多级泵平衡盘工作示动画
多级离心泵平衡盘的使用及维护措施
多级离心泵平衡盘的使用及维护措施多级离心泵在石油矿场上达到广泛地应用,针对油田转油放水站的离心泵平衡盘的磨损状况,提高平衡盘的使用效率,降低平衡盘的磨损速度,加强对平衡盘的维护保养,延长多级离心泵的使用寿命,提高离心泵机组安全运行的效率,保证油田转油站生产的顺利进行。
标签:多级离心泵;平衡盘;使用;维护问题的提出我工作的环境为油田的转油和污水处理站,担负着油井产物油气水初步分离处理的任务。
多级离心泵运行过程中,极易导致平衡盘的损坏,增加了机泵维修的频次,严重影响到油田生产的正常进行。
在生产实际中,不断总结经验,对平衡盘进行结构改进,并优化离心泵的运行参数,提高了多级离心泵安全運行的效率,促进油田转油放水站的进步。
1.多级离心泵平衡盘的作用多级离心泵在运行的过程中,是利用电动机带动多级离心泵的叶轮旋转,产生离心力,而逐级增加液体的压能和位能,实现液体输送的作用效果。
多级离心泵的六大组成部分,相互配合,才能实现压力的逐级传递,将电动机的高速旋转运动,通过联轴器传递给泵轴,带动多级的叶轮发生高速的旋转运动,达到输送液体的效率。
多级离心泵的平衡盘属于泵的转子部分,起到平衡作用的装置,达到轴向平衡和径向扶正的作用效果。
为了延长多级离心泵的使用寿命,对离心泵的平衡盘进行维护保养,并保证多级离心泵在最佳的工况下运行,降低对平衡盘的磨损,才能达到预期的使用效率。
通过对多级离心泵运行状态的检查验收,判断平衡盘的运行状况,保持多级离心泵的平衡,才能发挥多级离心泵的优势,为液体提供足够的压力,保持油田转油放水站的正常的生产状态。
多级离心泵在油田的转油放水站,主要应用于输送含水原油,含油污水的掺水或者热洗的加压处理,提高多级离心泵的安全运行效率,才能保证油气水的分离处理工艺流程的顺畅,避免转油放水站发生憋压的状况,保证转油放水站各种设备正常运行。
通过掺水降低油流的粘度,提高油气集输处理的效率。
热洗的主要作用是对油井实施清蜡作业施工,通过热载体的循环,将沉积在井筒上的石蜡溶化,随油流带到地面上来,因此降低对油井产能的阻碍作用,提高油井的生产能力。
多级泵平衡盘最佳径向尺寸的计算
液压 马达 的机械 效率 ,
=09 ; .5
一
牵引齿轮传动 的总机械效率, = . ; O8 6 摆线行 走轮 半径 , : 0 20械效率, = . ; O9 5
— —
() 5 理论 生 产能力
=
^ 一
印 =4 0 th 0 /
i a r hrc r. tm j a ts s oc ae
Ke l S h d a l o t l be s e t r ee t c t c i h me ; e i p rmee y WO d . y ru i c nr l l h a e ; l r r t e s e r d s " c oa c i a v  ̄. aa t r
维普资讯
矿
机
∞
20 1 2年第 6 3
文章编号 : .7 2 0 16 1 O 舛(02 0蚴 ∞3
多 级 泵平 衡 盘最佳 径 向尺 寸 的计 算
王 良’ ,王本永
(. 1 鸡西市热力公司 .黑龙江 鸡 西 180 ;2 辽宁工程技术大学 机槭工程学院,辽 宁 阜新 13O ) 5 10 . 20O
/ X R: 6 . k 1(0 355 N  ̄
() 2 所有的截 割反力 、 调高 油缸支 承反 力和 牵引
式 中 J — 液压 马达 的理论 输 出扭 矩 , 】— l f
M =0 1 9 Ap:0. 5 2 4: 2 8 2 m; .5 q 1 9 x 1 5x 1 7 .5 N
修窗口内, 方便井下故障的处理和更换调高油缸及 液 压锁等 件。
() 压传动 系统 和牵 引 机 械传 动 系统 工 作 裕 5液 度大, 系统 工作 可靠 性 高 , 障率 低 , 工作 面 的适 故 对
燃油供油多级泵平衡盘磨损的原因分析及对策
21 0 1年 8月
华 电 技 术
Hu da e h o o y a in T c n lg
V 1 3 No 8 o.3 .
