ANSYS接触问题的计算方法
ANSYS接触非线性算法详解

ANSYS接触非线性算法详解本文将向读者详细介绍ANSYS接触非线性中的主要算法的计算原理,如图1所示给出了ANSYS Workbench结构模块中的接触算法选择面板。
1.完全罚函数法(Pure Penalty Method)完全罚函数法计算时需要提供法向和切向刚度矩阵。
完全罚函数的主要缺点是两个接触面之间的穿透量取决于这个刚度矩阵。
过高的刚度值会减小穿透总量,但会产生病态的总体刚度矩阵从而导致计算收敛困难。
2.增强的拉格朗日方法(Augmented Lagrangian Method)增强的拉格朗日方法是为了找到精确的拉格朗日乘子(即接触力),而对罚函数进行一系列修正迭代。
在方程的平衡迭代过程中增大接触附着力(压力和摩擦应力)以便最终的透穿值小于允许的容差值(FTOLN)。
与纯罚函数的方法相比,拉格朗日方法容易得到良态条件,对接触刚度的敏感性较小。
然而,在有些分析中,增进的拉格朗日方法可能需要更多的迭代,特别是在变形后网格变得太扭曲时。
图2 罚函数法的计算原理图3.MPC多点约束法MPC:多点约束是一个极为有效的接触模拟算法。
适用于绑定和不分离接触。
可以连接不同网格模型。
连接不同的单元类型:4.法向拉格朗日乘子法ANSYS提供了一种混合算法,即在接触法向使用拉格朗日乘子法,接触切向使用罚函数法。
对于粘结接触状态,这种方法强制施加零透穿值并且允许小滑动。
它也要求颤振控制参数FTOLN 和TNOP,还有允许的弹性滑动参数SLTO的最大值。
5.梁连接算法梁算法仅适用于绑定连接,该算法使用无质量的梁单元实现接触面和目标面的绑定连接。
基于ANSYS软件的接触问题分析及在工程中的应用

基于ANSYS软件的接触问题分析及在工程中的应用基于ANSYS软件的接触问题分析及在工程中的应用一、引言接触问题是工程领域中常见的一个重要问题,它在很多实际应用中都具有关键作用。
接触分析能够帮助工程师设计和改进各种产品和结构,从而提高其性能和寿命,减少故障和事故的发生。
ANSYS作为一款强大的工程仿真软件,提供了多种接触分析方法和工具,为工程师们解决接触问题提供了便利。
本文将重点介绍基于ANSYS软件的接触问题分析方法和其在工程中的应用。
二、接触问题的分析方法接触问题的分析方法主要包括两种:解析方法和数值模拟方法。
解析方法基于一系列假设和理论分析,能够给出理论解析解,但局限于简单的几何形状和边界条件。
数值模拟方法通过建立几何模型和边界条件,利用数值计算的方法求解接触过程的力学行为和变形情况,可以适用于复杂的几何形状和边界条件。
ANSYS软件采用的是数值模拟方法,它基于有限元法和多体动力学原理,可以使用接触元素来建立模型,模拟接触过程中的相互作用,得到接触点的应力、应变以及变形信息,从而分析接触的性能和行为。
接下来将介绍ANSYS软件中的接触分析方法和其在工程中的应用。
三、接触分析方法1. 接触元素:ANSYS软件提供了多种接触元素供用户选择,包括面接触元素、体接触元素和线接触元素。
用户可以根据具体的接触问题选择合适的接触元素,建立几何模型来模拟接触行为。
2. 接触定义:在ANSYS软件中,用户可以通过定义接触性质、接触参数和接触约束来描述接触问题。
接触性质包括摩擦系数、接触行为模型等;接触参数包括接触初始状态、接触刚度等;接触约束包括接触面间的约束条件等。
3. 接触分析:通过在ANSYS软件中建立模型,定义接触参数和加载条件,进行接触分析,得到接触点的应力、应变和变形信息。
可以通过分析结果来评估接触性能,发现可能存在的问题,并进行改进和优化。
四、ANSYS软件在工程中的应用1. 机械工程领域:在机械工程中,接触问题广泛存在于各种设备和结构中,如轴承、齿轮、支撑结构等。
《2024年基于ANSYS软件的接触问题分析及在工程中的应用》范文

