件数和运出货物件数如下表:(1)如果用正数表示运进货物件数,负数表示运出货物件数,请你分别表示出周二、周五当天进出货物后变化的量;(2)若经过一周的时间,仓库货物总量相比上周末库存量减少了5件,求a的值;(3)若本周运进货物总件数比运出货物件数的一半多15件,本周运进货物总件数比上周减少16,而本周运出货物总件数比上周多23,这两周内,该仓库货物共增加了3件,求a、b的值.【答案】(1)周二进出货物后变化的量为﹣a,周五进出货物后变化的量为5;(2)a=0;(3)a=10,b=10.【解析】【分析】(1)根据有理数的加法法则即可求出周二、周五当天进出货物后变化的量;(2)运进货物件数-运出货物件数=-5,列出方程求解即可.(3)本周运进货物总件数比运出货物件数的一半多15件,列出方程即可求出b的值,设上周运进货物总件数为m,上周运出货物的总件数为n,找出题目中的等量关系,列方程即可求解.【详解】解:(1)周二运进货物件数+运出货物件数=a+(﹣2a)=﹣a,∴周二进出货物后变化的量为:﹣a,周五运进货物件数+运出货物件数=b+[﹣(b﹣5)]=5,∴周五进出货物后变化的量为:5;(2)依题意得:5×5+a+b﹣(12+2a+8+0+b﹣5+5+10)=﹣5解得a=0;(3)依题意得:5+a+5+5+b+5+5=12(12+2a+8+0+b ﹣5+5+10)+15, 化简得:b=10, 设上周运进货物总件数为m ,上周运出货物的总件数为n ,1555556a b m m ++++++=-, 即5256a b m ++=, 2122855103a b n n +++-++=+, 即52303a b n ++=, ∵这两周内,该仓库货物共增加了3件, ∴()55363m n m n ⎛⎫-+-= ⎪⎝⎭, ∴11m ﹣16n=18, ∴()()631125162301855a b a b ⨯++-⨯++=, 解得:a=10.【点睛】考查正负数的意义以及一元一次方程的应用,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.熟练掌握正数和负数的意义和有理数的加减运算.。

2019-2020年人教版数学七年级上册 阶段综合测试一(月考一)1章(含答案)

2019-2020年人教版数学七年级上册 阶段综合测试一(月考一)1章(含答案)

