全国初中数学竞赛辅导(八年级)教学案全集第27讲 列方程解应用问题中的量与等量
初中数学竞赛辅导教案
初中数学竞赛辅导教案年级学科:八年级数学教材内容:勾股定理及其应用教学目标:1. 理解勾股定理的证明过程,掌握勾股定理的应用方法。
2. 提高学生的逻辑思维能力和解决问题的能力。
3. 培养学生的竞赛意识,提高学生的数学素养。
教学重点:勾股定理的证明和应用教学难点:勾股定理的灵活运用和解决实际问题教学过程:一、导入(5分钟)1. 利用多媒体展示勾股定理的发现和历史背景。
2. 引导学生思考勾股定理的意义和应用。
二、自主学习(10分钟)1. 让学生阅读教材,理解勾股定理的证明过程。
2. 学生互相讨论,解答教材中的例题。
三、课堂讲解(15分钟)1. 讲解勾股定理的证明过程,引导学生理解证明的逻辑关系。
2. 讲解勾股定理的应用方法,举例说明如何解决实际问题。
四、练习巩固(10分钟)1. 让学生独立完成教材中的练习题。
2. 教师挑选一些典型的题目进行讲解和分析。
五、拓展提高(10分钟)1. 引导学生思考勾股定理在实际生活中的应用。
2. 给出一些竞赛题,让学生尝试解决。
六、总结反思(5分钟)1. 让学生回顾本节课的学习内容,总结勾股定理的证明和应用。
2. 鼓励学生积极参与数学竞赛,提高自己的数学素养。
教学评价:1. 课后收集学生的练习作业,评估学生对勾股定理的掌握程度。
2. 在下一节课开始时,进行简单的测验,检验学生对勾股定理的应用能力。
教学反思:本节课通过讲解勾股定理的证明过程和应用方法,让学生掌握了勾股定理的基本知识。
在教学过程中,注意引导学生思考和讨论,提高学生的逻辑思维能力和解决问题的能力。
同时,通过拓展提高环节,培养学生的竞赛意识,提高学生的数学素养。
在今后的教学中,要继续注重学生的主体地位,引导学生主动探索和发现,培养学生的创新精神。
同时,加强对学生的个别辅导,提高学生的学习效果。
八年级数学上册《列分式方程解应用题工程问题》教案、教学设计
(4)课堂练习:设计不同难度的练习题,让学生独立完成,巩固所学知识,并及时给予反馈。
(5)合作交流:组织学生进行小组讨论,培养学生的团队合作意识和沟通能力。
(6)总结反思:对本节课的学习内容进行总结,引导学生反思学习过程中的收获和不足。
难点:如何让学生在实际问题中灵活运用所学的数学知识,形成解决问题的思路。
3.重点:培养学生的团队合作意识,提高学生在合作交流中的表达能力。
难点:如何调动学生的积极性,使他们在合作交流中充分发挥自己的作用。
(二)教学设想
1.教学方法:
(1)采用情境教学法,创设与学生生活密切相关的工程问题情境,引导学生发现数学元素,激发学生的学习兴趣。
3.鼓励学生相互检查作业,开展互评活动,提高学生的自我评价和同伴评价能力。
4.对于作业中出现的共性问题,教师将在下节课上进行讲解,以帮助学生巩固知识点。
3.教学评价:
(1)过程性评价:关注学生在课堂上的表现,包括问题解决能力、合作交流能力和创新思维能力等方面。
(2)终结性评价:通过课后作业和阶段测试,评价学生对本章节知识的掌握程度。
(3)学生自评和互评:鼓励学生自我评价,培养他们的自我反思能力,同时开展同学间的互评,促进共同进步。
4.教学拓展:
(1)鼓励学生在课后寻找生活中的工程问题,运用所学知识进行解决,提高学生的实际应用能力。
八年级数学上册《列分式方程解应用题工程问题》教案、教学设计
一、教学目标
(一)知识与技能
1.理解工程问题的基本概念,掌握工程问题中的数量关系和等量关系。
2.学会运用分式方程解决实际工程问,提高数学应用能力。
数学竞赛初中讲解教案
数学竞赛初中讲解教案一、教学目标:1. 让学生掌握初中数学竞赛的基本题型和解题方法。
2. 培养学生解决数学问题的逻辑思维能力和创新意识。
3. 提高学生对数学竞赛的兴趣和自信心。
二、教学内容:1. 初中数学竞赛的基本题型:选择题、填空题、解答题。
2. 初中数学竞赛的解题方法:公式法、方程法、几何法、逻辑法等。
3. 初中数学竞赛的常见问题及解决策略。
三、教学过程:1. 导入:介绍数学竞赛的意义和价值,激发学生的学习兴趣。
2. 讲解基本题型:选择题、填空题、解答题的解题方法和要求。
3. 讲解解题方法:公式法、方程法、几何法、逻辑法的应用实例。
4. 分析常见问题:学生遇到的常见问题及解决策略。
5. 练习与讲解:学生练习题目,老师进行讲解和指导。
6. 总结与反思:学生总结所学内容,反思自己的学习方法和策略。
四、教学评价:1. 学生能熟练掌握初中数学竞赛的基本题型和解题方法。
2. 学生能独立解决数学竞赛题目,提高解题速度和准确性。
3. 学生对数学竞赛的兴趣和自信心得到提高。
五、教学资源:1. 教学PPT:包含基本题型、解题方法、常见问题等内容。
2. 练习题目:针对不同题型和解题方法的练习题目。
3. 参考资料:数学竞赛相关的书籍和网络资源。
六、教学建议:1. 注重培养学生的逻辑思维能力和创新意识,引导学生主动探索和解决问题。
2. 鼓励学生多参加数学竞赛,提高解题能力和经验。
3. 教师要关注学生的学习进度和需求,及时进行教学调整和指导。
4. 结合现代教育技术,利用网络资源和教学软件,提高教学效果和学生的学习兴趣。
5. 定期进行教学评价,了解学生的学习情况,为教学改进提供依据。
八年级数学上册《列分式方程解决工程实际问题》教案、教学设计
2.学生分享自己的学习心得,提出在学习和练习过程中遇到的问题和困惑,教师给予解答。
3.教师对本节课的教学进行反思,针对学生的反馈,调整教学方法,为下一节课做好准备。
3.小组合作完成一道拓展题(见附件),要求运用本节课所学的分式方程知识,并结合其他相关知识点进行解答。此题旨在培养同学们的团队合作精神和综合运用知识的能力。
4.请同学们撰写一篇学习心得,总结自己在学习分式方程解决实际问题过程中的收获和困惑。心得体会不少于300字,要求真实、具体、有深度。
5.预习下一节课的内容,提前了解涉及到的知识点,为课堂学习做好准备。
2.培养学生敢于面对困难、勇于挑战的精神,通过解决实际问题,增强学生的自信心。
3.培养学生的团队合作意识,让学生学会倾听、表达、沟通、协作,提高人际交往能力。
4.培养学生具有责任感和使命感,明确学习数学的目的不仅是为了解决实际问题,更是为了服务社会、为国家的发展做出贡献。
二、学情分析
八年级的学生已经具备了一定的数学基础,掌握了基本的代数运算和方程求解方法。在此基础上,学生对分式方程的学习将更具挑战性。他们对实际问题有一定的认知,但将实际问题抽象为数学模型的能力还有待提高。此外,学生在解决实际问题时,往往对数据的处理和分析存在困难,需要教师在教学中加以引导和培养。
(三)学生小组讨论
1.教师将学生分成若干小组,每组选择一个实际问题,讨论如何将其转化为分式方程,并求解。
师:“现在请同学们分组讨论,每组选择一个实际问题,试着将其转化为分式方程,并求解。注意,在讨论过程中,要明确等量关系,列出正确的方程。”
八年级数学上册《列分式方程解应用题行程问题》教案、教学设计
1.注重培养学生的抽象思维能力,引导学生从实际问题中提炼出数学模型;
2.教授解题策略和方法,鼓励学生尝试不同的解题思路,提高解题灵活性;
3.加强对行程问题的讲解,通过生动的实例和图示,帮助学生深入理解速度、时间、路程的关系;
4.关注学生的情感态度,鼓励学生积极参与课堂讨论,培养学生的学习兴趣和自信心。
3.教师在批改作业时,要及时给予反馈,指导学生改进学习方法,提高学习效果。
2.学生分享学习心得,讨论在解决行程问题时遇到的困难和解决方法。
设计意图:培养学生的反思能力,激发学生的学习兴趣。
3.教师对学生的表现进行评价,强调合作学习的重要性,鼓励学生在课后继续探索行程问题。
设计意图:提高学生的自信心,培养学生的自主学习能力。
五、作业布置
为了巩固本节课所学知识,培养学生的独立思考和解决问题的能力,特布置以下作业:
(三)学生小组讨论
1.教学活动:将学生分成小组,每组选择一个行程问题进行讨论,共同探讨解决方法。
设计意图:培养学生的合作意识和交流能力,提高学生解决问题的能力。
2.教师巡回指导,针对学生在讨论过程中遇到的问题,给予适当的提示和引导。
设计意图:帮助学生克服困难,提高解题效果。
(四)课堂练习
1.设计具有代表性的行程问题,让学生独立解答。
-采用案例教学法,通过具体行程问题的分析,逐步引导学生学会构建分式方程。
-对行程问题进行分类,总结出不同类型问题的解题步骤,帮助学生掌握解题方法。
3.探究活动:
-设计小组合作任务,让学生在小组内共同探讨行程问题的解决方法,培养学生的合作意识和交流能力。
-鼓励学生进行变式练习,通过解答不同类型的行程问题,巩固所学知识。
全国初中数学竞赛辅导(初二分册) - 副本
初二数学竞赛班讲义第一讲因式分解(一) (1)第二讲因式分解(二) (10)第三讲实数的若干性质和应用 (17)第四讲分式的化简与求值 (26)第五讲恒等式的证明 (34)第六讲代数式的求值 (44)第七讲根式及其运算 (52)第八讲非负数 (63)第九讲一元二次方程 (73)第十讲三角形的全等及其应用 (81)第十一讲勾股定理与应用 (90)第十二讲平行四边形 (101)第十三讲梯形 (108)第十四讲中位线及其应用 (116)第十五讲相似三角形(一) (124)第十六讲相似三角形(二) (132)第十八讲归纳与发现 (153)第十九讲特殊化与一般化 (162)第二十讲类比与联想 (171)第二十一讲分类与讨论 (180)第二十二讲面积问题与面积方法 (188)第二十三讲几何不等式 (197)第二十六讲含参数的一元二次方程的整数根问题 (222)第二十七讲列方程解应用问题中的量与等量 (230)第二十八讲怎样把实际问题化成数学问题(一) (239)第二十九讲生活中的数学(一) (247)第三十讲生活中的数学(二) (254)复习题 (260)自测题 (268)自测题一 (268)自测题二 (270)自测题三 (271)自测题四 (273)自测题五 (274)复习题解答 (276)自测题解答 (304)自测题一 (304)自测题二 (309)自测题三 (314)自测题四 (321)自测题五 (327)第一讲因式分解(一)多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.解 (1)原式=-2x n-1y n(x4n-2x2n y2+y4)=-2x n-1y n[(x2n)2-2x2n y2+(y2)2]=-2x n-1y n(x2n-y2)2=-2x n-1y n(x n-y)2(x n+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2=(a-b)2+2c(a-b)+c2=(a-b+c)2.本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)=(a-b+c)2(4)原式=(a7-a5b2)+(a2b5-b7)=a5(a2-b2)+b5(a2-b2)=(a2-b2)(a5+b5)=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)例2 分解因式:a3+b3+c3-3abc.本题实际上就是用因式分解的方法证明前面给出的公式(6).分析我们已经知道公式(a+b)3=a3+3a2b+3ab2+b3的正确性,现将此公式变形为a3+b3=(a+b)3-3ab(a+b).这个式也是一个常用的公式,本题就借助于它来推导.解原式=(a+b)3-3ab(a+b)+c3-3abc=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca).说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为a3+b3+c3-3abc显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc ≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.如果令x=a3≥0,y=b3≥0,z=c3≥0,则有等号成立的充要条件是x=y=z.这也是一个常用的结论.例3 分解因式:x15+x14+x13+…+x2+x+1.分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式a n-b n来分解.解因为x16-1=(x-1)(x15+x14+x13+…x2+x+1),所以说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例4 分解因式:x3-9x+8.分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.解法1 将常数项8拆成-1+9.原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8).解法2 将一次项-9x拆成-x-8x.原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8).解法3 将三次项x3拆成9x3-8x3.原式=9x3-8x3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8).解法4 添加两项-x2+x2.原式=x3-9x+8=x3-x2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8).说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例5 分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1.解 (1)将-3拆成-1-1-1.原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3).(2)将4mn拆成2mn+2mn.原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1).(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2=[(x+1)2+(x-1)2]2-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).(4)添加两项+ab-ab.原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)[b(a+b)+1]+(ab+b2+1)=[a(a-b)+1](ab+b2+1)=(a2-ab+1)(b2+ab+1).说明 (4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例6 分解因式:(x2+x+1)(x2+x+2)-12.分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y 的二次三项式的因式分解问题了.解设x2+x=y,则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.例7 分解因式:(x2+3x+2)(4x2+8x+3)-90.分析先将两个括号内的多项式分解因式,然后再重新组合.解原式=(x+1)(x+2)(2x+1)(2x+3)-90=[(x+1)(2x+3)][(x+2)(2x+1)]-90=(2x2+5x+3)(2x2+5x+2)-90.令y=2x2+5x+2,则原式=y(y+1)-90=y2+y-90=(y+10)(y-9)=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1).说明对多项式适当的恒等变形是我们找到新元(y)的基础.例8 分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.解设x2+4x+8=y,则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.例9分解因式:6x4+7x3-36x2-7x+6.解法1 原式=6(x4+1)+7x(x2-1)-36x2=6[(x4-2x2+1)+2x2]+7x(x2-1)-36x2=6[(x2-1)2+2x2]+7x(x2-1)-36x2=6(x2-1)2+7x(x2-1)-24x2=[2(x2-1)-3x][3(x2-1)+8x]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).