Au . 01 g2 1
燃 油供 油 多级 泵 平衡 盘磨 损 的原 因分 析 及对 策
侯 东伟
( 郑州新力 电力有 限公 司 , 河南 郑 州 摘 4 00 ) 5 0 7
要: 针对郑州某热 电厂 卧式 9级 离心输 油泵运 行中出现的平 衡盘磨损严 重 、 机封频繁漏 油等 问题进 行 了分 析 , 为 认
轴 向推力不 能被平衡盘所抵消是平衡盘磨损 的主要原 因 , 采取相应 的改造措施后 , 多级供油泵故障率大大降低 。
关键词 : 多级离心泵 ; 向推力 ; 轴 平衡盘
小, 泄漏的液体量将会减少。而径 向间隙 b 是不变
的, 当泄漏 量 减4 n , 过 径 向间 隙 b ,- 流 , t 的液 体 速 度
减小 , 阻力 损失 △ 减少 ( p p A =P :一P ), 时 , 。 此 末 级 叶轮 后泵 腔 的压 力 P 在 油泵 正 常 工作 时 几 乎 不
指 向 叶轮 吸入 口方 向 , F 用 表示 ; () 2 动反 力 , 此力 指 向叶轮后 面 , F 用 表示 。 1 1 1 盖板 力 FA . . 】
多级泵 的轴向推力 比单 级泵大得多, 轴向推力 可以达几十千牛 , 甚至上百千牛 , 该轴 向力将拉动转 子产生轴向窜动, 与固定件接触摩擦 , 造成零件损坏
管相 连 。在平 衡 盘 与 平 衡 座 之 间有 轴 向间 隙 b 。和
前、 后腔 内液体旋转 , 盖板两侧腔体 内的液体压力按
抛 物线规 律 分布 。 作用 在后 盖板 上 的压力 , 口环 尺 除 以上部 分 与 前盖 板 对 称 作 用 的 压 力 相 抵 消 外 , 口环 以下 部 分
多级离心泵常见的轴向力平衡装置
究方 向: 采购 管理。
6结束 语
些无人值守岗位的需求, 可是实现其远程控制。
参 考文献
智能电话远程控制系统设计采用了 2 8 个引脚的 P I C 1 6 F 7 3 单片机 作为系统的核心信息检测 、 信息处理 , 以及控制实现的实现模块 , 充分 利用硬件资源和单片机内部结构资源, 并充分结合软件编程, 使其发挥 最大作用实现了对语音、 密码 、 显示等服务, 丰富了设计的功能 , 系统运 行更 加人性化 , 有 很强 的可操作性 。该 系统做 到了高稳定 性 、 低成本 、 小 体积 、 内嵌容易, 可以远程通过语音提示 , 实现人机交互 , 实现对家里面 空调器、 洗衣机、 电饭煲、 电灯等设备的开关实现 ; 符合未来家电的智能 化、 网络化发展方向。另外 , 本设计也可以用在工业 、 农业等领域 , 对一
2 . 3平 衡盘法
△P 2
图 3双平衡鼓 示意 图
3结束语 平衡装置 的设计 是多级 泵设计 中 的关键 问题 之一 ,选 择合适 的平 衡装 置对泵 组平稳运行 、 节省维护 费用意义重 大。 作者简介: 王胜坤( 1 9 8 6 , 8 一 ) , 男, 北京, 研究生学历 , 助理工程师, 研
科 技 创 新
2 0 1 3 年 第 2 o 期I 科技创新与应用
多级离 心泵常见 的轴 向力平衡 装置
王 胜 坤 罗 乐
ห้องสมุดไป่ตู้
( 中国核 电工程有 限公 司, 北京 1 0 0 8 4 0 ) 摘 要 : 轴 向力平衡装置的选取是 多级 离心泵设计 中的关键 问题 , 其 目的是平衡轴向力 , 防止转子的轴向 窜动。文章分析 了多 级 离心 泵轴 向力 产 生原 因 , 并 介 绍 了常 用 的平 衡 装 置 。
常见泵结构和工作原理动态图
泵结构和工作原理动态图1、活塞泵基本原理借活塞在汽缸内的往复作用使缸内容积反复变化,以吸入和排出流体。
2、往复泵工作原理利用偏心轴的转动通过连杆装置带动活塞的运动,将轴的圆周转动转化为活塞的往复运动。
活塞不断往复运动,泵的吸水与压水过程就连续不断地交替进行。
特殊结构3、水环式真空泵工作原理水环式真空泵叶片的叶轮偏心地装在圆柱形泵壳内。
泵内注入一定量的水。
