初中一次函数典型应用题

合集下载

初二一次函数经典例题

初二一次函数经典例题

初二一次函数经典例题
1. 题目描述
小明是初二学生,最近在学习一次函数的知识。

他遇到了下面这个经典的一次
函数例题:
已知函数关系式y=2x+3,求当x=4时,所对应的y的值。

2. 解题思路
要解决这个问题,我们需要使用一次函数的关系式y=kx+b求解。

对于已知
的函数关系式y=2x+3,我们可以得到k=2和b=3。

要求当x=4时,所对
应的y的值,我们只需要将x的值代入函数关系式中即可。

将x=4代入y=2x+3中:
$y = 2 \\times 4 +3 = 8 + 3 = 11$
所以,在x=4时,y的值为 11。

3. 答案验证
为了验证我们的解答是否正确,我们可以直接将x=4和y=11代入原始的函数关系式y=2x+3中进行检验。

将x=4和y=11代入y=2x+3中:
$11 = 2 \\times 4 + 3 = 8 + 3 = 11$
因此,我们的解答是正确的。

4. 结论
根据题目中的已知条件,我们成功求得了当x=4时,所对应的y的值为 11。

通过验证,我们确认了解答的正确性。

这个例题是一次函数的经典例题,通过解答这个例题,我们巩固了一次函数的
知识,并学会了如何求解一次函数中的未知数。

在学习数学的过程中,经典例题的练习对提高我们的解题能力和思考能力至关重要。

希望通过这个例题的解答,能够对初二学生理解一次函数的概念和运用有所帮助。

以上是本文档对初二一次函数经典例题的解答与分析。

希望能对读者有所帮助!。

九年级数学 专题25题一次函数应用典型例题

九年级数学 专题25题一次函数应用典型例题

25题一次函数应用专题 一、近五年某某中考一次函数应用题 例1(09某某)某公司装修需用A 型板材240块、B 型板材180块,A 型板材规格是60 cm×30 cm ,B 型板材规格是40 cm×30 cm .现只能购得规格是150 cm×30 cm 的标准板材.一X 标准板材尽可能多地裁出A 型、B 型板材,共有下列三种裁法:(图15是裁法一的裁剪示意图)裁法一 裁法二 裁法三 A 型板材块数1 2 0 B 型板材块数 2 m n设所购的标准板材全部裁完,其中按裁法一裁x X 、按裁法二裁yX 、按裁法三裁z X ,且所裁出的A 、B 两种型号的板材刚好够用.(1)上表中,m =,n =;(2)分别求出y 与x 和z 与x 的函数关系式;(3)若用Q 表示所购标准板材的X 数,求Q 与x 的函数关系式,并指出当x 取何值时Q 最小,此时按三种裁法各裁标准板材多少X ?解:(1)0 ,3.(2)由题意,得x+2y=240,∴y=120–12 x .2x+3z=180,∴z=60–23x .(3)由题意,得Q =x+y+z=x+120–12 x+60–23x .整理,得 .Q=180–16x由题意,得⎩⎪⎨⎪⎧120–12x ≥060–23≥0 解得 x ≤90.【注:事实上,0≤x ≤90 且x 是6的整数倍】由一次函数的性质可知,当x =90时,Q 最小.此时按三种裁法分别裁90X 、75X 、0X .例2(07某某)一手机经销商计划购进某品牌的A 型、B 型、C 型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A 型手机x 部,B 型手机y 部.三款手机的进价和预售价如下表:手机型号 A型 B 型 C 型(1)用含x ,y (2)求出y 与x 之间的函数关系式;(3)假设所购进手机全部售出,综合考虑各种因素,该手机经销商在购销这批手机过程中需另外支出各种费用共1500元.①求出预估利润P (元)与x (部)的函数关系式;(注:预估利润P =预售总额-购机款-各种费用)②求出预估利润的最大值,并写出此时购进三款手机各多少部.25.解:(1)60-x-y ; …………………………………………………………………(2分)(2)由题意,得 900x+1200y+1100(60-x-y )= 61000,整理得 y=2x-50. ………………………………………………………(5分)(3)①由题意,得 P= 1200x+1600y+1300(60-x-y )- 61000-1500,整理得 P=500x+500. …………………………………………………(7分)②购进C 型手机部数为:60-x-y =110-3x .根据题意列不等式组,得⎩⎪⎨⎪⎧x ≥82x-50≥8110–3x ≥8解得 29≤x ≤34.∴ xX 围为29≤x ≤34,且x 为整数.(注:不指出x 为整数不扣分) …(10分)∵P 是x 的一次函数,k=500>0,∴P 随x 的增大而增大.∴当x 取最大值34时,P 有最大值,最大值为17500元. ………(11分)此时购进A 型手机34部,B 型手机18部,C 型手机8部. ………(12分)例3(06某某)有两段长度相等的河渠挖掘任务,分别交给甲、乙两个工程队同时进行挖掘.图11是反映所挖河渠长度y (米)与挖掘时间x (时)之间关系的部分图象.请解答下列问题: (1)乙队开挖到30米时,用了_____小时.开挖6小时时,甲队比乙队多挖了______米; (2)请你求出: ①甲队在0≤x ≤6的时段内,y 与x 之间的函数关系式;②乙队在2≤x ≤6的时段内,y 与x 之间的函数关系式;③开挖几小时后,甲队所挖掘河渠的长度开始超过乙队?(3)如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到12米/时,结果两队同时完成了任务.问甲队从开挖到完工所挖河渠的长度为多少米?解:(1)2;10; ……………………………………………………………………(2分)(2)①设甲队在0≤x ≤6的时段内y 与x 之间的函数关系式为y =k 1x ,由图可知,函数图象过点(6,60),∴6 k 1=60,解得k 1=10,∴y =10x . …………………………………………………………………(4分)②设乙队在2≤x ≤6的时段内y 与x 之间的函数关系式为y =k 2x +b ,由图可知,函数图象过点(2,30)、(6,50),时)∴22230,650.k b k b +=⎧⎨+=⎩ 解得25,20.k b =⎧⎨=⎩ ∴y =5x +20. …………………………………………………………(7分)③由题意,得10x >5x +20,解得x >4.所以,4小时后,甲队挖掘河渠的长度开始超过乙队. ………………(9分)(说明:通过观察图象并用方程来解决问题,正确的也给分)(3)由图可知,甲队速度是:60÷6=10(米/时).设甲队从开挖到完工所挖河渠的长度为z 米,依题意,得6050.1012z z --=…………………………………………………(11分) 解得 z =110.答:甲队从开挖到完工所挖河渠的长度为110米. ……………………(12分)例4(05某某)在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度y (厘米)与燃烧时间x(小时)之间的关系如图10所示. 请根据图象提供的信息解答下列问题:(1)甲、乙两根蜡烛燃烧前的高度分别是______________________,从点燃到燃烧尽所用的时间分别是_______________________.;(2)分别求甲、乙两根蜡烛燃烧时y 与x 之间的函数关系式;(3)燃烧多长时间时,甲、乙两根蜡烛的高度相等(不考虑都燃尽的情况)?在什么时间段内,甲蜡烛比乙蜡烛高?在什么时间段内,甲蜡烛比乙蜡烛低?二、一次函数应用——方案设计例5(某某市2009年)某公司为了开发新产品,用A 、B 两种原料各360千克、290千克,试制甲、乙两种新型产品共50件,下表是试验每件新产品所需原料的相关数据: x 的取值X 围;(2)若甲种产品每件成本为70元,乙种产品每件成本为90元,设两种产品的成本总额为y 元,写出成本总额y (元)与甲种产品件数x (件)之间的函数关系式;当甲、乙两种产品各生产多少件时,产品的成本总额最少?并求出最少的成本总额.1.解:(1)依题意列不等式组得94(50)360310(50)290x x x x +-⎧⎨+-⎩≤≤ ······································· 3分 由不等式①得32x ≤ ························································································· 4分由不等式②得30x ≥ ························································································· 5分 x ∴的取值X 围为3032x ≤≤ ············································································ 6分(2)7090(50)y x x =+- ·············································································· 8分 化简得204500y x =-+200y -<∴,随x 的增大而减小. ··································································· 9分 而3032x ≤≤∴当32x =,5018x -=时,203245003860y =-⨯+=最小值(元) ··················· 11分 答:当甲种产品生产32件,乙种18件时,甲、乙两种产品的成本总额最少,最少的成本总额为3860元. ····························································································· 12分 迁移点拨:本题是一道表格信息题,既考查不等式,又考查一次函数解析式及一次函数最值问题,通常一次函数的最值问题首先油不等式找到x 的取值X 围,进而利用一次函数的增减性在前面X 围的前提下求出最值。

(完整word版)初中一次函数习题及例题

(完整word版)初中一次函数习题及例题

例1:已知一次函数y=kx+b(k≠0)在x=1时,y=5,且它的图象与x轴交点的横坐标是6,求这个一次函数的解析式。

说明:满足函数关系式的有序数对,在坐标平面内对应的点一定在函数图象上;反之,函数图象上的点,其坐标一定满足函数关系式。

例2:.已知2y-3与3x+1成正比例,且x=2时,y=5,(1)求y与x之间的函数关系式,并指出它是什么函数;(2)若点(a ,2)在这个函数的图象上,求a 。

例3:.已知一次函数的图象经过点A(—3,2)、B(1,6).①求此函数的解析式,并画出图象.②求函数图象与坐标轴所围成的三角形面积.例4:某一次函数的图象与直线y=6-x交于点A(5,k),且与直线y=2x-3无交点,•求此函数的关系式.例5:某移动通讯公司开设两种业务:若设某人一个月内市内通话x跳次,两种方式的费用分别为z元和y元.①写出z、y与x之间的函数关系式;②一个月内市内通话多少跳次时,两种方式的费用相同?③某人估计一个月内通话300跳次,应选择哪种方式合算?例6:如图,折线ABC是在某市乘出租车所付车费y(元)与行车里程x(km)•之间的函数关系图象.①根据图象,写出该图象的函数关系式; ②某人乘坐2。