说明本解法实际上是将x2-1看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体.解法2原式=x2[6(t2+2)+7t-36]=x2(6t2+7t-24)=x2(2t-3)(3t+8)=x2[2(x-1/x)-3][3(x-1/x)+8]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).例10 分解因式:(x2+xy+y2)-4xy(x2+y2).分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则原式=(u2-v)2-4v(u2-2v)=u4-6u2v+9v2=(u2-3v)2=(x2+2xy+y2-3xy)2=(x2-xy+y2)2.练习一1.分解因式:(2)x10+x5-2;(4)(x5+x4+x3+x2+x+1)2-x5.2.分解因式:(1)x3+3x2-4;(2)x4-11x2y2+y2;(3)x3+9x2+26x+24;(4)x4-12x+323.3.分解因式:(1)(2x2-3x+1)2-22x2+33x-1;(2)x4+7x3+14x2+7x+1;(3)(x+y)3+2xy(1-x-y)-1;(4)(x+3)(x2-1)(x+5)-20.第二讲因式分解(二)1.双十字相乘法分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式.对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为即-22y2+35y-3=(2y-3)(-11y+1).再利用十字相乘法对关于x的二次三项式分解所以原式=[x+(2y-3)][2x+(-11y+1)]=(x+2y-3)(2x-11y+1).上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:它表示的是下面三个关系式:(x+2y)(2x-11y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3.这就是所谓的双十字相乘法.用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.例1 分解因式:(1)x2-3xy-10y2+x+9y-2;(2)x2-y2+5x+3y+4;(3)xy+y2+x-y-2;(4)6x2-7xy-3y2-xz+7yz-2z2.解 (1)原式=(x-5y+2)(x+2y-1).(2)原式=(x+y+1)(x-y+4).(3)原式中缺x2项,可把这一项的系数看成0来分解.原式=(y+1)(x+y-2).(4)原式=(2x-3y+z)(3x+y-2z).说明 (4)中有三个字母,解法仍与前面的类似.2.求根法我们把形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x 的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12.若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.定理2的根,则必有p是a0的约数,q是a n的约数.特别地,当a0=1时,整系数多项式f(x)的整数根均为a n的约数.我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.例2 分解因式:x3-4x2+6x-4.分析这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有f(2)=23-4×22+6×2-4=0,即x=2是原式的一个根,所以根据定理1,原式必有因式x-2.解法1 用分组分解法,使每组都有因式(x-2).原式=(x3-2x2)-(2x2-4x)+(2x-4)=x2(x-2)-2x(x-2)+2(x-2)=(x-2)(x2-2x+2).解法2 用多项式除法,将原式除以(x-2),所以原式=(x-2)(x2-2x+2).说明在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.例3 分解因式:9x4-3x3+7x2-3x-2.分析因为9的约数有±1,±3,±9;-2的约数有±1,±为:所以,原式有因式9x2-3x-2.解 9x4-3x3+7x2-3x-2=9x4-3x3-2x2+9x2-3x-2=x2(9x3-3x-2)+9x2-3x-2=(9x2-3x-2)(x2+1)=(3x+1)(3x-2)(x2+1)说明若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式可以化为9x2-3x-2,这样可以简化分解过程.总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了.3.待定系数法待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用.在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.例4 分解因式:x2+3xy+2y2+4x+5y+3.分析由于(x2+3xy+2y2)=(x+2y)(x+y),若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决.解设x2+3xy+2y2+4x+5y+3=(x+2y+m)(x+y+n)=x2+3xy+2y2+(m+n)x+(m+2n)y+mn,比较两边对应项的系数,则有解之得m=3,n=1.所以原式=(x+2y+3)(x+y+1).说明本题也可用双十字相乘法,请同学们自己解一下.例5 分解因式:x4-2x3-27x2-44x+7.分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式.解设原式=(x2+ax+b)(x2+cx+d)=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,所以有由bd=7,先考虑b=1,d=7有所以原式=(x2-7x+1)(x2+5x+7).说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止.本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.练习二1.用双十字相乘法分解因式:(1)x2-8xy+15y2+2x-4y-3;(2)x2-xy+2x+y-3;(3)3x2-11xy+6y2-xz-4yz-2z2.2.用求根法分解因式:(1)x3+x2-10x-6;(2)x4+3x3-3x2-12x-4;(3)4x4+4x3-9x2-x+2.3.用待定系数法分解因式:(1)2x2+3xy-9y2+14x-3y+20;(2)x4+5x3+15x-9.第三讲实数的若干性质和应用实数是高等数学特别是微积分的重要基础.在初中代数中没有系统地介绍实数理论,是因为它涉及到极限的概念.这一概念对中学生而言,有一定难度.但是,如果中学数学里没有实数的概念及其简单的运算知识,中学数学也将无法继续学习下去了.例如,即使是一元二次方程,只有有理数的知识也是远远不够用的.因此,适当学习一些有关实数的基础知识,以及运用这些知识解决有关问题的基本方法,不仅是为高等数学的学习打基础,而且也是初等数学学习所不可缺少的.本讲主要介绍实数的一些基本知识及其应用.用于解决许多问题,例如,不难证明:任何两个有理数的和、差、积、商还是有理数,或者说,有理数对加、减、乘、除(零不能做除数)是封闭的.性质1 任何一个有理数都能写成有限小数(整数可以看作小数点后面为零的小数)或循环小数的形式,反之亦然.例1分析要说明一个数是有理数,其关键要看它能否写成两个整数比的形式.证设两边同乘以100得②-①得99x=261.54-2.61=258.93,无限不循环小数称为无理数.有理数对四则运算是封闭的,而无理是说,无理数对四则运算是不封闭的,但它有如下性质.性质2 设a为有理数,b为无理数,则(1)a+b,a-b是无理数;有理数和无理数统称为实数,即在实数集内,没有最小的实数,也没有最大的实数.任意两个实数,可以比较大小.全体实数和数轴上的所有点是一一对应的.在实数集内进行加、减、乘、除(除数不为零)运算,其结果仍是实数(即实数对四则运算的封闭性).任一实数都可以开奇次方,其结果仍是实数;只有当被开方数为非负数时,才能开偶次方,其结果仍是实数.例2分析证所以分析要证明一个实数为无限不循环小数是一件极难办到的事.由于有理数与无理数共同组成了实数集,且二者是矛盾的两个对立面,所以,判定一个实数是无理数时,常常采用反证法.证用反证法.所以p一定是偶数.设p=2m(m是自然数),代入①得4m2=2q2,q2=2m2,例4 若a1+b1a=a2+b2a(其中a1,a2,b1,b2为有理数,a为无理数),则a1=a2,b1=b2,反之,亦成立.分析设法将等式变形,利用有理数不能等于无理数来证明.证将原式变形为(b1-b2)a=a2-a1.若b1≠b2,则反之,显然成立.说明本例的结论是一个常用的重要运算性质.是无理数,并说明理由.整理得由例4知a=Ab,1=A,说明本例并未给出确定结论,需要解题者自己发现正确的结有理数作为立足点,以其作为推理的基础.例6 已知a,b是两个任意有理数,且a<b,求证:a与b之间存在着无穷多个有理数(即有理数集具有稠密性).分析只要构造出符合条件的有理数,题目即可被证明.证因为a<b,所以2a<a+b<2b,所以说明构造具有某种性质的一个数,或一个式子,以达到解题和证明的目的,是经常运用的一种数学建模的思想方法.例7 已知a,b是两个任意有理数,且a<b,问是否存在无理数α,使得a<α<b成立?即由①,②有存在无理数α,使得a<α<b成立.b4+12b3+37b2+6b-20的值.分析因为无理数是无限不循环小数,所以不可能把一个无理数的小数部分一位一位确定下来,这样涉及无理数小数部分的计算题,往往是先估计它的整数部分(这是容易确定的),然后再寻求其小数部分的表示方法.14=9+6b+b2,所以b2+6b=5.b4+12b3+37b2+6b-20=(b4+2·6b3+36b2)+(b2+6b)-20=(b2+6b)2+(b2+6b)-20 =52+5-20=10.例9 求满足条件的自然数a,x,y.解将原式两边平方得由①式变形为两边平方得例10 设a n是12+22+32+…+n2的个位数字,n=1,2,3,…,求证:0.a1a2a3…a n…是有理数.分析有理数的另一个定义是循环小数,即凡有理数都是循环小数,反之循环小数必为有理数.所以,要证0.a1a2a3…a n…是有理数,只要证它为循环小数.因此本题我们从寻找它的循环节入手.证计算a n的前若干个值,寻找规律:1,5,4,0,5,1,0,4,5,5,6,0,9,5,0,6,5,9,0,0,1,5,4,0,5,1,0,4,…发现:a20=0,a21=a1,a22=a2,a23=a3,…,于是猜想:a k+20=a k,若此式成立,说明0.a1a2…a n…是由20个数字组成循环节的循环小数,即下面证明a k+20=a k.令f(n)=12+22+…+n2,当f(n+20)-f(n)是10的倍数时,表明f(n+20)与f(n)有相同的个位数,而f(n+20)-f(n)=(n+1)2+(n+2)2+…+(n+20)2=10(2n2+42·n)+(12+22+…+202).由前面计算的若干值可知:12+22+…+202是10的倍数,故a k+20=a k成立,所以0.a1a2…a n…是一个有理数.练习三1.下列各数中哪些是有理数,哪些是无理数?为什么?5.设α,β为有理数,γ为无理数,若α+βγ=0,求证:α=β=0.第四讲分式的化简与求值分式的有关概念和性质与分数相类似,例如,分式的分母的值不能是零,即分式只有在分母不等于零时才有意义;也像分数一样,分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,这一性质是分式运算中通分和约分的理论根据.在分式运算中,主要是通过约分和通分来化简分式,从而对分式进行求值.除此之外,还要根据分式的具体特征灵活变形,以使问题得到迅速准确的解答.本讲主要介绍分式的化简与求值.例1 化简分式:分析直接通分计算较繁,先把每个假分式化成整式与真分式之和的形式,再化简将简便得多.=[(2a+1)-(a-3)-(3a+2)+(2a-2)]说明本题的关键是正确地将假分式写成整式与真分式之和的形式.例2 求分式当a=2时的值.分析与解先化简再求值.直接通分较复杂,注意到平方差公式:a2-b2=(a+b)(a-b),可将分式分步通分,每一步只通分左边两项.例3 若abc=1,求分析本题可将分式通分后,再进行化简求值,但较复杂.下面介绍几种简单的解法.解法1 因为abc=1,所以a,b,c都不为零.解法2 因为abc=1,所以a≠0,b≠0,c≠0.例4 化简分式:分析与解三个分式一齐通分运算量大,可先将每个分式的分母分解因式,然后再化简.说明互消掉的一对相反数,这种化简的方法叫“拆项相消”法,它是分式化简中常用的技巧.例5 化简计算(式中a,b,c两两不相等):似的,对于这个分式,显然分母可以分解因式为(a-b)(a-c),而分子又恰好凑成(a-b)+(a-c),因此有下面的解法.解说明本例也是采取“拆项相消”法,所不同的是利用例6 已知:x+y+z=3a(a≠0,且x,y,z不全相等),求分析本题字母多,分式复杂.若把条件写成(x-a)+(y-a)+(z-a)=0,那么题目只与x-a,y-a,z-a有关,为简化计算,可用换元法求解.解令x-a=u,y-a=v,z-a=w,则分式变为u2+v2+w2+2(uv+vw+wu)=0.由于x,y,z不全相等,所以u,v,w不全为零,所以u2+v2+w2≠0,从而有说明从本例中可以看出,换元法可以减少字母个数,使运算过程简化.例7 化简分式:适当变形,化简分式后再计算求值.(x-4)2=3,即x2-8x+13=0.原式分子=(x4-8x3+13x2)+(2x3-16x2+26x)+(x2-8x+13)+10=x2(x2-8x+13)+2x(x2-8x+13)+(x2-8x+13)+10=10,原式分母=(x2-8x+13)+2=2,说明本例的解法采用的是整体代入的方法,这是代入消元法的一种特殊类型,应用得当会使问题的求解过程大大简化.解法1 利用比例的性质解决分式问题.(1)若a+b+c≠0,由等比定理有所以a+b-c=c,a-b+c=b,-a+b+c=a,于是有(2)若a+b+c=0,则a+b=-c,b+c=-a,c+a=-b,于是有说明比例有一系列重要的性质,在解决分式问题时,灵活巧妙地使用,便于问题的求解.解法2 设参数法.令则a+b=(k+1)c,①a+c=(k+1)b,②b+c=(k+1)a.③①+②+③有2(a+b+c)=(k+1)(a+b+c),所以 (a+b+c)(k-1)=0,故有k=1或 a+b+c=0.当k=1时,当a+b+c=0时,说明引进一个参数k表示以连比形式出现的已知条件,可使已知条件便于使用.练习四1.化简分式:2.计算:3.已知:(y-z)2+(z-x)2+(x-y)2=(x+y-2z)2+(y+z-2x)2+(z+x-2y)2,的值.第五讲恒等式的证明代数式的恒等变形是初中代数的重要内容,它涉及的基础知识较多,主要有整式、分式与根式的基本概念及运算法则,因式分解的知识与技能技巧等等,因此代数式的恒等变形是学好初中代数必备的基本功之一.本讲主要介绍恒等式的证明.首先复习一下基本知识,然后进行例题分析.两个代数式,如果对于字母在允许范围内的一切取值,它们的值都相等,则称这两个代数式恒等.把一个代数式变换成另一个与它恒等的代数式叫作代数式的恒等变形.恒等式的证明,就是通过恒等变形证明等号两边的代数式相等.证明恒等式,没有统一的方法,需要根据具体问题,采用不同的变形技巧,使证明过程尽量简捷.一般可以把恒等式的证明分为两类:一类是无附加条件的恒等式证明;另一类是有附加条件的恒等式的证明.对于后者,同学们要善于利用附加条件,使证明简化.下面结合例题介绍恒等式证明中的一些常用方法与技巧.1.由繁到简和相向趋进恒等式证明最基本的思路是“由繁到简”(即由等式较繁的一边向另一边推导)和“相向趋进”(即将等式两边同时转化为同一形式).