《基于ANSYS软件的接触问题分析及在工程中的应用》篇一一、引言随着计算机技术的飞速发展,有限元分析软件在工程领域的应用越来越广泛。
ANSYS软件作为一款广泛使用的有限元分析软件,在接触问题分析和解决方面发挥着重要作用。
本文将详细介绍基于ANSYS软件的接触问题分析及在工程中的应用。
二、ANSYS软件中的接触问题分析1. 接触问题的基本概念接触问题是一种典型的非线性问题,涉及两个或多个物体在接触面上相互作用的力学行为。
在ANSYS软件中,通过定义接触对来模拟这种相互作用。
2. ANSYS软件中接触问题的分析方法ANSYS软件采用有限元法对接触问题进行数值分析。
首先,将接触问题离散化为有限元网格,然后通过迭代法求解接触问题中的非线性方程组。
在ANSYS中,可以通过定义接触单元、设置接触刚度、摩擦系数等参数来模拟真实的接触行为。
三、ANSYS软件在工程中的应用1. 机械工程领域的应用在机械工程领域,ANSYS软件被广泛应用于各种机械零件的接触问题分析。
例如,齿轮传动中的齿面接触、轴承中的滚动体与内外圈的接触等。
通过ANSYS软件的分析,可以了解接触区域的应力分布、变形情况等,为机械零件的设计和优化提供依据。
2. 汽车工程领域的应用在汽车工程领域,ANSYS软件被用于汽车零部件的接触问题分析和整车性能仿真。
例如,在汽车碰撞过程中,车身与零部件之间的接触力、应力分布等都需要通过ANSYS软件进行分析。
此外,ANSYS还可以用于汽车悬挂系统、制动系统等的仿真分析,为汽车设计和优化提供支持。
3. 航空航天领域的应用在航空航天领域,ANSYS软件被广泛应用于飞机、卫星等航天器的结构分析和优化。
例如,在飞机起降过程中,机翼与机身之间的连接处的应力集中和变形情况需要通过ANSYS软件进行分析。
此外,ANSYS还可以用于航空航天领域的热力耦合问题、流体动力学问题等的仿真分析。
四、结论本文介绍了基于ANSYS软件的接触问题分析及在工程中的应用。
ansys计算接触不收敛

ansys计算接触不收敛力能很快的收敛,但力矩就是收敛不了,大家可有好办法以前用abaqus计算超弹接触都能很快的收敛ansys计算也就bonded容易收敛,其他的很难收敛,大家可有技巧收敛准则主要有力的收敛,位移的收敛,弯矩的收敛和转角的收敛。
一般用力的控制加载时,可以使用残余力的2-范数控制收敛;而位移控制加载时,最好用位移的范数控制收敛。
收敛精度默认为 0.1%,但一般可放宽至 5%,以提高收敛速度。
使用力收敛是绝对的,而位移收敛并不一定代表你的计算真的收敛,但很多情况下使用位移更容易得到想要的结果ANSYS中的收敛准则默认情况如下:cnvtol,lab,value,toler,norm,minref1)在solcontrol 为打开状态时,对于力和力矩来说是默认值为0.005;对于没有转角自由度的DOF,其默认值为0.05。
2)在solcontrol 为关闭状态时,对于力和力矩来说,其默认值为0.001。
默认情况下solcontrol 为打开状态,因此如果用户完全采用默认的话,对于力和力矩来说是默认值为0.005;对于没有转角自由度的DOF,其默认值为0.05。
在分析中追踪到沿荷载挠度曲线反向“漂移回去”,是一个典型的难题,这是由于太大或者太小的弧长半径引起的。
研究荷载-挠度曲线可以搞清楚这一点,。
然后可应用nsubst和arclen命令调整弧长半径大小和范围。
