九年级数学概率初步PPT优秀课件
合集下载
人教版九年级上册数学《概率》概率初步PPT教学课件(第2课时)
P(没有中奖).
(1).
练习巩固
练习3 已知:在一个不透明的口袋中装有仅颜色不同的红、白 两种小球,其中红球3个,白球n个,若从袋中任取一个球,摸出白 球的概率为四分之三,求n 的值.
解:P(摸出白球).
根据题意得n=9.
经检验,n=9是原分式方程的解.
做一做
小明和小刚想通过抽取扑克牌的方式来决定谁去看电影, 现有一副扑克牌,请你设计对小明和小刚都公平的抽签方案.
解:(1)指向红色有1种结果, P(指向红色) =.
变式训练
例1变式 如图,是一个转盘,转盘被分成两个扇形,颜色分为红 黄两种,红色扇形的圆心角为120度,指针固定,转动转盘后任其自由 停止,指针会指向某个扇形,(指针指向交线时当作指向右边的扇形 )求下列事件的概率:(1)指向红色;(2)指向黄色.
各边相等的圆内接多边形是正多边形吗?
以四边形为例
A
已知:如图, O 中内接四边形
ABCD ,
AB=BC=CD=DA .
B
求证:四边形ABCD是正方形.
D O
C
思考
已知:如图, O 中内接四边形ABCDE,
AB=BC=CD=DA .
A
D
求证:四边形ABCD是正方形.
证明: AB BC CD DA ,
你能设计出几种方案?
课堂小结
(1)在计算简单随机事件的概率时需要满足两个前 提条件:
每一次试验中,可能出现的结果只有有限个; 每一次试验中,各种结果出现的可能性相等. (2)通过对概率知识的实际应用,体现了数学知识 在现实生活中的运用,体现了数学学科的基础性.
作业
1.一个质地均匀的小正方体,六个面分别标有数字 “1”“1”“2”“4”“5”“5”.掷小正方体后, 观察朝上一面的数字.
(1).
练习巩固
练习3 已知:在一个不透明的口袋中装有仅颜色不同的红、白 两种小球,其中红球3个,白球n个,若从袋中任取一个球,摸出白 球的概率为四分之三,求n 的值.
解:P(摸出白球).
根据题意得n=9.
经检验,n=9是原分式方程的解.
做一做
小明和小刚想通过抽取扑克牌的方式来决定谁去看电影, 现有一副扑克牌,请你设计对小明和小刚都公平的抽签方案.
解:(1)指向红色有1种结果, P(指向红色) =.
变式训练
例1变式 如图,是一个转盘,转盘被分成两个扇形,颜色分为红 黄两种,红色扇形的圆心角为120度,指针固定,转动转盘后任其自由 停止,指针会指向某个扇形,(指针指向交线时当作指向右边的扇形 )求下列事件的概率:(1)指向红色;(2)指向黄色.
各边相等的圆内接多边形是正多边形吗?
以四边形为例
A
已知:如图, O 中内接四边形
ABCD ,
AB=BC=CD=DA .
B
求证:四边形ABCD是正方形.
D O
C
思考
已知:如图, O 中内接四边形ABCDE,
AB=BC=CD=DA .
A
D
求证:四边形ABCD是正方形.
证明: AB BC CD DA ,
你能设计出几种方案?
课堂小结
(1)在计算简单随机事件的概率时需要满足两个前 提条件:
每一次试验中,可能出现的结果只有有限个; 每一次试验中,各种结果出现的可能性相等. (2)通过对概率知识的实际应用,体现了数学知识 在现实生活中的运用,体现了数学学科的基础性.
作业
1.一个质地均匀的小正方体,六个面分别标有数字 “1”“1”“2”“4”“5”“5”.掷小正方体后, 观察朝上一面的数字.
《概率》九年级初三数学上册PPT课件(第25.1.2 课时)
来的,其特征是具有频率和波长,也就是具有时空的周期性。
显而易见,在经典物理学中,波和粒子是两种不同的研究对象,具有非常不
同的表现。
为什么光和微观粒子(如电子和质子)既表现有波动性又表现有粒子性的双重
属性呢?