例1 已知x+y+z=xyz,证明:x(1-y2)(1-z2)+y(1-x2)(1-z2)+z(1-x2)(1-y2)=4xyz.分析将左边展开,利用条件x+y+z=xyz,将等式左边化简成右边.证因为x+y+z=xyz,所以左边=x(1-z2-y2-y2z2)+y(1-z2-x2+x2z2)+(1-y2-x2+x2y2)=(x+y+z)-xz2-xy2+xy2z2-yz2+yx2+yx2z2-zy2-zx2+zx2y2=xyz-xy(y+x)-xz(x+z)-yz(y+z)+xyz(xy+yz+zx)=xyz-xy(xyz-z)-xz(xyz-y)-yz(xyz-x)+xyz(xy+yz+zx)=xyz+xyz+xyz+xyz=4xyz=右边.说明本例的证明思路就是“由繁到简”.例2 已知1989x2=1991y2=1993z2,x>0,y>0,z>0,且证令1989x2=1991y2=1993z2=k(k>0),则又因为所以所以说明本例的证明思路是“相向趋进”,在证明方法上,通过设参数k,使左右两边同时变形为同一形式,从而使等式成立.2.比较法a=b(比商法).这也是证明恒等式的重要思路之一.例3 求证:分析用比差法证明左-右=0.本例中,这个式子具有如下特征:如果取出它的第一项,把其中的字母轮换,即以b代a,c代b,a代c,则可得出第二项;若对第二项的字母实行上述轮换,则可得出第三项;对第三项的字母实行上述轮换,可得出第一项.具有这种特性的式子叫作轮换式.利用这种特性,可使轮换式的运算简化.证因为所以所以说明本例若采用通分化简的方法将很繁.像这种把一个分式分解成几个部分分式和的形式,是分式恒等变形中的常用技巧.全不为零.证明:(1+p)(1+q)(1+r)=(1-p)(1-q)(1-r).同理所以所以(1+p)(1+q)(1+r)=(1-p)(1-q)(1-r).说明本例采用的是比商法.3.分析法与综合法根据推理过程的方向不同,恒等式的证明方法又可分为分析法与综合法.分析法是从要求证的结论出发,寻求在什么情况下结论是正确的,这样一步一步逆向推导,寻求结论成立的条件,一旦条件成立就可断言结论正确,即所谓“执果索因”.而综合法正好相反,它是“由因导果”,即从已知条件出发顺向推理,得到所求结论.证要证a2+b2+c2=(a+b-c)2,只要证a2+b2+c2=a2+b2+c2+2ab-2ac-2bc,只要证ab=ac+bc,只要证c(a+b)=ab,只要证这最后的等式正好是题设,而以上推理每一步都可逆,故所求证的等式成立.说明本题采用的方法是典型的分析法.例6 已知a4+b4+c4+d4=4abcd,且a,b,c,d都是正数,求证:a=b=c=d.证由已知可得a4+b4+c4+d4-4abcd=0,(a2-b2)2+(c2-d2)2+2a2b2+2c2d2-4abcd=0,所以(a2-b2)2+(c2-d2)2+2(ab-cd)2=0.因为(a2-b2)2≥0,(c2-d2)2≥0,(ab-cd)2≥0,所以a2-b2=c2-d2=ab-cd=0,所以(a+b)(a-b)=(c+d)(c-d)=0.又因为a,b,c,d都为正数,所以a+b≠0,c+d≠0,所以a=b,c=d.所以ab-cd=a2-c2=(a+c)(a-c)=0,所以a=c.故a=b=c=d成立.说明本题采用的方法是综合法.4.其他证明方法与技巧求证:8a+9b+5c=0.a+b=k(a-b),b+c=2k(b-c),(c+a)=3k(c-a).所以6(a+b)=6k(a-b),3(b+c)=6k(b-c),2(c+a)=6k(c-a).以上三式相加,得6(a+b)+3(b+c)+2(c+a)=6k(a-b+b-c+c-a),即8a+9b+5c=0.说明本题证明中用到了“遇连比设为k”的设参数法,前面的例2用的也是类似方法.这种设参数法也是恒等式证明中的常用技巧.例8 已知a+b+c=0,求证2(a4+b4+c4)=(a2+b2+c2)2.分析与证明用比差法,注意利用a+b+c=0的条件.左-右=2(a4+b4+c4)-(a2+b2+c2)2=a4+b4+c4-2a2b2-2b2c2-2c2a2=(a2-b2-c2)2-4b2c2=(a2-b2-c2+2bc)(a2-b2-c2-2bc)=[a2-(b-c)2][a2-(b+c)2]=(a-b+c)(a+b-c)(a-b-c)(a+b+c)=0.所以等式成立.说明本题证明过程中主要是进行因式分解.分析本题的两个已知条件中,包含字母a,x,y和z,而在求证的结论中,却只包含a,x和z,因此可以从消去y着手,得到如下证法.证由已知说明本题利用的是“消元”法,它是证明条件等式的常用方法.例10 证明:(y+z-2x)3+(z+x-2y)3+(x+y-2z)3=3(y+z-2x)(z+x-2y)(x+y-2z).分析与证明此题看起来很复杂,但仔细观察,可以使用换元法.令y+z-2x=a,①z+x-2y=b,②x+y-2z=c,③则要证的等式变为a3+b3+c3=3abc.联想到乘法公式:a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca),所以将①,②,③相加有a+b+c=y+z-2x+z+x-2y+x+y-2z=0,所以a3+b3+c3-3abc=0,所以(y+z-2x)3+(z+x-2y)3+(x+y-2z)3=3(y+z-2x)(z+x-2y)(x+y-2z).说明由本例可以看出,换元法也可以在恒等式证明中发挥效力.例11 设x,y,z为互不相等的非零实数,且求证:x2y2z2=1.分析本题x,y,z具有轮换对称的特点,我们不妨先看二元的所以x2y2=1.三元与二元的结构类似.证由已知有①×②×③得x2y2z2=1.说明这种欲进先退的解题策略经常用于探索解决问题的思路中.总之,从上面的例题中可以看出,恒等式证明的关键是代数式的变形技能.同学们要在明确变形目的的基础上,深刻体会例题中的常用变形技能与方法,这对以后的数学学习非常重要.练习五1.已知(c-a)2-4(a-b)(b-c)=0,求证:2b=a+c.2.证明:(x+y+z)3xyz-(yz+zx+xy)3=xyz(x3+y3+z3)-(y3z3+z3x3+x3y3).3.求证:5.证明:6.已知x2-yz=y2-xz=z2-xy,求证:x=y=z或x+y+z=0.7.已知an-bm≠0,a≠0,ax2+bx+c=0,mx2+nx+p=0,求证:(cm-ap)2=(bp-cn)(an-bm).第六讲代数式的求值代数式的求值与代数式的恒等变形关系十分密切.许多代数式是先化简再求值,特别是有附加条件的代数式求值问题,往往需要利用乘法公式、绝对值与算术根的性质、分式的基本性质、通分、约分、根式的性质等等,经过恒等变形,把代数式中隐含的条件显现出来,化简,进而求值.因此,求值中的方法技巧主要是代数式恒等变形的技能、技巧和方法.下面结合例题逐一介绍.1.利用因式分解方法求值因式分解是重要的一种代数恒等变形,在代数式化简求值中,经常被采用.分析 x的值是通过一个一元二次方程给出的,若解出x后,再求值,将会很麻烦.我们可以先将所求的代数式变形,看一看能否利用已知条件.解已知条件可变形为3x2+3x-1=0,所以6x4+15x3+10x2=(6x4+6x3-2x2)+(9x3+9x2-3x)+(3x2+3x-1)+1=(3x2+3x-1)(2z2+3x+1)+1=0+1=1.说明在求代数式的值时,若已知的是一个或几个代数式的值,这时要尽可能避免解方程(或方程组),而要将所要求值的代数式适当变形,再将已知的代数式的值整体代入,会使问题得到简捷的解答.例2 已知a,b,c为实数,且满足下式:。
全国初中数学竞赛辅导(八年级)教学案全集第05讲恒等式的证明
全国初中数学竞赛辅导(八年级)教学案全集第05讲恒等式的证明第一篇:全国初中数学竞赛辅导(八年级)教学案全集第05讲恒等式的证明全国初中数学竞赛辅导(八年级)教学案全集第五讲恒等式的证明代数式的恒等变形是初中代数的重要内容,它涉及的基础知识较多,主要有整式、分式与根式的基本概念及运算法则,因式分解的知识与技能技巧等等,因此代数式的恒等变形是学好初中代数必备的基本功之一.本讲主要介绍恒等式的证明.首先复习一下基本知识,然后进行例题分析.两个代数式,如果对于字母在允许范围内的一切取值,它们的值都相等,则称这两个代数式恒等.把一个代数式变换成另一个与它恒等的代数式叫作代数式的恒等变形.恒等式的证明,就是通过恒等变形证明等号两边的代数式相等.证明恒等式,没有统一的方法,需要根据具体问题,采用不同的变形技巧,使证明过程尽量简捷.一般可以把恒等式的证明分为两类:一类是无附加条件的恒等式证明;另一类是有附加条件的恒等式的证明.对于后者,同学们要善于利用附加条件,使证明简化.下面结合例题介绍恒等式证明中的一些常用方法与技巧.1.由繁到简和相向趋进恒等式证明最基本的思路是“由繁到简”(即由等式较繁的一边向另一边推导)和“相向趋进”(即将等式两边同时转化为同一形式).例 1 已知x+y+z=xyz,证明:x(1-y2)(1-z2)+y(1-x2)(1-z2)+z(1-x2)(1-y2)=4xyz.分析将左边展开,利用条件x+y+z=xyz,将等式左边化简成右边.证因为x+y+z=xyz,所以左边=x(1-z2-y2-y2z2)+y(1-z2-x2+x2z2)+(1-y2-x2+x2y2)=(x+y+z)-xz2-xy2+xy2z2-yz2+yx2+yx2z2-zy2-zx2+zx2y2=xyz-xy(y+x)-xz(x+z)-yz(y+z)+xyz(xy+yz+zx)=xyz-xy(xyz-z)-xz(xyz-y)-yz(xyz-x)+xyz(xy+yz+zx)=xyz+xyz+xyz+xyz=4xyz=右边.说明本例的证明思路就是“由繁到简”.例2 已知1989x2=1991y2=1993z2,x>0,y>0,z>0,且证令1989x2=1991y2=1993z2=k(k>0),则又因为所以所以说明本例的证明思路是“相向趋进”,在证明方法上,通过设参数k,使左右两边同时变形为同一形式,从而使等式成立.2.比较法a=b(比商法).这也是证明恒等式的重要思路之一.例3 求证:分析用比差法证明左-右=0.本例中,这个式子具有如下特征:如果取出它的第一项,把其中的字母轮换,即以b代a,c代b,a代c,则可得出第二项;若对第二项的字母实行上述轮换,则可得出第三项;对第三项的字母实行上述轮换,可得出第一项.具有这种特性的式子叫作轮换式.利用这种特性,可使轮换式的运算简化.证因为所以所以说明本例若采用通分化简的方法将很繁.像这种把一个分式分解成几个部分分式和的形式,是分式恒等变形中的常用技巧.不为零.证明:(1+p)(1+q)(1+r)=(1-p)(1-q)(1-r).全同理所以所以(1+p)(1+q)(1+r)=(1-p)(1-q)(1-r).说明本例采用的是比商法.3.分析法与综合法根据推理过程的方向不同,恒等式的证明方法又可分为分析法与综合法.分析法是从要求证的结论出发,寻求在什么情况下结论是正确的,这样一步一步逆向推导,寻求结论成立的条件,一旦条件成立就可断言结论正确,即所谓“执果索因”.而综合法正好相反,它是“由因导果”,即从已知条件出发顺向推理,得到所求结论.证要证 a2+b2+c2=(a+b-c)2,只要证a2+b2+c2=a2+b2+c2+2ab-2ac-2bc,只要证ab=ac+bc,只要证 c(a+b)=ab,只要证这最后的等式正好是题设,而以上推理每一步都可逆,故所求证的等式成立.说明本题采用的方法是典型的分析法.例6 已知a4+b4+c4+d4=4abcd,且a,b,c,d都是正数,求证:a=b=c=d.证由已知可得a4+b4+c4+d4-4abcd=0,(a2-b2)2+(c2-d2)2+2a2b2+2c2d2-4abcd=0,所以(a2-b2)2+(c2-d2)2+2(ab-cd)2=0.因为(a2-b2)2≥0,(c2-d2)2≥0,(ab-cd)2≥0,所以a2-b2=c2-d2=ab-cd=0,所以(a+b)(a-b)=(c+d)(c-d)=0.又因为a,b,c,d都为正数,所以a+b≠0,c+d≠0,所以a=b,c=d.所以ab-cd=a2-c2=(a+c)(a-c)=0,所以a=c.故a=b=c=d成立.说明本题采用的方法是综合法.4.其他证明方法与技巧求证:8a+9b+5c=0.a+b=k(a-b),b+c=2k(b-c),(c+a)=3k(c-a).所以6(a+b)=6k(a-b),3(b+c)=6k(b-c),2(c+a)=6k(c-a).以上三式相加,得6(a+b)+3(b+c)+2(c+a)=6k(a-b+b-c+c-a),即 8a+9b+5c=0.说明本题证明中用到了“遇连比设为k”的设参数法,前面的例2用的也是类似方法.这种设参数法也是恒等式证明中的常用技巧.例8 已知a+b+c=0,求证2(a4+b4+c4)=(a2+b2+c2)2.分析与证明用比差法,注意利用a+b+c=0的条件.左-右=2(a4+b4+c4)-(a2+b2+c2)2=a4+b4+c4-2a2b2-2b2c2-2c2a2=(a2-b2-c2)2-4b2c2=(a2-b2-c2+2bc)(a2-b2-c2-2bc)=[a2-(b-c)2][a2-(b+c)2]=(a-b+c)(a+b-c)(a-b-c)(a+b+c)=0.所以等式成立.说明本题证明过程中主要是进行因式分解.分析本题的两个已知条件中,包含字母a,x,y和z,而在求证的结论中,却只包含a,x和z,因此可以从消去y着手,得到如下证法.证由已知说明本题利用的是“消元”法,它是证明条件等式的常用方法.例10 证明:(y+z-2x)3+(z+x-2y)3+(x+y-2z)3=3(y+z-2x)(z+x-2y)(x+y-2z).分析与证明此题看起来很复杂,但仔细观察,可以使用换元法.令y+z-2x=a,① z+x-2y=b,② x+y-2z=c,③则要证的等式变为a3+b3+c3=3abc.联想到乘法公式:a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca),所以将①,②,③相加有a+b+c=y+z-2x+z+x-2y+x+y-2z=0,所以a3+b3+c3-3abc=0,所以(y+z-2x)3+(z+x-2y)3+(x+y-2z)3=3(y+z-2x)(z+x-2y)(x+y-2z).说明由本例可以看出,换元法也可以在恒等式证明中发挥效力.例11 设x,y,z为互不相等的非零实数,且求证:x2y2z2=1.分析本题x,y,z具有轮换对称的特点,我们不妨先看二元的所以x2y2=1.三元与二元的结构类似.证由已知有①×②×③得x2y2z2=1.说明这种欲进先退的解题策略经常用于探索解决问题的思路中.总之,从上面的例题中可以看出,恒等式证明的关键是代数式的变形技能.同学们要在明确变形目的的基础上,深刻体会例题中的常用变形技能与方法,这对以后的数学学习非常重要.练习五1.已知(c-a)2-4(a-b)(b-c)=0,求证:2b=a+c.2.证明:(x+y+z)3xyz-(yz+zx+xy)3=xyz(x3+y3+z3)-(y3z3+z3x3+x3y3).3.求证:5.证明:6.已知x2-yz=y2-xz=z2-xy,求证:x=y=z或x+y+z=0.7.已知an-bm≠0,a≠0,ax2+bx+c=0,mx2+nx+p=0,求证:(cm-ap)2=(bp-cn)(an-bm).第二篇:全国初中数学竞赛辅导(八年级)教学案全集第32讲自测题全国初中数学竞赛辅导(八年级)教学案全集第三十二讲自测题自测题一1.分解因式:x4-x3+6x2-x+15.2.已知a,b,c为三角形的三边长,且满足a2+b2+c2+338=10a+24b+26c,试确定这个三角形的形状.3.已知a,b,c,d均为自然数,且a5=b4,c3=d2,c-a=19,求d-b的值.4.a,b,c是整数,a≠0,且方程ax2+bx+c=0的两个根为a 和b,求a+b+c的值.5.设E,F分别为AC,AB的中点,D为BC上的任一点,P在BF上,DP∥CF,Q在CE上,DQ∥BE,PQ交BE于R,交6.四边形ABCD中,如果一组对角(∠A,∠C)相等时,另一组对角(∠B,∠D)的平分线存在什么关系?7.如图2-194所示.△ABC中,D,E分别是边BC,AB上的点,且∠1=∠2=∠3.如果△ABC,△8.如图2-195所示.△ABC中,∠B=90°,M为AB上一点,使得AM=BC,N为BC上一点,使得CN=BM,连AN,CM交于P 点.