5km ,应付多少钱? ③某人乘坐13km ,应付多少钱?④若某人付车费30。

8元,出租车行驶了多少千米?1.A 市和B 市分别库存某种机器12台和6台,现决定支援给C 市10台和D 市8台.•已知从A 市调运一台机器到C 市和D 市的运费分别为400元和800元;从B 市调运一台机器到C 市和D 市的运费分别为300元和500元.(1)设B 市运往C 市机器x 台,•求总运费W (元)关于x 的函数关系式.(2)若要求总运费不超过9000元,问共有几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少?一. 填空题1. (-3,4)关于x 轴对称的点的坐标为_________,关于y 轴对称的点的坐标为__________,关于原点对称的坐标为__________。

初二 一次函数 应用题

初二 一次函数 应用题

初二一次函数应用题1.图中表示甲,乙两名选手在一次自行车越野赛中路程y(千米)随时间x(分)变化的图象,从图中可知比赛开始分钟后两人第一次相遇.2.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲、乙两车行驶的距离y(km)与时间x(h)的函数图象,有以下结论: ①m=1;②a=40;③甲车从A地到B地共用了6.5小时;④当两车相距50km时,乙车用时为ℎ..其中正确结论的个数是( )A. 1B. 2C. 3D. 43.某天中午,小明从文具店步行返回学校,与此同时,小亮从学校骑自行车去文具店购买文具(购买文具时间忽略不计),然后原路返回学校,两人均匀速行驶,结果两人同时到达学校. 小明、小亮两人离文具店的路程y₁、y₂(单位:米)与出发时间x(单位:分)之间的函数图象如图所示.(1).学校和文具店之间的路程是米,小亮的速度是小明速度的倍:(2).求a的值,并解释图中点M的横坐标、纵坐标的实际意义;(3).小明与小亮迎面相遇以后,再经过多长时间两人相距20米?4.《龟兔赛跑》是一则耐人寻味的寓言故事,故事中塑造了一只骄傲的兔子和一只坚持不懈的小乌龟. 图中的线段OD和折线OABC表示“龟兔赛跑时时间与路程”的关系,请你根据图中给出的信息,解决下列问题.(1).填空:折线OABC表示赛跑过程中 (填“兔子”或“乌龟”)的时间与路程的关系,赛跑的全过程是米.(2).乌龟用了多少分钟追上了正在睡觉的兔子?(3).兔子醒来后,以300米/分钟的速度跑向终点,结果还是比乌龟晚到了1分钟,请问兔子在中间停下睡觉用了多少分钟?5.小明家、新华书店、学校在一条笔直的公路旁,某天小明骑车上学,当他骑了一段后,想起要买某本书,于是又返回到刚经过的新华书店,买到书后继续骑车去学校,他本次骑车上学的过程中离家距离与所用的时间的关系如图所示,请根据图象提供的信息回答下列问题:(1).小明家到学校的距离是米;小明在书店停留了分钟;(2).如果骑车的速度超过了300米/分就超越了安全限度,小明买到书后继续骑车到学校的这段时间的骑车速度在安全限度内吗?请说明理由;(3).请直接写出小明出发后多长时间离家的距离为900米?6.汽车、摩托车分别从相距240千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,途中摩托车因故停留0.5小时,然后以原速度继续向甲地行驶,到达甲地后停止行驶;汽车达到乙地后,立即按原路原速返回甲地(调头的时间忽略不计),如图是汽车、摩托车距乙地的路程.y(千米)与所用时间x(小时)之间的函数图象,请结合图象信息解答下列问题:(1)求摩托车的行驶速度及a的值;(2)分别求出图中线段OD、AB所表示的y与x的函数关系式;(3)求汽车与摩托车第一次相遇时,距离甲地的路程是多少千米?(4)两车出发后几小时相距的路程为80千米?请直接写出答案。

八下一次函数应用题中考真题举例

八下一次函数应用题中考真题举例

八下一次函数应用题中考真题举例1.(2019年江汉油田)某农贸公司销售一批玉米种子,若一次购买不超过5千克,则种子价格为20元/千克,若一次购买超过5千克,则超过5千克部分的种子价格打8折.设一次购买量为x千克,付款金额为y元.(1)求y关于x的函数解析式;(2)某农户一次购买玉米种子30千克,需付款多少元?【解答】解:(1)根据题意,得①当0≤x≤5时,y=20x;②当x>5,y=20×0.8(x﹣5)+20×5=16x+20;(2)把x=30代入y=16x+20,∴y=16×30+20=500;∴一次购买玉米种子30千克,需付款500元;2.(2019济宁)小王骑车从甲地到乙地,小李骑车从乙地到甲地,小王的速度小于小李的速度,两人同时出发,沿同一条公路匀速前进.图中的折线表示两人之间的距离y(km)与小王的行驶时间x(h)之间的函数关系.请你根据图象进行探究:(1)小王和小李的速度分别是多少?(2)求线段BC所表示的y与x之间的函数解析式,并写出自变量x的取值范围.【解答】解:(1)由图可得,小王的速度为:30÷3=10km/h,小李的速度为:(30﹣10×1)÷1=20km/h,答:小王和小李的速度分别是10km/h、20km/h;(2)小李从乙地到甲地用的时间为:30×20=1.5h,当小李到达甲地时,两人之间的距离为:10×1.5=15km,∴点C的坐标为(1.5,15),设线段BC所表示的y与x之间的函数解析式为y=kx+b,,得,即线段BC所表示的y与x之间的函数解析式是y=30x﹣30(1≤x≤1.5).3. (2019孝感)为了加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机,经过市场调查发现,今年每套B型一体机的价格比每套A 型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)求今年每套A型、B型一体机的价格各是多少万元?(5分)(2)该市明年计划采购A型、B型一体机1100套,考虑物价因素,预计明年每套A型一体机的价格比今年上涨25%,每套B型一体机的价格不变,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?(5分)【解答】解:(1)设今年每套A型一体机的价格为x万元,每套B型一体机的价格为y万元,答:今年每套A型的价格各是1.2万元、B型一体机的价格是1.8万元;(2)设该市明年购买A型一体机m套,则购买B型一体机(1100-m)套,由题意可得:1.8(1100-m)≥1.2(1+25%)m,解得:m≤600,设明年需投入W万元,W=1.2×(1+25%)m+1.8(1100-m)=-0.3m+1980,∵-0.3<0,∴W随m的增大而减小,∵m≤600,∴当m=600时,W有最小值-0.3×600+1980=1800,故该市明年至少需投入1800万元才能完成采购计划.4.(2019常德)某生态体验园推出了甲、乙两种消费卡,设入园次数为x 时所需费用为y 元,选择这两种卡消费时,y 与x 的函数关系如图所示,解答下列问题(1)分别求出选择这两种卡消费时,y 关于x 的函数表达式;(2)请根据入园次数确定选择哪种卡消费比较合算.【解答】解:(1)设y 甲=k 1x ,根据题意得5k 1=100,解得k 1=20,∴y 甲=20x ;设y 乙=k 2x +100,根据题意得:20k 2+100=300,解得k 2=10,∴y 乙=10x +100;(2)①y 甲<y 乙,即20x <10x +100,解得x <10,当入园次数小于10次时,选择甲消费卡比较合算;②y 甲=y 乙,即20x =10x +100,解得x =10,当入园次数等于10次时,选择两种消费卡费用一样;③y 甲>y 乙,即20x >10x +100,解得x >10,当入园次数大于10次时,选择乙消费卡比较合算.5.(2019成都)随着5G 技术的发展,人们对各类5G 产品的使用充满期待.某公司计划在某地区销售第一款5G 产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化.设该产品在第x (x 为正整数)个销售周期每台的销售价格为y 元,y 与x 之间满足如图所示的一次函数关系.(1)求y 与x 之间的关系式;(2)设该产品在第x 个销售周期的销售数量为p (万台),p 与x 的关系可用2121+=x p 来描述。

一次函数图像应用题(带解析版答案)

一次函数图像应用题(带解析版答案)