叶轮旋转时,将水甩至泵壳形成一个水环,环的内表面与叶轮轮毂相切。
由于泵壳与叶轮不同心,右半轮毂与水环间的进气空间4逐渐扩大,从而形成真空,使气体经进气管进入泵内进气空间。
随后气体进入左半部,由于毂环之间容积被逐渐压缩而增高了压强,于是气体经排气空间及排气管被排至泵外。
4、罗茨真空泵工作原理罗茨泵的工作原理与罗茨鼓风机相似。
由于转子的不断旋转,被抽气体从进气口吸入到转子与泵壳之间的空间v0内,再经排气口排出。
由于吸气后v0空间是全封闭状态,所以,在泵腔内气体没有压缩和膨胀。
但当转子顶部转过排气口边缘,v0空间与排气侧相通时,由于排气侧气体压强较高,则有一部分气体返冲到空间v0中去,使气体压强突然增高。
当转子继续转动时,气体排出泵外。
一般来说,罗茨泵具有以下特点:●在较宽的压强范围内有较大的抽速;●起动快,能立即工作;●对被抽气体中含有的灰尘和水蒸气不敏感;●转子不必润滑,泵腔内无油;●振动小,转子动平衡条件较好,没有排气阀;●驱动功率小,机械摩擦损失小;●结构紧凑,占地面积小;●运转维护费用低。
因此,罗茨泵在冶金、石油化工、造纸、食品、电子工业部门得到广泛的应用。
5、旋片式真空泵工作原理旋片式真空泵(简称旋片泵)是一种油封式机械真空泵。
其工作压强范围为101325~1.33×10-2(Pa)属于低真空泵。
它可以单独使用,也可以作为其它高真空泵或超高真空泵的前级泵。
它已广泛地应用于冶金、机械、军工、电子、化工、轻工、石油及医药等生产和科研部门。
常见泵结构和工作原理动态图之欧阳音创编
泵结构和工作原理动态图1、活塞泵基本原理借活塞在汽缸内的往复作用使缸内容积反复变化,以吸入和排出流体。
2、往复泵工作原理利用偏心轴的转动通过连杆装置带动活塞的运动,将轴的圆周转动转化为活塞的往复运动。
活塞不断往复运动,泵的吸水与压水过程就连续不断地交替进行。
特殊结构3、水环式真空泵工作原理水环式真空泵叶片的叶轮偏心地装在圆柱形泵壳内。
泵内注入一定量的水。
叶轮旋转时,将水甩至泵壳形成一个水环,环的内表面与叶轮轮毂相切。
由于泵壳与叶轮不同心,右半轮毂与水环间的进气空间4逐渐扩大,从而形成真空,使气体经进气管进入泵内进气空间。
随后气体进入左半部,由于毂环之间容积被逐渐压缩而增高了压强,于是气体经排气空间及排气管被排至泵外。
4、罗茨真空泵工作原理罗茨泵的工作原理与罗茨鼓风机相似。
由于转子的不断旋转,被抽气体从进气口吸入到转子与泵壳之间的空间v0内,再经排气口排出。
由于吸气后v0空间是全封闭状态,所以,在泵腔内气体没有压缩和膨胀。
但当转子顶部转过排气口边缘,v0空间与排气侧相通时,由于排气侧气体压强较高,则有一部分气体返冲到空间v0中去,使气体压强突然增高。
当转子继续转动时,气体排出泵外。
一般来说,罗茨泵具有以下特点:●在较宽的压强范围内有较大的抽速;●起动快,能立即工作;●对被抽气体中含有的灰尘和水蒸气不敏感;●转子不必润滑,泵腔内无油;●振动小,转子动平衡条件较好,没有排气阀;●驱动功率小,机械摩擦损失小;●结构紧凑,占地面积小;●运转维护费用低。
因此,罗茨泵在冶金、石油化工、造纸、食品、电子工业部门得到广泛的应用。
5、旋片式真空泵工作原理旋片式真空泵(简称旋片泵)是一种油封式机械真空泵。
其工作压强范围为101325~1.33×10-2(Pa)属于低真空泵。
它可以单独使用,也可以作为其它高真空泵或超高真空泵的前级泵。
它已广泛地应用于冶金、机械、军工、电子、化工、轻工、石油及医药等生产和科研部门。
多级泵平衡盘间隙流动及刚度分析
[收稿日期]20041107 [作者简介]汪建华(1964),男,1985年大学毕业,硕士,副教授,现主要从事流体机械和化工过程装备的教学与研究。
多级泵平衡盘间隙流动及刚度分析 汪建华,刘明尧,王本德 (长江大学机械工程学院,湖北荆州434023)[摘要]基于对平衡盘间隙流动的分析,求得了平衡盘泄漏量、压力、平衡力和灵敏度等参数,并提出了平衡盘刚度的概念,探讨了平衡盘刚度与灵敏度的关系,得出了灵敏度的取值范围,为平衡盘设计提供了理论依据和有效的方法。