二、概率波
为了了解光波和物质波是什么样的波,还是从波的波粒二象性入手。
观察下图的光的双缝干涉实验。
老师:
时间:2020.4
前言
学习目标
1.理解概率的意义,认识概率是描述随机事件发生可能性大小的数值。
2.初步掌握概率的计算公式,会用概率描述事件发生的可能性的大小。
重点难点
重点:随机事件的概率的定义及其计算方法。
难点:理解概率公式,并能运用其解决实际问题。
情景引入
小白将一枚硬币抛向空中,落地后出现正面的可能性有多大,出现背面
联系的物质波也是概率波。
(2)单个粒子位置是不确定的。对于大量粒子,这种概率分布导致确定的
宏观结果。
二、概率波
按光子的模型,用统计观点看待单个粒子与粒子总体的联系,并
将波的观点与粒子观点结合起来了,但这里的波是特殊意义的波,
因而被称为“概率波”. 这种对物质波衍射与实物粒子的波粒二象
性的理解,称作统计解释或概率解释。
由于衍射,落点会超出单缝投影的范围,其它粒子也一样,说明微观粒子的运动已经
不遵守牛顿运动定律,不能同时用粒子的位置和动量来描述粒子的运动了.
激
光
束
像
屏
三、不确定性关系
屏上各点的亮度实际上反映了粒子到达该点的概率.
x
入
射
粒
子
a
o
b
y
a
b
1.在挡板左侧位置完全不确定
显而易见,在经典物理学中,波和粒子是两种不同的研究对象,具有非常不
同的表现。
为什么光和微观粒子(如电子和质子)既表现有波动性又表现有粒子性的双重
属性呢?
二、概率波
为了了解光波和物质波是什么样的波,还是从波的波粒二象性入手。
观察下图的光的双缝干涉实验。
老师:
时间:2020.4
前言
学习目标
1.理解概率的意义,认识概率是描述随机事件发生可能性大小的数值。
2.初步掌握概率的计算公式,会用概率描述事件发生的可能性的大小。
重点难点
重点:随机事件的概率的定义及其计算方法。
难点:理解概率公式,并能运用其解决实际问题。
情景引入
小白将一枚硬币抛向空中,落地后出现正面的可能性有多大,出现背面
联系的物质波也是概率波。
(2)单个粒子位置是不确定的。对于大量粒子,这种概率分布导致确定的
宏观结果。
二、概率波
按光子的模型,用统计观点看待单个粒子与粒子总体的联系,并
将波的观点与粒子观点结合起来了,但这里的波是特殊意义的波,
因而被称为“概率波”. 这种对物质波衍射与实物粒子的波粒二象
性的理解,称作统计解释或概率解释。
由于衍射,落点会超出单缝投影的范围,其它粒子也一样,说明微观粒子的运动已经
不遵守牛顿运动定律,不能同时用粒子的位置和动量来描述粒子的运动了.
激
光
束
像
屏
三、不确定性关系
屏上各点的亮度实际上反映了粒子到达该点的概率.
x
入
射
粒
子
a
o
b
y
a
b
1.在挡板左侧位置完全不确定
人教版九年级数学上册《用列举法求概率》概率初步PPT精品教学课件
板书设计
把两枚骰子分别记为第1枚和第2枚,这样就可以用下面的方形表格列举出
所有可能出现的结果.
解决问题
两枚骰子分别记为第1枚和第2枚,所有可能的结果列表如下:
(1)满足两枚骰子点数相同(记为事件A)的结果有6个
6
1
(表中斜体加粗部分),所以P(A)= 36 = 6.
(2)满足两枚骰子的和是9(记为事件B)的结果有4个
2.如图所示的扇形图给出的是地球上海洋、陆地的表面积约占地球表面积的
百分比. 若宇宙中有一块陨石落在地球上,则它落在海洋中的概率是
%.
达标检测
1.“同吋掷两枚质地均匀的骰子,至少有一枚骰子的点数是3”的概率为
(
)
1
A.
3
11
B.
36
5
C.
12
1
D.
4
2.不透明的袋子中装有红球1个、绿球1个、白球2个,这些球除颜色外无
出场,由于人为指定出场顺序不合规,要重新抽签确定出场顺序,则抽签后三个
运动员出场顺序都发生变化的概率是
.
达标检测
5.一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,
2
3
其中红球1个,若从中随机摸出一个球,这个球是白球的概率为 .
(1)求袋子中白球的个数;
(2)随机摸出一个球后放回并搅匀,再随机摸出一个球,请用画树状图
5
,全是辅音字母的结果有两个,
12
2
1
即BCH,BDH,所以P(三个辅音)= = .