阶段综合测试一(月考一)(第一章)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷30分,第Ⅱ卷70分,共100分,考试时间100分钟.第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1. -的倒数是()A.-B.C.7D.-72.下列各数中:3,0,-5,0.48,-(-7),-|-8|,(-4)2,-2.9,(-3.1)3,负数有()A.1个B.2个C.3个D.4个3.在-4,2,-1,3这四个数中,比-2小的数是()A.-4B.2C.-1D.34.冬季某天我国三个城市的最高气温分别是-10 ℃,1 ℃,-7 ℃,它们任意两城市中最大的温差是()A.11 ℃B.17 ℃C.8 ℃D.3 ℃5.不改变原式的值,将6-(+3)-(-7)+(-2)写成省略加号的形式是()A.-6-3+7-2B.6-3-7-2C.6-3+7-2D.6+3-7-26.把数38490按四舍五入法取近似值并精确到千位的结果是()A.38B.380000C.3.8×104D.3.9×1047.计算÷-×(-5)的结果为()A.1B.5C.D.8.如图QZ1-1,在生产图纸上通常用φ30来表示轴的加工要求,这里300表示直径是300 mm,+0.2和--0.5是指直径在(300-0.5)mm到(300+0.2)mm之间的产品都属于合格产品.现加工一批轴,尺寸要求是,请依次检验直径为44.97 mm和45.04 mm的两根轴是否合格()φ4-图QZ1-1A.合格,合格B.不合格,不合格C.合格,不合格D.不合格,合格9.实数a,b在数轴上对应的点的位置如图QZ1-2所示,计算|a-b|的结果为()图QZ1-2A.a+bB.a-bC.b-aD.-a-b10.一个纸环链,纸环按红、黄、绿、蓝、紫的顺序重复排列,截去其中的一部分,剩下部分如图QZ1-3所示,则被截去部分纸环的个数可能是()图QZ1-3A.2016B.2017C.2018D.2019请将选择题答案填入下表:第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11.-2017的相反数是.12.A,B两地相距6980000 m,用科学记数法表示为m.13.已知一个数的绝对值是4,则这个数是.14.在数轴上,点A所表示的数为2,那么到点A的距离等于3的点所表示的数是.15.若(a-1)2+|b+2|=0,则a+b=.16.定义一种新运算:x*y=,如:2*1==2,则(4*2)*(-1)=.三、解答题(共52分)17.(4分)在数轴上表示下列各数:0,-4.2,3,-2,+7,1,并用“<”号连接.图QZ1-418.(6分)计算:(1)(-22)×(-3)2+(-32)÷4;(2)-×12;(3)360÷4-(-6)2×[2-(-3)].19.(4分)小强有5张写着不同数字的卡片:-1-80-3+4他想从中取出2张卡片,使这2张卡片上的数字乘积最大.小强应该如何抽取?最大的乘积是多少?20.(6分)某个体服装店老板以每件32元的价格购进30件连衣裙,针对不同的顾客,30件连衣裙的售价不完全相同,若以每件47元为标准,将超过的钱数记为正,不足的钱数记为负,记录结果如下表所示:该服装店在售完这30件连衣裙后,赚了多少钱?21.(6分)计算6÷-时,方方同学的计算过程如下:原式=6÷-+6÷=-12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.22.(6分)若|a|=2,b=-5,c是最大的负整数,求a+b-c的值.23.(10分)一只小虫从某点A出发在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬行的各段路程依次为(单位:cm):+5,-3,+10,-8,-6,+12,-10.(1)小虫最后是否回到出发点A?(2)小虫离开出发点最远是多少厘米?(3)在爬行过程中,如果每爬行1 cm奖励一粒芝麻,则小虫一共得到多少粒芝麻?24.(10分)(1)计算1+2-3-4,5+6-7-8,9+10-11-12的值;(2)观察上面三个式子的结果,用你观察出的规律计算:1+2-3-4+5+6-7-8+9+10-11-12+…+2017+2018-2019-2020.阶段综合测试一(月考一)1.D2.D3.A4.A5.C6.C7.A8.C9.C10.C11.201712.6.98×10613.±414.-1或515.-116.017.解:在数轴上表示各数如图所示.用“<”号连接为:-4.2<-2<0<1<3<+7.18.解:(1)原式=-4×9-8=-36-8=-44.(2)-×12=6+10-7=9.(3)360÷4-(-6)2×[2-(-3)]=90-36×(2+3)=90-36×5=90-180=-90.19.解:(1)小强应该取-8,-3.-8×(-3)=24.答:小强应该取-8,-3,最大的乘积是24.20解:∵30-7-6-3-4-5=5(件),∴7×(47+3)+6×(47+2)+3×(47+1)+5×47+4×(47-1)+5×(47-2) =350+294+144+235+184+225=1432(元).∵30×32=960(元),∴1432-960=472(元),∴该服装店售完这30件连衣裙后,赚了472元.21.解:方方的计算过程不正确.正确的计算过程如下:原式=6÷-=6÷-=6×(-6)=-36.22解:∵|a|=2,c是最大的负整数,∴a=±2,c=-1.(1)当a=2,b=-5,c=-1时,a+b-c=2+(-5)-(-1)=-2.(2)当a=-2,b=-5,c=-1时,a+b-c=-2+(-5)-(-1)=-6.23.解:(1)因为+5-3+10-8-6+12-10=0,所以小虫最后回到出发点A.(2)第一次爬行距离出发点是5 cm,第二次爬行距离出发点是5-3=2(cm),第三次爬行距离出发点是2+10=12(cm),第四次爬行距离出发点是12-8=4(cm),第五次爬行距离出发点是|4-6|=|-2|=2(cm),第六次爬行距离出发点是-2+12=10(cm),第七次爬行距离出发点是10-10=0(cm),从上面可以看出小虫离开出发点最远是12 cm.(3)小虫爬行的总路程为:|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=5+3+10+8+6+12+10=54(cm).所以小虫一共得到54粒芝麻.24.解:(1)1+2-3-4=-4,5+6-7-8=-4,9+10-11-12=-4.(2)1+2-3-4+5+6-7-8+9+10-11-12+…+2017+2018-2019-2020=(1+2-3-4)+(5+6-7-8)+(9+10-11-12)+…+(2017+2018-2019-2020)=-4+(-4)+…+(-4)=-4×505 =-2020.。