求∠APM的度数.9.某服装市场,每件衬衫零售价为70元,为了促销,采用以下几种优惠方式:购买2件130元;购满5件者,每件以零售价的九折出售;购买7件者送1件.某人要买6件,问有几种购物方案(必要时,可与另一购买2件者搭帮,但要兼顾双方的利益)?哪种方案花钱最少?自测题二1.分解因式:(x2+3x+5)2+2x3+3x2+1Ox.2.对于集合p={x丨x是1到100的整数}中的元素a,b,如果a除以b的余数用符号表示.例如17除以4,商是4,余数是1,就表示成<17,4>=1,3除以7,商是0,余数是3,即表示成<3,7>=3.试回答下列问题:(1)本集合{x丨<78,x>=6,x∈p}中元素的个数;(2)用列举法表示集合{x丨==5,x∈P}.3.已知:x+y+z=1,x2+y2+z2=2,x3+y3+z3=3,试求:(1)xyz的值;(2)x4+y4+z4的值.4.已知方程x2-3x+a+4=0有两个整数根.(1)求证:这两个整数根一个是奇数,一个是偶数;(2)求证:a是负偶数;(3)当方程的两整数根同号时,求a的值及这两个根.5.证明:形如8n+7的数不可能是三个整数的平方和.7.如图2-196所示.AD是等腰三角形ABC底边上的中线,BE 是角平分线,EF⊥BC,EG⊥BE且交BC于G.求证:8.如图2-197所示.AD是锐角△ABC的高,O是AD上任意一点,连BO,OC并分别延长交AC,AB于E,F,连结DE,DF.求证:∠EDO=∠FDO.9.甲校需要课外图书200本,乙校需要课外图书240本,某书店门市部A可供应150本,门市部B可供应290本.如果平均每本书的运费如下表,考虑到学校的利益,如何安排调运,才能使学校支出的运费最少?自测题三2.对于任意实数k,方程(k2+1)x2-2(a+k)2x+k2+4k+b=0总有一个根是1,试求实数a,b的值及另一个根的范围.4.如图2-198.ABCD为圆内接四边形,从它的一个顶点A引平行于CD的弦AP交圆于P,并且分别交BC,BD于Q,R.求证:5.如图2-199所示.在△ABC中∠C=90°,∠A的平分线AE交BA上的高CH于D点,过D引AB的平行线交BC于F.求证:BF=EC.6.如图2-200所示.△ABC中,AB>AC,作∠FBC=∠ECB=7.已知三角形的一边是另一边的两倍,求证:它的最小边在它的周8.求最大的自然数x,使得对每一个自然数y,x能整除7y+12y-1.9.某公园的门票规定为每人5元,团体票40元一张,每张团体票最多可入园10人.(1)现有三个单位,游园人数分别为6,8,9.这三个单位分别怎样买门票使总门票费最省?(2)若三个单位的游园人数分别是16,18和19,又分别怎样买门票使总门票费最省?(3)若游园人数为x人,你能找出一般买门票最省钱的规律吗?自测题四1.求多项式2x2-4xy+5y2-12y+13的最小值.2.设试求:f(1)+f(3)+f(5)+…+f(1999).3.如图2-201所示.在平行四边形ABCD的对角线BD上任取一点O,过O作边BC,AB的平行线交AB,BC于F,E,又在 EO上取一点P.CP与OF交于Q.求证:BP∥DQ.4.若a,b,c为有理数,且等式成立,则a=b=c=0 .5.如图2-202所示.△ABC是边长为1的正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB,AC于M,N,连接MN,求△AMN的周长.6.证明:由数字0,1,2,3,4,5所组成的不重复六位数不可能被11整除.7.设x1,x2,…,x9均为正整数,且x1<x2<…<x9,x1+x2+…+x9=220.当x1+x2+…+x5的值最大时,求x9-x1的值.8.某公司有甲乙两个工作部门,假日去不同景点旅游,总共有m 人参加,甲部门平均每人花费120元,乙部门每人花费110元,该公司去旅游的总共花去2250元,问甲乙两部门各去了多少人?9.(1)已知如图2-203,四边形ABCD内接于圆,过AD上一点E引直线EF∥AC交BA延长线于F.求证:FA·BC=AE·C D.(2)当E点移动到D点时,命题(1)将会怎样?(3)当E点在AD的延长线上时又会怎样?自测题五2.关于x的二次方程6x2-(2m-1)x-(m+1)=0有一根3.设x+y=1,x2+y2=2,求x7+y7的值.4.在三角形ABC内,∠B=2∠C.求证:b2=c2+ac.5.若4x-y能被3整除,则4x2+7xy-2y2能被9整除.6.a,b,c是三个自然数,且满足abc=a+b+c,求证:a,b,c只能是1,2,3中的一个.7.如图2-204所示.AD是△ABC的BC边上的中线,E是BD的中点,BA=BD.求证:AC=2AE.8.设AD是△ABC的中线,(1)求证:AB2+AC2=2(AD2+BD2);(2)当A点在BC上时,将怎样?按沿河距离计算,B离A的距离AC=40千米,如果水路运费是公路运费的一半,应该怎样确定在河岸上的D点,从B点筑一条公路到D,才能使A到B的运费最省?第三篇:全国初中数学竞赛辅导(八年级)教学案全集第31讲复习题全国初中数学竞赛辅导(八年级)教学案全集第三十一讲复习题1.分解因式:3x2+5xy-2y2+x+9y-4.2.分解因式:(x2+xy+y2)(x2+xy+2y2)-12y4.5.已知求ab+cd的值.为任意正数,证明1<s<2.7.设a,b是互不相等的正数,比较M,N的大小.8.求分式的值.9.已知:求证:px+qy+rz=(p+q+r)(x+y+z).11.已知实数x,y满足等式求x,y的值.12.若14(a2+b2+c2)=(a+2b+3c)2,求a∶b∶c.13.解方程:x2+2x-3丨x+1丨+3=0.14.已知三个二次方程x2-3x+a=0,2x2+ax-4=0,ax2+bx-3=0有公共解,试求整数a和整数b的值.15.如图2-178所示.在△ABC中,过点B作∠A的平分线的垂线,足为D.DE∥AC交AB于E点.求证:E是AB的中点.16.求证:直角三角形勾股平方的倒数和等于弦上的高的平方的倒数.17.如图2-179所示.在△ABC中,延长BC至D,使CD=BC.若BC中点为E,AD=2AE,求证:AB=BC.18.如图2-180所示.ABCD是平行四边形,BCGH及CDFE都是正方形.求证:AC⊥EG.19.证明:梯形对角线中点的连线平行于底,并且等于两底差的一半.20.如图2-181所示.梯形ABCD中,∠ADC=90°,∠AEC=3∠BAE,AB∥CD,E是 BC的中点.求证:CD=CE.21.如图2-182所示.梯形ABCD中,AD∥BC(AD<BC),AC 和BD交于M,EF过M且平行于AD,EC和FB交于N,GH过N且平行于AD.求证:22.如图2-183所示.在矩形ABCD中,M是AD的中点,N是BC的中点,P是CD延长线上的一点,PM交AC于Q.求证:∠QNM=∠MNP.23.在(凸)四边形ABCD中,求证:AC·BD≤AB·CD+AD·BC.24.如图2-184所示.AD是等腰△ABC底边BC上的高,BM与BN是∠B的三等分角线,分别交AD于M,N点,连CN并延长交AB 于E.求证:25.已知n是正整数,且n2-71能被7n+55整除,求n的值.26.求具有下列性质的最小正整数n:(1)它以数字6结尾;(2)如果把数字6移到第一位之前,所得的数是原数的4倍.27.求出整数n,它的2倍被3除余1,3倍被5除余2,5倍被7除余3.28.把1,2,3,…,81这81个数任意排列为:a1,a2,a3,…,a81.计算丨a1-a2+a3丨,丨a4-a5+a6丨,…,丨a79-a80+a81丨;再将这27个数任意排列为b1,b2,…,b27,计算丨b1-b2+b3丨,丨b4-b5+b6丨,…,丨b25-b26+b27丨.如此继续下去,最后得到一个数x,问x是奇数还是偶数?29.在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,30.设凸四边形ABCD的对角线AC,BD相交于O,且AC⊥BD,已知OA>OC,OB>OD,求证:BC+AD>AB+CD.31.如图2-185.在梯形ABCD中,AD∥BC,E,F分别在AB和DC上,EF∥BC,EF平分梯形ABCD的面积,若AD=a,BC=b,求EF的长.32.四边形ABCD的面积为1,M为AD的中点,N为BC的中点,的面积.33.已知一元二次方程x2-x+1-m=0 的两实根x1,x2满足丨x1丨+丨x2丨≤5,求实数m的取值范围.34.求所有的正实数a,使得方程x2-ax+4a=0仅有整数根.35.求证:当p,q为奇数时,方程x2+px+q=0无整数根.36.如图2-186.已知圆中四弦AB,BD,DC,CA分别等于a,b,c,d(且cd>ab).过C引直线CE∥AD交AB的延长线于E,求BE之长.37.设A={2,x,y},B={2,x,y2},其中x,y是整数,并且A∩B={2,4},A∪B={2,x,2x,16x},求x,y的值.38.在梯形ABCD中,与两条平行底边平行的直线和两腰AB,CD交于P,Q(图2-187).如果AP∶PB=m∶n,那么PQ的值如何用m,n,AD,BC表示?39.在平行四边形ABCD中,设∠A,∠B,∠C,∠D的平分线两两相交的交点分别为P,Q,R,S,那么四边形PQRS是什么图形?如果原来的四边形ABCD是矩形,那么四边形PQRS又是什么图形?40.在直角三角形ABC中,以边AB,BC,AC为对应边分别作三个相似三角形,那么这三个相似三角形面积之间有什么关系?41.如果三角形的三边用m2+n2,m2-n2,2mn来表示,那么这个三角形的形状如何?如果m2+n2=4mn,又将怎样?42.在圆柱形容器中装水,当水的高度为6厘米时,重4.4千克,水高为10厘米时,重6.8千克,试用图像表示水高为0~10厘米时,水高与重量之间的关系,并预测当水高为8厘米时,水重为多少千克?43.有7张电影票,10个人抽签,为此先做好10个签,其中7个签上写“有票”,3个签上写“无票”,然后10个人排好队按顺序抽签.问第一人与第二人抽到的可能性是否相同?44.在直径为50毫米(mm)的铁板中,铳出四个互相外切,并且同样大小的垫圈(图2-188),那么垫圈的最大直径是多少?45.唐代诗人王之涣的著名诗篇:白日依山尽,黄河入海流.欲穷千里目,更上一层楼.按诗人的想象,要看到千里之外的景物,需要站在多高的建筑物上呢?试化成数学问题加以解释.46.在一个池塘中,一棵水草AC垂直水面,AB为水草在水面上的部分,如图2-189,问如何利用这根水草测出水深?47.在一条运河的两侧有两个村子A,B,河的两岸基本上是平行线.现在要在河上架一座桥与河岸垂直,以便使两岸居民互相往来,那么这座桥架在什么地方,才能使从A到B的路程最近呢(图2-190)?48.要在一条河边修一座水塔,以便从那里给A,B两个城市供水(设A,B在河岸EF的同侧),那么水塔应建在河岸EF的什么地方,才能使水塔到A,B两市供水管道总长度最短(图2-191)?49.三个同学在街头散步,发现一辆汽车违反了交通规则.但他们没有完全记住这辆汽车的车号(车号由4位数字组成),可是第一个同学记住车号的前两位数是相同的,第二个同学记得后两位数也相同,第三个同学记得这个四位数恰好是一个数的平方数.根据这些线索,能找出这辆汽车的车号吗?50.图2-192是一个弹簧秤的示意图,其中:图(a)表示弹簧称东西前的状况,此时刻度0齐上线,弹簧伸长的初始长度为b.图(b)表示弹簧秤上挂有重物时,弹簧伸长的状况.如果弹簧秤上挂上不同重量的砝码,那么弹簧秤的长度也相应地伸长.现获得如下一组数据:(1)以x,y的对应值(x,y)为点的坐标,画出散点图;(2)求出关于x的函数y的表达式,(3)求当x=500克时,y的长度.第四篇:全国初中数学竞赛辅导(八年级)教学案全集第08讲平行四边形全国初中数学竞赛辅导(八年级)教学案全集第八讲平行四边形平行四边形是一种极重要的几何图形.这不仅是因为它是研究更特殊的平行四边形——矩形、菱形、正方形的基础,还因为由它的定义知它可以分解为一些全等的三角形,并且包含着有关平行线的许多性质,因此,它在几何图形的研究上有着广泛的应用.由平行四边形的定义决定了它有以下几个基本性质:(1)平行四边形对角相等;(2)平行四边形对边相等;(3)平行四边形对角线互相平分.除了定义以外,平行四边形还有以下几种判定方法:(1)两组对角分别相等的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形;(4)一组对边平行且相等的四边形是平行四边形.例1 如图2-32所示.在EF与MN互相平分.ABCD中,AE⊥BC,CF⊥AD,DN=BM.求证:分析只要证明ENFM是平行四边形即可,由已知,提供的等量要素很多,可从全等三角形下手.证因为ABCD是平行四边形,所以ADBC,ABCD,∠B=∠D.又AE⊥BC,CF⊥AD,所以AECF是矩形,从而AE=CF.所以Rt△ABE≌Rt△CDF(HL,或AAS),BE=DF.又由已知BM=DN,所以△BEM≌△DFN(SAS),ME=NF.①又因为AF=CE,AM=CN,∠MAF=∠NCE,所以△MAF≌△NCE(SAS),所以 MF=NF.②由①,②,四边形ENFM是平行四边形,从而对角线EF与MN 互相平分.例2 如图2-33所示.Rt△ABC中,∠BAC=90°,AD⊥BC于D,BG平分∠ABC,EF∥BC且交AC于F.求证:AE=CF.分析AE与CF分处于不同的位置,必须通过添加辅助线使两者发生联系.若作GH⊥BC于H,由于BG是∠ABC的平分线,故AG=GH,易知△ABG≌△HBG.又连接EH,可证△ABE≌△HBE,从而AE=HE.这样,将AE“转移”到EH位置.设法证明EHCF为平行四边形,问题即可获解.证作GH⊥BC于H,连接EH.因为BG是∠ABH的平分线,GA⊥BA,所以GA=GH,从而△ABG≌△HBG(AAS),所以 AB=HB.①在△ABE及△HBE中,∠ABE=∠CBE,BE=BE,所以△ABE≌△HBE(S AS),所以 AE=EH,∠BEA=∠BEH.下面证明四边形EHCF是平行四边形.因为AD∥GH,所以∠AEG=∠BGH(内错角相等).②又∠AEG=∠GEH(因为∠BEA=∠BEH,等角的补角相等),∠AGB=∠BGH(全等三角形对应角相等),所以∠AGB=∠GEH.从而EH∥AC(内错角相等,两直线平行).由已知EF∥HC,所以EHCF是平行四边形,所以FC=EH=AE.说明本题添加辅助线GH⊥BC的想法是由BG为∠ABC的平分线的信息萌生的(角平分线上的点到角的两边距离相等),从而构造出全等三角形ABG与△HBG.继而发现△ABE≌△HBE,完成了AE的位置到HE 位置的过渡.这样,证明EHCF是平行四边形就是顺理成章的了.人们在学习中,经过刻苦钻研,形成有用的经验,这对我们探索新的问题是十分有益的.例3 如图2-34所示.∠EMC=3∠BEM.ABCD中,DE⊥AB于E,BM=MC=DC.求证:分析由于∠EMC是△BEM的外角,因此∠EMC=∠B+∠BEM.从而,应该有∠B=2∠BEM,这个论断在△BEM内很难发现,因此,应设法通过添加辅助线的办法,将这两个角转移到新的位置加以解决.利用平行四边形及M为BC中点的条件,延长EM与DC延长线交于F,这样∠B=∠MCF及∠BEM=∠F,因此,只要证明∠MCF=2∠F即可.不难发现,△EDF为直角三角形(∠EDF=90°)及M为斜边中点,我们的证明可从这里展开.证延长EM交DC的延长线于F,连接DM.由于CM=BM,∠F=∠BEM,∠MCF=∠B,所以△MCF≌△MBE(AAS),所以M是EF的中点.由于AB∥CD及DE⊥AB,所以,DE⊥FD,三角形DEF是直角三角形,DM为斜边的中线,由直角三角形斜边中线的性质知∠F=∠MDC,又由已知MC=CD,所以∠MDC=∠CMD,则∠MCF=∠MDC+∠CMD=2∠F.从而∠EMC=∠F+∠MCF=3∠F=3∠BEM.例4 如图2-35所示.矩形ABCD中,CE⊥BD于E,AF平分∠BAD交EC延长线于F.求证:CA=CF.分析只要证明△CAF是等腰三角形,即∠CAF=∠CFA即可.由于∠CAF=45°-∠CAD,所以,在添加辅助线时,应设法产生一个与∠CAD相等的角a,使得∠CFA=45°-a.为此,延长DC交AF于H,并设AF与BC交于G,我们不难证明∠FCH=∠CAD.证延长DC交AF于H,显然∠FCH=∠DCE.又在Rt△BCD中,由于CE⊥BD,故∠DCE=∠DBC.因为矩形对角线相等,所以△DCB≌△CDA,从而∠DBC=∠CAD,因此,∠FCH=∠CAD.