加快收敛的方法有一下几种:1可以增大荷载子步数 nsubst,nsbstp,nsbmn,carry2修改收敛准则 cnvtol,lab,value,toler,norm,minref3打开优化的非线性默认求解设置和某些强化的内部求解算法,solcontrol,key1,key2,key3,vtol(一般情况下,默认是打开的)4重新划分网格网格的单元不宜太大或太小一般在5~10厘米左右5 检查模型的正确性1) 关于位移判据当结构受力后硬化严重时,位移增量的微小变化将引起失衡力的很大偏差.另外,当相邻两次迭代得到的位移增量范数之比跳动较大时,将把一个本来收敛的问题判定为不收敛.所以在这两种情况下不能用位移准则.2) 关于力判据当物体软化严重时,或材料接近理想塑性时,失衡力的微小变化将引起位移增量的很大偏差.所以在这种情况下不能用失衡力判据如果单独用位移控制收敛,就可能出现第一次跌代后力和位移是收敛的,但第二次就跌代计算的位移很小,可能认为是收敛的解,实际离真正的解很远.应当使用力收敛检查或以位移为基础检查,不单独使用她们.convergence value 是收敛值,convergence norm是收敛准则。
ansys接触应力计算公式

ansys接触应力计算公式
ANSYS软件中接触应力的计算公式可能会因具体的模型和算法而有所不同。
在ANSYS的罚函数法中,假设零件之间的接触假设成两个节点之间通过弹簧连接,通过以下计算公式来求解两个接触面之间的接触压力:
FNormal = KNormal × penetration
其中,KNormal为两个接触面之间的接触刚度,penetration为两个接触
面之间的穿透量。
这种算法的精度较依赖于接触刚度和穿透量的大小。
在实际情况下,两个零件表面是不会有穿透的,这是一种为增强收敛性而进行的数值近似方法,因此,穿透量越小,计算结果精度越高,但同时收敛性较差。
另外,在ANSYS的拉格朗日算法中,接触压力作为一个自由度来满足接触兼容性。
不需要计算接触刚度和穿透量来计算接触压力,而是将他看做一个自由度。
以上内容仅供参考,如需更具体的信息,建议咨询专业的工程师或查阅ANSYS软件的使用手册。
ANSYS分析(特征值屈曲与接触)

Tips:
·对于受力复杂的模型,由于不是受到一个载荷的作用,需要进行多次调整静力载荷, 使最后计算得 到的ε值 为1±0.01时,施加的静力载荷即屈曲许用载荷。 ·失稳的云图只显示失稳的状态,其应力值没有意义。
分析进阶_特征值屈曲分析
对于结构的稳定性计算可以使用特征值屈曲分析(实例1)
【已知】材料Q235圆钢,直径100mm,长度2000m,A端固定。计算屈曲载荷Fcr。
分析进阶_接触分析
结构件连接处作为一体化处理可以解决整体钢结构的应力分析问题,但是如 果想要研究连接处的应力情况,则前面提到的方法无法得到准确的结果。
例如:通过螺栓连接的表面之间会在外载荷的作用下可能发生相互挤压,或 者发生分离。当结构件受到复杂外载荷作用时,在计算之前我们无法预知接触面 之间的接触范围。此时我们需要更加智能和精确计算方法-接触分析
理论计算结果相符,但对于偏心压杆其结果则较理论结算
偏大(高50%)。
分析进阶_特征值屈曲分析
对于结构的稳定性计算可以使用特征值屈曲分析(实例2)
【已知】H型钢,b=124mm,h=248mm,t=5mm,tf=8mm,长度8000mm。 A端固定,B端施加作用力。计算屈曲载荷Fcr。
A B 【理论计算】参考机械设计手册的算法 Fcr=2769N 【ANSYS计算】 Fcr=3070KN(网格线段长度100)误差11% Fcr=3078KN(网格线段长度20)误差6.3% Fcr=3079KN(网格线段长度10)误差5.9%
Ansysworkbench接触设置中计算公式意义及选择范围

函数名称罚函数法/pure penalty增广拉格朗日法/Augmented Lagrange 向朗格朗日法/Normal Lagran MPC法迭代行为好的收敛行为(少量的
平衡迭代)如果间隙很大,会根据需要加强平衡迭代振动存在,根据需要加强平衡迭代好的收敛行为(少量的平衡迭代)
刚度敏感性对于法向接触刚度的选
择比较敏感
对于法向接触刚度的选择不太敏感接触间隙存在并且不受