2019秋季人教版七年级数学(上)第2章《整式的加减》单元检测题(含答案)

2019秋季人教版七年级数学(上)第2章《整式的加减》单元检测题(含答案)

七年级数学(上)第2章《整式的加减》单元检测题一、选择题(每小题3分,共30分 ) 1.下列各式中不是单项式的是( )A .3a B . 1-mC .0D .37 2.甲数比乙数的3倍大2,若乙数为x ,则甲数为( )A .3x +2B .2x +3C .123-xD . 123+x3.如果312+n m x y 与-3x 12y n 是同类项,那么m ,n 的值分别是( )A .m =-2,n =3B .m =2,n =3C . m =-3,n =2D . m =3,n =4 4.代数式-32xy 4的系数与次数分别是( )A .-2,4B .+9,5C .-9,5D .-8,4 5.(2018烟台)已知a -b =2,则2a -2b -3的值是( ) A .1 B .-1 C .-5 D .-3 6.从2a +5b 减去6a -6b 的一半,应当得到( ) A . 4a -b B . b -aC . -a +8D . 5a +2b 7.减去3m 等于5m 2-3m -5的式子是( )A .5(m 2-1) B .5m 2-6m -5 C .5(m 2+1) D .-(5m 2+6m -5) 8.在排成每行七日的日历表中取下一个3×3方块,若所有日期数之和为207.则n 的值为( ) A .21 B .23 C .15 D .19 9.已知a -b =5,c +d =2.则(b +c )-(a -d )的值是( )A .-3B .3C .-5D .7第8题图 第10题图10,填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m 的值是( )A .74B .92C .158D .176二、填空题(每小题3分,共18分)11.当x =5,y =4时,式子2x 2-y 的值是 .12.把(x -y )看作一个整体,合并同类项:7(x -y )+2(x -y )-4(x -y )= .13.一根铁丝的长为7a +8b ,剪下一部分围成一个长为a 宽为b 的长方形,则这根铁丝还剩下 . 14.已知单项式3a m b 4与312--n a b 的和是单项式,则m = ,n = .15.已知A =3x 2-5x +3,B =2x 2+2x -1,则3B -A 的结果是 .16.已知:数a ,b ,c 在数轴上的对应点如图所示,化简|a +b |-|-3c |-|c -a |的值是 .三、解答题(共8题,共72分)17,(8分)化简(1)5x 2+2xy -3y 2-(3xy -4y 2+3x 2); (2)5(x 2-5x )-3(2x 2+3x ) 04282622464484c18.(8分)已知A=3x2-3xy+2y2,B=3x2+xy-4y2,求:(1)A+B;(2)A-(B-2A).19.(8分)已知|x+2|+(y-12)2=0,求5xy-[(x2+4xy-y2)-(x2+3xy)]的值20.(8分)有这样一道题:“当a=2017,b=-2018时,求多项式8a3-5a3b+3a2b+4a3+5a3b-3a2b-12a3+2016值.”小明说:本题中a=2017,b=-2018是多余的条件;小强马上反对说:这不可能,多项式中含有a和b,不给出a,b的值怎么能求出多项式的值呢?你同意哪名同学的观点?请说明理由21.(8分)(2018中山)如图,某长方形广场的四个角都有一块半径相同的四分之一圆形的草地,若圆形的半径为r米,长方形长为a米,宽为b米(1)分别用代数式表示草地和空地的面积(2)若长方形长为300米,宽为200米,圆形的半径为10米,求广场空地的面积?(计算结果保留到整数)22.(10分)已知:A=x3+2x+3,B=2x3-mx+2.(1)若m=5,求A-(3A-2B)的值(2)若2A-B的值与x无关,求2m2-[3m2-(4m-7)+2m]的值23.(10分)幻方的历史很悠久,传统幻方最早出现在夏禹时代的“洛书”。

浙江省台州市天台县赤城中学2019-2020学年第一学期第一次阶段统练七年级数学试卷(含答案)

浙江省台州市天台县赤城中学2019-2020学年第一学期第一次阶段统练七年级数学试卷(含答案)