[关键词]多级泵;平衡盘;间隙;刚度;分析[中图分类号]T H12313[文献标识码]A [文章编号]16731409(2005)04016403节段式多级离心泵常采用平衡盘平衡轴向力,平衡盘是多级泵中的一个重要装置。
传统的平衡盘设计计算方法采用经验数据和半经验公式,缺乏对间隙流动的理论分析,几何参数选取具有一定随意性,导致平衡盘出现研磨和泄漏量大,影响泵可靠工作。
文献[1,2]根据平板间隙流动理论,导出了平衡盘流量和平衡力的近似计算公式,该公式在平衡盘外圆和内圆半径比值较大时误差较大;在传统的平衡盘设计理论中,灵敏度[3]作为反映轴向间隙变化所引起的平衡力变化的能力不够严密。
笔者根据平衡盘径向和轴向间隙流动的分析,建立了径向和轴向间隙几何参数与泄漏量、压力、平衡力和灵敏度之间的函数关系;同时,提出了平衡盘刚度的概念,刚度能准确地反映轴向间隙变化所引起的平衡力变化的能力,通过对平衡盘刚度的分析,得出了灵敏度的取值范围。
1 间隙流动的理论分析及泄漏量计算因平衡盘径向和轴向间隙很小,长度相对较长,假定液体在间隙中的流动属于层流运动。
图1 平衡盘装置结构示意图111 径向间隙流动分析如图1所示,液体在半径为r h 的径向间隙b 1中的流动是同心环隙压差流动,则通过径向间隙b 1的泄漏量q 1为[4]: q 1=πr h (p 3-p 4)b 316μL(1)式中,μ为液体动力粘度;L 为平衡盘轴向间隙长度;b 1为平衡盘径向间隙宽度;r h 为叶轮轮毂半径;p 3为叶轮轮毂处的压力;p 4为平衡腔内的压力。
多级离心泵的结构图及工作原理(文末附详解视频)
多级离心泵的结构图及工作原理(文末附详解视频)从总体上看,多级离心泵是若干个叶轮安装在同一泵轴上,叶轮的外侧是液体导流装置及泵壳。
然而,如何将叶轮组安装在泵体内或者从泵体内取出呢?无外乎两个办法,一个是将泵体及导流装置沿泵轴的轴线水平剖分,使其成为上下两部分,这叫水平剖分式多级离心泵;另一个办法是将泵体及液体导流装置沿泵轴方向在叶轮之间以垂直于泵轴的平面剖切成若干个段,这叫分段式多级离心泵。
图1 水平剖分式多级离心泵结构图1泵盏,2泵体,3轴承体;4-轴套;5一叶轮;6泵轴;7一轴头油泵下面分别对水平剖分式和分段式多级离心泵的结构加以介绍。
1、水平剖分式多级离心泵的结构图1所示为水平剖分式多级离心泵结构图。
这种泵采用蜗壳形泵体,每个叶轮的外围都有相应的蜗室,相当于将几个单级蜗壳泵装在同一根轴上串联工作,所以又叫蜗壳式多级泵。
由于泵体是水平剖分式,吸入口和排出口都直接铸在泵体上,检修时很方便,只需把泵盖取下,即可暴露整个转子,在检修转子时,需将整个转子吊出时,不必拆卸连接管路。
这种泵的叶轮通常为偶数对称布置,大部分轴向力得到平衡,因而不需要安装轴向平衡装置。
水平剖分式多级泵流量范围为450~1500m/h,最高扬程可达1800mHz0。
由于叶轮对称布置,泵壳内有交叉流道,如图2所示,所以它比同性能的分段式多级泵体积大,铸造工艺复杂,泵盖和泵体的定位要求高,在压力较高时,泵盖和泵体的结合面密封难度大。
2、分段式多级离心泵的结构在压力较高时,通常采用分段式多级离心泵。
这种泵是一种垂直剖分多级泵,它有一个前段、一个尾段和若干个中段组成,用四个长杆螺栓连接为一个整体。
安装在泵轴上的叶轮的个数就代表离心泵的级数,中段的每个叶轮配一个导轮,导轮的作用基本上同蜗壳相同,主要是将动能转化为静压能。
叶轮一般为单吸的,吸人口都朝向一个方向。
为了平衡轴向力,在末段后面装有平衡盘,并用平衡管和前段进口相连通。
其转子在工作过程中可以沿轴向左右窜动,靠平衡盘的推力平衡叶轮组的轴向力,将转子维持在平衡位置附近。
多级泵三间隙平衡盘间隙流动的理论分析
维普资讯
第3 卷 第6 2 期
20 年 1 06 2月
兰
州
理
工
大
学
学
报
V0. 2 13 No 6 .