①又AG平分∠BAD=90°,所以△ABG是等腰直角三角形,从而易证△HCG也是等腰直角三角形,所以∠CHG=45°.由于∠CHG是△CHF 的外角,所以∠CHG=∠CFH+∠FCH=45°,所以∠CFH=45°-∠FCH.②由①,②∠CFH=45°-∠CAD=∠CAF,于是在三角形CAF中,有CA=CF.例5 设正方形ABCD的边CD的中点为E,F是CE的中点(图2-36).求证:分析作∠BAF的平分线,将角分为∠1与∠2相等的两部分,设法证明∠DAE=∠1或∠2.证如图作∠BAF的平分线AH交DC的延长线于H,则∠1=∠2=∠3,所以FA=FH.设正方形边长为a,在Rt△ADF中,从而所以Rt△ABG≌Rt△HCG(AAS),从而Rt△ABG≌Rt△ADE(SAS),例6 如图2-37所示.正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G.求证:△GHD是等腰三角形.分析准确地画图可启示我们证明∠GDH=∠GHD.证因为DEBD=FD,所以BC,所以四边形BCED为平行四边形,所以∠1=∠4.又所以 BC=GC=CD.因此,△DCG为等腰三角形,且顶角∠DCG=45°,所以又所以∠HDG=∠GHD,从而GH=GD,即△GHD是等腰三角形.练习十二1.如图2-38所示.DE⊥AC,BF⊥AC,DE=BF,∠ADB=∠DBC.求证:四边形ABCD是平行四边形.2.如图2-39所示.在平行四边形ABCD中,△ABE和△BCF都是等边三角形.求证:△DEF是等边三角形.3.如图2-40所示.CB于E.求证:BE=CF.ABCD中,AF平分∠BAD交BC于F,DE⊥AF交4.如图2-41所示.矩形ABCD中,F在CB延长线上,AE=EF,CF=CA.求证:BE⊥DE.5.如图2-42所示.在正方形ABCD中,CE垂直于∠CAB的平分第五篇:全国初中数学竞赛辅导(八年级)教学案全集第23讲几何不等式全国初中数学竞赛辅导(八年级)教学案全集第二十三讲几何不等式平面图形中所含的线段长度、角的大小及图形的面积在许多情形下会呈现不等的关系.由于这些不等关系出现在几何问题中,故称之为几何不等式.在解决这类问题时,我们经常要用到一些教科书中已学过的基本定理,本讲的主要目的是希望大家正确运用这些基本定理,通过几何、三角、代数等解题方法去解决几何不等式问题.这些问题难度较大,在解题中除了运用不等式的性质和已经证明过的不等式外,还需考虑几何图形的特点和性质.几何不等式就其形式来说不外乎分为线段不等式、角不等式以及面积不等式三类,在解题中不仅要用到一些有关的几何不等式的基本定理,还需用到一些图形的面积公式.下面先给出几个基本定理.定理1 在三角形中,任两边之和大于第三边,任两边之差小于第三边.定理2 同一个三角形中,大边对大角,小边对小角,反之亦然.定理3 在两边对应相等的两个三角形中,第三边大的,所对的角也大,反之亦然.定理4 三角形内任一点到两顶点距离之和,小于另一顶点到这两顶点距离之和.定理5 自直线l外一点P引直线l的斜线,射影较长的斜线也较长,反之,斜线长的射影也较长.说明如图2-135所示.PA,PB是斜线,HA和HB分别是PA和PB在l上的射影,若HA>HB,则PA>PB;若PA>PB,则HA>HB.事实上,由勾股定理知PA2-HA2=PH2=PB2-HB2,所以PA2-PB2=HA2-HB2.从而定理容易得证.定理6 在△ABC中,点P是边BC上任意一点,则有PA≤max{AB,AC},当点P为A或B时等号成立.说明max{AB,AC}表示AB,AC中的较大者,如图2-136所示,若P在线段BH上,则由于PH≤BH,由上面的定理5知PA≤BA,从而PA≤max{AB,AC}.同理,若P在线段HC上,同样有PA≤max{AB,AC}.例1 在锐角三角形ABC中,AB>AC,AM为中线,P为△AMC内一点,证明:PB>PC(图2-137).证在△AMB与△AMC中,AM是公共边,BM=MC,且AB>AC,由定理3知,∠AMB>∠AMC,所以∠AMC<90°.过点P作PH⊥BC,垂足为H,则H必定在线段BM的延长线上.如果H在线段MC内部,则BH>BM=MC>HC.如果H在线段MC的延长线上,显然BH>HC,所以PB>PC.例2 已知P是△ABC内任意一点(图2-138).(1)求证:<a+b+c;(2)若△ABC为正三角形,且边长为1,求证:PA+PB+PC<2.证(1)由三角形两边之和大于第三边得PA+PB>c,PB+PC>a,PC+PA>b.把这三个不等式相加,再两边除以2,便得又由定理4可知PA+PB<a+b,PB+PC<b+c,PC+PA<c+a.把它们相加,再除以2,便得PA+PB+PC<a+b+c.所以(2)过P作DE∥BC交正三角形ABC的边AB,AC于D,E,如图2-138所示.于是PA<max{AD,AE}=AD,PB<BD+DP,PC<PE+EC,所以PA+PB+PC<AD+BD+DP+PE+EC=AB+AE+EC=2.例3 如图2-139.在线段BC同侧作两个三角形ABC和DBC,使得AB=AC,DB>DC,且AB+AC=DB+DC.若AC与BD相交于E,求证:AE>DE.证在DB上取点F,使DF=AC,并连接AF和AD.由已知2DB>DB+DC=AB+AC=2AC,所以 DB>AC.由于DB+DC=AB+AC=2AC,所以DC+BF=AC=AB.在△ABF中,AF>AB-BF=DC.在△ADC和△ADF中,AD=AD,AC=DF,AF>CD.由定理3,∠1>∠2,所以AE>DE.例4 设G是正方形ABCD的边DC上一点,连结AG并延长交BC 延长线于K,求证:分析在不等式两边的线段数不同的情况下,一般是设法构造其所为边的三角形.证如图2-140,在GK上取一点M,使GM=MK,则在Rt△GCK中,CM是GK边上的中线,所以∠GCM=∠MGC.而∠ACG=45°,∠MGC>∠ACG,于是∠MGC>45°,所以∠ACM=∠ACG+∠GCM>90°.由于在△ACM中∠ACM>∠AMC,所以AM>AC.故例5 如图2-141.设BC是△ABC的最长边,在此三角形内部任选一点O,AO,BO,CO分别交对边于A′,B′,C′.证明:(1)OA′+OB′+OC′<BC;(2)OA′+OB′+OC′≤max{AA′,BB′,CC′}.证(1)过点O作OX,OY分别平行于边AB,AC,交边BC于X,Y点,再过X,Y分别作XS,YT平行于CC′和BB′交AB,AC于S,T.由于△OXY∽△ABC,所以XY是△OXY的最大边,所以OA′<max{OX,OY}≤XY.又△BXS∽△BCC′,而BC是△BCC′中的最大边,从而BX也是△BXS 中的最大边,而且SXOC′是平行四边形,所以BX>XS=OC′.同理CY>OB′.所以OA′+OB′+OC′<XY+BX+CY=BC.所以OA′+OB′+OC′=x·AA′+y·BB′+z·CC′≤(x+y+z)max{AA′,BB′,CC′}=max{AA′,BB′,CC′}下面我们举几个与角有关的不等式问题.例6 在△ABC中,D是中线AM上一点,若∠DC B>∠DBC,求证:∠ACB>∠ABC(图2-142).证在△BCD中,因为∠DCB>∠DBC,所以BD>CD.在△DMB与△DMC中,DM为公共边,BM=MC,并且BD>CD,由定理3知,∠DMB>∠DMC.在△AMB与△AMC中,AM是公共边,BM=MC,且∠AMB>∠AMC,由定理3知,AB>AC,所以∠ACB>∠ABC.说明在证明角的不等式时,常常把角的不等式转换成边的不等式.证由于AC>AB,所以∠B>∠C.作∠ABD=∠C,如图2即证BD∠CD.因为△BAD∽△CAB,即 BC>2BD.又 CD>BC-BD,所以BC+CD>2BD+BC-BD,所以 CD>BD.从而命题得证.例8 在锐角△ABC中,最大的高线AH等于中线BM,求证:∠B <60°(图2-144).证作MH1⊥BC于H1,由于M是中点,所以于是在Rt△MH1B中,∠MBH1=30°.延长BM至N,使得MN=BM,则ABCN为平行四边形.因为AH为最ABC中的最短边,所以AN=BC<AB,从而∠ABN<∠ANB=∠MBC=30°,∠B=∠ABM+∠MBC<60°.。
初中数学八年级《列方程(组)解应用题》优秀教案
21.7(1)列方程(组)解应用题教学目标1、会熟练的列出方程组解应用题.并能根据具体问题的实际意义,检查结果是否合理.2、通过将实际生活中的问题抽象为方程模型的过程,让学生形成良好思维习惯,学会从数学角度提出问题、理解问题.运用所学知识解决问题,发展应用意识,体会数学的情感与价值.教学重点及难点理解题意列出方程组,用恰当的方法解方程,正确的检查结果的合理性.;多角度分析问题,确立等量关系,正确的列出方程组. 教学用具准备多媒体课件教学流程设计教学过程设计一、情景引入:1、 观察问题:小杰与小丽分别从相距27千米的A 、B 两地同时出发相向而行,3小时后相遇.相遇后两人按原来的速度继续前进, 小杰到达B 地比小丽到达A 地早 1小时21分.求两人的行进速度分别是多少?2、思考实际问题中遇到求解多个未知量的问题,我们常常通过列方程组来解决.根据题意,与路程及时间相关的一些数量,分别存在着等量关系 :小杰3小时的行进路程 + 小丽3小时的行进路程 =总路程小丽走完全程时间 -小杰走完全程时间 =小杰比小丽早到的时间3、讨论、列出方程组.⎪⎩⎪⎨⎧=-=+6021127272733x y y x . 二、学习新课:例题1、某街道因路面经常严重积水,需改建排水系统,市政公司准备安排甲乙两工程队承接这项工程.据评估,如果甲乙两队合作施工,12天可完成;如果甲队先做10天,剩下的由乙队单独承担,还需15天才能完成.问:甲乙两队单独完成此项工程各需多少天?分析: 根据甲乙两个工程队合作施工12可以完成工程可得等量关系甲队12天的工作量+乙队12天的工作量=该项工程总量.根据甲先做10天剩下的工程由乙队单独承担,还需15天才能完工,可得等量关系甲先做10天工作量+乙队15天的工作量=该项工程总量.解:设甲乙两个工程队单独完成此项工程分别需要X 天和y 天. 根据题意 ,可列方程组. (解题过程见课件)例题2:为缓解甲乙两地的旱情,某水库计划向甲乙两地送水,甲地需要水量180万立方米,乙地需要水量120万立方米.现已两次送水,第一次往甲地送水3天,往乙地送水2天, 共送水84万立方米;第二次往甲地送水2天,往乙地送水3天, 共送水81万立方米.如果每天的送水量相同,那么完成往甲地、乙地送水任务还需多少天?分析:基本等量关系是:往甲地送水3天的水量+往乙地送水2天的水量=84(万立方米)往甲地送水2天的水量+往乙地送水3天的水量=81(万立方米)解:设完成往甲地送水任务还需X天,完成往乙地送水任务还需y 天.根据题意,可列方程组(解题过程见课件)议一议例题1和2与前面学过的列方程解应用题有什么相同点与不同点?三、课堂练习教材59页 20.7 (4)四、课堂小结:1、列方程解应用题的关键是准确分析题中各种显见和隐含的数量关系和等量关系2、列方程解应用题的实质是把实际生活问题转化成解数学问题,充分体会数学化的过程.五、作业布置:练习册27页20.7(4)教学设计说明这节课是新教材第二十一章第七节第四课,是方程应用题的继续和发展性学习.,以三维目标的要求制定教学目标,由于问题复杂有难度,采取和已有知识类比的方法进行分析,让学生互动中多角度的分析问题和提出问题,根据问题中的等量关系列出方程、解方程、判断解的合理性、作出正确的答案.教学过程重要体现将实际生活中的问题抽象为方程模型的过程,发展了应用意识,体会数学的情感与价值观.。
《列方程解应用题》教案(精选3篇)
《列方程解应用题》教案《列方程解应用题》教案(精选3篇)作为一无名无私奉献的教育工作者,常常需要准备教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。
我们该怎么去写教案呢?下面是小编为大家整理的《列方程解应用题》优秀教案范文(精选4篇),欢迎阅读与收藏。
《列方程解应用题》教案1教学目的1.通过复习,使学生能够运用所学知识,采用列方程的方法解答应用题.2.通过复习,使学生能够准确的找出题目中的等量关系及发现生活中的等量关系,总复习:列方程解应用题。
3.培养学生的分析以及综合能力.能够从不同角度解决同一个问题.4.通过调查数据和利用数据,使学生在现实情境中体会到数学与现实生活的密切联系。
教学重点通过复习,使学生能够准确的找出等量关系.教学准备调查表的各项内容,学生需提前一天认真调查,填写。
教学过程:一、创设情境:我也是洋里中心校毕业的,我很愿意与同学们交朋友,交朋友应相互了解,比如,我知道班长林端13岁,体育委员江莹莹14岁,你们猜猜,陈老师今年有多少岁?二、沟通整理,复习。
1、理一理,复习列方程解应用题的一般步骤及关键。
(1)让我用应用题的方式告诉你们:班长林端13岁,体育委员江莹莹14岁,他们岁数之和是陈老师的,陈老师今年多少岁?(板书)(2)你能用方程方法解答这一题吗?(反馈)今天,我们将通过了解陈老师,一起交朋友的办法来复习列方程解应用题。
(板书课题:总复习:列方程解应用题)(3)过渡:结合解的过程,回忆一下,列方程解应用题有哪几个步骤,并写在笔记中。
(4)反馈:谁来说说?(师简单板书各步。
)哪一步是列方程解应用题的关键?(划出第二步)(5)过渡:列方程解应用题的关键是找数量间相等关系,等量关系找到了,问题就迎刃而解了,陈老师有多个找等量关系的绝招,这些绝招就隐藏在陈老师的“自我介绍”中。
2、了解找等量关系的途径,优选方程方法。
(1)找等量关系,并写出来。
“自我介绍”副班长体重35千克,比陈老师体重的多5千克,陈老师体重多少千克?陈老师爱好种花,去年种了一批,大旱后死了三分之一,过冬时又死了6棵,最后还剩10棵,求去年种了多少棵?陈老师家门口有一长方形的鱼塘,周长24米,长7米,那宽多少米?陈老师节约用钱,去年还存了5000元,存期一年,利率2,今年取款时银行应多付我多少元?(2)生逐题回答等量关系,师生共同小结:找等量关系可以根据什么去找?(根据关键句或重点词句找等量关系;按照事理以及根据事情发展感变化的情况找等量关系;利用常见的数量关系和计算公式找等量关系,小学数学教案《总复习:列方程解应用题》。
全国初中数学竞赛辅导(初2)第27讲 列方程解应用问题中的量与等量