台州市天台县赤城中学2019-2020学年第一学期第一次阶段统练七年级数学试卷亲爱的同学们:转眼间,你进入赤中的第一个学期已一个月多了,回头看看,你收获到了哪些?通过这份测试卷,检验一下你自己,相信你会给自己、给大家一个惊喜.沉着、冷静,动动脑,开始吧. 温馨提示:1.试卷共4页,满分120分,考试时间90分钟;2.答案必须写在试卷相应的位置上;3.考试时不得使用计算器.一、选择题(本题有10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.如果向东走2m,记为+2m,则向西走3m 可记为( ▲ )A .+3mB .+2mC .-3mD .-2m 2.在0,1,-12,-1这四个数中,最小的数是( ▲ )(1) A. 0 B. 1 C. -12D. -13.学习有理数后,四位同学聊了起来. 甲说:“没有最大的正数,但有最大的负数.” 乙说:“有绝对值最小的数,没有绝对值最大的数.” 丙说:“有理数分为正有理数和负有理数.” 丁说:“相反数是它本身的数是正数.” 你认为哪位同学说得对呢?( ▲ ) A .甲B .乙C .丙D .丁4.每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图所示,则这4筐杨梅的总质量是( ▲ )千克.A. 19.7B. 19.9C. 20.1D. 20.35.比-1小2的数是( ▲ )A .3B .1C .―2D .-3 6. 在数轴上表示a ,b 两数的点如图所示,则下列判断正确的是( ▲ )A .a -b <0B .a +b <0C .ab >0D .|a |>|b |7.下列说法:①若a ,b 互为相反数,则0=+b a ;②若a ,b 同号,则||||||b a b a +=+; ③a -一定是负数;④若1ab =,则a ,b 互为倒数.其中正确的结论是( ▲ ) A .①②④ B .②③④ C .①②③ D .①③④ 8. 已知2||=m ,5||=n ,且m n n m -=-||,则n m +的值是( ▲ ) A .7 B .3 C .―3或-7 D .3或79.如图是制作果冻的食谱,傅妈妈想根据此食谱内容制作六份果冻.若她加入50克砂糖后,不足砂糖可依比例换成糖浆,则她需再加糖浆( ▲ )A. 15匙B. 18匙C. 21匙D. 24匙10.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数.由图可知,孩子自出生后的天数是( ▲ )A. 84B. 336C. 510D. 1326 二、填空题(本题有10小题,每小题3分,满分30分) 11.计算:=-42 ▲ .12.将算式(-20)+(+3)-(-5)-(+7)写成省略括号和加号的形式: ▲ . 13.3的相反数是 ▲ ;-2的倒数是 ▲ .14.在数轴上,点A 表示-3,若从点A 出发,沿数轴移动4个单位长度到达点B ,则点B 表示的数是 ▲ . 15.已知0|3||2|=-++b a ,则=+b a 2 ▲ .16.某地气象资料表明,高度每增加1000米,气温就下降大约6℃,现在6000米高空的气温是-14℃,则地面气温约是 ▲ ℃.17.已知a ,b 为有理数,且0>a ,0<b ,0<+b a ,将四个数a ,b ,a -,b -按由小到大的顺序排列是 ▲ 18.已知a ,b 互为相反数,c ,d 互为倒数,2||=m ,则=-++m b cd a 3 ▲ .果冻食谱(1份) 果冻粉---30克 砂糖------20克 咖啡粉—70克 注:20克砂糖可以 换6匙糖浆第9题图第10题图19.若5个有理数两两相乘的乘积中有四个负数,则这5个有理数中有 ▲ 个负数. 20.定义:a 为不为1的有理数,我们把a -11称为a 的差倒数.如:2的差倒数是1211-=-,-1的差倒数是()21111=--.已知211-=a ,2a 是1a 的差倒数, 3a 是2a 的差倒数, 4a 是3a 的差倒数,…,以此类推,则=2019a ▲ .三、解答题(本题有6题,第21~23题每题8分,第24题10分,第25题12分,第26题14分) 21.把下列各数填入表示它所在数集的大括号中:错误!未找到引用源。

2019年秋浙教版初中数学七年级上册《数据与图表》单元测试(含答案) (333)

2019年秋浙教版初中数学七年级上册《数据与图表》单元测试(含答案) (333)