De . 0 6 c2 0
J un l f a z o ies y o c n l y o r a o n h uUnv ri f L t Teh oo g
c u ds tsy t ed sg e u rm e t o l aif h e in r q ie n .Th h e -a icd sg o l e r a et edm e so ft e p mp et r eg p d s e in c ud d ce s h i n in o h u
Ab t a t sr c  ̄Th s u t n o a n rfo i h a fb ln ed s n i l idN- q a inwe ea ea s mp i flmia lw nt eg p o aa c ica d s o mp ie S e u to r m- f
文 章 编 号 : 635 9 (0 60 -0 20 1 7 —1 62 0 ) 60 6—3
多级泵三 间隙平衡盘 问隙 流动的理论 分析
赵万勇 , 刘天 宝,梁 森
( 兰州理工大学 流体动力与控制学院 。 甘肃 兰州 705 ) 300
摘要: 运用平衡盘问隙内为层流流动的假设, 通过简化的N s方程, _ 推导出两间隙和三间隙平衡盘在节段式多级 泵装置中 几何参数与泄漏量和平衡力之间的函数关系, 经过 比较发现三间隙平衡盘泄漏量小于两间隙平衡盘, 而 平衡力变化也能满足设计要求, 此种三间隙平衡盘的设计可减小泵的尺寸, 节省制造成本. 关键词 : 多级泵; 平衡盘; 三问隙; 二间隙; 流体流动; 平衡力; 泄漏量
平衡装置的工作原理分析
平衡装置的工作原理分析平衡装置由平衡盘、平衡板、平衡室及平衡管等组成,多用于节段式多级泵,装在末级叶轮之后,平衡盘随转子旋转、平衡板固定在泵体上,平衡装置中有两个间隙,如图1 所示,一个是由平衡盘和平衡板形成的径向间隙b1 ( 一般取0.2 ~0.3 mm) ,另一个是平衡盘内端面与平衡板间的轴向间隙b2 :( 一般取0.1 ~0.2 mm ) 。
水泵的出口压力要远远高于入口压力,因此产生一个从泵的高压侧指向低压侧的轴向推力A 。
而从末级叶轮出来的带有较高压力的水,经平衡板与平衡盘的径向间隙b1流入平衡板与平衡盘之间的水室中,水室的水处于高压状态(其压力为p4),又经轴向间隙b2后下降为p5,即平衡盘后压力为p5。
而平衡盘后的平衡管与泵的入口( 低压侧)相接,其压力接近泵的入口压力。
这样,平衡盘两侧的压力不等,由此压差作用在平衡盘上产生一个指向高压侧的轴向平衡力F,其大小基本与轴向推力相等,从而起到平衡轴向推力的作用。
平衡装置之所以能自动平衡轴向力是因为两个间隙相辅相成的结果,液流经过平衡装置所产生的总压差Δp等于经径向间隙所产生的压差Δp1和经轴向间隙所产生的压差Δp2之和,Δp=Δp1+Δp2 ,Δp1=p3-p4,Δp2=p4-p5 ,即Δp=p3-p5,当作用在叶轮上的轴向力A大于在平衡盘上产生的平衡力F时,泵转子向左移动,使轴向间隙b2减小,相应的间隙阻力增大,泄漏量Q 减小,使平衡盘前的压力P4增大,即:Δp2=p4-p5增大,这就使平衡力F增大。
随着转子不断左移,b2逐渐减小,平衡力F逐渐增加。
转子在平衡力的作用下发生位移,当转子移动到某一位置时,平衡盘泄水间隙b2发生改变,从而改变了平衡力,平衡力F与轴向力A相等,达到平衡。
同样,当轴向力A小于平衡力F时,转子向右移动,平衡力F减小直到与轴向力A相等达到平衡,由此可见平衡力是动态的,它随着轴向力的变化而变化,平衡盘的工作过程是处于动态的平衡过程。
各类泵原理及动态示意图大全