控制接触间隙存在,但一些角度受到约束一般情况下,间隙接近为零无间隙
仅适用于绑定(Bonded or no
separation)或者不分离两种接
触形式适用范围
只能用在直接求解迭代或者直接求解可适用对称行为接触发生点接触要求Ansysworkbench接触设置中计算公式意义及选择范围
接触发生在集合点接触发生在节点能够用在任何一种的接触行为
无法向刚度接触的要求迭代或者直接求解可适用对称或非对称接触行为非对称接触行为。
ANSYS高级接触问题71103

§2 面-面接触单元
• •
• ◦ ◦ ◦ ◦
◦
◦ ◦ •
• •
•
§1 概述 面-面接触单元,是模拟任意两个表面间接触的方法。表面可以具有任意形 状。是 ANSYS 中最通用的接触单元。精度高、特性丰富还可使用接触向导, 建模方便。(其它接触单元目前尚不能用向导)。 面-面接触单元在面的高斯点处传递压力,这种先进技术使面-面接触 单元具有很多优点: 与低阶单元和高阶单元都兼容 提供更好的接触结果(于后处理接触压力和摩擦应力) 可考虑壳和梁的厚度,以及壳的厚度变化 半自动接触刚度计算 刚性表面由“控制节点 – pilot node”控制 热接触特性 众多的高级选项来处理复杂问题。 具有众多的高级选项(20 个可用的实常数、2 个材料属性和 30 个可用 的单元选项)提供了丰富的特征库,能够用于模拟特殊的效果和处理困难的 收敛情况。 然而众多的选项的智能缺省选项可以有效求解许多接触问题而不需要用户介 入太多。 通常的做法是:开始使用高级选项之前,先试着采用缺省设置:只指定罚刚 度,穿透容差和子步数,然后进行分析。只在采用缺省设置遇到困难时才采 用高级选项。 所有的高级选项也可以通过接触向导来控制。
例如: 超弹密封
• Step 3. 设置单元选项和实常数 • 接触对由实常数号来定义,接触单元和目标单元必须具有相同的实常数。 • Step 4. 建立目标单元(网格) • 此步中所采用的方法依赖于目标面是刚性的还是柔性的。 • 刚性目标面采用: • 直接生成 (E 命令) • 自动划分 (LMESH, AMEAH) • 可变形目标面采用 • Main Menu > Preprocessor > Modeling > Create > Elements > Surf/Contact > Surf to Surf(ESURF) • 对于直接生成刚性目标面,在建立目标单元之前需要要指定附加的单元属 性 TSHAP
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ANSYS接触问题的计算方法
接触问题的关键在于接触体间的相互关系(废话,),此关系又可分为在接触前后的法向关系与切向关系。
法向关系:
在法向,必须实现两点:1)接触力的传递。
2)两接触面间没有穿透。
ANSYS通过两种算法来实现此法向接触关系:罚函数法和拉格朗日乘子法。
1.罚函数法
是通过接触刚度在接触力与接触面间的穿透值(接触位移)间建立力与位移的线性关系:接触刚度*接触位移=法向接触力
对面面接触单元17*,接触刚度由实常数FKN来定义。
穿透值在程序中通过分离的接触体上节点间的距离来计算。
接触刚度越大,则穿透就越小,理论上在接触刚度为无穷大时,可以实现完全的接触状态,使穿透值等于零。
但是显而易见,在程序计算中,接触刚度不可能为无穷大(否则病态),穿透也就不可能真实达到零,而只能是个接近于零的有限值。
以上力与位移的接触关系可以很容易地合并入整个结构的平衡方程组K*X=F中去。
并不改变总刚K的大小。
这种罚函数法有以下几个问题必须解决:
1)接触刚度FKN应该取多大?
2)接触刚度FKN取大些可以减少虚假穿透,但是会使刚度矩阵成为病态。
3)既然与实际情况不符合的虚假穿透既然是不可避免的,那么可以允许有多大为合适?