一次函数中考专题一.选择题1.如图,是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费()A.0.4元 B.0.45 元C.约0.47元D.0.5元2.如图,函数y=kx(k≠0)和y=ax+4(a≠0)的图象相交于点A(2,3),则不等式kx>ax+4的解集为()A.x>3 B.x<3 C.x>2 D.x<2 3.如图,已知:函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是()A.x>﹣5 B.x>﹣2 C.x>﹣3 D.x<﹣24.甲、乙两汽车沿同一路线从A地前往B地,甲车以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙车在甲车出发2小时后匀速前往B地,比甲车早30分钟到达.到达B地后,乙车按原速度返回A地,甲车以2a千米/时的速度返回A地.设甲、乙两车与A地相距s(千米),甲车离开A地的时间为t(小时),s与t之间的函数图象如图所示.下列说法:①a=40;②甲车维修所用时间为1小时;③两车在途中第二次相遇时t的值为5.25;④当t=3时,两车相距40千米,其中不正确的个数为()A.0个B.1个 C.2个 D.3个【解答】①由函数图象,得a=120÷3=40故①正确,②由题意,得5.5﹣3﹣120÷(40×2),=2.5﹣1.5,=1.∴甲车维修的时间为1小时;故②正确,③如图:∵甲车维修的时间是1小时,∴B(4,120).∵乙在甲出发2小时后匀速前往B地,比甲早30分钟到达.∴E(5,240).∴乙行驶的速度为:240÷3=80,∴乙返回的时间为:240÷80=3,∴F(8,0).设BC的解析式为y1=k1t+b1,EF的解析式为y2=k2t+b2,由图象,得,解得,,∴y1=80t﹣200,y2=﹣80t+640,当y1=y2时,80t﹣200=﹣80t+640,t=5.25.∴两车在途中第二次相遇时t的值为5.25小时,故弄③正确,④当t=3时,甲车行的路程为120km,乙车行的路程为80×(3﹣2)=80km,∴两车相距的路程为:120﹣80=40千米,故④正确,故选:A.5.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.则下列结论:(1)a=40,m=1;(2)乙的速度是80km/h;(3)甲比乙迟h到达B地;(4)乙车行驶小时或小时,两车恰好相距50km.正确的个数是()A.1 B.2 C.3 D.4【解答】(1)由题意,得m=1.5﹣0.5=1.120÷(3.5﹣0.5)=40(km/h),则a=40,故(1)正确;(2)120÷(3.5﹣2)=80km/h(千米/小时),故(2)正确;(3)设甲车休息之后行驶路程y(km)与时间x(h)的函数关系式为y=kx+b,由题意,得解得:∴y=40x﹣20,根据图形得知:甲、乙两车中先到达B地的是乙车,把y=260代入y=40x﹣20得,x=7,∵乙车的行驶速度80km/h,∴乙车行驶260km需要260÷80=3.25h,∴7﹣(2+3.25)=h,∴甲比乙迟h到达B地,故(3)正确;(4)当1.5<x≤7时,y=40x﹣20.设乙车行驶的路程y与时间x之间的解析式为y=k'x+b',由题意得解得:∴y=80x﹣160.当40x﹣20﹣50=80x﹣160时,解得:x=.当40x﹣20+50=80x﹣160时,解得:x=.∴﹣2=,﹣2=.所以乙车行驶或小时,两车恰好相距50km,故(4)错误.故选(C)二.填空题(共3小题)6.如图,已知A1,A2,A3,…,A n是x轴上的点,且OA1=A1A2=A2A3=…=A n A n+1=1,分别过点A1,A2,A3,…,A n+1作x 轴的垂线交一次函数的图象于点B1,B2,B3,…,B n+1,连接A1B2,B1A2,A2B3,B2A3,…,A n B n+1,B n A n+1依次产生交点P1,P2,P3,…,P n,则P n 的坐标是(n+,).【解答】由已知得A1,A2,A3,…的坐标为:(1,0),(2,0),(3,0),…,又得作x轴的垂线交一次函数y=x的图象于点B1,B2,B3,…的坐标分别为(1,),(2,1),(3,),….由此可推出A n,B n,A n+1,B n+1四点的坐标为(n,0),(n ,),(n+1,0),(n+1,).所以得直线A n B n+1和A n+1B n的直线方程分别为解得故答案为:(n+,).7. 下图是护士统计一病人的体温变化图,这位病人中午12时的体温约为℃.8.某高速铁路即将在2019年底通车,通车后,重庆到贵阳、广州等地的时间将大大缩短.5月初,铁路局组织甲、乙两种列车在该铁路上进行试验运行,现两种列车同时从重庆出发,以各自速度匀速向A地行驶,乙列车到达A地后停止,甲列车到达A地停留20分钟后,再按原路以另一速度匀速返回重庆,已知两种列车分别距A地的路程y(km)与时间x(h)之间的函数图象如图所示.当乙列车到达A地时,则甲列车距离重庆km.【解答】设乙列车的速度为xkm/h,甲列车以ykm/h的速度向A地行驶,到达A 地停留20分钟后,以zkm/h的速度返回重庆,则根据3小时后,乙列车距离A地的路程为240,而甲列车到达A地,可得3x+240=3y,①根据甲列车到达A地停留20分钟后,再返回重庆并与乙列车相遇的时刻为4小时,可得x+(1﹣)z=240,②根据甲列车往返两地的路程相等,可得(﹣3﹣)z=3y,③由①②③,可得x=120,y=200,z=180,∴重庆到A地的路程为3×200=600(km),∴乙列车到达A地的时间为600÷120=5(h),∴当乙列车到达A地时,甲列车距离重庆的路程为600﹣(5﹣3﹣)×180=300(km),故答案为:300.三.解答题(共10小题)9.为倡导绿色出行,某共享单车近期登陆徐州,根据连续骑行时长分段计费:骑行时长在2h以内(含2h)的部分,每0.5h计费1元(不足0.5h按0.5h计算);骑行时长超出2h的部分,每小时计费4元(不足1h按1h计算).根据此收费标准,解决下列问题:(1)连续骑行5h,应付费多少元?(2)若连续骑行xh(x>2且x为整数)需付费y元,则y与x的函数表达式为;(3)若某人连续骑行后付费24元,求其连续骑行时长的范围.【解答】(1)当x=5时,y=2×2+4×(5﹣2)=16,∴应付16元;(2)y=4(x﹣2)+2×2=4x﹣4;故答案为:y=4x﹣4;(3)当y=24,24=4x﹣4,x=7,∴连续骑行时长的范围是:6<x≤7.10.如图,“十一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)当租车时间为多少小时时,两种方案所需费用相同;(3)根据(2)的计算结果,结合图象,请你帮助小明选择怎样的出游方案更合算.【解答】(1)设y1=k1x+80,把点(1,95)代入,可得:95=k1+80,解得k1=15,∴y1=15x+80(x≥0);设y2=k2x,把(1,30)代入,可得30=k2,即k2=30,∴y2=30x(x≥0);(2)当y1=y2时,15x+80=30x,解得x=;答:当租车时间为小时时,两种方案所需费用相同;(3)由(2)知:当y1=y2时,x=;当y1>y2时,15x+80>30x,解得x<;当y1<y2时,15x+80<30x,解得x>;∴当租车时间为小时,任意选择其中的一个方案;当租车时间小于小时,选择方案二合算;当租车时间大于小时,选择方案一合算.11.如表给出A、B、C三种上网的收费方式:收费方式月使用费/元包时上网时间/小时超时费/(元/分钟)A30250.05B50500.05C120不限时(1)假设月上网时间为x小时,分别直接写出方式A、B、C三种上网方式的收费金额分别为y1、y2、y3与x的函数关系式,并写出自变量的范围(注意结果要化简);(2)给出的坐标系中画出这三个函数的图象简图;(3)结合函数图象,直接写出选择哪种上网方式更合算.【分析】从题意可知,本题中的一次函数又是分段函数,关键是理清楚自变量的取值范围,由取值来确定函数值,从而作出函数图象.【解答】(1)收费方式A:y=30 (0≤x≤25),y=30+3x (x>25);收费方式B:y=50 (0≤x≤50),y=50+3x (x>50);收费方式C:y=120 (0≤x);(2)函数图象如图:(3)由图象可知,上网方式C更合算。

一次函数应用题(含答案)

一次函数应用题(含答案)

一次函数应用题初一()班姓名:学号: .一、一次时装演出会预算中票价定位每张100元,容纳观世人数不超过2000人,毛利润y(百元)关于观世人数x(百人)之间的函数图象如下图,当观世人数超过1000人时,演出会组织者需向保险公司交纳定额平安保险费5000元(不列入本钱费用)请解答以下问题:⑴求当观世人数不超过1000人时,毛利润y(百元)关于观世人数x(百人)的函数解析式和本钱费用s(百元)关于观世人数x(百人)的函数解析式;⑵假设要使这次演出会取得36000元的毛利润,那么要售出多少张门票?需支付本钱费用多少元?(注:当观世人数不超过1000人时,演出会的毛利润=门票收入—本钱费用;当观世人数超过1000人时,演出会的毛利润=门票收入—本钱费用—平安保险费)二、转炉炼钢产生的棕红色烟尘会污染大气,某装置可通过回收棕红色烟尘中的氧化铁从而降低污染,该装置的氧化铁回收率与其通过的电流有关,现通过实验取得以下数据:(1) 将实验所得数据在如下图的直角坐标系顶用点表示;(注:该图中坐标轴的交点代表点(1,70))(2) 用线段将题(1)中所画的点从左到右按序连接,假设用此图象来模拟氧化铁回收率y关于通过电流x的函数关系,试写出该函数在1.7≤x≤2.4时的表达式;(3) 利用(2)所得函数关系,求氧化铁回收率大于85%时,该装置通过的电流应该操纵的范围(精准到0.1A).3、如图(1),在矩形ABCD中,AB = 10cm,BC = 8cm. 点P从A点动身,沿A→B→C→D 线路运动,到D停止;点Q从D动身,沿D→C→B→A线路运动,到A停止. 假设点P、点Q同时..动身,点P的速度为每秒1cm,点Q的速度为每秒2cm,a秒时,点P、点Q同时..改变速度,点P的速度变成每秒b cm,点Q的速度变成每秒d cm. 图(2)是点P动身x秒后△APD的面积..1S(cm2)与x(秒)的函数关系图象;图(3)是点Q动身x秒后△AQD的面.积.2S(cm2)与x(秒)的函数关系图象.(1)(1)参照图(2),求a、b及图(2)中c的值;(2)求d的值;(3)设点P离开点A的路程为1y(cm),点Q到点A还需要走的路程为2y(cm),请别离写出改变速度后1y、2y与动身后的运动时刻x(秒)的函数关系式,并求出P、Q相遇时x的值;(4)当点Q动身_________秒时,点P、点Q在运动线路上相距的路程为25cm.4、教室里放有一台饮水机,饮水机上有两个放水管。

一次函数应用题(习题及答案)

一次函数应用题(习题及答案)