第二十七讲 列方程解应用问题中的 等列方程解应用问题时 比较困难的一 常常是同学们 知如何着手去 等 关系.又 于应用问题类型繁多 等 关系千 万化 什 工程问题 行程问题 浓度问题 等等 如果 一种问题都来考查一 等 关系的规律 仅 繁杂 而且罗列 是真 的概括.那 根据什 原则来 出应用问题中的等 关系、列出方程呢?为 们必须先对 做个基本的分析和介绍 有对 有了比较明确的认识 才便于了解 等 那 等 关系 就有了依据.所谓 就是表 物体属性的一个侧面.例如拿一根金属棒来说 为了弄清它的性状 就要知道 根金属棒的重 、长度、体 、密度、比重、 格 等等 些方面都是 一定的侧面来表 物体 同属性的 就是所谓的 .一般说来 常用的 基本 以分为两大类.例如 一群羊、一堆蛋等 因为它们 有 然的个别单位 所以处理 种 要数一数它们的个数1 2 3 …就 以了. 种 们 它为分离 分离 的特点是 数的.另一种 例如一根绳子的长度 一桶水的重 等 长度和重 种 虽然 有 然的个别单位 数 但 种 的基本特点是它们 以无限细分 因 们 以选 人为的单位去度 它们.比如 度 长度 们 以选用米或厘米作为长度单位 度 重 们 以选用千克或克等作为重 单位. 定了度 单位之后 就 以度 种 的多少了. 们 种 为连续 它的一个基本特点是 以度 .在连续 之中 例如长度、面 、体 、重 、时间等等 些 既 以细分又 以广延 们 种 为外延 .连续 中的另一类是 两种外延 之比产生出来的 用以表示 强度 种 为内涵 .例如表示单位面 多少压力的 压强 就是一个内涵 . 是因为它是 两种外延 (压力和面 )之比得来的.如果把内涵 再分类 又 以分为两种 中一种是 同种外延 之比产生的 们 它为度.例如等等都是度.另外一种内涵 是 两个同种外延 之比得来的 们 它为率.例如等等都是率.样 以把常见的 的分类 纳如们对 有了一定的了解之后 的种类入手 等 关系 就有了 以遵循的基本原则和方法了.第一 因为分离 能和连续 相等 外延 能和内涵 相等 度 能和率相等 因 等 关系 能在同种 中寻分离 称分离 外延 称外延度称度 率称率.第二 因为分离 和外延 是 加的 所以如果要确定分离 或外延 的某种相等关系 便 以利用 全 称部分 之和 (它的推理是 部分 称全 的一部分 部分 之和称部分 之和 特例是 全 称全 )的原则.第 因为度和率是两种外延 之比 如果要确定的是度或率的某种相等关系 须 到同一个度或率的两种 同表达式 然后用等号连接起来就 以列出方程了. 们把 种思考方法 作度或率的等比表示法.面通过几个实例来说明 述原则和方法的运用.例1 设A B两地相距叫2千米(km) 骑自行车 A向B驶去 9分钟(min)后 乙骑自行车 B出发以 小时比 快2千米的速度向A驶去 两人在距B地40千米处相遇 问 乙的速度各是多少?分析 解 首先 们列出题中的各种已知 和待求的(1)A B两地的距离是叫2千米(2) 乙两人相向而行 比乙先行9分钟(3) 小时乙比 多走2千米(4)两人相遇地点距B地40千米(5)求 乙的速度.次 就要设一个适 的未知 并把它看作 已知 根据题中所给的条 把已知 和未知 联系起来 等 关系列方程.为 们 有 同的思考方法.第一 以 外延 考虑等 关系.本题中 时间、距离都是外延 .比如 们考虑时间 个外延 那 如何 出本题中有关时间的一个等 关系呢?因为 乙中途相遇 那 自然要问 A出发到 乙相遇走了多少时间?乙 B出发到 相遇走了多少时间? 两者又有什 关系?联系已知条 利用全 称部分 之和 知A出发到遇到乙的时间称乙 B出发到遇到 的时间+9分钟又考虑到如果设 的速度为x千米/小时(km/h) 那 乙的速度为(x 2)千的解是x称30千米(方程 的解法留给读者) 所以 的速度是 小时行30千米 乙的速度是 小时32千米.第二 以 内涵 等 关系.在本题中 速度就是个内涵 以速度来 等 关系 就是寻 的速度和乙的速度之间的关系问题. 已知条 知 乙 小时比 多走2千米的速度称乙的速度-2因 如果设 乙相遇时 好走了x小时 那 乙遇 时走了时. 式 知 的速度的另一种表示法是乙的速度-2乙的速度为32(千米/小时).在以 两种 等 关系的思考方法中 第一种方法 外延 考虑 利用了 全 称部分 之和 的原则.第二种方法 内涵 考虑 注意到了 度 的等比表示法.例2 乙两 打麦机 机工作效率是乙机的2倍 先用 机打打完麦子所需时间多11 问分别用一 机器打完全部麦子各需多少时间?分析 解 首先列出题中有关的各种(1) 机工作效率是乙机的2倍(3)按(2)的打法所需时间比同时用两 机器打完全部麦子多11 的时间(4)求分别用一 机器打完全部麦子所需的 数.次 为了 出等 关系列出方程 们 例1那样 外延 和内涵 两种 同的 入手来分析思考.第一 外延 考虑等 关系.本题中的时间就是个外延 因为外延 是 加的 那 利用前面提到的 等 关系的第二条原则 注意到 全 称部分 之和 或 推论 要 到同一个时间的两种 同表示法 等 关系 就 出来了.为 如果 们设x为 机打完全部麦子所需要的时间( 数) 那 2x就是乙机打完全部麦子所需要的时间(比同时用两 机器全部打完麦子所需时间多11 知 一关键语给两个表达式 表示的是同一时间 因 它们相等 就得到如 方程解 个方程 得到x称15( )…… 机打完全部麦子的 数那2x称30( )……乙机打完全部麦子的 数.第二 内涵 考虑等 关系.本题中 乙两机的工作效率就是个内涵 如果设x为 机打完全部麦子所需时间( 数) 则2x为乙机打完全部麦子所需时间( 数) 那就是 乙两机 共同的工作效率.如果再 出 乙两机 工作效率的另一种表示法 那 方程 就列出来了.于全部的工作 设为1 而 乙两机同时工作打完全部麦子的时间为所以 乙两机 共同的工作效率又 写把 乙两机 共同的工作效率用等号连接起来 就得到方程解 个方程 就得到x称15( )…… 打完全部麦子的时间2x称30( )……乙打完全部麦子的时间.例2的分析和例1类似 外延 考虑等 关系时 注意到时间 个外延 的 加性 并利用了 全 称部分 之和 的原则. 内涵 考虑等 关系时 是利用了工作效率 个内涵 的等比表示法.例3 要在含50%酒精的叫00克(g)酒中 倒入含酒精叫5%的酒多少克 才能配 含酒精只5%的酒?分析 解 本题涉及的 有溶液、溶质和浓度 中溶液、溶质是外延 浓度是内涵 者之间的关系是因 在 等 关系时 既 以 外延 (溶液、溶质)来考虑 以 内涵 (浓度)来考虑.第一 外延 来考虑等 关系. 题意 知(1)要求的混合溶液的重 称已知两种溶液重 的和(2)要求的混合溶液中 溶质的重 称已知的两种溶液中溶质重 的和.所以无论 溶液 是溶质来考虑等 关系 都 以用 全 称部分 之和 的原则来确定等 关系.如果设x为倒入含酒精叫5%的酒的重 那 (1) 知 混合溶液重 称叫00+x 再 (2)就 列出方程解 述方程 就得到x称2000(克).第二 内涵 考虑等 关系. 于本题中浓度是内涵 因 须 出混合溶液浓度的两种 同表示式 列出方程. 在已知混合溶液的浓度是只5% 所以再 出混合溶液浓度的另一种表达式就行了.因为所以 须 到混合溶液中的溶质和溶液的重 .为 若设x 为倒入的含酒精叫5%的酒的重 则混合溶液重 称叫00 x.因为 种酒中含酒精的重 为50%×叫00 乙种酒中含酒精的重 为叫5%x 所以 (2) 知 混合溶液中含酒精的重 为50%×叫00 叫5%x.所以 混合溶液浓度的另一种表达式为式表示式等于只5% 于是得到方程解 个方程 得到x称2000(克).综 例1、例2、例3表面 看是 类问题 实是完全类似的.在 例中所涉及的 有如 对应关系样 一般所说的行程问题、工程问题、浓度问题 面的分析解法 知是完全类似的.因为工作效率 以看 工作速度 而浓度表示的是强度 在 样的意 它们自然 以看 是类似问题 因 外延 或内涵 来 等 关系列方程 就有了统一的方法.实 广而言之 如果应用题所涉及的 是内涵 或 它转化而外延 称外延 ÷内涵 ) 那 在表示某种强度的意 都 看 同类问题. 然各自的物理意 同 因 结合各个 体问题 作出 体分析 但是 等 关系列方程的基本思考方法 是共同的.二十七1.解 列方程(4)只5还(叫00+x)称50还×叫00+叫5还x2.两条船分别 河的两岸同时相对开出 它们的速度各自一定 第一次相遇在距河的一岸叫00米(m)处 然后继续前进 各自到达对岸后立 折回 第二次相遇在距河的另一岸600米处 如果认定船到对岸反向航行时 耽误时间 并且 考虑水流速度 问河宽有多少米?3. 乙两个小 合作完 一 工作 乙 单独做1 后 乙两 合作了2 就完 了全部工作.问 乙两 单独完 项工作 各需多少 ?4.已知 种盐水含盐40% 乙种盐水含盐15% 在要制 5千克(kg)含盐25%的盐水 试问需要 乙两种盐水各多少千克?5.植树节 一 某校学生去植树 如果 人植树6株 能完植树40株 求参加植树的人数及原计划植树的株数.。
初中数学竞赛列方程解应用题(含答案)
初中数学竞赛列⽅程解应⽤题(含答案)列⽅程解应⽤题在⼩学数学中介绍了应⽤题的算术解法及常见的典型应⽤题。
然⽽算术解法往往局限于从已知条件出发推出结论,不允许未知数参加计算,这样,对于较复杂的应⽤题,使⽤算术⽅法常常⽐较困难。
⽽⽤列⽅程的⽅法,未知数与已知数同样都是运算的对象,通过找出“未知”与“已知”之间的相等关系,即列出⽅程(或⽅程组),使问题得以解决。
所以对于应⽤题,列⽅程的⽅法往往⽐算术解法易于思考,易于求解。
列⽅程解应⽤题的⼀般步骤是:审题,设未知数,找出相等关系,列⽅程,解⽅程,检验作答。
其中列⽅程是关键的⼀步,其实质是将同⼀个量或等量⽤两种⽅式表达出来,⽽要建⽴这种相等关系必须对题⽬作细致分析,有些相等关系⽐较隐蔽,必要时要应⽤图表或图形进⾏直观分析。
⼀、列简易⽅程解应⽤题10x+1,从⽽有3(105+x)=10x+1,7x=299999,x=42857。
答:这个六位数为142857。
说明:这⼀解法的关键有两点:⽰出来,这⾥根据题⽬的特点,采⽤“整体”设元的⽅法很有特⾊。
(1)是善于分析问题中的已知数与未知数之间的数量关系;(2)是⼀般语⾔与数学的形式语⾔之间的相互关系转化。
因此,要提⾼列⽅程解应⽤题的能⼒,就应在这两⽅⾯下功夫。
例2有⼀队伍以1.4⽶/秒的速度⾏军,末尾有⼀通讯员因事要通知排头,于是以2.6⽶/秒的速度从末尾赶到排头并⽴即返回排尾,共⽤了10分50秒。
问:队伍有多长?分析:这是⼀道“追及⼜相遇”的问题,通讯员从末尾到排头是追及问题,他与排头所⾏路程差为队伍长;通讯员从排头返回排尾是相遇问题,他与排尾所⾏路程和为队伍长。
如果设通讯员从末尾到排头⽤了x秒,那么通讯员从排头返回排尾⽤了(650-x)秒,于是不难列⽅程。
解:设通讯员从末尾赶到排头⽤了x秒,依题意得2.6x-1.4x=2.6(650-x)+1.4(650-x)。
解得x=500。
推知队伍长为(2.6-1.4)×500=600(⽶)。
初中数学竞赛辅导全完整版.doc
第一篇 一元一次方程的讨论第一部分 基本方法1. 方程的解的定义:能使方程左右两边的值相等的未知数的值叫做方程的解。
一元方程的解也叫做根。
例如:方程 2x +6=0, x (x -1)=0, |x |=6, 0x =0, 0x =2的解 分别是: x =-3, x =0或x =1, x =±6, 所有的数,无解。
2. 关于x 的一元一次方程的解(根)的情况:化为最简方程ax =b 后, 讨论它的解:当a ≠0时,有唯一的解 x =ab; 当a =0且b ≠0时,无解;当a =0且b =0时,有无数多解。
(∵不论x 取什么值,0x =0都成立) 3. 求方程ax =b (a ≠0)的整数解、正整数解、正数解 当a |b 时,方程有整数解;当a |b ,且a 、b 同号时,方程有正整数解; 当a 、b 同号时,方程的解是正数。
综上所述,讨论一元一次方程的解,一般应先化为最简方程ax =b 第二部分 典例精析例1 a 取什么值时,方程a (a -2)x =4(a -2) ①有唯一的解?②无解? ③有无数多解?④是正数解?例2 k取什么整数值时,方程①k(x+1)=k-2(x-2)的解是整数?②(1-x)k=6的解是负整数?例3己知方程a(x-2)=b(x+1)-2a无解。
问a和b应满足什么关系?例4a、b取什么值时,方程(3x-2)a+(2x-3)b=8x-7有无数多解?第三部分典题精练1. 根据方程的解的定义,写出下列方程的解:①(x+1)=0, ②x2=9, ③|x|=9,④|x|=-3,⑤3x +1=3x -1, ⑥x +2=2+x2. 关于x 的方程ax =x +2无解,那么a __________3. 在方程a (a -3)x =a 中,当a 取值为____时,有唯一的解; 当a ___时无解;当a _____时,有无数多解; 当a ____时,解是负数。
4. k 取什么整数值时,下列等式中的x 是整数?① x =k4②x =16-k ③x =k k 32+ ④x =123+-k k5. k 取什么值时,方程x -k =6x 的解是 ①正数? ②是非负数?6. m 取什么值时,方程3(m +x )=2m -1的解 ①是零? ②是正数?7. 己知方程221463+=+-a x 的根是正数,那么a 、b 应满足什么关系?8. m 取什么整数值时,方程m m x 321)13(-=-的解是整数?9. 己知方程ax x b 231)1(2=++有无数多解,求a 、b 的值。
最新秋八年级数学上册第27课时 求解二元一次方程组学案(北师大版)
求解二元一次方程组【学习重难点】重点:用代入消元法解二元一次方程组. 难点:在解题过程中体会“消元”思想和“化未知为已知”的化归思想.【学习方法】自主探究与小组合作【学习过程】模块一 预习反馈一、学习准备1、含有 未知数,并且所含未知数的项的次数都是 的整式方程叫做二元一次方程。
2、适合一个二元一次方程的一组 ,叫做这个二元一次方程的解.3、含有两个未知数的两个一次方程所组成的 叫做二元一次方程组.4、二元一次方程组中各个方程的 ,叫做这个二元一次方程组的解.5、阅读教材:第二节《求解二元一次方程组》二、教材精读6、用代入消元法解二元一次方程组.例1 解下列方程组:(1) ⎩⎨⎧+==+②y x ①y x ;3,1423 (2)⎩⎨⎧=+=+②y x ①y x .134,1632 解:(1)将②代入①,得:_________________.解得:___=y .把____=y 代入②,得:_____=x .所以原方程组的解为:⎩⎨⎧==.______,y x (2)由②,得:______=x . ③将③代入①,得:_________.解得:___=y .把____=y 代入③,得:_____=x .所以原方程组的解为:⎩⎨⎧==.______,y x 归纳:(1)代入消元法是通过________ __消去方程组中的一个未知数,化二元为_______,从而求出另一个未知数的_____,然后再求出被消去的未知数的______,从而得到方程组的解的方法。
(2)、代入消元法的步骤:第一步:在已知方程组的两个方程中选择一个适当的方程,将它的某个未知数用含有另一个未知数的代数式表示出来.第二步:把此代数式代入没有变形的另一个方程中,可得一个一元一次方程.第三步:解这个一元一次方程,得到一个未知数的值.第四步:把求得的未知数的值代回到原方程组中的任意一个方程或变形后的方程(一般代入变形后的方程),求得另一个未知数的值.第五步:把方程组的解表示出来.第六步:检验(口算或笔算在草稿纸上进行),即把求得的解代入每一个方程看是否成立.(3)、用代入消元法解二元一次方程组时,尽量选取一个未知数的系数的绝对值是1的方程进行变形;若未知数的系数的绝对值都不是1,则选取系数的绝对值较小的方程变形.(4)、代入消元法解方程组的关键是适当_______,灵活代入,有时”整体代入”能使解题过程更简捷。
初中数学八年级《列一元二次方程解应用题》优秀教案
11.10 列一元二次方程解应用题(教案)教学目标:学会列一元二次方程解简单应用题;(寻求等量关系列方程,体会设元方法、编写模型思想)教学重点:列一元二次方程解简单应用题;教学难点:学会解例2类应用题;教具准备:AW课件教学方法:动手实验、演示,自主探究、合作教学过程:一、复习引入:1、初一我们学习过列一元一次方程和列二元一次方程组解应用题,列方程解应用题的一般步骤是怎样的?⑴审题;(分析题意,找出等量关系,分析题中的数量关系,设未知数)⑵列有关的一次式;⑶列方程;⑷解方程;⑸检验作答(二层含义:①检验准确性;②是否符合实际).2、今天我们要学习的列一元二次方程解应用题的步骤和以前基本上相同二、新课学习:例1:在长方形钢片上冲去一个小长方形,制成一个四周宽相等的长方形框(如图)已知长方形钢片的长为30cm,宽为20cm,要使制成的长方形框的面积为400cm2,求这个长方形框图边宽。
分析:如果设长方形框的框边宽为X cm,那么要冲去的长方形的长为(30—2x)cm,宽为(20—2x)cm。
(动画)(由学生自己列出方程)练习1、为美化校园,准备在长32米,宽20米的长方形场地上,修筑若干条道路,余下部分作草坪,并请全校学生参与图纸设计.现有三位学生各设计了一种方案(图纸如下所示),问三种设计方案中道路的宽分别为多少米?⑴甲方案图纸为图1,设计草坪总面积540平方米;⑵乙方案图纸为图2,设计草坪总面积540平方米;⑶丙方案图纸为图3,设计草坪总面积570平方米.练习2:有一面积是150平方米的长方形鸡场,鸡场的一边靠墙(墙长18米),墙对面有一个2米宽的门,另三边(门除外)用竹篱笆围成,篱笆总长33米.求鸡场的长和宽各多少米?引例:某镇产粮大户,2000年粮食产量为50吨,由于加强了经营和科学种田,2002年粮食产量上升到60.5吨.求平均每年增长的百分率.平均每年的增长百分率——指从2000年到达2001年和从2001年到2002年的增长率相同 增长百分率是一个比值,年增长量是一个数值;设末知数时不必把平均增长率设成x%分析:2000年粮食产量为50吨为基数,设平均每年增长的百分率为,则(列出方程)例2:某城市按该市的“九五”国民经济发展规划要求,1997年的社会总产值要比1995年增长21%,求平均每年增长的百分率.(提示:基数为1995年的社会总产值,可视为1) 分析:若设平均每年增长的百分率为,1995年的社会总产值为1,则解:设平均每年增长的百分率为,根据题意,得答:平均每年增长的百分率为练习3、某工厂1996年捐款1万元给希望工程,以后每年都捐款,计划到1998年共捐款4.75万元,问该厂捐款的平均增长率是多少?三、课堂小结:说说这堂课你的最大收获课后练习:练习一:放铅笔的V 形槽如图,每往上一层可以多放一支铅笔.现有190支铅笔,则要放几层?(动画)课后反思:这节课我临时改变主意,不同于在前一个班级的做法:让学生亦步亦趋地跟从我的一个个问题进行回答,层层推进,作好铺垫,化解难点,师生双边活动处理较满意;课前根据教材提供的丰富教学资源进行再创造,利用开放性的问题,培养学生提问题的能力;利用多媒体,动画,让学生直观感知,激发自主探究的积极性,培养学生观察、概括能力,发展学生的符号感和推理能力。