浙教版初中数学试卷2019-2020年七年级数学上册《数据与图表》精选试题学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.(2分)甲、乙两人参加某体育项目训练,为了便于研究,把最近五次的训练成绩分别用实线和虚线连接,如图所示,则下面的结论中,错误的是()A.乙的第二次成绩与第五次成绩相同B.第三次测试甲的成绩与乙的成绩相同C.第四次测试甲的成绩比乙的成绩多 2分D.五次测试甲的成绩都比乙的成绩高2.(2分)你看到的心电图可以看作是()A.条形统计图B.折线统计图C.扇形统计图D.以上都对3.(2分)张明对沙河口区快餐公司的发展情况作了调查,制成了该地区快餐公司个数情况和平均年销量的情况统计图,由图(1)、图(2)中的信息,知2006年共销售盒饭()A .50万盒B . 118万盒C .120万盒D .无法估计4.(2分)如图是某只股票从星期一至星期五的最高股价与最低股价的折线统计图,则这5天中最高股价与最低股价之差最大的一天是( )A .星期二B .星期三C .星期四D .星期五(第6题图)星期日最低股价 日最高股价股价(元)11.51110.5109.598.58五四三二一5.(2分) 张颖同学把自己一周的支出情况,用如图所示的统计图来表示.则从图中可以看出( )A .一周支出的总金额B .一周各项支出的金额C .一周内各项支出金额占总支出的百分比D .各项支出金额在一周中的变化情况6.(2分)要反映宁波市一周内每天的最高气温的变化情况,宜采用( )A .条形统计图B .扇形统计图C .折线统计图D .以上都可以7.(2分)李大伯承包一个果园,种植了l00棵樱桃树,今年已进入收获期.收获时,从中任选并采摘了l0棵树的樱桃,分别称得每棵树所产樱桃的质量如下表:据调查,市场上今年樱桃的批发价格为每千克l5元.用所学的统计知识估计今年此果园樱桃的总产量与按批发价格销售樱桃所得的总收人分别为( )A .200 kg ,3000元B .1900 kg ,28500元C .2000 kg ,30000元D .1850 kg ,27750元二、填空题8.(2分)(1)要反映某学生从 6岁到12岁每年一次体检时的视力情况,要用统计图;(2)要反映某班40名学生所穿鞋的尺码,要用统计图;(3)要反映某市五个区的占地面积与全市总面积的对比情况,要用统计图.9.(2分) 某班有40名学生,其中男、女生所占比例如图所示,则该班男生有人.10.(2分)初三年某班共50名学生参加体育测试,全班学生成绩合格率为94%,则不合格的人数有_______人.11.(2分)某班50名学生在课外活动中参加作文、美术、文娱、体育兴趣小组的分别有8人、l2人、20人、l0人,那么参加体育兴趣小组的人数所占的百分比为.12.(2分)下表记录的是中国、美国、印度、澳大利亚四个国家l996年的人口自然增长率.从统计图中获得人口自然增长率最高的国家是,最低的是.13.(2分)某校为了调查七年级男生的体重,随机抽取了七年级20名男生,他们的体重分别是(单位:kg):45 41 43 35 37 39 4650 49 45 43 38 36 4244 48 41 42 43 41整理上面的数据,体重在45 kg(包括45 kg)以上的男生有人,体重在40kg(不包括40千克)以下的男生占调查总人数的.14.(2分)右表是某所学校400名学生早晨到校方式的统计数据.(1)表中数据是通过获得的.(2)在学生早晨到校方式中,选择的人数最多,其中选择公交车的人数占总人数的.三、解答题15.