一次函数应用题(习题)例题示范例1:一辆警车在高速公路的A 处加满油,以每小时60 千米的速度匀速行驶.已知警车一次加满油后,油箱内的余油量y(升)与行驶时间x(小时)之间的函数关系图象是如图所示的直线l 的一部分.(1)求直线l 的函数表达式;(2)如果警车要回到 A 处,且要求警车中的余油量不能少于10 升,那么警车可以行驶到离A 处的最远距离是多少?y/升5442-1 O解:(1)∵(1,54),(3,42)∴l:y =-6x + 60(2)由y =-6x + 60 得,当y=10 时,x =2531 2 3 4 x/小时∴警车可以行驶到离 A 处的最远距离是25⨯ 60 ⨯1= 250 (千米)3 2答:直线l 的函数关系式为y =-6x + 60 ,警车可以行驶到离A 处的最远距离是250 千米.巩固练习1.李老师开车从甲地到相距240 千米的乙地,油箱剩余油量y(升)与行驶里程x(千米)之间的函数关系如图所示.(1)求y 与x 之间的函数关系式(不必注明自变量x 的取值范围);(2)李老师到达乙地时油箱剩余油量是多少?3.52.5O160 x/千米2.某校食堂有一太阳能热水器,其水箱的最大蓄水量为 1 000升,往空水箱中注水,在没有放水的情况下,水箱的蓄水量y(升)与匀速注水时间x(分钟)之间的关系如图所示.(1)求y 与x 之间的函数关系式;(2)若水箱中原有水400 升,则按上述速度注水15 分钟,能否将水箱注满?240 180 120 60 O y/升2 4 68 x/分钟3.如图,折线AB-BC 是某市区出租车所收费用y(元)与出租车行驶路程x(km)之间的函数关系图象.(1)当x≥2 时,求y 与x 之间的函数关系式;(2)若某人付车费15.6 元,则出租车行驶了多少千米?4.我国西南五省市的部分地区发生严重旱灾,为鼓励节约用水,某市自来水公司采取分段收费标准.每月收取的水费y(元)与用水量x(吨)之间的函数关系如图所示.(1)若小明家五月份用水8 吨,则应交水费元;(2)按上述分段收费标准,若小明家三、四月份分别交水费26 元、18 元,则四月份比三月份节约用水多少吨?5.小敏从A 地出发,向B 地行走,小聪从B 地同时出发,向A地行走.如图,相交于点P 的两条线段l1,l2 分别表示小敏、小聪离B 地的距离y(km)与已用时间x(h)之间的函数关系,则当小敏、小聪两人相距7km 时,x 的值为多少?6.高铁的开通,给衢州市民出行带来了极大的方便,“五一”期间,乐乐和颖颖相约到杭州市的某游乐园游玩,乐乐乘私家车从衢州出发1 小时后,颖颖乘坐高铁从衢州出发,先到杭州火车站,然后再转车出租车去游乐园(换车时间忽略不计),两人恰好同时到达游乐园,乐乐和颖颖离衢州的距离分别为y1,y2(km),与乘车时间x(h)的关系如图所示.请结合图象解决下面问题:(1)当1≤x≤2 时,求颖颖离开衢州的距离y2 与乘车时间x 之间的函数关系式;(2)当颖颖达到杭州火车东站时,乐乐距离游乐园还有多少千米?y(千米)240 216 杭州火车站游乐园私家车高铁出租车O 1 1.5 2x(小时)思考小结1.从应用题处理框架的角度来回顾一次函数应用题:①理解题意,梳理信息通过看轴、点、线,把和对应起来.②建立一次函数模型首先确定一次函数表达式,并把所求目标转化为,然后借助一次函数表达式进行求解.③结合实际意义进行验证2.结合下图梳理本章知识,并回答下列问题.实际问题分析变量之间的关系建立数学模型函数关键点坐标k的实际意义表达式实际问题的答案用函数工具处理、求解结合实际情况验证结果一次函数图象y=kx+b(k≠0)性质计算坐标和一次函数表达式之间的关系(点在一次函数图象上):若表达式完整而坐标残缺,把残缺坐标代入即可求出坐标;若坐标完整而表达式残缺(k,b 有一个未知),把代入即可求出表达式.若已知两点坐标求直线的表达式,则利用待定系数法,四步操作为、、、.若已知两条直线的表达式,要求交点坐标,则求交点坐标.1.【参考答案】巩固练习1.(1)y =-1 x +1 (2)2 升160 22. (1)y=30x(0 ≤x ≤100)(2)不能33. (1)y =6x +3(x ≥2 )(2)12.5 千米5 54. (1)16 (2)3 吨5. x 的值为0.6 或2.66. (1)y2=240x-240 (2)56 千米思考小结1.①看轴、点、线②一次函数2.表达式;坐标,表达式一设、二代、三解、四还原.联立3.y=kx+b(k,b 为常数,k≠0);正比例.两,(0,b),( -b,0).k倾斜程度;y,纵.k 相同,b 不同.一、二、三;一、三、四;一、二、四;二、三、四.增大,同向变化;减小,反向变化.。

八年级数学:一次函数(应用题)练习(含解析)

八年级数学:一次函数(应用题)练习(含解析)
A.8000,13200B.9000,10000
C.10000,13200D.13200,15400
二.填空题
7.利民商店中有3种糖果,单价及重量如下表,若商店将以上糖果配成什锦糖,则这种什锦糖果的单价是每千克________元.
品种
水果糖
花生糖
软 糖
单价(元/千克)
10
12
16
重量(千克)
3
3
4
8.某公园门票价格如下表,有27名中学生游公园,则最少应付费______元.(游客只能在公园售票处购票)
购票张数
1~29张
30~60张
60张以上
每张票的价格
10元
8元
6元
9.有一个附有进水管和出水管的容器,在单位时间内的进水量和出水量分别一定.设从某时刻开始的5分钟内只进水不出水,在随后的15分钟内既进水又出水,得到容器内水量y(升)与时间 (分)之间的函数图象如图.若20分钟后只放水不进水,这时( ≥20时) 与 之间的函数关系式是_________.
八年级数学:一次函数(应用题)练习(含解析)
一.选择题
1.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是( )
A.300m2B.150m2C.330m2D.450m2
12.【答案】2050;
【解析】解:设小明、小刚新的速得,y=x+1.5③,
由②得,4y﹣3=6x④,
③代入④得,4x+6﹣3=6x,
解得x=1.5,
故这次越野赛的赛跑全程=1600+300×1.5=1600+450=2050m.

八年级数学一次函数应用题(真题及答案)

八年级数学一次函数应用题(真题及答案)

一次函数应用题提高专题训练1.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(时),两车之间的距离为y (千米),图中的折线表示从两车出发至快车到达乙地过程中y 与x 之间的函数关系.(1)根据图中信息,求线段AB 所在直线的函数解析式和甲乙两地之间的距离;(2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t 时,求t 的值;(3)若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中y 关于x 的函数的大致图像. (温馨提示:请画在答题卷相对应的图上)2.春节期间,某客运站旅客流量不断增大,旅客往往需要长时间排队等候购票.经调查发现,每天开始售票时,约有400人排队购票,同时又有新的旅客不断进入售票厅排队等候购票.售票时售票厅每分钟新增购票人数4人,每分钟每个售票窗口出售的票数3张.某一天售票厅排队等候购票的人数y (人)与售票时间x (分钟)的关系如图所示,已知售票的前a 分钟只开放了两个售票窗口(规定每人只购一张票).(1)求a 的值.(2)求售票到第60分钟时,售票听排队等候购票的旅客人数.(3)若要在开始售票后半小时内让所有的排队的旅客都能购到票,以便后来到站的旅客随到随购,至少需要同时开放几个售票窗口?3.在一条直线上依次有A 、B 、C 三个港口,甲、乙两船同时分别从A 、B 港口出发,沿直线匀速驶向C 港,最终达到C 港.设甲、乙两船行驶x (h )后,与.B .港的距离....分别为1y 、2y (km ),1y 、2y 与x 的函数关系如图所示.(1)填空:A 、C 两港口间的距离为 km , a ;(2)求图中点P 的坐标,并解释该点坐标所表示的实际意义;(3)若两船的距离不超过10 km 时能够相互望见,求甲、乙两船可以相互望见时x 的取值范围.O y/km90 30a 3 P甲乙x/h4.一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.⑴如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?⑵如果先进行精加工,然后进行粗加工.①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多可获得多少利润?此时如何分配加工时间?5.某物流公司的甲、乙两辆货车分别从A、B两地同时相向而行,并以各自的速度匀速行驶,途径配货站C,甲车先到达C地,并在C地用1小时配货,然后按原速度开往B地,乙车从B地直达A地,图16是甲、乙两车间的距离y(千米)与乙车出发x(时)的函数的部分图像(1)A、B两地的距离是千米,甲车出发小时到达C地;(2)求乙车出发2小时后直至到达A地的过程中,y与x的函数关系式及x的取值范围,并在图16中补全函数图像;(3)乙车出发多长时间,两车相距150千米小时)6.张师傅驾车运送荔枝到某地出售,汽车出发前油箱有油50升,行驶若干小时后,途中在加油站加油若干升,油箱中剩余油量y (升)与行驶时间t (小时)之间的关系如图所示.请根据图象回答下列问题:(1)汽车行驶 小时后加油,中途加油 升;(2)求加油前油箱剩余油量y 与行驶时间t 的函数关系式;(3)已知加油前、后汽车都以70千米/小时匀速行驶,如果加油站距目的地210千米,要到达目的地,问油箱中的油是否够用?请说明理由.7.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?8.自2010年6月1日起我省开始实施家电以旧换新政策,消费者在购买政策限定的新家电时,每台新家电用一台同类的旧家电换取一定数额的补贴.为确保商家利润不受损失,补贴部分由政府提供,其中三种家电的补贴方式如下表:设购进的电视机和洗衣机数量均为x 台,这100台家电政府需要补贴y 元,商场所获利润w 元(利润=售价-进价)(1)请分别求出y 与x 和w 与x 的函数表达式;(2)若商场决定购进每种家电不少于30台,则有几种进货方案?若商场想获得最大利润,应该怎样安排进货?若这100台家电全部售出,政府需要补贴多少元钱?一次函数应用题提高专题训练1.(2010浙江湖州)【答案】(1)线段AB 所在直线的函数解析式为:y =kx +b ,将(1.5,70)、(2,0)代入得: 1.57020k b k b +=⎧⎨+=⎩,解得:140280k b =-⎧⎨=⎩, 所以线段AB 所在直线的函数解析式为:y =-140x +280,当x =0时,y =280,所以甲乙两地之间的距离280千米.(2)设快车的速度为m 千米/时,慢车的速度为n 千米/时,由题意得:222802240m n m n +=⎧⎨-=⎩,解得:8060m n =⎧⎨=⎩,所以快车的速度为80千米/时, 所以2807802t ==. (3)如图所示. 2.(1)由图象知,400423320a a +-⨯=,所以40a =;(2)设BC 的解析式为y kx b =+,则把(40,320)和(104,0)代入,得403201040k b k b +=⎧⎨+=⎩,解得5520k b =-⎧⎨=⎩,因此5520y x =-+,当60x =时,220y =,即售票到第60分钟时,售票厅排队等候购票的旅客有220人;(3)设同时开放m 个窗口,则由题知330400430m ⨯+⨯≥,解得529m ≥,因为m 为整数,所以6m =,即至少需要同时开放6个售票窗口。