12
6
P(一个元音)=
练习巩固
1.经过某十字路口的汽车,可能直行,也可能左转或右转. 如果这三种可能
《概率》概率初步PPT免费课件
为红、绿、黄三种.指针的位置固定,转动转盘后任
其自由停止,其中的某个扇形会恰好停在指针所指
的位置(指针指向两个图形的交线时,当作指向其右
边的图形).求下列事件的概率:
(1)指针指向红色;
1 4
(2)指针指向黄色或绿色.
3 4
探究新知
素养考点 4 利用概率解决实际问题
例4 如图是计算机中“扫雷”游戏的画面.在一个有9×9
字被抽取的可能性大小相等,所以我们可以用
1 5
表示每一个数
字被抽到的可能性大小.
探究新知
活动2 : 掷骰子 掷一枚骰子,向上一面的点数有6种可能,即1、2、
3、4、5、6.
因为骰子形状规则、质地均匀,又是随机掷出,所以每
种点数出现的可能性大小相等.我们用
1 6
表示每一种点数出现
的可能性大小.
探究新知
3
巩固练习
袋子里有1个红球,3个白球和5个黄球,每一个 球除颜色外都相同,从中任意摸出一个球,则
1
P(摸到红球)= 9 ;
1
P(摸到白球)= 3 ;
5
P(摸到黄球)= 9 .
探究新知
素养考点 3 简单转盘的概率计算
例3 如图所示是一个转盘,转盘分成7个相同的扇形, 颜色分为红黄绿三种,指针固定,转动转盘后任其自 由停止,某个扇形会停在指针所指的位置,(指针指 向交线时当作指向其右边的扇形)求下列事件的概率. (1)指向红色; (2)指向红色或黄色; (3)不指向红色.
巩固练习
掷一个骰子,观察向上的一面的点数,求下列事 件的概率: (1)点数为2; (2)点数为奇数; (3) 点数大于2小于5.
(1)点数为2有1种可能,因此P(点数为2)= 1 ; 6
人教版九年级数学上册《用频率估计概率》概率初步PPT优质课件
10
10
=
小练习
1. 在一次质检抽测中,随机抽取某摊位20袋食盐,测得各袋的质量分别
为(单位:g):492,496,494,495,498,497,501,502,504,
496,497,503,506,508,507,492,496,500,501,499根据
以上抽测结果,任买一袋该摊位的食盐,质量在497.5g~501.5g之间的概
在抛掷一枚硬币时,结果不是“正面向上”,就是“反面向上”
因此,从上面的试验中也能得到相应的“反面向上”的频率。当
“正面向上”的频率稳定于0.5时,“反面向上”的频率也稳定于
0.5.它也与前面用列举法得出的“反面向上”的概率是同一个数值。
探索新知
历史上,有些人曾做过成千上万次抛掷硬币的试验,其中一些
动物1200只,作标记后放回。若干天后,再逮到该种动物1000只,其中
有100只作过标记。按概率方法估算,保护区内这种动物有 12000 只。
【解析】∵该种动物1000只,其中有100只作过标记。∴作过标记的动物占这种动物总
100
数的
1000
=
12000只。
1
1
。∵该种动物共1200只做了标记,∴保护区内这种动物有1200 ÷
试验结果见下表。
探索新知
实际上,从长期实践中,人们观察到,对一般
的随机事件,在做大量重复试验时,随着试验
次数的增加,一个事件出现的频率,总在一个
固定数的附近摆动,显示出一定的稳定性。因
此,我们可以通过大量的重复试验,用一个随
机事件发生的频率去估计它的概率。
探索新知
从抛掷硬币的试验还可以发现,“正面向上”的概率是
植成活的概率为 0.9 。
10
=
小练习
1. 在一次质检抽测中,随机抽取某摊位20袋食盐,测得各袋的质量分别
为(单位:g):492,496,494,495,498,497,501,502,504,
496,497,503,506,508,507,492,496,500,501,499根据
以上抽测结果,任买一袋该摊位的食盐,质量在497.5g~501.5g之间的概
在抛掷一枚硬币时,结果不是“正面向上”,就是“反面向上”
因此,从上面的试验中也能得到相应的“反面向上”的频率。当
“正面向上”的频率稳定于0.5时,“反面向上”的频率也稳定于
0.5.它也与前面用列举法得出的“反面向上”的概率是同一个数值。
探索新知
历史上,有些人曾做过成千上万次抛掷硬币的试验,其中一些
动物1200只,作标记后放回。若干天后,再逮到该种动物1000只,其中
有100只作过标记。按概率方法估算,保护区内这种动物有 12000 只。
【解析】∵该种动物1000只,其中有100只作过标记。∴作过标记的动物占这种动物总
100
数的
1000
=
12000只。
1
1
。∵该种动物共1200只做了标记,∴保护区内这种动物有1200 ÷
试验结果见下表。
探索新知
实际上,从长期实践中,人们观察到,对一般
的随机事件,在做大量重复试验时,随着试验
次数的增加,一个事件出现的频率,总在一个
固定数的附近摆动,显示出一定的稳定性。因
此,我们可以通过大量的重复试验,用一个随
机事件发生的频率去估计它的概率。
探索新知
从抛掷硬币的试验还可以发现,“正面向上”的概率是
植成活的概率为 0.9 。
人教版九年级数学上册《概率》概率初步PPT优质课件
13
13
4 1.