因此,在ANSYS程序里,通常输入FKN实常数不是直接定义接触刚度的数值,而是接触体下单元刚度的一个因子,这使得用户可以方便地定义接触刚度了,一般FKN取0.1到1中间的值。
当然,在需要时,也可以把接触刚度直接定义,FKN输入为负数,则程序将其值理解为直接输入的接触刚度值。
对于接近病态的刚度阵,不要使用迭代求解器,例如PCG等。
它们会需要更多的迭代次数,并有可能不收敛。
可以使用直接法求解器,例如稀疏求解器等。
这些求解器可以有效求解病态问题。
穿透的大小影响结果的精度。
用户可以用PLESOL,CONT,PENE来在后处理中查看穿透的数值大小。
如果使用的是罚函数法求解接触问题,用户一般需要试用多个FKN值进行计算,可以先用一个较小的FKN值开始计算,例如0.1。
因为较小的FKN有助于收敛,然后再逐步增加FKN值进行一系列计算,最后得到一个满意的穿透值。
FKN的收敛性要求和穿透太大产生的计算误差总会是一对矛盾。
解决此矛盾的办法是在接触算法中采用扩展拉格朗日乘子法。
此方法在接触问题的求解控制中可以有更多更灵活的控制。
可以更快的实现一个需要的穿透极限。
2.拉格朗日乘子法与扩展拉格朗日乘子法
拉格朗日乘子法与罚函数法不同,不是采用力与位移的关系来求接触力,而是把接触力作为一个独立自由度。
因此这里不需要进行迭代,而是在方程里直接求出接触力(接触压力)来。
Kx=F+Fcontact
从而,拉格朗日乘子法不需要定义人为的接触刚度去满足接触面间不可穿透的条件,可以直接实现穿透为零的真实接触条件,这是罚函数法所不可能实现的。
使用拉格朗日乘子法有下列注意事项:
1)刚度矩阵中将有零对角元,使有些求解器不克使用。
只能使用直接法求解器,例如波前法或系数求解器。
而PCG之类迭代求解器是不能用于有零主元问题的。
2)由于增加了额外的自由度,刚度阵变大了。
3)一个可能发生的严重问题,就是在接触状态发生变化时,例如从接触到分离,从分离到接触,此时接触力有个突变,产生chattering(接触状态的振动式交替改变)。
如何控制这种chattering,是纯粹拉格朗日法所难以解决的。
因此,为控制chattering,ANSYS采用的是罚函数法与拉格朗日法混合的扩展拉格朗日乘子法。
在扩展拉格朗日法中,可以采用实常数TOLN来控制最大允许穿透值。
还有最大允许拉力FTOL。
这两个参数只对扩展拉格朗日乘子法有效。
在扩展拉格朗日乘子法里,程序按照罚函数法开始,与纯粹拉格朗日法类似,用TOLN来控制最大允许穿透值。
如果迭代中发现穿透大于允许的TOLN值,(对178单元是TOLN,而对面面接触单元171-174则是FTOLN)则将各个接触单元的接触刚度加上接触力乘以拉格朗日乘子的数值。
因此,这种扩展拉格朗日法是不停更新接触刚度的罚函数法,这种更新不断重复,直到计算的穿透值小于允许值为止。
尽管与拉格朗日法相比,扩展拉格朗日法的穿透并不是零,与罚函数法相比,可能迭带次数会更多。
扩展拉格朗日法有下列优点:
1)较少病态,个接触单元的接触刚度取值可能更合理。
2)与罚函数法相比较少病态,与单纯的拉格朗日法相比,没有刚度阵零对角元。
因此在选择求解器上没有限制,PCG等迭代求解器都可以应用。
3)用户可以自由控制允许的穿透值TOLN。
(如果输入了TOLN,而使用罚函数法,则程序忽略它)
切向关系:
摩擦的处理与法向接触力类似。
由于摩擦是非对称的,使问题变的更为复杂。
ANSYS缺省是做对称求解,即使用对称求解器作近似求解。
但是可以改变几个选项强迫做非对称求解。
非对称求解更精确,但是计算量大许多。