一次函数典型题目

一次函数典型题目

1.一次函数y = kx + b的图象是一条直线,其中k和b分别是:A.斜率,截距(答案)B.截距,斜率C.纵坐标,横坐标D.横坐标,纵坐标2.一次函数y = 2x - 3的图象经过哪些象限?A.第一、二、三象限B.第一、三、四象限(答案)C.第二、三、四象限D.第一、二、四象限3.若一次函数y = kx + b的图象与y轴的交点在x轴上方,则b的值:A.大于0(答案)B.小于0C.等于0D.无法确定4.一次函数y = -2x + 1的斜率为:A.2B.-2(答案)C.1D.-15.一次函数y = kx + b,当x增加1时,y减少2,则k的值为:A.2B.-2(答案)C.1D.-16.一次函数y = 3x + 2与y轴的交点坐标是:A.(0, 2)(答案)B.(2, 0)C.(0, 3)D.(3, 0)7.一次函数y = kx + b的图象平行于直线y = 2x,则k的值为:A.1B.-1C.2(答案)D.-28.一次函数y = kx + b的图象经过点(1, 3)和(-1, -1),则k的值为:A.1B.-1C.2(答案)D.-29.一次函数y = kx + b的图象与x轴的交点横坐标为-2,则:A.k = -2B. b = -2C.当x = -2时,y = 0(答案)D.当x = 0时,y = -210.一次函数y = kx + b的图象不经过第四象限,则k和b必须满足:A.k > 0,b < 0B.k < 0,b > 0C.k > 0,b ≥0(答案)D.k < 0,b ≤0。

初中一次函数典型应用题

初中一次函数典型应用题

中考一次函数应用题例1 已知雅美服装厂现有A 种布料70米,B 种布料52米,现计划用这两种布料生产M ,N 两种型号的时装共80套。

已知做一套M 型号的时装需要A 种布料0.6米,B 种布料0.9米,可获利润45元;做一套N 型号的时装需要A 种布料1.1米,B 种布料0.4米,可获利润50元。

若设生产N 种型号的时装套数为x ,用这批布料生产这两种型号的时装所获总利润为y 元。

(1)求y 与x 的函数关系式,并求出自变量的取值范围;(2)雅美服装厂在生产这批服装中,当N 型号的时装为多少套时,所获利润最大?最大利润是多少?解:①由题意得:x x y 50)80(45+-==36005+x⎩⎨⎧≤-+≤-+52)80(9.04.070)80(6.01.1x x x x 解得:40≤x ≤44∴y 与x 的函数关系式为:36005+=x y ,自变量的取值范围是:40≤x ≤44②∵在函数36005+=x y 中,y 随x 的增大而增大∴当x =44时,所获利润最大,最大利润是:3600445+⨯=3820(元)例2 某市电话的月租费是20元,可打60次免费电话(每次3分钟),超过60次后,超过部分每次0.13元。

(1)写出每月电话费y (元)与通话次数x 之间的函数关系式;(2)分别求出月通话50次、100次的电话费;(3)如果某月的电话费是27.8元,求该月通话的次数。

解;(1)由题意得:y 与x 之间的函数关系式为:y =⎩⎨⎧>-+≤≤)60)(60(13.020)600(20x x x(2)当x =50时,由于x <60,所以y =20(元)当x =100时,由于x >60,所以y =)60100(13.020-+=25.2(元)(3)∵y =27.8>20∴x >60∴8.27)60(13.020=-+x解得:x =120(次)例3 荆门火车货运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往广州,这列货车可挂A 、B 两种不同规格的货厢50节,已知用一节A 型货厢的运费是0.5万元,用一节B 型货厢的运费是0.8万元。

一次函数经典例题大全

一次函数经典例题大全

一.定义型例1. 已知函数是一次函数,求其解析式。

解:由一次函数定义知,,故一次函数的解析式为y=-6x+3。

注意:利用定义求一次函数y=kx+b解析式时,要保证k≠0。

如本例中应保证m-3≠0。

二. 点斜型例2. 已知一次函数y=kx-3的图像过点(2, -1),求这个函数的解析式。

解:一次函数的图像过点(2, -1),,即k=1。

故这个一次函数的解析式为y=x-3。

变式问法:已知一次函数y=kx-3 ,当x=2时,y=-1,求这个函数的解析式。

三. 两点型例3.已知某个一次函数的图像与x轴、y轴的交点坐标分别是(-2, 0)、(0, 4),则这个函数的解析式为_____。

解:设一次函数解析式为y=kx+b,由题意得,故这个一次函数的解析式为y=2x+4四. 图像型例4. 已知某个一次函数的图像如图所示,则该函数的解析式为__________。

解:设一次函数解析式为y=kx+b由图可知一次函数的图像过点(1, 0)、(0, 2)有故这个一次函数的解析式为y=-2x+2五. 斜截型例5. 已知直线y=kx+b与直线y=-2x平行,且在y轴上的截距为2,则直线的解析式为___________。

解析:两条直线;。

当k1=k2,b1≠b2时,直线y=kx+b与直线y=-2x平行,。

又直线y=kx+b在y轴上的截距为2,故直线的解析式为y=-2x+2六. 平移型例6. 把直线y=2x+1向下平移2个单位得到的图像解析式为___________。

解析:设函数解析式为y=kx+b,直线y=2x+1向下平移2个单位得到的直线y=kx+b与直线y=2x+1平行直线y=kx+b在y轴上的截距为b=1-2=-1,故图像解析式为七. 实际应用型例7. 某油箱中存油20升,油从管道中匀速流出,流速为0.2升/分钟,则油箱中剩油量Q(升)与流出时间t(分钟)的函数关系式为___________。

解:由题意得Q=20-0.2t ,即Q=-0.2t+20故所求函数的解析式为Q=-0.2t+20()注意:求实际应用型问题的函数关系式要写出自变量的取值范围。

一次函数典型例题

一次函数典型例题
(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围。
10.已知一次函数y=kx+b的图象经过点(-1, -5),且与正比例函数y= x的图象相交于点(2,a),求
(1)a的值
(2)k,b的值
(3)这两个函数图象与x轴所围成的三角形的面积。
三图像及性质
1.将直线y=3x-2向上平移4个单位,得直线_。
一次函数典型例题(共3页)
一次函数典型例题
一、概念
1.正确反映,龟兔赛跑的图象是()
ABCD
2.一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的高度(cm)与燃烧时间(小时)的函数关系用图象表示为()
3.已知动点P在边长为2的正方形ABCD的边上沿着A—B—C—D运动,x表示点P由A点出发所经过路程,y表示△APD的面积,则y与x的函数关系图象大致为()
4.如图1,在矩形ABCD中,AB<BC,点E为对角线AC上的一个动点,连接BE,DE,过E作EF⊥BC于F.设AE=x,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的
A.线段BEB.线段EFC.线段CED.线段DE
二、表达式
1.已知一次函数y=kx+b的图象经过(-1,2)、(2,3)两点,则这个一次函数的关系式为_。
2.若函数 是一次函数,则m的值是.
3.已知y= + , 与x+2成正比, 是x+1的2倍,并且当x=0时,y=4,试求函数y与x的关系式。
4.一次函数y=kx+b与y=2x+1平行,且经过点(-3,4),则表达式为:。
5.写出同时具备下列两个条件的一次函数表达式(写出一个即可)。