求简单随机事件的概
率
练习
把一副普通扑克牌中的 13 张梅花牌洗匀后正面向下
3
放在桌子上,从中随机抽取一张,求下列事件的概
11 抽出的牌是梅花 6;
率:
21 抽出的牌带有人像;
31 抽出的牌上的数小于 5;
41 抽出的牌的花色是梅花.
1
3
4
1
; 2
; 3
;
13
13
13
4 1.
求简单随机事件的概
活动 2:掷骰子
在上节课的问题 2 中,掷一枚六个面上分别刻有 1 到 6
的点数的骰子,向上一面出现的点数有几种可能?每种点数
出现的可能性大小又是多少?
有 6 种可能,即 1,2,3,4,5,6.
1
6
我们用 表示每一个点数出现的可能性大小.
如何求概率
活动 3
掷一枚硬币,落地后:
1 会出现几种可能的结果? 两种
8
5
(摸出黄球 ) =_________
8
.
求简单随机事件的概
率
练习2 有 7 张纸签,分别标有数字 1,1,2,2,3,4,5,
从中随机地抽出一张,求:
11 抽出标有数字 3 的纸签的概率;
2
(2)抽出标有数字
1 的纸签的概率;
3
(3)抽出标有数字为奇数的纸签的概率.
1
: (数字 3) = 7;
生的概率,记为 ().
认识概率
活动 1:抽纸团
在上节课的问题 1 中,从分别写有数字 1,2,3,4,
5 的五个纸团中随机抽取一个,这个纸团里的数字有几种可
能?每个数字被抽到的可能性大小是多少?
13
4 1.
求简单随机事件的概
率
练习
把一副普通扑克牌中的 13 张梅花牌洗匀后正面向下
3
放在桌子上,从中随机抽取一张,求下列事件的概
11 抽出的牌是梅花 6;
率:
21 抽出的牌带有人像;
31 抽出的牌上的数小于 5;
41 抽出的牌的花色是梅花.
1
3
4
1
; 2
; 3
;
13
13
13
4 1.
求简单随机事件的概
活动 2:掷骰子
在上节课的问题 2 中,掷一枚六个面上分别刻有 1 到 6
的点数的骰子,向上一面出现的点数有几种可能?每种点数
出现的可能性大小又是多少?
有 6 种可能,即 1,2,3,4,5,6.
1
6
我们用 表示每一个点数出现的可能性大小.
如何求概率
活动 3
掷一枚硬币,落地后:
1 会出现几种可能的结果? 两种
8
5
(摸出黄球 ) =_________
8
.
求简单随机事件的概
率
练习2 有 7 张纸签,分别标有数字 1,1,2,2,3,4,5,
从中随机地抽出一张,求:
11 抽出标有数字 3 的纸签的概率;
2
(2)抽出标有数字
1 的纸签的概率;
3
(3)抽出标有数字为奇数的纸签的概率.
1
: (数字 3) = 7;
生的概率,记为 ().
认识概率
活动 1:抽纸团
在上节课的问题 1 中,从分别写有数字 1,2,3,4,
5 的五个纸团中随机抽取一个,这个纸团里的数字有几种可
能?每个数字被抽到的可能性大小是多少?
人教版九年级数学上册第二十五章概率初步课件:25.1.1随机事件(共24张PPT)
太阳从西边升起可能发生吗?今天一定能遇 到小帅吗?
探究新知
问题1:抽签研究: 5 名同学参加讲演比赛,以抽 签方式决定每个人的出场顺序,签筒中有 5 根形状、 大小相同的纸签,上面分别标有出场的序号 1 ,2 , 3 ,4 ,5 . 小军首先抽签,他在看不到纸签上的数 字的情况下从签筒随机( 任意 ) 抽取一根纸签,请 考虑讨论一下问题: (1) 抽到的序号有几种可能的结果? (2) 抽到的序号小于 6 吗? (3) 抽到的序号会是 0 吗? (4) 抽到的序号会是 1 吗?