(7分)某报社为了解读者对本社一种报纸四个版面的喜欢情况,对读者作了一次问卷调查,要求读者选出自己最喜欢的一个版面,将所得数据整理后绘制成了如图所示的条形统计图:(1)请写出从条形图中获得的一条信息;(2)请根据条形统计图中的数据补全扇形统计图②(要求:第二版与第三版相邻),并说明这两幅统计图各有什么特点?(3)请你根据上述数据,对该报社提出一条合理的建议.16.(7分)我国国民经济保持良好发展势头,国内生产总值持续较快增长,下图是1998年~2002年国内生产总值统计图:根据图中信息,解答下列问题:(1)1999年国内生产总值是 ;(2)已知2002年国内生产总值比2000年增加l2956亿元,2001年比2000年增加6491亿元,求2002年国内生产总值比2001年增长的百分率(结果保留2个有效数字);(3)在(2)的条件下,将统计图改为折线统计图;(4)本题哪幅统计图可以较好地反映我国国内生产总值持续较快增长?17.(7分)据丽水市统计局关于经济和社会发展统计公报,丽水市2000~2003年全社会用电量的折线统计图如图所示:2000—2003年萧水市全社会用电量统计图(1)填写统计表:2000--2003年丽水市全社会用电量统计表(2)根据丽水市2001年至2003年全社会用电量数据统计,求2003年比2001年的用电量增长百分率(保留2个有效数字).18.(7分)某班全体同学在“献爱心”活动中都捐了图书,捐书的情况如下表:根据题目中所给条件回答下列问题:(1)该班学生共有名.(2)全班一共捐了册图书.(3)若该班所捐图书拟按图所示比例分送给山区学校,本市兄弟学校和本校其它班级,则送给山区学校的书比送给本市兄弟学校的书多册.19.(7分)某种子培育基地用A ,B ,C ,D 四种型号的小麦种子共2 000粒进行发芽实验,从中选出发芽率高的种子进行推广.通过实验得知,C 型号种子的发芽率为95%,根据实验数据绘制了图1和图2两幅尚不完整的统计图.(1)D 型号种子的粒数是 ;(2)请你将图2的统计图补充完整;(3)通过计算说明,应选哪一个型号的种子进行推广.20.(7分)如图是一位病人的体温记录折线图,看图回答下面的问题:(1)护士每隔多久给病人量一次体温?(2)这位病人的体温最高是多少?最低是多少?(3)他在4月8日12时的体温是多少?(4)他的体温在哪段时间里下降得最快?哪段时间里比较稳定?(5)图中的横虚线表示什么?(6)从体温图看,这位病人的病情是在恶化还是好转?A 35%B 20%C 20%D 各型号种子数的百分比 图1 图2型号21.(7分)某县教育局专门对该县2004年初中毕业生毕业去向做了详细调查,将数据整理后,绘制成统计图,根据图中信息回答:(1)已知上非达标高中的毕业生有2328人,求该县2004年共有初中毕业生多少人?(2)上职业高中和赋闲在家的毕业生各有多少人?(3)今年被该县政府确定为教育发展年,比较各组的百分率,你对该县教育发展有何积极建议?请写出一条建议.22.(7分)在第26届国际奥林匹克运动会上,获得金牌前七名的国家的奖牌情况如下:(1)统计员通过什么方法得到表中的数据?(2)你从这些数据中获得了关于比赛的哪些信息和结论?23.(7分)在2004年瑞士女排精英赛中,中国队直落三局,以3:0战胜古巴队,夺得第三名.这是中国队与古巴队这场比赛的技术统计数据:(1)统计员是通过什么方法获得表中的数据?(2)你从这些数据中获得了关于这场比赛的哪些信息和结论?24.(7分)为了解班级中10名男生,l0名女生的记忆能力,进行了如下的实验:先让他们观察一段展示10种水果的录像(一遍),然后请这20名同学写出他们所观察到的水果种类,结果如下(单位:种).8 7(女) 5 6 8(女)7 4 5 6(女) 910(女) 9(女) 7(女) 4 7(女)8(女) 5 9(女) 6 8(女)(1)这组数据是通过什么方法获得的?