可直接打印初中八年级一次函数实际常用的应用题__有答案

可直接打印初中八年级一次函数实际常用的应用题__有答案

一次函数实际常用应用类问题1、一次时装表演会预算中票价定位每张100元,容纳观众人数不超过2000人,毛利润y (百元)关于观众人数x (百人)之间的函数图象如图所示,当观众人数超过1000人时,表演会组织者需向保险公司交纳定额平安保险费5000元(不列入成本费用)请解答下列问题:⑴求当观众人数不超过1000人时,毛利润y (百元)关于观众人数x (百人)的函数解析式和成本费用s (百元)关于观众人数x (百人)的函数解析式;⑵若要使这次表演会获得36000元的毛利润,那么要售出多少张门票?需支付成本费用多少元?(注:当观众人数不超过1000人时,表演会的毛利润=门票收入—成本费用;当观众人数超过1000人时,表演会的毛利润=门票收入—成本费用—平安保险费)2、甲乙两名同学进行登山比赛,图中表示甲乙沿相同的路线同时从山脚出发到达山顶过程中,个自行进的路程随时间变化的图象,根据图象中的有关数据回答下列问题:⑴分别求出表示甲、乙两同学登山过程中路程s (千米)与时间t (时)的函数解析式;(不要求写出自变量的取值范围) ⑵当甲到达山顶时,乙行进到山路上的某点A 处,求A 点距山顶的距离;⑶在⑵的条件下,设乙同学从A 点继续登山,甲同学到达山顶后休息1小时,沿原路下山,在点B 处与乙同学相遇,此时点B 与山顶距离为1.5千米,相遇后甲、乙各自沿原路下山和上山,求乙到大山顶时,甲离山脚的距离是多少千米?12623S(千米)t(小时)CD EF B甲乙3、教室里放有一台饮水机,饮水机上有两个放水管。

课间同学们到饮水机前用茶杯接水。

假设接水过程中水不发生泼洒,每个学声所接的水量是相等的。

两个放水管同时打开时,它们的流量相同。

放水时先打开一个水管,过一会再打开第二个水管,放水过程中阀门一直开着。

饮水机的存水量y (升)与放水时间x(分钟)的函数关系如下图所示:O 21281718y(升)x(分钟)⑴求出饮水机的存水量y (升)与放水时间x(分钟)(x ≥2)的函数关系式;⑵如果打开第一个水管后,2分钟时恰好有4个同学接水接束,则前22个同学接水结束共需要几分钟? ⑶按⑵的放法,求出在课间10分钟内最多有多少个同学能及时接完水?据图象所提供的信息解答下列问题:⑴乙队开挖到30m 时,用了 h .开挖6h 时甲队比乙队多挖了 m ; ⑵请你求出:①甲队在06x ≤≤的时段内,y 与x 之间的函数关系式;②乙队在26x ≤≤的时段内,y 与x 之间的函数关系式;⑶当x 为何值时,甲、乙两队在施工过程中所挖河渠的长度相等?5、小明受《乌鸦喝水》故事的启发,利用量桶和体积相同的小球进行了如下操作:请根据图2中给出的信息,解答下列问题:(1)放入一个小球量桶中水面升高___________cm ;(2)求放入小球后量桶中水面的高度y (cm )与小球个数x(个)之间的一次函数关系式(不要求写出自变量的取值范围);(3)量桶中至少放入几个小球时有水溢出?6、日照市是中国北方最大的对虾养殖产区,被国家农业部列为对虾养殖重点区域;贝类产品西施舌是日照特产.沿海某养殖场计划今年养殖无公害标准化对虾和西施舌,由于受养殖水面的制约,这两个品种的苗种的总投放量只有50 (单位:千元/吨)养殖场受经济条件的影响,先期投资不超过360千元,养殖期间的投资不超过290千元.设西施舌种苗的投放量为x 吨(1)求x 的取值范围;(2)设这两个品种产出后的总产值为y (千元),试写出y 与x 之间的函数关系式,并求出当x 等于多少时,y 有最大值?最大值是多少?8、某软件公司开发出一种图书管理软件,前期投入的开发广告宣传费用共50000元,且每售出一套软件,软件公司还49cm 30cm36cm 3个球有水溢出(第23题) 图2 图29、如图,l1表示神风摩托厂一天的销售收入与摩托车销售量之间的关系;l2表示摩托厂一天的销售成本与销售量之间的关系。

一次函数应用题(习题及答案)

一次函数应用题(习题及答案)

一次函数应用题(习题及答案)一次函数应用题(习题及答案)题一:某手机品牌每月销售量与售价之间存在一次函数关系,已知售价为3000元时销售量为4000台,售价为5000元时销售量为3000台,请问每增加一台售价,销售量减少多少台?解析:这是一个典型的一次函数应用题。

首先,我们可以设定售价为x元,销售量为y台。

根据题目已知条件,可以列出两个点的坐标:(3000, 4000)和(5000, 3000)。

根据一次函数的一般式y = kx + b,可以得到方程组:4000 = 3000k + b -------(1)3000 = 5000k + b -------(2)通过解方程组,可以求解出k和b的值,从而确定函数关系。

首先,我们用(1)式减去(2)式,消去b的项,得到:1000 = -2000k解得k = -1/2。

将k的值代入(1)式或(2)式,可解得b = 7000/2 = 3500。

因此,该函数的函数关系为:y = -1/2x + 3500。

根据函数关系,我们可以计算每增加一台售价,销售量减少的台数。

由于每增加一台售价,x的变化量为1,代入函数关系,得到y的变化量为-1/2。

因此,每增加一台售价,销售量减少的台数为1/2台。

答案:每增加一台售价,销售量减少0.5台。

题二:一家电商公司将某商品的售价从每件100元提高到120元后,销售量下降了25%。

求原来的每件商品的销售量。

解析:这同样是一个一次函数的应用题。

我们可以设定原售价为x 元,销售量为y件。

根据题目已知条件,可以得到两个点的坐标:(100, y)和(120, 0.75y)(销售量下降25%相当于销售量的0.75倍)。

根据一次函数的一般式y = kx + b,可以得到方程组:y = 100k + b -------(1)0.75y = 120k + b -------(2)通过解方程组,我们可以求解出k和b的值,从而确定函数关系。

将(1)式代入(2)式,得到:0.75(100k + b) = 120k + b化简可得:75k + 0.75b = 120k + b整理得:0.25b = 45k解得:k = 0.25b/45将k的值代入(1)式,解得b = 11y/12因此,该函数的函数关系为:y = (0.25b/45)x + (11y/12)由于题目求解的是原来的每件商品的销售量,即求解y的值。