(1) 抽到的序号有几种可能的结果?
每次抽签的结果不一定相同,序号 1 ,2 ,3 ,4 , 5 都有可能抽到,共有 5 种可能的结果,但是事先 不能预料一次抽签会出现哪一种结果 ;
(2) 抽到的序号小于 6 吗? 抽到的序号一定小于 6 ; (3) 抽到的序号会是 0 吗? 抽到的序号不会是 0 ;
25.1.1 随机事件
情境导入
问题1:今天去福利彩票投注站购买了 5 张彩票, 一等奖是 500 万元,我可以中 2500 万啦 .
你说是一定的吗?
问题2:今天早晨我去学校,从东面骑着共享单车, 看着西边缓缓升起的太阳,想着昨天我在校门口遇 到了我的好朋友小帅,今天一定还能在校门口遇到 小帅,心里美滋滋的 .
归纳: 一般地,随机事件发生的可能性是有黄球”比“摸出白球” 的可能性大的原因是什么? 黄球数量多于白球 (2) 能否通过改变袋子中某种颜色的球的数量,使 “摸到黄球'和”摸到白球'的可能性大小相同? 黄球数量=白球数量
例题解析
例题3:把黄、白共 18 个乒乓球放在三个不透明的 盒子里,每个盒子放 6 个乒乓球 . 乒乓球的形状、 大小完全相同,在看不到乒乓球的条件下: (1) 如果 1 号盒子里放入 5 个黄球和 1 个白球,那 么随机从盒子中摸出一个球是黄球和摸出一个球是 白球的可能性哪个大? 摸出一个球是黄球的可能性大
最新人教部编版九年级数学上册《第25章 概率初步【全章】》精品PPT优质课件
果,并且它们发生的可能性相等,事件A包括其中
的m种结果,那么事件A发生的概率P(A)=
m n
.
在P(A)=
m n
中,由m和n的含义,可知0≤m
≤n,进而有0≤
m n
≤1.
因此,0≤ P(A) ≤1 .
不可能事件 必然事件
0
不可能 事件
0≤ P(A) ≤1 . 事件发生的可 能性越来越小
事件发生的可 能性越来越大
2.从1、2、3、4、5中任取两个数字,得到的都 是偶数,这一事件是 随机 事件.
3.下列所描述的事件: ①某个数的绝对值小于0; ②守株待兔; ③某两个负数的积大于0; ④水中捞月. 其中属于不可能事件的有 ① ④ .
4.一个口袋中装有红、黄、蓝三个大小和形状都相 同的球,从中任取一球,得到红球与得到蓝球的可 能性 相同 .
在一定的条件下, 必然会发生的事件
在一定的条件下,必 然不会发生的事件
在一定的条件下,可能发 生也可能不发生的事件
必然 事件
不可能 事件
随机 事件
确定性事件 不确定性事件
【出题角度】认识事件
下列事件中,是随机事件的是(A ) A.他坚持锻炼身体,今后能成为飞行员 还有其他因素 不可能事件 B.在一个只装着白球和黑球的袋中摸球,摸出红球 必然事件 C.抛掷一块石头,石头终将落地 不可能事件 D.有一名运动员奔跑的速度是20m/s
的是( B )
A.瓮中捉鳖
B.守株待兔
C.旭日东升
D. 夕阳西下
已知地球表面陆地面积与海洋面积的比约为 3∶7.如果宇宙中飞来一块陨石落在地球上,“落 在海洋里”与“落在陆地上”哪个可能性更大?
“落在海洋里”的可能性更大.
九年级概率ppt课件
用树状图或表格表示概率
利用树状图或表格可以清晰地表示
出某个事件发生的所有可能出现的 结果,从而较方便地求出某些事件 发生的概率.
问题4:用频率估计概率
探索之旅
用频率估计概率
利用频率估计概率
当试验的可能结果有很多并且各种结果发生的可能性相等时,我们可以 用 的方式得出概率,当试验的所有可能结果不是有限个,或各种可能 结果发生的可能性不相等时,我们一般还要通过统计频率来估计概率.
问题2 某水果公司以2元/千克的成本新进了10 000千克的柑橘, 如果公司希望这些柑橘能够获得利润5 000元,那么在出售柑橘 (已去掉损坏的柑橘)时,每千克大约定价为多少元比较合适?