(2)学生的记忆能力与性别有关吗?为了回答这个问题,你将怎样处理这组数据?你的结论是什么?25.(7分)你班的同学中有在同一个月出生的吗?有在同月同日出生的吗?你的同学在哪个月出生最多?其它班的同学也是在那个月出生最多吗?做个小调查,看看会有什么有趣的发现.26.(7分)观察你家电表的度数,要求每天相同的时刻记录一次,记录l个月.然后用适当的方法整理这些数据,用清晰、简捷的方式展示这些数据.这一个月中,哪些天用电量最多?为什么?可以在哪些方面节约用电?将你得到的信息和结论与你的家人交流.27.(7分)设计一张记录全班同学身高、体重的统计表格,并向班级里的每位同学收集数据,填入此表.28.(7分)请根据下列数据制作统计表:我国l980年人口总数为98705万人,1985年为l05851万人,1990年为ll4333万人,1995年为121121万人,1999年为l25909万人.29.(7分)已知某工厂从1997年到2002年每年的年产值和利润依次分别为(单位:万元): 80,8;95,10;100,15;100,20;95,15;110,20列出该工厂从l997年到2002年产值和利润统计表.30.(7分)小明从校园网上查到6名同学的期中、期末成绩,记录如下:小丁(270,252) 小王(287,278)小陈(292,287) 小孙(271,285)小赵(245,259) 小李(252,262)为了更清楚地反映各位同学的总分成绩和名次变化,你应怎样重新整理这些数据?【参考答案】***试卷处理标记,请不要删除一、选择题1.D2.B3.B4.B5.C6.C7.C二、填空题8.(1)折线;(多)条形;(3)扇形9.2210.311.20%12.印度;美国13.6人,25%14.(1)调查 (2)自行车;22%三、解答题15.(1)如参加调查的人数为5000人 (2)补全的扇形统计图略,条形统计图能清楚地表示出喜欢各版面的读者人数,扇形统计图能清楚地表示出喜欢各版面的读者人数占所调查的总人数的百分比 (3)如建议改进第二版的内容,提高文章质量,内容更贴近读者,形式更活泼些16.(1)82067亿元 (2)6.7% (3)略 (4)折线统计图17.(1)14.73,17.05,21.92 (2)49%18.(1)45 (2)405 (3)16219.解:(1)500;(2)如图;(3)A型号发芽率为90%,B型号发芽率为92.5%,D型号发芽率为94%,C型号发芽率为95%.应选C型号的种子进行推广.20.(1)6 h (2)39.5℃;36.8℃ (3)37.5℃ (4)4月7日6时至快,在4月8日18时至4月9日18时里比较稳定;(5)正常体温 (6)好转21.(1)7760人 (2)1017人;923人 (3)如“赋闲在家的学生比例大,而职高发展不足,建议发展职高以吸纳赋闲在家的学生.”又如“普通高中之中,达标高中所占比例偏低,建议把更多的非达标高中发展为达标高中.”22.(1)统计员通过观察或调查得到表中的数据 (2)例:金牌最多的国家为美国,奖牌数最多的国家为美国,按金牌数的排序前三名依次为美国、俄罗斯、德国23.(1)观察 (2)例:中国队的拦网得分比古巴队多4分,中国队的发球得分比古巴队多4分,中国队的扣球得分比古巴队少3分,中国队的失误送分比古巴队少10分,说明中国队这场比赛中防守比较好,失误较少.24.(1)实验 (2)把数据按男、女生分类,并将数据按从小到大的次序排列结论:女生的记忆力普遍比男生好25.略26.略27.略28.略29.1997~2002年产值和利润统计表单位:万元30.略型号。