初二数学一次函数应用题精选

初二数学一次函数应用题精选

1、某移动公司采用分段计费的方法来计算话费,月通话时间x (分钟)与相应话费y (元)之间的函数图象如图所示:(1)月通话为100分钟时,应交话费 元; (2)当100x ≥时,求y 与x 之间的函数关系式; (3)月通话为280分钟时,应交话费多少元?2、甲、乙两名同学进行登山比赛,图中表示甲同学和乙同学沿相同的路线同时从山脚出发到达山顶过程中,各自行进的路程随时间变化的图象,根据图象中的有关数据回答下列问题:(1) 分别求出表示甲、乙两同学登山过程中路程s (千米)与时间t (时)的函数解析式;(不要求写出自变量t 的取值范围)(2) 当甲到达山顶时,乙行进到山路上的某点A 处,求A 点距山顶的距离;(3) 在(2)的条件下,设乙同学从A 处继续登山,甲同学到达山顶后休息1小时,沿原路下山,在点B 处与乙相遇,此时点B 与山顶距离为1.5千米,相遇后甲、乙各自按原来的路线下山和上山,求乙到达山顶时,甲离山脚的距离是多少千米?3、在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度y (cm )与燃烧时间()x h 的关系如图所示.请根据图象所提供的信息解答下列问题:(1)甲、乙两根蜡烛燃烧前的高度分别是 , 从点燃到燃尽所用的时间分别是 ; (2)分别求甲、乙两根蜡烛燃烧时y 与x 之间的函数关系式; (3)当x 为何值时,甲、乙两根蜡烛在燃烧过程中的高度相等?4、种植草莓大户张华现有22吨草莓等售,有两种销售渠道,一是运往省城直接批发给零售商,二是在本地市场零售,经过调查分析,这两种销售100 200(分钟) 时)5 )受客观因素影响,张华每天只能采用一种销售渠道,草莓必须在10日内售出.(1)若一部分草莓运往省城批发给零售商,其余在本地市场零售,请写出销售22吨草莓所获纯利润y (元)与运往省城直接批发零售商的草莓量x (吨)之间的函数关系式;(2)怎样安排这22吨草莓的销售渠道,才使张华所获纯利润最大?并求出最大纯利润.5、某房地产开发公司计划建A 、B 两种户型的住房共80套,该公司所筹资金不少于2 090万元,但不超过2 096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:(1)该公司对这两种户型住房有哪几种建房方案? (2)该公司如何建房获得利润最大? (3)根据市场调查,每套B 型住房的售价不会改变,每套A 型住房的售价将会提高a 万元(a >0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?6、今年以来,广东大部分地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法.若某户居民每月应交电费y (元)与用电量x (度)的函数图像是一条折线(如图所示),根据图像解答下列问题:(1) 分别写出100x 0≤≤和100x ≥时,y 与x(2) 利用函数关系式,说明电力公司采取的收费标准;(3) 若该用户某月用电62度,则应缴费多少元?(4) 若该用户某月缴费1057台湾水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售.预计每箱水果的盈有两种配货方案(整箱配货):方案一:甲、乙两店各配货10箱,其中A 种水果两店各5箱,B 种水果两店各5箱;方案二:按照甲、乙两店盈利相同配货,其中A 种水果甲店 箱,乙店 箱;B 种水果甲店 箱,乙店 箱.(1)如果按照方案一配货,请你计算出经销商能盈利多少元; (2)请你将方案二填写完整(只填写一种情况即可),并根据你填写的方案二与方案一作比较,哪种方案盈利较多? (3)在甲、乙两店各配货10箱,且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少? 8、一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图像解答下列问题.(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共x (度)带了多少千克土豆.9、某蔬菜基地加工厂有工人100人,现对100人进行工作分工,或采摘蔬菜,或对当日采摘的蔬菜进行精加工.每人每天只能做一项工作.若采摘蔬菜,每人每天平均采摘48kg ;若对采摘后的蔬菜进行精加工,每人每天可精加工32kg (每天精加工的蔬菜和没来得及精加工的蔬菜全部售出).已知每千克蔬菜直接出售可获利润1元,精加工后再出售,每千克可获利润3元.设每天安排x 名工人进行蔬菜精加工.(1)求每天蔬菜精加工后再出售所得利润y (元)与x (人)的函数关系式;(2)如果每天精加工的蔬菜和没来得及精加工的蔬菜全部售出的利润为w 元,求w 与x 的函数关系式,并说明如何安排精加工人数才能使一天所获的利润最大?最大利润是多少?10、小张骑车往返于甲、乙两地,距甲地的路程y (千米)与时间x (小时)的函数图象如图所示.(1)小张在路上停留 小时,他从乙地返回时骑车的速度为 千米/时. (2)小李与小张同时从甲地出发,按相同路线匀速前往乙地,到乙地停止,途中小李与小张共相遇3次.请在图中..画出小李距甲地的路程y (千米)与时间x (小时)的函数的大致图象.(1) 小王与小张同时出发,按相同路线前往乙地,距甲地的路程y (千米)与时间x (小时)的函数关系式为1210y x =+.小王与小张在途中共相遇几次?请你计算第一次相遇的时间.11、小文家与学校相距1000米.某天小文上学时忘了带一本书,走了一段时间才想起,于是返回家拿书,然后加快速度赶到学校.下图是小文与家的距离y (米)关于时间x (分钟)的函数图象.请你根据图象中给出的信息,解答下列问题: (1)小文走了多远才返回家拿书?(2)求线段AB 所在直线的函数解析式;(3)当8x =分钟时,求小文与家的距离.12、我市某乡A B,两村盛产柑桔,A 村有柑桔200吨,B 村有柑桔300吨.现将这些柑桔运到C D,两个冷藏仓库,已知C 仓库可储存240吨,D 仓库可储存260吨;从A 村运往C D ,两处的费用分别为每吨20元和25元,从B 村运往C D ,两处的费用分别为每吨15元和18元.设从A 村运往C 仓库的柑桔重量为x 吨,AB ,两村运往两仓库的柑桔运输费用分别为A y 元和B y 元. (1)请填写下表,并求出A B y y ,与x 之间的函数关系式;y x (分钟)(2)试讨论A B ,两村中,哪个村的运费较少;(3)考虑到B 村的经济承受能力,B 村的柑桔运费不得超过4830元.在这种情况下,请问怎样调运,才能使两村运费之和最小?求出这个最小值.13、有两段长度相等的河渠挖掘任务,分别交给甲、乙两个工程队同时进行挖掘.图是反映所挖河渠长度()y 米与挖掘时间()x 时之间关系的部分图象.请解答下列问题:(1)乙队开挖到30米时,用了 小时.开挖6小时时,甲队比乙队多挖了 米; (2)请你求出:①甲队在06x ≤≤的时段内,y 与x 之间的函数关系式;②乙队在26x ≤≤的时段内,y 与x 之间的函数关系式; ③开挖几小时后,甲队所挖掘河渠的长度开始超过乙队?(3)如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到12米/时,结果两队同时完成了任务. 问甲队从开挖到完工所挖河渠的长度为多少米?14、右图是某汽车行驶的路程S (km)与时间t (min)的 函 数关系图. 观察图中所提供的信息,解答下列问题: (1)汽车在前9分钟内的平均速度是多少? (2)汽车在中途停了多长时间?(3)当16≤t ≤30时,求S 与t 的函数关系式.15、如图,,A B l l 分别表示A 步行与B 骑车在同一路上行驶的路程S 与时间t的关系。

八年级一次函数大题典型题

八年级一次函数大题典型题

八年级一次函数大题典型题一、与坐标有关的一次函数问题。

题1:已知一次函数y = kx + b的图象经过点A( - 2, - 3)及点B(1,6)。

(1)求此一次函数的解析式;(2)判断点C(-(1)/(3),2)是否在此函数的图象上。

解析:(1)因为一次函数y = kx + b的图象经过点A(-2,-3)和B(1,6),将这两点代入函数可得方程组-3=-2k + b 6=k + b用第二个方程6 = k + b减去第一个方程-3=-2k + b,可得:6-(-3)=(k + b)-(-2k + b) 9=k + b + 2k - b 9=3k k = 3把k = 3代入6=k + b,得6=3 + b,解得b=3。

所以一次函数的解析式为y = 3x+3。

(2)把x =-(1)/(3)代入y = 3x + 3,得y=3×(-(1)/(3))+3=- 1 + 3=2所以点C(-(1)/(3),2)在此函数的图象上。

题2:一次函数y=kx + b的图象与x轴、y轴分别交于点A(-2,0)、B(0,4)。

求该一次函数的解析式,并求出AOB的面积。

解析:(1)因为一次函数y = kx + b的图象经过点A(-2,0)和B(0,4)把A(-2,0),B(0,4)代入y=kx + b得0=-2k + b 4=b把b = 4代入0=-2k + b得0=-2k+4,解得k = 2所以一次函数的解析式为y = 2x+4。

(2)因为A(-2,0),B(0,4),所以OA = 2,OB=4S_ AOB=(1)/(2)× OA× OB=(1)/(2)×2×4 = 4二、一次函数与方程(组)、不等式的关系。

题3:已知一次函数y = 2x - 4。

(1)求当y = 0时,x的值;(2)求当x = 3时,y的值;(3)当x为何值时,y>0;(4)求直线y = 2x - 4与坐标轴围成的三角形的面积。

一次函数与不等式的典型例题

一次函数与不等式的典型例题

一次函数与不等式的典型例题一、例题例1:已知一次函数y = 2x - 3。

(1)当x取何值时,y>0?(2)当x取何值时,y≤slant1?二、解析1. 对于(1)- 已知y = 2x - 3,当y>0时,即2x - 3>0。

- 解这个不等式:- 首先将-3移到右边,得到2x>3。

- 然后两边同时除以2,解得x > (3)/(2)。

2. 对于(2)- 当y≤slant1时,也就是2x - 3≤slant1。

- 解这个不等式:- 先把-3移到右边,得到2x≤slant1 + 3,即2x≤slant4。

- 两边同时除以2,解得x≤slant2。

例2:一次函数y=-3x + 5,若y = kx + b的图象在y=-3x + 5的图象上方时x<2,求k,b满足的关系。

解析1. 因为y = kx + b的图象在y=-3x + 5的图象上方时x < 2,这意味着当x = 2时,y=kx + b和y=-3x + 5的值相等。

2. 把x = 2代入y=-3x + 5,可得y=-3×2 + 5=-1。

3. 把(2,-1)代入y = kx + b,得到-1 = 2k + b,移项可得b=-1 - 2k。

例3:已知一次函数y = kx + b(k≠0)的图象经过点(1,1)和( - 1, - 3)。

(1)求这个一次函数的表达式。

(2)若y>0,求x的取值范围。

解析1. 对于(1)- 因为一次函数y = kx + b的图象经过点(1,1)和( - 1, - 3),将这两点代入函数表达式可得方程组k + b = 1 -k + b=-3。

- 用第一个方程k + b = 1减去第二个方程-k + b=-3,得到(k + b)-(-k + b)=1-(-3)。

- 展开括号得k + b + k - b = 4,即2k = 4,解得k = 2。

- 把k = 2代入k + b = 1,得2 + b = 1,解得b=-1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考一次函数应用题近几年来,各地的中考题中越来越多地出现了与函数有关的经济型考试题,这种类型的试题,由于条件多,题目长,很多考生无法下手,打不开思路,在考场上出现了僵局,在这里,我特举几例,也许对你有所帮助。

例1已知雅美服装厂现有A种布料70米,B种布料52米,现计划用这两种布料生产M, N两种型号的时装共80套。

已知做一套M型号的时装需要A种布料0.6米,B种布料0.9米,可获利润45元;做一套N型号的时装需要A种布料1. 1米,B种布料0. 4米,可获利润50元。

若设生产N种型号的时装套数为X,用这批布料生产这两种型号的时装所获总利润为y元。

(1)求y与X的函数关系式,并求出自变量的取值范围;(2)雅美服装厂在生产这批服装中,当N型号的时装为多少套时,所获利润最大?最大利润是多少?例2某市电话的月租费是20元,可打60次免费电话(每次3分钟),超过60次后,超过部分每次0. 13 元。

(1)写出每月电话费y(元)与通话次数x之间的函数关系式;(2)分别求出月通话50次、100次的电话费;(3)如果某月的电话费是27.8元,求该月通话的次数。

例3荆门火车货运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往广州,这列货车可挂A B两种不同规格的货厢50节,已知用一节A型货厢的运费是0.5万元,用一节B型货厢的运费是0. 8万元。

(1)设运输这批货物的总运费为y (万元),用A型货厢的节数为X (节),试写出y与X之间的函数关系式;(2)已知甲种货物35吨和乙种货物15吨,可装满一节A型货厢,甲种货物25吨和乙种货物35 吨可装满一节B型货厢,按此要求安排A、B两种货厢的节数,有哪几种运输方案?请你设计出来。

(3)利用函数的性质说明,在这些方案中,哪种方案总运费最少?最少运费是多少万元?例4 某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A B两种产品,共50件。

已知生产一件A种产品,需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B种产品,需用甲种原料4千克、乙种原料10千克,可获利润1200元。