销售人员首先从所有的柑橘中随机地抽取若干柑橘,进行了“柑
橘损坏率”统计,并把获得的数据记录在表中,请你帮忙完成此
我与他的结果不同:
会出现四种可能的结果:牌面数字为(1,1),牌面数字为 (1,2),牌面数字为(2,1),牌面数字为(2,2). 每种结果出现的可能性相同.
问题3:概率的表示
探索之旅
用树状图表示概率
实际上,摸第一张
开始
牌时,可能出现的结
果是:牌面数字为1 第一张牌的牌 或2,而且这两种结 面数字
400
369
0.923
750
662
0.883
1500
1335
0.890
3500
3203
0.915
7000
6335
0.905
9000
8073
0.897
14000
12628
0.902
从上表可以发现,幼树移植成活的频率在 _________左右摆动,并且随着统计数据的增加, 这种规律愈加明显,所以估计幼树移植成活率的概 率为________
人教版九年级上册数学《概率》概率初步PPT电子教学课件
学习目标
1.会在具体情境中求出一个事件的概率.
2.会进行简单的概率计算及应用.
课堂导入
上节课我们学习了概率的定义,那么在具体情境中, 我们怎样求出一个事件的概率呢?本节课我们将会解 决这个问题.
新知探究 知识点
计算简单事件的概率的主要类型: ① 个数类型:如摸球、掷骰子等可以表示出所有可能 出现的结果的试验; ② 面积类型:如向区域S内任意掷一点,求恰好出现 在区域A(A在S内)内的概率 .
对接中考
1.(2020·深圳中考)一口袋内装有编号分别为1,2,3,
4,5,6,7的七个球(除编号外都相同),从中随机摸
出一个球,则摸出编号为偶数的球的概率是
3 7
.
解:∵从袋子中随机摸出一个球共有7种等可能结果,
其中摸出编号为偶数的球的结果数为3,
∴摸出编号为偶数的球的概率为
3 7
.
2.任意转动正六边形转盘一次,当转盘停止转动时,指
为什么以每个扇形为一种结果, 而不以每一种颜色为一种结果?
例1中,P(指向红色)= ;P(不指向红色) = .
同一事件,发生的概率与不发生的 概率之和为1.
例2 如图是计算机中“扫雷”游戏的画面.在一个有 9×9的方格的正方形雷区中,随机埋藏着10颗地雷, 每个方格内最多只能藏1颗地雷. 小王在游戏开始时随机地点击一个方格, 点击后出现如图所示的情况.我们把与标 号3的方格相邻的方格记为A区域(画线部 分),A区域外的部分记为B区域.数字3表 示在A区域有3颗地雷.下一步应该点击A 区域还是B区域?
事件发生的可能性越来越大
例1 掷一个骰子,2) 点数为奇数; (3) 点数大于2小于5.
向上一面的点数可能为1,2, 3,4,5,6,共6种,且每种 出现的可能性相同
25.1.2概率 教学课件(共35张PPT)初中数学人教版九年级上册
(1)点数为2有1种可能,因此P(点数为2)=6 (2)点数为奇数有3种可能,即点数为1、3、5,
=3=1. 因此P(点数为奇数)
(3)点数大于2且小于5有2种可能,即点数为3、4,因此
归纳总结
应用
求简单事件的概率的步骤:
1.判 断 :试验所有可能出现的结果必须是有限的,各种结果出现的 可能性必须相等;
2. 确定:试验发生的所有的结果数 n 和事件A 发生的所有结果数m;
3.计 算 :套入公式
计算 .
如图是一个可以自由转动的转盘,转盘分成7个大小相同的扇形, 颜色分为红、绿、黄三种颜色.指针的位置固定,转动的转盘停 止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两
个扇形的交线时,当作指向右边的扇形).求下列事件的概率: (1)指针指向红色; (2)指针指向红色或黄色; (3)指针不指向红色.
练习6 一个袋中装有4个红球,6个白球,8个黑球,每个球 除颜色外其余完全相同. (1)求从袋中随机摸出一个球是白球的概率; (2)从袋中摸出6个白球和a(a>2) 个红球,再从剩下的球中 摸出一个球. ①若事件“再摸出的球是红球”为不可能事件,求a 的 值 ; ②若事件“再摸出的球是黑球”为随机事件,求这个事件的概率.
1
A. 4
1
B.
2
3
C.
D.1
4
解 析:设小正方形的边长为1,则小猫最终停留
在黑色方砖上的概率是
; 故 选A.