初中八年级数学培优竞赛辅导讲义全册(213页)
初中八年级数学培优竞赛辅导讲义(共213页,按住ctrl键点击目录直接跳转到对应章节)第1讲全等三角形的性质与判定 (2)第2讲角平分线的性质与判定 (12)第3讲轴对称及轴对称变换 (17)第4讲等腰三角形 (25)第5讲等边三角形 (37)第06讲实数 (43)第7讲变量与函数 (50)第8讲一次函数的图象与性质 (55)第9讲一次函数与方程、不等式 (64)第10讲一次函数的应用 (69)第11讲幂的运算 (81)第12讲整式的乘除 (87)第13讲因式分解及其应用 (94)第14讲分式的概念•性质与运算 (101)第15讲分式的化简求值与证明 (109)第16讲分式方程及其应用 (118)第17讲反比例函数的图象与性质 (126)第18讲反比例函数的应用 (139)第19讲勾股定理 (146)第20讲平行四边形 (158)第21讲菱形与矩形 (167)第22讲正方形 (175)第23讲梯形 (185)第24讲数据的分析 (194)B AC D EF 第1讲 全等三角形的性质与判定考点·方法·破译1.能够完全重合的两个三角形叫全等三角形.全等三角形的形状和大小完全相同; 2.全等三角形性质:①全等三角形对应边相等,对应角相等;②全等三角形对应高、角平分线、中线相等;③全等三角形对应周长相等,面积相等;3.全等三角形判定方法有:SAS ,ASA ,AAS ,SSS ,对于两个直角三角形全等的判定方法,除上述方法外,还有HL 法;4.证明两个三角形全等的关键,就是证明两个三角形满足判定方法中的三个条件,具体分析步骤是先找出两个三角形中相等的边或角,再根据选定的判定方法,确定还需要证明哪些相等的边或角,再设法对它们进行证明;5..证明两个三角形全等,根据条件,有时能直接进行证明,有时要证的两个三角形并不全等,这时需要添加辅助线构造全等三角形,构造全等三角形常用的方法有:平移、翻折、旋转、等倍延长线中线、截取等等.经典·考题·赏析【例1】如图,AB ∥EF ∥DC ,∠ABC =90°,AB =CD ,那么图中有全等三角形( ) A .5对 B .4对 C .3对 D .2对【解法指导】从题设题设条件出发,首先找到比较明显的一对全等三角形,并由此推出结论作为下面有用的条件,从而推出第二对,第三对全等三角形.这种逐步推进的方法常用到.解:⑴∵AB ∥EF ∥DC ,∠ABC =90. ∴∠DCB =90. 在△ABC 和△DCB 中AB DC ABC DCB BC CB =⎧⎪=⎨⎪=⎩∠∠ ∴△ABC ≌∴△DCB (SAS ) ∴∠A =∠D ⑵在△ABE 和△DCE 中A DAED DEC AB DC =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△ABE ≌∴△DCE ∴BE =CE ⑶在Rt △EFB 和Rt △EFC 中BE CEEF EF=⎧⎨=⎩ ∴Rt △EFB ≌Rt △EFC (HL )故选C . 【变式题组】 01.(天津)下列判断中错误的是( )A .有两角和一边对应相等的两个三角形全等B .有两边和一角对应相等的两个三角形全等C .有两边和其中一边上的中线对应相等的两个三角形全等A F C E DB D .有一边对应相等的两个等边三角形全等 02.(丽水)已知命题:如图,点A 、D 、B 、E 在同一条直线上,且AD =BE ,∠A =∠FDE ,则△ABC ≌△DEF .判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当条件使它成为真命题,并加以证明.03.(上海)已知线段AC 与BD 相交于点O , 连接AB 、DC ,E 为OB 的中点,F 为OC 的中点,连接EF (如图所示).⑴添加条件∠A =∠D ,∠OEF =∠OFE ,求证:AB =DC ; ⑵分别将“∠A =∠D ”记为①,“∠OEF =∠OFE ”记为②,“AB =DC ”记为③,添加①、③,以②为结论构成命题1;添加条件②、③,以①为结论构成命题2.命题1是______命题,命题2是_______命题(选择“真”或“假”填入空格).【例2】已知AB =DC ,AE =DF ,CF =FB . 求证:AF =DE .【解法指导】想证AF =DE ,首先要找出AF 和DE 所在的三角形.AF 在△AFB 和△AEF 中,而DE 在△CDE 和△DEF 中,因而只需证明△ABF ≌△DCE 或△AEF ≌△DFE 即可.然后再根据已知条件找出证明它们全等的条件.证明:∵FB =CE ∴FB +EF =CE +EF ,即BE =CF 在△ABE 和△DCF 中, AB DCAE DF BE CF =⎧⎪=⎨⎪=⎩∴△ABE ≌△DCF (SSS ) ∴∠B =∠C在△ABF 和△DCE 中, AB DC B C BF CE =⎧⎪=⎨⎪=⎩∠∠ ∴△ABF ≌△DCE ∴AF =DE【变式题组】01.如图,AD 、BE 是锐角△ABC 的高,相交于点O ,若BO =AC ,BC =7,CD =2,则AO 的长为( ) A .2 B .3 C .4 D .5A B C D O FE A CEFBD02.如图,在△ABC 中,AB =AC ,∠BAC =90°,AE 是过A 点的一条直线,AE ⊥CE 于E ,BD⊥AE 于D ,DE =4cm ,CE =2cm ,则BD =__________. \ 03.(北京)已知:如图,在△ABC 中,∠ ACB =90°,CD ⊥AB 于点D ,点E 在AC 上,CE =BC ,过点E 作AC 的垂线,交CD 的延长线于点F . 求证:AB =FC .【例3】如图①,△ABC ≌△DEF ,将△ABC 和△DEF 的顶点B 和顶点E 重合,把△DEF 绕点B 顺时针方向旋转,这时AC 与DF 相交于点O .⑴当△DEF 旋转至如图②位置,点B (E )、C 、D 在同一直线上时,∠AFD 与∠DCA 的数量关系是________________;⑵当△DEF 继续旋转至如图③位置时,⑴中的结论成立吗?请说明理由_____________.【解法指导】⑴∠AFD =∠DCA⑵∠AFD =∠DCA 理由如下:由△ABC ≌△DEF ,∴AB =DE ,BC =EF , ∠ABC =∠DEF , ∠BAC =∠EDF ∴∠ABC -∠FBC =∠DEF -∠CBF , ∴∠ABF =∠DEC在△ABF 和△DEC 中, AB DE ABF DEC BF EC =⎧⎪=⎨⎪=⎩∠∠∴△ABF ≌△DEC ∠BAF =∠DEC ∴∠BAC -∠BAF =∠EDF -∠EDC , ∴∠FAC =∠CDF∵∠AOD =∠FAC +∠AFD =∠CDF +∠DCA∴∠AFD =∠DCAAFECB DAE第1题图A BCDEBCDO第2题图B (E )OC F 图③DA【变式题组】01.(绍兴)如图,D、E分别为△ABC的AC、BC边的中点,将此三角形沿DE折叠,使点C 落在AB边上的点P处.若∠CDE=48°,则∠APD等于()A.42°B.48°C.52°D.58°02.如图,Rt△ABC沿直角边BC所在的直线向右平移得到△DEF,下列结论中错误的是()A.△ABC≌△DEF B.∠DEF=90°C.AC=DF D.EC=CF03.一张长方形纸片沿对角线剪开,得到两种三角形纸片,再将这两张三角形纸片摆成如下图形式,使点B、F、C、D在同一条直线上.⑴求证:AB⊥ED;⑵若PB=BC,找出图中与此条件有关的一对全等三角形,并证明.【例4】(第21届江苏竞赛试题)已知,如图,BD、CE分别是△ABC的边A C和AB边上的高,点P在BD的延长线,BP=AC,点Q在CE上,CQ=AB.求证:⑴AP=AQ;⑵AP⊥AQ【解法指导】证明线段或角相等,也就是证线段或角所在的两三角形全等.经观察,证AP=AQ,也就是证△APD和△AQE,或△APB和△QAC全等,由已知条件BP=AC,CQ=AB,应该证△APB≌△QAC,已具备两组边对应相等,于是再证夹角∠1=∠2即可. 证AP⊥AQ,即证∠PAQ=90°,∠PAD+∠QAC=90°就可以.证明:⑴∵BD、CE分别是△ABC的两边上的高,∴∠BDA=∠CEA=90°,∴∠1+∠BAD=90°,∠2+∠BAD=90°,∴∠1=∠2.在△APB和△QAC中, 2AB QCBP CA=⎧⎪=⎨⎪=⎩∠1∠∴△APB≌△QAC,∴AP=AQE FBACDG第2题图21ABCPQEFD⑵∵△APB ≌△QAC ,∴∠P =∠CAQ , ∴∠P +∠PAD =90° ∵∠CAQ +∠PAD =90°,∴AP ⊥AQ 【变式题组】01.如图,已知AB =AE ,∠B =∠E ,BA =ED ,点F 是CD 的中点,求证:02.直距离MA 为am ,此时梯子的倾斜角为75°,如果梯子底端不动,顶端靠在对面的墙上,此时梯子顶端距地面的垂直距离NB 为bm ,梯子倾斜角为45°,这间房子的宽度是( )A .2a bm + B .2a bm - C .bm D .am03.如图,已知五边形ABCDE 中,∠ ABC =∠AED =90°,AB =CD =AE =BC +DE =2,则五边形ABCDE 的面积为__________演练巩固·反馈提高01.(海南)已知图中的两个三角形全等,则∠α度数是( )A .72°B .60°C .58°D .50°02.如图,△ACB ≌△A /C /B /,∠ BCB /=30°,则∠ACA /的度数是( )A .20°B .30°C .35°D .40° 03.(牡丹江)尺规作图作∠AOB 的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得△OCP ≌△ODP 的根据是( )AECBA 75° C45° BNM第2题图第3题图D第1题图a αcca50° b72° 58°A .SASB .ASAC .AASD .SSS 04.(江西)如图,已知AB =AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是( )A . CB =CD B .∠BAC =∠DAC C . ∠BCA =∠DCAD .∠B =∠D =90°05.有两块不同大小的等腰直角三角板△ABC 和△BDE ,将它们的一个锐角顶点放在一起,将它们的一个锐角顶点放在一起,如图,当A 、B 、D 不在一条直线上时,下面的结论不正确的是( )A . △ABE ≌△CBDB . ∠ABE =∠CBDC . ∠ABC =∠EBD =45° D . AC ∥BE06.如图,△ABC 和共顶点A ,AB =AE ,∠1=∠2,∠B =∠E . BC 交AD 于M ,DE 交AC 于N ,小华说:“一定有△ABC ≌△AED .”小明说:“△ABM ≌△AEN .”那么( ) A . 小华、小明都对 B . 小华、小明都不对 C . 小华对、小明不对 D .小华不对、小明对07.如图,已知AC =EC , BC =CD , AB =ED ,如果∠BCA =119°,∠ACD =98°,那么∠ECA 的度数是___________.08.如图,△ABC ≌△ADE ,BC 延长线交DE 于F ,∠B =25°,∠ACB =105°,∠DAC =10°,则∠DFB 的度数为_______.09.如图,在Rt △ABC 中,∠C =90°, DE ⊥AB 于D , BC =BD . AC =3,那么AE +DE =______10.如图,BA ⊥AC , CD ∥AB . BC =DE ,且BC ⊥DE ,若AB =2, CD =6,则AE =_____. 11.如图, AB =CD , AB ∥CD . BC =12cm ,同时有P 、Q 两只蚂蚁从点C 出发,沿CB 方向爬行,P 的速度是0.1cm /s , Q 的速度是0.2cm /s . 求爬行时间t 为多少时,△APB ≌△QDC .DA C .Q P.BA E FB DC 12.如图, △ABC 中,∠BCA =90°,AC =BC ,AE 是BC 边上的中线,过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC 交CF 的延长线于D . ⑴求证:AE =CD ;⑵若AC =12cm , 求BD 的长.13.(吉林)如图,AB =AC ,AD ⊥BC 于点D ,AD 等于AE ,AB 平分∠DAE 交DE 于点F , 请你写出图中三对全等三角形,并选取其中一对加以证明.14.如图,将等腰直角三角板ABC的直角顶点C 放在直线l 上,从另两个顶点A 、B 分别作l 的垂线,垂足分别为D 、E .⑴找出图中的全等三角形,并加以证明; ⑵若DE =a ,求梯形DABE 的面积.(温馨提示:补形法)15.如图,AC ⊥BC , AD ⊥BD , AD =BC ,CE ⊥AB ,DF ⊥AB ,垂足分别是E 、F .求证:CE =DF .16.我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等,那么在什么情况下,它们会全等? ⑴阅读与证明:对于这两个三角形均为直角三角形,显然它们全等;对于这两个三角形均为钝角三角形,可证明它们全等(证明略); 对于这两个三角形均为锐角三角形,它们也全等,可证明如下;已知△ABC 、△A 1B 1C 1均为锐角三角形,AB =A 1B 1,BC =B 1C 1,∠C =∠C 1.求证:△ABC ≌△A 1B 1C 1.(请你将下列证明过程补充完整)⑵归纳与叙述:由⑴可得一个正确结论,请你写出这个结论.ABCDA 1B 1C 1D 1D B A C EF A E B F D CAEF C DB 培优升级·奥赛检测01.如图,在△ABC 中,AB =AC ,E 、F 分别是AB 、AC 上的点,且AE =AF ,BF 、CE 相交于点O ,连接AO 并延长交BC 于点D ,则图中全等三角形有( ) A .4对 B .5对 C .6对 D .7对02.如图,在△ABC 中,AB =AC ,OC =OD ,下列结论中:①∠A =∠B ②DE =CE ,③连接DE , 则OE 平分∠AOB ,正确的是( ) A .①② B .②③ C .①③ D .①②③03.如图,A 在DE 上,F 在AB 上,且AC =CE , ∠1=∠2=∠3, 则DE 的长等于()A .DCB . BC C . ABD .AE +AC04.下面有四个命题,其中真命题是( )A .两个三角形有两边及一角对应相等,这两个三角形全等B .两边和第三边上的高对应相等的两个三角形全等C . 有一角和一边对应相等的两个直角三角形全等D . 两边和第三边上的中线对应相等的两个三角形全等05.在△ABC 中,高AD 和BE 所在直线相交于H 点,且BH =AC ,则∠ABC =_______.06.如图,EB 交AC 于点M , 交FC 于点D , AB 交FC 于点N ,∠E =∠F =90°,∠B =∠C , AE=AF . 给出下列结论:①∠1=∠2;②BE =CF ; ③△ACN ≌△ABM ; ④CD =DB ,其中正确的结论有___________.(填序号)07.如图,AD 为在△ABC 的高,E 为AC 上一点,BE 交AD 于点F ,且有BF =AC ,FD =CD .⑴求证:BE ⊥AC ;⑵若把条件“BF =AC ”和结论“BE ⊥AC ”互换,这个命题成立吗?证明你的判定.08.如图,D 为在△ABC 的边BC 上一点,且CD =AB ,∠BDA =∠BAD ,AE 是△ABD 的中线.求证:AC =2AE .09.如图,在凸四边形ABCD 中,E 为△ACD 内一点,满足AC =AD ,AB =AE , ∠BAE +∠BCEABE D CF第6题图2 1AB CE N M3 21ADEBC FADECOA E O BFCD 第1题图B第2题图第3题图AB C DEAEBDC=90°, ∠BAC =∠EAD .求证:∠CED =90°.10.(沈阳)将两个全等的直角三角形ABC 和DBE 按图①方式摆放,其中∠ACB =∠DEB =90°,∠A =∠D =30°,点E 落在AB 上,DE 所在直线交AC 所在直线于点F .⑴求证:AF +EF =DE ;⑵若将图①中△DBE 绕点B 顺时针方向旋转角α,且0°<α<60°,其他条件不变,请在图②中画出变换后的图形,并直接写出(1)中结论是否仍然成立;⑶若将图①中△DBE 绕点B 按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图③你认为(1)中结论还成立吗?若成立,写出证明过程;若不成立,请写出此时AF 、EF 与DE 之间的关系,并说明理由。