液压隔膜泵
总结词
液压隔膜泵是一种利用液压油驱动的泵,具有高压力、大 流量、低噪音等优点。
动态示意图
液压隔膜泵的动态示意图展示了液压油如何推动隔膜,以 及隔膜如何带动液体的吸入和排出。
工作原理
液压隔膜泵由液压油室、隔膜、泵体和进出口管道组成。 液压油通过油室推动隔膜,使隔膜来回往复运动,从而实 现液体的吸入和排出。
特点
齿轮泵具有结构简单、紧凑、成本低等优点,但 流量和压力相对较小。
ABCD
动态示意图
齿轮泵的动态示意图展示了齿轮的转动,以及液 体被吸入和排出的过程。
应用
齿轮泵适用于小流量、低压的场合,如润滑油系 统等。
03
流体动力泵
气动隔膜泵
总结词
气动隔膜泵是一种利用压缩空气驱动 的泵,具有结构简单、操作方便、无 泄漏等优点。
动态示意图
请参考图片或动画演示,展示旋涡泵 的工作原理和动态过程。
射流泵
• 总结经扩散管排出,从而实现输送液体的目的。
• 详细描述:射流泵是一种利用高压流体通过喷嘴产生高速射流,吸入低压流体并混合后经扩散管排出,从而实现输送液 体的目的的泵。其工作原理是当高压流体通过喷嘴时,产生高速射流,在吸入低压流体后经混合室混合,再经扩散管排 出,从而实现输送液体的目的。射流泵具有结构简单、体积小、重量轻、无旋转部件、易于维护等优点,常用于高扬程、 小流量的场合。
应用领域
液压隔膜泵广泛应用于石油、化工、水处理等领域,尤其 适用于输送高粘度液体和含颗粒液体。
04
其他类型泵
旋涡泵
总结词
利用高速旋转的叶轮带动液体产生离 心力,使液体在离心力的作用下甩向 外缘并产生一定的压力,从而实现输 送液体的目的。
多级泵平衡盘磨损的常见原因及其解决方法
多级泵平衡盘磨损的常见原因分析及其解决方法张君辉,尹金玲,张永泉(上海东方泵业集团有限公司水泵技术中心)摘要:介绍了多级泵平衡盘装置的工作原理,分析了多级泵运行中平衡盘磨损的原因,并提出了解决的对策,通过对工作原理的了解以及事故原因的分析,可有效的找到事故的根本原因,使设备维修变的简单有效。
关键词:多级泵平衡盘磨损维修在目前运行中的分段式多级泵中有很多是靠平衡盘装置来平衡轴向力的,平衡盘装置具有自动平衡轴向力的优点,但是也具有容易磨损的特点。
如果平衡盘装置出现问题将会导致泵出现效率下降、振动、超电流、出力不足等问题,严重的将会导致泵不能运行。
由于很多维修人员对平衡盘装置不是很了解就导致很多此类问题的泵出现反复维修,这不但增加了维修成本,严重的还将导致设备停产,因此了解平衡盘装置的工作原理、知道平衡盘装置的常见故障和解决方法是很有必要的。
1.平衡盘的工作原理平衡盘装置(见图1)中有两个间隙,一个是由平衡套和轴套外圆形成的间隙b1,另一个是平衡盘内端面形成的轴向间隙b2,平衡盘后面的平衡室与泵吸入口连通。
径向间隙前的压力是叶轮后泵腔的压力P3,通过径向间隙b1下降为p4,又经过轴向间隙b2下降为p5,平衡盘后面的压力为p6,由于平衡盘后面的平衡室通过平衡水管与泵吸入口联通,p6就等于泵吸入口的压力加平衡水管的管阻损失。
由于平衡盘前面的压力p4远大于后面的压力p6,其压差在平衡盘上产生平衡力F,用以平衡作用在转子上的轴向力A。
图1 多级泵平衡盘装置泵在刚启动时由于受到轴向力的作用,泵转子要向左移动,这时由于p4还没又形成平衡盘要发生瞬时研磨,但是很快p4将形成并推开平衡盘,但是由于惯性,平衡盘不会立即停在平衡位置,要靠惯性向前移动少许后才能停止。
此停止位置已经超过了平衡位置,此时轴向力又大于平衡力,转子要向回运动。
可见平衡盘的工作过程过程是处于运动平衡的过程,平衡是暂时的,相对的。