练 习 3有一只小猫咪随机的走在如图所示的圆形地砖上,那么
它走在阴影区域上的概率是( B )(π 的 值 取 3 )
1
A. 6
1
B. 12
0
1
D. 10
=3=1. 因此P(点数为奇数)
(3)点数大于2且小于5有2种可能,即点数为3、4,因此
归纳总结
应用
求简单事件的概率的步骤:
1.判 断 :试验所有可能出现的结果必须是有限的,各种结果出现的 可能性必须相等;
2. 确定:试验发生的所有的结果数 n 和事件A 发生的所有结果数m;
3.计 算 :套入公式
计算 .
如图是一个可以自由转动的转盘,转盘分成7个大小相同的扇形, 颜色分为红、绿、黄三种颜色.指针的位置固定,转动的转盘停 止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两
个扇形的交线时,当作指向右边的扇形).求下列事件的概率: (1)指针指向红色; (2)指针指向红色或黄色; (3)指针不指向红色.
练习6 一个袋中装有4个红球,6个白球,8个黑球,每个球 除颜色外其余完全相同. (1)求从袋中随机摸出一个球是白球的概率; (2)从袋中摸出6个白球和a(a>2) 个红球,再从剩下的球中 摸出一个球. ①若事件“再摸出的球是红球”为不可能事件,求a 的 值 ; ②若事件“再摸出的球是黑球”为随机事件,求这个事件的概率.
1
A. 4
1
B.
2
3
C.
D.1
4
解 析:设小正方形的边长为1,则小猫最终停留
在黑色方砖上的概率是
; 故 选A.
练 习 3有一只小猫咪随机的走在如图所示的圆形地砖上,那么
它走在阴影区域上的概率是( B )(π 的 值 取 3 )
1
A. 6
1
B. 12
0
1
D. 10
人教版九年级数学上册 《概率》概率初步PPT课件
人教版九年级数学上册 《概率》概率初步PPT课件
科 目:数学 适用版本:人教版 适用范围:【教师教学】
概率
第一页,共三十二页。
1.在具体情境中了解概率的意义.
2.会求简单问题中某一事件的概率.
第二页,共三十二页。
1名数学家=10个师
在第二次世界大战中,美国曾经宣布:一名优秀数学家的作用 超过10个师的兵力.这句话有一个非同寻常的来历.
(4)抽到的序号会是1吗?
(5)你能列举与事件(3)相似的事件吗?
第十四页,共三十二页。
活动二
小伟掷一个质地均匀的正方形骰子,骰子的六个面上分别 刻有1至6的点数.请考虑以下问题,掷一次骰子,观察骰子向 上的一面:
(1)可能出现哪些点数? (2)出现的点数会是7吗? (3)出现的点数大于0吗? (4)出现的点数会是4吗? (5)你能列举与事件(3)相似的事件吗?
(2)“木柴燃烧,产生能量” (3)“在常温下,石头一天被风化” (4)“某人射击一次,击中十环” (5)“掷一枚硬币,出现正面” (6)“在标准大气压下且温度低于 0℃时,雪融化”
第五页,共三十二页。
(1)“地球不停地运动”是必然事件. (2)“木柴燃烧,产生热量”是必然事件. (3)“在常温下,石头一天被风化”是不可能事件. (4)“某人射击一次,击中十环”是可能发生也可能不发生 事件,事先无法知道. (5)“掷一枚硬币,出现正面”是可能发生也可能不发生事件 ,事先无法知道. (6)“在标准大气压下且温度低于0℃时,雪融化”是不可能事件.
摸到红球,能否断定袋子里红球的数量比白球多?怎样做才能判断 哪种颜色的球数量较多?
(4)已知地球表面陆地面积与海洋面积的比均为3:7.如果
宇宙中飞来一块陨石落在地球上,“落在海洋里”与“落在陆地上 ”哪个可能性更大?
科 目:数学 适用版本:人教版 适用范围:【教师教学】
概率
第一页,共三十二页。
1.在具体情境中了解概率的意义.
2.会求简单问题中某一事件的概率.
第二页,共三十二页。
1名数学家=10个师
在第二次世界大战中,美国曾经宣布:一名优秀数学家的作用 超过10个师的兵力.这句话有一个非同寻常的来历.
(4)抽到的序号会是1吗?
(5)你能列举与事件(3)相似的事件吗?
第十四页,共三十二页。
活动二
小伟掷一个质地均匀的正方形骰子,骰子的六个面上分别 刻有1至6的点数.请考虑以下问题,掷一次骰子,观察骰子向 上的一面:
(1)可能出现哪些点数? (2)出现的点数会是7吗? (3)出现的点数大于0吗? (4)出现的点数会是4吗? (5)你能列举与事件(3)相似的事件吗?