人教版初中数学八年级上册 列分式方程解决工程实际问题-国赛一等奖
用分式方程解决实际问题--------工程问题教学目标:知识与技能能将实际问题中的相等关系用分式方程表示,并解决实际问题.过程与方法在工程问题中能正确的找出等量关系,并会用分时表示出等量关系;情感态度在不同的工程问题中,能找出等量关系,准确的设未知数,列出分式方程解决实际问题。
教学重点构建分式方程解决实际应用问题教学难点在不同的工程问题中,能找出等量关系,准确的设未知数,列出分式方程解决实际问题。
教学过程:一、复习引入:二、探究新知:工作总量=工作效率⨯工作时间,工作效率=工作总量÷工作时间工作时间=工作总量÷工作效率2根据以上关系填空:1小李每分钟打个字,他15分钟能打个字;(2)一个工人做180个零件需要小时,则每小时能做个;(3)一项工程甲队单独做需要小时,则该队的工作效率是。
3填空一项工程,甲队单独完成需要个月,乙队单独完成需要15个月,则甲队每月完成总工程的 ,乙队每月完成总工程的 ;若甲乙合作每月完成总工程的 ,甲乙合作需要10个月完成,则合作10个月完成总工程的 ,可列方程 。
总工作量看作单位“1”,等量关系:甲乙合作的工作效率 合作的工作时间=1甲的总工作量乙的总工作量=14例题精析:例1两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的31,这时增加了乙队,两队又共同工作了半个月,总工程全部完成哪个队的施工速度快思路引领: 见ppt三知识应用:甲乙两人做某种机器零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等,求乙每小时做多少个零件分析过程和解题过程 见PPT 和课堂实录四知识拓展:,B 两个清洁队共同参与城中垃圾场的清运工作,A 队单独 工作2天完成总量的 ,这时增加了B 队,两队又共同工作了1天,总量 全部完成,则B 队单独完成总量需要 天 2某服装加工厂计划加工400套运动服,在加工完成160套之后,采用了新技术,工作效率比原计划提高了20%,结果共用了18天完成了全部任务,设原计划每天加工套运动服,根据题意,可列方程为 。
初中八年级数学教案- 分式方程的应用-国赛一等奖
冀教版数学八年级上册
分式方程的应用(第一课时)
石家庄市第十七中学张华
教学目标
知识与技能目标:根据实际问题中的数量关系,经过必要的抽象,提炼出未知数与已知数之间的等量关系,建立分式方程模型,并进而解决问题
过程与方法目标:类比用一元一次方程和二元一次方程组解决实际问题的思考过程,在学生经历将实际问题转化为数学问题的过程中,体会分式方程是刻画现实世界数量关系的又一种有效模型情感态度与价值观目标:学生在经历建立分式方程模型、并通过解决实际问题的过程,在已有的知识经验基础上,进一步提高分析问题、解决问题的能力,增强应用数学的意识
学情分析:这节课学生是基于两方面的认知基础来学习的:一是这节课是在学生已经学习了分式方程的解法基础上来探究利用分式方程解决实际问题;二是学生在七年级也已经学习了利用一元一次方程和二元一次方程组解决实际问题,所以学生具备了利用方程模型解决实际问题的一些经验和策略。
教学重点:分析实际问题中的数量及数量之间的等量关系,建立方程模型,从而解决实际问题
教学难点:能够灵活地运用数量之间的等量关系列方程,并从本质上来认识不同形式的方程的内在联系与区别
教学过程。
初中八年级数学教案数学教案-列一元二次方程解应用题
数学教案-列一元二次方程解应用题11.10 列一元二次方程解应用题一、教学目标1、能分析应用题中的数量关系,并找出等量关系.2、能用列一元二次方程的方法解应用题.3、培养学生化实际问题为数学问题的能力及分析问题、解决问题的能力.二、教学重难点教学重点:能分析应用题中的数量间的关系,列出一元二次方程解应用题.教学难点:例2涉及比例、平均增长率与多年的增长量之间的关系. 三、教学过程(一)引入新课设问:已知一个数是另一个数的2倍少3,它们的积是135,求这两个数.(由学生自己设未知数,列出方程).问:所列方程是几元几次方程?由此引出课题.(二)新课教学1、对于上述问题,设其中一个数为x,则另一个数是2x-3,根据题意列出方程:135,整理得:这是一个关于x的一元二次方程.下面先复习一下列一元一次方程解应用题的一般步骤:(1)分析题意,找出等量关系,分析题中的数量及其关系,用字母表示问题里的未知数;(2)用字母的一次式表示有关的量;(3)根据等量关系列出方程;(4)解方程,求出未知数的值;(5)检查求得的值是否正确和符合实际情形,并写出答案.列一元二次方程解应用题的步骤与列一元一次方程解应用题的步骤一样,只不过所列的方程是一元二次方程而非一元一次方程而已.2、例题讲解例1 在长方形钢片上冲去一个小长方形,制成一个四周宽相等的长方形框(如图11—1).已知长方形钢片的长为30cm,宽为20cm,要使制成的长方形框的面积为400cm ,求这个长方形框的框边宽.分析:(1)复习有关面积公式:矩形;正方形;梯形;三角形;圆.(2)全面积=原面积–截去的面积 30(3)设矩形框的框边宽为xcm,那么被冲去的矩形的长为(30—2x)cm,宽为(20-2x)cm,根据题意,得 .注意:方程的解要符合应用题的实际意义,不符合的应舍去.例2 某城市按该市的“九五”国民经济发展规划要求,1997年的社会总产值要比1995年增长21%,求平均每年增长的百分率. 分析:(1)什么是增长率?增长率是增长数与原来的基数的百分比,可用下列公式表示:增长率=何谓平均每年增长率?平均每年增长率是在假定每年增长的百分数相同的前提下所求出的每年增长的百分数.(并不是每年增长率的平均数)有关增长率的基本等量关系有:①增长后的量=原来的量 (1+增长率),减少后的量=原来的量 (1--减少率),②连续n次以相同的增长率增长后的量=原来的量 (1+增长率) ;连续n次以相同的减少率减少后的量=原来的量 (1+减少率) .(2)本例中如果设平均每年增长的百分率为x,1995年的社会总产值为1,那么1996年的社会总产值= ;1997年的社会总产值= = .根据已知,1997年的社会总产值= ,于是就可以列出方程:3、巩固练习p.152练习及想一想补充:将进货单价为40元的商品按50元售出时,就能卖出500个,已知这种商品每个涨价1元,其销售量就减少10个,问为了赚得8000元的利润,售价应定为多少?这时应进货多少?(三)课堂小结善于将实际问题转化为数学问题,要深刻理解题意中的已知条件,严格审题,注意解方程中的巧算和方程两根的取舍问题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国初中数学竞赛辅导(八年级)教学案全集第二十七讲列方程解应用问题中的量与等量列方程解应用问题时,比较困难的一环常常是同学们不知如何着手去找等量关系.又由于应用问题类型繁多,等量关系千变万化,什么工程问题,行程问题,浓度问题,等等,如果每一种问题都来考查一下找等量关系的规律,这不仅太繁杂,而且罗列也不是真正的概括.那么根据什么原则来找出应用问题中的等量关系、列出方程呢?为此,我们必须先对“量”做个基本的分析和介绍,只有对量有了比较明确的认识,才便于了解“等量”,那么找等量关系也就有了依据.所谓“量”就是表现物体属性的一个侧面.例如拿一根金属棒来说,为了弄清它的性状,就要知道这根金属棒的重量、长度、体积、密度、比重、价格,等等,这些方面都是从一定的侧面来表现物体不同属性的,这就是所谓的量.一般说来,常用的量基本上可以分为两大类.例如,一群羊、一堆蛋等,因为它们具有天然的个别单位,所以处理这种量只要数一数它们的个数1,2,3,…就可以了.这种量我们称它为分离量,分离量的特点是可数的.另一种量,例如一根绳子的长度,一桶水的重量等,长度和重量这种量虽然不具有天然的个别单位可数,但这种量的基本特点是它们可以无限细分,因此我们可以选取人为的单位去度量它们.比如,度量长度,我们可以选用米或厘米作为长度单位;度量重量,我们可以选用千克或克等作为重量单位.取定了度量单位之后,就可以度量这种量的多少了.我们称这种量为连续量,它的一个基本特点是可以度量.在连续量之中,例如长度、面积、体积、重量、时间等等,这些量既可以细分又可以广延,我们称这种量为外延量.连续量中的另一类是由两种外延量之比产生出来的,用以表示“强度”,这种量称为内涵量.例如表示单位面积上承受多少压力的“压强”就是一个内涵量.这是因为它是由两种外延量(压力和面积)之比得来的.如果把内涵量再分类,又可以分为两种,其中一种是由不同种外延量之比产生的量,我们称它为度.例如等等都是度.另外一种内涵量是由两个同种外延量之比得来的,我们称它为率.例如等等都是率.这样,可以把常见的量的分类归纳如下:我们对量有了一定的了解之后,从量的种类入手,找等量关系,就有了可以遵循的基本原则和方法了.第一,因为分离量不能和连续量相等,外延量不能和内涵量相等,度不能和率相等,因此,等量关系只能在同种量中寻找,即分离量=分离量,外延量=外延量,度=度,率=率.第二,因为分离量和外延量是可加的,所以如果要确定分离量或外延量的某种相等关系,便可以利用“全量=部分量之和”(它的推理是“部分量=全量的一部分量”,“部分量之和=部分量之和”,特例是“全量=全量”)的原则.第三,因为度和率是两种外延量之比,如果要确定的是度或率的某种相等关系,只须找到同一个度或率的两种不同表达式,然后用等号连接起来就可以列出方程了.我们把这种思考方法叫作度或率的等比表示法.下面通过几个实例来说明上述原则和方法的运用.例1设A,B两地相距82千米(km),甲骑自行车由A向B驶去,9分钟(min)后,乙骑自行车由B出发以每小时比甲快2千米的速度向A驶去,两人在距B地40千米处相遇,问甲乙的速度各是多少?分析与解首先我们列出题中的各种已知量和待求的量:(1)A,B两地的距离是82千米;(2)甲乙两人相向而行,甲比乙先行9分钟;(3)每小时乙比甲多走2千米;(4)两人相遇地点距B地40千米;(5)求甲乙的速度.其次,就要设一个适当的未知量,并把它看作“已知量”,根据题中所给的条件,把已知量和未知量联系起来,找等量关系列方程.为此,我们可有不同的思考方法.第一,可以从外延量考虑等量关系.本题中,时间、距离都是外延量.比如,我们考虑时间这个外延量,那么如何找出本题中有关时间的一个等量关系呢?因为甲乙中途相遇,那么自然要问甲由A出发到与乙相遇走了多少时间?乙由B出发到与甲相遇走了多少时间?这两者又有什么关系?联系已知条件,利用全量=部分量之和可知甲由A出发到遇到乙的时间=乙由B出发到遇到甲的时间+9分钟,①又考虑到如果设甲的速度为x千米/小时(km/h),那么乙的速度为(x+2)千②的解是x=30千米(方程②的解法留给读者),所以甲的速度是每小时行30千米,乙的速度是每小时32千米.第二,也可以从内涵量找等量关系.在本题中,速度就是个内涵量,以速度来找等量关系,就是寻找甲的速度和乙的速度之间的关系问题.由已知条件可知,乙每小时比甲多走2千米,即甲的速度=乙的速度-2,③因此,如果设甲与乙相遇时正好走了x小时,那么乙遇甲时走了时.由③式,可知甲的速度的另一种表示法是乙的速度-2,即乙的速度为32(千米/小时).在以上两种找等量关系的思考方法中,第一种方法,从外延量考虑,利用了“全量=部分量之和”的原则.第二种方法从内涵量考虑,注意到了“度”的等比表示法.例2甲乙两台打麦机,甲机工作效率是乙机的2倍,先用甲机打打完麦子所需时间多11天,问分别用一台机器打完全部麦子各需多少时间?分析与解首先列出题中有关的各种量:(1)甲机工作效率是乙机的2倍;(3)按(2)的打法所需时间比同时用两台机器打完全部麦子多11天的时间;(4)求分别用一台机器打完全部麦子所需的天数.其次,为了找出等量关系列出方程,我们仍像例1那样,从外延量和内涵量这两种不同的量入手来分析思考.第一,从外延量考虑等量关系.本题中的时间就是个外延量,因为外延量是可加的,那么利用前面提到的找等量关系的第二条原则,注意到“全量=部分量之和”或其推论,只要找到同一个时间的两种不同表示法,等量关系也就找出来了.为此,如果我们设x为甲机打完全部麦子所需要的时间(天数),那么2x就是乙机打完全部麦子所需要的时间(天比同时用两台机器全部打完麦子所需时间多11天”可知,这一关键语给这两个表达式,表示的是同一时间,因此它们相等,这就得到如下方程解这个方程,得到x=15(天)……甲机打完全部麦子的天数,那么2x=30(天)……乙机打完全部麦子的天数.第二,从内涵量考虑等量关系.本题中甲乙两机的工作效率就是个内涵量,如果设x为甲机打完全部麦子所需时间(天数),则2x为乙机打完全部麦子所需时间(天数),那么就是甲乙两机每天共同的工作效率.如果再找出甲乙两机每天工作效率的另一种表示法,那么方程也就列出来了.由于全部的工作量设为1,而甲乙两机同时工作打完全部麦子的时间为所以甲乙两机每天共同的工作效率又可写成把甲乙两机每天共同的工作效率用等号连接起来,就得到方程解这个方程,就得到x=15(天)……甲打完全部麦子的时间,2x=30(天)……乙打完全部麦子的时间.例2的分析和例1类似,从外延量考虑等量关系时,注意到时间这个外延量的可加性,并利用了“全量=部分量之和”的原则.从内涵量考虑等量关系时,是利用了工作效率这个内涵量的等比表示法.例3要在含50%酒精的800克(g)酒中,倒入含酒精85%的酒多少克,才能配成含酒精75%的酒?分析与解本题涉及的量有溶液、溶质和浓度,其中溶液、溶质是外延量,浓度是内涵量,这三者之间的关系是因此,在找等量关系时,既可以从外延量(溶液、溶质)来考虑,也可以从内涵量(浓度)来考虑.第一,从外延量来考虑等量关系.由题意可知(1)要求的混合溶液的重量=已知两种溶液重量的和;(2)要求的混合溶液中,溶质的重量=已知的两种溶液中溶质重量的和.所以无论从溶液还是溶质来考虑等量关系,都可以用“全量=部分量之和”的原则来确定等量关系.如果设x为倒入含酒精85%的酒的重量,那么由(1)可知,混合溶液重量=800+x,再由(2)就可列出方程解上述方程,就得到x=2000(克).第二,从内涵量考虑等量关系.由于本题中浓度是内涵量,因此只须找出混合溶液浓度的两种不同表示式,即可列出方程.现在已知混合溶液的浓度是75%,所以再找出混合溶液浓度的另一种表达式就行了.因为所以,只须找到混合溶液中的溶质和溶液的重量即可.为此,若设x 为倒入的含酒精85%的酒的重量,则混合溶液重量=800+x.因为,甲种酒中含酒精的重量为50%×800,乙种酒中含酒精的重量为85%x,所以由(2)可知:混合溶液中含酒精的重量为50%×800+85%x.所以,混合溶液浓度的另一种表达式为上式表示式等于75%,于是得到方程解这个方程,得到x=2000(克).综上,例1、例2、例3表面上看是三类问题,其实是完全类似的.在这三例中所涉及的量有如下对应关系:这样,一般所说的行程问题、工程问题、浓度问题,从上面的分析解法可知是完全类似的.因为工作效率可以看成工作速度,而浓度表示的是强度,在这样的意义下,它们自然可以看成是类似问题,因此,从外延量或内涵量来找等量关系列方程,也就有了统一的方法.其实,广而言之,如果应用题所涉及的量是内涵量,或由它转化而外延量=外延量÷内涵量),那么,在表示某种强度的意义下,都可看成同类问题.当然各自的物理意义不同,因此,结合各个具体问题,作出具体分析,但是找等量关系列方程的基本思考方法却是共同的.练习二十七1.解下列方程:(4)75%(800+x)=50%×800+85%x;2.两条船分别从河的两岸同时相对开出,它们的速度各自一定,第一次相遇在距河的一岸800米(m)处,然后继续前进,各自到达对岸后立即折回,第二次相遇在距河的另一岸600米处,如果认定船到对岸反向航行时不耽误时间,并且不考虑水流速度,问河宽有多少米?3.甲乙两个小组合作完成一件工作,乙组单独做1天后,由甲乙两组合作了2天就完成了全部工作.问甲乙两组单独完成此项工作,各需多少天?4.已知甲种盐水含盐40%,乙种盐水含盐15%,现在要制成5千克(kg)含盐25%的盐水,试问需要甲乙两种盐水各多少千克?5.植树节这一天,某校学生去植树,如果每人植树6株,只能完成植树40株,求参加植树的人数及原计划植树的株数.。