对于目前使用的D(DG)多级泵平衡盘装置都是经过了多年的生产验证的,因此平衡盘的设计方面一般是不会存在问题的,如果平衡盘装置发生故障,就需要我们从其他方面寻找原因了。
研究多级锅炉给水泵平衡盘间隙的调整
长沙水泵厂宏力泵业提供:
研究多级锅炉给水泵平衡盘间隙的调整
对于多级锅炉给水泵而言,有很多资料认为叶轮对中后,平衡盘和平衡套之间应该还有0.10mm左右的间隙,以防止平衡盘和平衡套之间发生研磨。
这实际上是没有必要的。
其一是平衡盘所在的高压室内的高压液体总要使平衡盘远离平衡套运动,即使在启动泵时泵内的压力没有建立,由于液体的反冲力所造成的轴向力作用,也会产生这个效果。
其二是平衡装置是允许磨损的,通过它的磨损才保证叶轮不被磨损,实际上由于高压液体的作用,泵在正常工作时平衡盘和平衡套最小间隙也会保证在0.10mm左右,直接研磨的机会并不多。
平衡盘和平衡套的研磨严重往往是由于安装和制造不良,使平衡盘歪斜造成的。
事实已经证明了这一点。
所以在原部颁标准中规定,要求平衡盘密封面和轴线的垂直度﹤0.03mm,也就是我们所说的平衡盘晃度。
带你走进城市污水处理的重要功臣:污水泵站
据湖南水泵专家介绍:水是经济发展和社会可持续发展的一个重要因素。
随着城市规模的不断扩大和人口的增加,水环境污染成了一大难题。
“环境保护”是我国的基本国策。
目前,我国正处于城市污水处理事业的大发展时期,尤其随着国家西部大开发战略的实施,中国中西部环境与生态保护已被提上首要议事日程。
城市生活污水处理自200年前工业革命以来,越来越受到人们的重视。
我国城市污水处理相对于国外发达国家、起步较晚,目前城市污水处理率只有6.7%。
在我们大力引起国外先进技术、设备和经验的同时,必须结合我国发展,尤其是当地实际情况,探索适合我国实际的城市污水处理系统。
长沙水泵厂宏力泵业提供:。
平衡盘
平衡盘:利用轴向间隙的变化,能够自动调节过水量,完全平衡轴向力。
轴向间隙正常工作时一般是0.1~0.2mm,但是要求转子有轴向窜动量,平衡盘是易损件。
1、平衡盘装置(见图1)中有两个间隙,一个是由平衡套和轴套外圆形成的间隙b1,另一个是平衡盘内端面形成的轴向间隙b2,平衡盘后面的平衡室与泵吸入口连通。
径向间隙前的压力是叶轮后泵腔的压力P3,通过径向间隙b1
下降为p4,又经过轴向间隙b2下降为p5,平衡盘后面的压力为p6,由于平衡盘后面的平衡室通过平衡水管与泵吸入口联通,p6就等于多级泵吸入口的压力加平衡水管的管阻损失。
由于平衡盘前面的压力p4远大于后面的压力p6,其压差在平衡盘上产生平衡力F,用以平衡作用在转子上的轴向力A。
2、泵在刚启动时由于受到轴向力的作用,泵转子要向左移动,这时由于
p4还没有形成,平衡盘要发生瞬时研磨,但是很快p4将形成并推开平衡盘,但是由于惯性,平衡盘不会立即停在平衡位置,要靠惯性向前移动少许后才能停止。
此停止位置已经超过了平衡位置,转子要向回运动。
可见平衡盘的工作过程过程是处于运动平衡的过程,平衡是暂时的,相对的。
3、对于目前使用的多级泵平衡盘装置都是经过了多年的生产验证的,因此平衡盘的设计方面是不存在问题的,如果平衡盘装置发生故障,就需要我们从其他方面寻找原因了。
多级泵平衡盘磨损原因
多级泵平衡盘磨损原因在我们的日常生活中,多级泵就像那位默默无闻的工作小蜜蜂,辛勤地为我们输送水源、油品,简直是家里的“无名英雄”。
不过,说到这多级泵的平衡盘,嘿,真是一块“烫手的山芋”啊,磨损起来可不是个小事。
想想看,平衡盘的磨损就像那颗草地上的小石子,虽然不起眼,却能让整个赛道变得颠簸不平。
大伙儿可能会问,这磨损到底是怎么回事呢?让我们来深入了解一下。
咱们得明白,平衡盘的主要作用就是维持泵的稳定,防止震动。