(2)“木柴燃烧,产生能量” (3)“在常温下,石头一天被风化” (4)“某人射击一次,击中十环” (5)“掷一枚硬币,出现正面” (6)“在标准大气压下且温度低于 0℃时,雪融化”
第五页,共三十二页。
(1)“地球不停地运动”是必然事件. (2)“木柴燃烧,产生热量”是必然事件. (3)“在常温下,石头一天被风化”是不可能事件. (4)“某人射击一次,击中十环”是可能发生也可能不发生 事件,事先无法知道. (5)“掷一枚硬币,出现正面”是可能发生也可能不发生事件 ,事先无法知道. (6)“在标准大气压下且温度低于0℃时,雪融化”是不可能事件.
摸到红球,能否断定袋子里红球的数量比白球多?怎样做才能判断 哪种颜色的球数量较多?
(4)已知地球表面陆地面积与海洋面积的比均为3:7.如果
宇宙中飞来一块陨石落在地球上,“落在海洋里”与“落在陆地上 ”哪个可能性更大?
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)一般地,在大量重复试验中,如果事件 A发生的频率 会稳定在某个常数p附近 ,那么,这个常数p就叫作事件A的概率 。事件A发生的频率是:在 n次试验中 ,事件A发生的频数m与 n 的比。
(2)求一个事件的概率的基本方法是:进行大量 的重复试验,用这个事件发生的频率近似地 作 为它的概率
(3)对于某些随机事件也可以不通过重复试验, 而只通过一次试验中可能出现的结果的分析 来计算概率。例如:掷两枚硬币,求两枚硬 币正面向上的概率。
随机事件:海市蜃楼,守株待兔。 不可能事件:海枯石烂,画饼充饥,拔苗助长。
2、在一个不透明的口袋中装有除颜色外其余都 相同的1个红球,2个黄球,如果每一次先从袋中 摸出1个球后不再放回,第二次再从袋中摸出1个 球,那么两次都摸到黄球的概率是多少?
(2004.海口)
3、你喜欢玩游戏吗?现请你玩一个转盘游戏,如 图的两个转盘中指针落在每一个数字的机会均等, 现同时自由转动甲、乙两个转盘,转盘停止后,指 针各指向一个数字,用所指的两个数学作乘积, (1)列举所有可能得到的数字之积。 (2)求出数字之积为奇数的概率 (2005.黄冈)
THANKS
FOR WATCHING
演讲人: XXX
PPT文档·教学课件
3、在什么条件下适用P(A)= 得到 事件的概率?
一般地,如果在一次试验中,有n种可能的 结果,并且它们发生的可能性都相等, 事件A包含其中m种结果,那么事件A发 生的概率为P(A)=
4、如何用列举法求概率?
当事件要经过一步完成时列举出所有可 能 情况,当事件要经过两步完成时用列 表 法,当事件要经过三步以上完成时用 树形图法。
1、下列事件中哪个是必然事件? (A)打开电视机正在播广告。 (B)明天是晴天. (C)已知:3>2,则3c>2c 。 (D)从装有两个红球和一个白球的口袋
中,摸出两个球一定有一个红球。
答 (D)
2、在下列线段上标出下列事件的点。
(1) 太阳从东边升起。
(2)掷一枚硬币正面朝上的概率。
(3)在四选一的选择题中正确答案的概率。 (4)一个骰子掷出7点的概率。
必然事件 0_________1 随机事件
4、一副扑克除大王外共52张,在看不见牌 的情况下,随机抽一张,是黑桃的概率是 ____
3、一个口袋中装有4个红球,3个白球,2个 黑球,除颜色外其他都相同,随机摸出一个 球是黑球的概率是____
能力提高
1、你能说出几个与必然事件、随机事件、不可能 事件相联系的成语吗? 如:必然事件:种瓜得瓜,种豆得豆,黑白分明。
第二十五章概率初步
复习与小结
第一课
一、本章知识结构图
随机事件
概率
用列举法求概率 用频率估计概率
二、回顾与思考
1、举例说明什么是随机事件?
在一定条件下必然要发生的事件,叫做必然事件 。
在一定条件下பைடு நூலகம்可能发生的事件,叫做不可能事 件。
在一定条件下可能发生也可能不发生的事件,叫 做随机事件。
2、 事件发生的概率与事件发生的频率 有什么联系?