(1)按要求安排 A B两种产品的生产件数,有哪几种方案?请你设计出来;(2)设生产A、B两种产品获总利润为y(元),生产A种产品x件,试写出y与X之间的函数关系式,并利用函数的性质说明(1)中哪种生产方案获总利润最大?最大利润是多少?例5某地上年度电价为0.8元,年用电量为1亿度。

本年计划将电价调至0. 55~0. 75元之间,经测算,若电价调至X元,则本年度新增用电量y(亿度)与(X-0.4)(元)成反比例,又当X = 0.65时,y =0. &(1)求y与X之间的函数关系式;(2)若每度电的成本价为0. 3元,则电价调至多少元时,本年度电力部门的收益将比上年度增加20%?[收益=用电量X(实际电价一成本价)]例6为加强公民的节水意识,某城市制定了以下用水收费标准:每户每月用水未超过7立方米时,每立方米收费1. 0元并加收0. 2元的城市污水处理费,超过7立方米的部分每立方米收费 1. 5元并加收0.4元的城市污水处理费,设某户每月用水量为X(立方米),应交水费为y(元)(1)分别写出用水未超过7立方米和多于7立方米时,y与X之间的函数关系式;(2)如果某单位共有用户50户,某月共交水费514. 6元,且每户的用水量均未超过10立方米,求这个月用水未超过7立方米的用户最多可能有多少户?例7辽南素以“苹果之乡”著称,某乡组织20辆汽车装运三种苹果42吨到外地销售。

按规定每辆车只装同一种苹果,且必须装满,每种苹果不少于2车。

(1)设用X辆车装运A种苹果,用y辆车装运B种苹果,根据下表提供的信息求y与X之间的函数关系式,并求X的取值范围;(2)设此次外销活动的利润为W(百元),求W与x的函数关系式以及最大利润,并安排相应的车辆分配方案。

苹果品种A B C每辆汽车运载量(吨) 2. 2 2. 12每吨苹果获利(百兀)685解:( 1)由题意得:2.2x• 2W • 2(2°-x-y) =42化简得:y一2x• 2°当y= °时,x = 1°• •• 1v x V 1°答:y与x之间的函数关系式为:y=-2x・2°;自变量x的取值范围是:1V x V 1°的整数。

(2)由题意得:W2・2沢6x+21汇8y+2汉5汇(2°-x - y)=3.2x+6.8y +200=3.2x +6.8(—2x +20) +200=-10.4x 336•/ W与x之间的函数关系式为:y= -1°.4x 336 • W随x的增大而减小•••当x= 2时,W有最大值,最大值为:W最大值=-10.4 2 336= 315. 2 (百元)当x = 2 时,y - -2x 20 = 16, 20 - x - y = 2答:为了获得最大利润,应安排2辆车运输A种苹果,16辆车运输B种苹果,2辆车运输C种苹果。

同学们,从以上几例的解答过程中,你学到了解决这类问题的基本思路和方法吗?小结:•数学问题确定函数解析式,求函数值确定自变量取值范围方案设计:利用不等式或不等式组及题意函数解决问题方案决策:最优方案:利用一次函数的性质及自变量取值范围确定最优方案应用题例析一次函数是初中数学中的重点内容之一,设计一次函数模型解决实际问题,备受各地命题者的青睐•本文采撷几例中考试题加以评析,供参考•一、图象型例1 (2003年广西)在抗击“非典”中,某医药研究所开发了一种预防“非典”的药品.经试验这种药品的效果得知:当成人按规定剂量服用该药后1小时时,血液中含药量最高,达到每毫升5微克,接着逐步衰减,至8 小时时血液中含药量为每毫升 1.5微克.每毫升血液中含药量y(微克)随时间x(小时)的变化如图所示.在成人按规定剂量服药后:(1)分别求出x w 1, x>1时y与x之间的函数关系式;(2)如果每毫升血液中含药量为2微克或2微克以上,对预防“非典”是有效的,那么这个有效时间为多少小时?解析本题涉及的背景材料专业性很强,但只要读懂题意,用我们学过的函数知识是不难解答的.题目的主要信息是由函数图象给出的,图象是由两条线段组成的折线,可把它看成是两个一次函数图象的组合.(1)当x wi 时,设y=k1X.将(1 , 5)代入,得k1=5.••• y=5x.k:=——当x> 1 时,设y=k2x+b.以(1 , 5), (8 , 1.5)代入,得 ' _⑵以y=2代入y=5x,得 -;1 11以y=2 代入: 2 " ' 2 ,得X2=7.注:题中图像是已知条件的重要组成部分,必须充分利用二、预测型例2 (2002年辽宁省)随着我国人口增长速度的减慢,小学入学儿童数量有所减少,下表中的数据近似地呈现了某地区入学儿童人数的变化趋势,试用你所学的函数知识解决下列问题:⑴求入学儿童人数y(人)与年份x(年)的函数关系式;(2)年份(x)200020012002入学儿童人数(y)252023302140解析建立反比例函数,一次函数或二次函数模型,考察哪一种函数能较好地描述该地区入ky=-学儿童人数的变化趋势,这就要讨论•若设.1. (k > 0),在三点(2000 , 2520) , (2001 , 2330), (2002 , 2140)中任选一点确定k值后,易见另两点偏离曲线较远,故反比例函数不能较好地反映入学儿童人数的变化趋势,从而选用一次函数•(1)设y=kx+b (k 工0),将(2000 , 2520)、(2001 , 2330)代入,得r2000k + b = 252山解星k = -1 処[200Lk + b = 2330.擀畀b = 382520.故y=-190x+382520.又因为y=-190x+382520 过点(2002 ,2140) ,所以y=-190x+382520 能较好地描述这一变化趋势.所求函数关系式为y=-190x+382520.故这个有效时间为「小时.(2)设x年时,入学儿童人数为1000人,由题意得-190x+382520=1000.解得x=2008.所以,从2008 年起入学儿童人数不超过1000人.注:从数学的角度去分析,能使我们作出的预测更准确. 本题也可构造二次函数模型来描述这一变化趋势.三、决策型例3 (2003 年甘肃省)某工厂生产某种产品,每件产品的出厂价为 1 万元,其原材料成本价(含设备损耗等) 为0.55 万元,同时在生产过程中平均每生产一件产品有 1 吨的废渣产生. 为达到国家环保要求,需要对废渣进行脱硫、脱氮等处理. 现有两种方案可供选择.方案一:由工厂对废渣直接进行处理,每处理 1 吨废渣所用的原料费为0.05 万元,并且每月设备维护及损耗费为20 万元.方案二:工厂将废渣集中到废渣处理厂统一处理. 每处理 1 吨废渣需付0.1 万元的处理费.(1) 设工厂每月生产x件产品,每月利润为y万元,分别求出用方案一和方案二处理废渣时,y与x 之间的函数关系式(利润=总收入-总支出);(2) 如果你作为工厂负责人,那么如何根据月生产量选择处理方案,既可达到环保要求又最合算.解析先建立两种方案中的函数关系式,然后根据月生产量的多少通过分类讨论求解.(1) y 1=x-0.55x-0.05x-20=0.4x-20 ;y2=x-0.55x-0.1x=0.35x.(2) 若y i >y2,贝U 0.4X-20 > 0.35x,解得x>400;若y i=y2,贝U 0.4x-20=0.35x ,解得x=400 ;若y i v y2,贝U 0.4x-20 v 0.35x,解得x v 400.故当月生产量大于400件时,选择方案一所获利润较大;当月生产量等于400件时,两种方案利润一样;当月生产量小于400件时,选择方案二所获利润较大注:在处理生产实践和市场经济中的一些问题时,用数学的眼光来分辨,会使我们作出的决策更合理•四、最值型例4 (2003年江苏省扬州市)杨嫂在再就业中心的支持下,创办了“润扬”报刊零售点,对经营的某种晚报,杨嫂提供了如下信息•①买进每份0.2元,卖出每份0.3元;②一个月(以30天计)内,有20天每天可以卖出200份,其余10天每天只能卖出120份.③一个月内,每天从报社买进的报纸份数必须相同,当天卖不掉的报纸,以每份0.1元退回给报社.⑴填表:(2)设每天从报社买进这种晚报x份(120 <x w200)时,月利润为y元,试求y与x之间的函数关系式,并求月利润的最大值.解析(1)由题意,当一个月每天买进100份时,可以全部卖出,当月利润为300元;当一个月内每天买进150份时,有20天可以全部卖完,其余10天每天可卖出120份,剩下30份退回报社,计算得当月利润为390元.(2)由题意知,当120w x w 200时,全部卖出的20天可获利润:20[(0.3-0.2)x]=2x( 元);其余10天每天卖出120份,剩下(x-120)份退回报社,10天可获利润:10[(0.3- 0.2) X 120 -0.1(x-120)]=-x+240(元).•••月利润为y=2x-x+240=x+240(120W x w 200).由一次函数的性质知,当x=200时,y有最大值,为y=200+240=440(元).注:对于一次函数y=kx+b,当自变量x在某个范围内取值时,函数值y可取最大(或最小)值,这种最值问题往往用来解决“成本最省”、“利润最大”等方面的问题五、学科结合型例5 (2002年南京市)声音在空气中传播的速度y(m/s)(简称音速)是气温x(C)的一次函数下表列出了一组不同气温时的音速:(1)求y与x之间的函数关系式;(2)气温x=22( C)时,某人看到烟花燃放5s后才听到声响, 那么此人与燃放的烟花所在地约相距多远?解析(1)设y=kx+b,任取表中的两对数,用待定系数法即可求得::' 'y = -x 22 + 331 = 344.2(1X1/5).⑵当x=22时,1334.2 X 5=1671(m).故此人与燃放的烟花所在地约相距1671m.注:本题考查了物理中声音的速度与温度的函数关系,是物理与数学结合的一道好题。

相关文档
最新文档