可是,这小家伙可是天天跟水打交道,时间一长,难免会遭到“水侵蚀”的折磨。
就像是老牛拖车,日复一日,最终也难免变得疲惫不堪。
再说了,水里有些杂质、气泡啥的,也能像小刺儿一样,不断刺激平衡盘,让它磨得更快。
真是可怜,干个好活却总是遭罪。
咱们的多级泵可不是在理想环境下工作,外面风吹雨打,里面却是温度和压力的“狂暴派对”。
这环境一变,材料的性能也会受影响。
就好比我们吃冰淇淋,外面是温暖的阳光,里面却冷得刺骨,没多久就融化得一塌糊涂。
平衡盘的磨损也有类似的道理,冷热交替、压力变化,会让它更容易出现磨损。
别忘了,维护可是一门艺术。
很多时候,咱们只顾着让泵“哗哗”工作,却忽略了定期检查。
就像种花,光浇水是不够的,还得施肥、修剪。
若是平衡盘不定期保养,那可就像秋天的枯叶,风一吹就落了。
磨损一加重,泵的效率就会下降,水流不畅,最后搞得大家心烦意乱。
咱们的操作方法也得讲究。
粗心大意可是不行的,像是把泥土倒进了精致的花盆里,怎么也长不出花来。
多级泵的运行参数如果不合适,平衡盘也会因此受损。
真是“画虎不成反类犬”,结果让人哭笑不得。
此外,材料的选择也是一个重要因素。
如今,市场上的材料种类繁多,选错了,平衡盘就可能像纸糊的一样,根本经不起磨。
就像选择穿鞋子,找不对码,走起路来分分钟磨脚。
耐磨的材料能大大延长使用寿命,而劣质的材料则只会加速磨损。
再说了,咱们的平衡盘也像人一样,有时候就是累了,需要休息。
长时间高强度工作,难免会出现疲劳磨损,真是“千里之行,始于足下”。
多级离心泵工作原理是什么(附结构图)
多级离心泵工作原理是什么(附结构图)从总体上看,多级离心泵是若干个叶轮安装在同一泵轴上,叶轮的外侧是液体导流装置及泵壳。
然而,如何将叶轮组安装在泵体内或者从泵体内取出呢?无外乎两个办法,一个是将泵体及导流装置沿泵轴的轴线水平剖分,使其成为上下两部分,这叫水平剖分式多级离心泵;另一个办法是将泵体及液体导流装置沿泵轴方向在叶轮之间以垂直于泵轴的平面剖切成若干个段,这叫分段式多级离心泵。
1-泵盏 2-泵体 3-轴承体4-轴套5-叶轮6-泵轴7-轴头油泵图1 水平剖分式多级离心泵结构图下面分别对水平剖分式和分段式多级离心泵的结构加以介绍。
1、水平剖分式多级离心泵的结构图1所示为水平剖分式多级离心泵结构图。
这种泵采用蜗壳形泵体,每个叶轮的外围都有相应的蜗室,相当于将几个单级蜗壳泵装在同一根轴上串联工作,所以又叫蜗壳式多级泵。
由于泵体是水平剖分式,吸入口和排出口都直接铸在泵体上,检修时很方便,只需把泵盖取下,即可暴露整个转子,在检修转子时,需将整个转子吊出时,不必拆卸连接管路。
这种泵的叶轮通常为偶数对称布置,大部分轴向力得到平衡,因而不需要安装轴向平衡装置。
水平剖分式多级泵流量范围为450~1500m3/h,最高扬程可达1800mHz0。
由于叶轮对称布置,泵壳内有交叉流道,如图2所示,所以它比同性能的分段式多级泵体积大,铸造工艺复杂,泵盖和泵体的定位要求高,在压力较高时,泵盖和泵体的结合面密封难度大。
2、分段式多级离心泵的结构在压力较高时,通常采用分段式多级离心泵。
这种泵是一种垂直剖分多级泵,它有一个前段、一个尾段和若干个中段组成,用四个长杆螺栓连接为一个整体。
安装在泵轴上的叶轮的个数就代表离心泵的级数,中段的每个叶轮配一个导轮,导轮的作用基本上同蜗壳相同,主要是将动能转化为静压能。
叶轮一般为单吸的,吸人口都朝向一个方向。
为了平衡轴向力,在末段后面装有平衡盘,并用平衡管和前段进口相连通。
其转子在工作过程中可以沿轴向左右窜动,靠平衡盘的推力平衡叶轮组的轴向力,将转子维持在平衡位置附近。