【教育资料】广西钦州市第九中学七年级数学季学期第一次周测试卷(含答案)学习精品

【教育资料】广西钦州市第九中学七年级数学季学期第一次周测试卷(含答案)学习精品

广西钦州市第九中学七年级数学2019年秋季学期第一次周测试卷(含答案)一、选择题1. 一个物体作左右方向的运动,规定向右运动4m记作+4m,那么向左运动4m记作()A.4mB.4mC.8mD.8m2. 如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()A. B. C. D.3. 如果+3吨表示运入仓库的大米吨数, 那么运出5吨大米表示为()A.-3吨B.+3吨C.-5吨D.+5吨4. 下列结论中正确的是().A.0既是正数,又是负数B.O是最小的正数C.0是最大的负数D.0既不是正数,也不是负数5. 汽车从A地出发向南行驶了48千米后到达B地,又从B地向北行驶20千米到达C地,则A地与C地的距离是().A.68千米B.28千米C.48千米D.20千米6. 如果零上2℃记作+2℃,那么零下3℃记作()A.-3℃B.-2℃C.+3℃D.+2℃7. 检验4个工件,其中超过标准质量的克数记作正数,不足标准质量的克数记作负数.从轻重的角度看,最接近标准的工件是()A.-2B.-3C.3D.58. 下列说法中:①不带“-”的数都是正数;②不是正数的数一定是负数;③0℃表示没有温度;④“+15”表示向东走15m;⑤如果a 是正数,那么- a 一定是负数.其中正确的个数有()A.0个B.1个C.2个D.3个9. 下列说法错误的是()A.若上升2m记作2m.则-2m是下降2mB.增加-5%与减少5%的意义不同C.若下降3m记作-3m.则不升不降记作0mD.若规定上升为正.则水位上升-2.5m表示水位下降了2.5m10. 下列结论中正确的是()A.0既是正数,又是负数B.0是最小的正数C.0是最大的负数D.0既不是正数,也不是负数11. 如果收入15元记作+15元,那么支出20元记作()元.A.+5B.+20C.-5D.-2012. 一种大米的质量标识为“(50±0.5)千克”,则下列各袋大米中质量不合格的是()A.50.0千克B.50.3千克C.49.7千克D.49.1千克二、填空题13. 如果向东行驶10米,记作+10米,那么向西行驶20米,记作_______________ 米.14. 如果运进货物30吨记作+30吨,那么运出50吨记作_______________ 吨.15. 如果零上2℃记作+2℃,那么零下5℃记作 _______________ ℃.16. 如果+0.5米表示水位上涨0.5米,则水位下降0.3米可表示为_______________ 米.三、解答题17. 食品店一周中的盈亏情况如下(盈余为正): 132元,12.5元,10.5元,127元,87元,136.5元,98元.请通过计算说明这一周食品店的盈亏情况.18. 10袋大米,以每袋50千克为准:超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:+0.5,+0.3,0,0.2,0.3,+1.1,0.7,0.2,+0.6,+0.7.这10袋大米总重量是多少千克?教育资源参考答案一、选择题1、A2、C3、C4、D5、B6、A7、A8、B9、B 10、D 11、D12、D二、填空题13、-20 14、50 15、-5 16、-0.3三、解答题17、 383.5 18、 501.8教育资源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学2018年秋季学期第一次周测试卷(含答案)
一、选择题
1. 一个物体作左右方向的运动,规定向右运动4m记作+4m,那么向左运动4m记作()
A.4m
B.4m
C.8m
D.8m
2. 如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()
A. B. C. D.
3. 如果+3吨表示运入仓库的大米吨数, 那么运出5吨大米表示为()
A.-3吨
B.+3吨
C.-5吨
D.+5吨
4. 下列结论中正确的是().
A.0既是正数,又是负数
B.O是最小的正数
C.0是最大的负数
D.0既不是正数,也不是负数
5. 汽车从A地出发向南行驶了48千米后到达B地,又从B地向北行驶20
千米到达C地,则A地与C地的距离是().
A.68千米
B.28千米
C.48千米
D.20千米
6. 如果零上2℃记作+2℃,那么零下3℃记作()
A.-3℃
B.-2℃
C.+3℃
D.+2℃
7. 检验4个工件,其中超过标准质量的克数记作正数,不足标准质量的克数记作负数.从轻重的角度看,最接近标准的工件是()
A.-2
B.-3
C.3
D.5
8. 下列说法中:①不带“-”的数都是正数;②不是正数的数一定是负数;
③0℃表示没有温度;④“+15”表示向东走15m;⑤如果a 是正数,那么- a 一定是负数.其中正确的个数有()
A.0个
B.1个
C.2个
D.3个
9. 下列说法错误的是()
A.若上升2m记作2m.则-2m是下降2m
B.增加-5%与减少5%的意义不同
C.若下降3m记作-3m.则不升不降记作0m
D.若规定上升为正.则水位上升-2.5m表示水位下降了2.5m
10. 下列结论中正确的是()
A.0既是正数,又是负数
B.0是最小的正数
C.0是最大的负数
D.0既不是正数,也不是负数
11. 如果收入15元记作+15元,那么支出20元记作()元.
A.+5
B.+20
C.-5
D.-20
12. 一种大米的质量标识为“(50±0.5)千克”,则下列各袋大米中质量不合格的是()
A.50.0千克
B.50.3千克
C.49.7千克
D.49.1千克
二、填空题
13. 如果向东行驶10米,记作+10米,那么向西行驶20米,记作
_______________ 米.
14. 如果运进货物30吨记作+30吨,那么运出50吨记作
_______________ 吨.
15. 如果零上2℃记作+2℃,那么零下5℃记作 _______________ ℃.
16. 如果+0.5米表示水位上涨0.5米,则水位下降0.3米可表示为
_______________ 米.
三、解答题
17. 食品店一周中的盈亏情况如下(盈余为正): 132元,12.5元,10.5元,127元,87元,136.5元,98元.
请通过计算说明这一周食品店的盈亏情况.
18. 10袋大米,以每袋50千克为准:超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:+0.5,+0.3,0,0.2,0.3,+1.1,0.7,0.2,+0.6,+0.7.这10袋大米总重量是多少千克?
参考答案
一、选择题
1、A
2、C
3、C
4、D
5、B
6、A
7、A
8、B
9、B 10、D 11、D12、D
二、填空题
13、-20 14、50 15、-5 16、-0.3
三、解答题
17、 383.5 18、 501.8
答案第1页,总1页。

相关文档
最新文档