表面活性剂的结构、性质及应用
表面活性剂概述、结构特点、分类

03 亲水基团的性质和数量对表面活性剂的离子类型、 溶解度和性能有重要影响。
连接基团
01
连接基团是连接疏水基团和亲水基团的桥梁,通常为
碳链或芳香环。
02
连接基团的性质和长度对表面活性剂的聚集状态和性
能有重要影响。
03
连接基团的设计和优化是表面活性剂分子设计中的关
短链表面活性剂
疏水基团较短的表面活性剂,具有较 低的表面张力和较好的润湿性。
长链表面活性剂
疏水基团较长的表面活性剂,具有较 高的表面张力和较好的渗透性。
按亲水基团分类
羧酸盐型
以羧酸及其衍生物作为亲水基团的表面活性剂, 具有较好的耐酸、耐硬水能力。
硫酸酯盐型
以硫酸酯作为亲水基团的表面活性剂,具有较好 的耐碱、耐硬水能力。
磺化法
用浓硫酸或氯磺酸等强酸处理有机物,引入磺 酸基团,形成表面活性剂。
酯化法
通过醇和酸的酯化反应,生成酯类表面活性剂。
绿色合成方法
生物发酵法
利用微生物发酵产生表面活性剂,具有环保、可持续 的优点。
酶催化法
利用酶催化反应合成表面活性剂,选择性高、条件温 和。
绿色氧化还原法
利用环保的氧化剂和还原剂合成表面活性剂,减少对 环境的污染。
亲水亲油平衡值(HLB)
总结词
亲水亲油平衡值是衡量表面活性剂亲水性和亲油性平衡程度的指标。
详细描述
HLB值越大,表面活性剂的亲水性越强;反之,HLB值越小,表面活性剂的亲油性越强。选择合适的 HLB值的表面活性剂对于发挥其应用性能至关重要。
泡沫性能与去污力
总结词
泡沫性能和去污力是衡量表面活性剂在 洗涤、清洁等领域应用效果的性能参数 。
表面活性剂文献综述

表面活性剂一、表面活性剂的性质1.表面活性剂的定义表面活性剂(surfactant),是指加入少量能使其溶液体系的界面状态发生明显变化的物质。
具有固定的亲水亲油基团,在溶液的表面能定向排列。
表面活性剂分为离子型表面活性剂(包括阳离子表面活性剂与阴离子表面活性剂)、非离子型表面活性剂、两性表面活性剂、复配表面活性剂、其他表面活性剂等。
2.表面活性剂的结构特点表面活性剂分子具有独特的两亲性:一端为亲水的极性基团,简称亲水基,也称为疏油基或憎油基,有时形象地称为亲水头,如-OH、-COOH、-SO3H、-NH2;另一端为亲油的非极性基团,简称亲油基,也称为疏水基或憎水基,如R-(烷基)、Ar-(芳基)。
两类结构与性能截然相反的分子碎片或基团分处于同一分子的两端并以化学键相连接,形成了一种不对称的、极性的结构,因而赋予了该类特殊分子既亲水、又亲油,但又不是整体亲水或亲油的特性。
表面活性剂的这种特有结构通常称之为“双亲结构”(amphiphilic structure),表面活性剂分子因而也常被称作“双亲分子”。
3.表面活性剂的性质表面活性剂通过在气液两相界面吸附降低水的表面张力,也可以通过吸附在液体界面间来降低油水界面张力。
许多表面活性剂也能在本体溶液中聚集成为聚集体。
囊泡和胶束都是此类聚集体。
表面活性剂开始形成胶束的浓度叫做临界胶束浓度或CMC。
当胶束在水中形成,胶束的尾形成能够包裹油滴的核,而它们的(离子/极性)头能够形成一个外壳,保持与水接触。
表面活性剂在油中聚集,聚集体指的是反胶束。
在反胶束中,头在核,尾保持与油的充分接触。
表面活性剂系统的热动力学很重要,不论是理论上还是实践上。
因为表面活性剂系统代表的是介于有序和无序物质状态之间的系统。
表面活性剂溶液可能含有有序相(胶束)和无序相(自由表面活性剂分子和/或离子)。
胶束——表面活性剂分子的亲脂尾端聚于胶束内部,避免与极性的水分子接触;分子的极性亲水头端则露于外部,与极性的水分子发生作用,并对胶束内部的憎水基团产生保护作用。
表面活性剂的作用原理

01.
02.
03.
表面活性剂的分 子结构:具有亲 水基团和亲油基 团
吸附作用原理: 亲水基团与水分 子结合,亲油基 团与油分子结合
吸附效果:降低 液体表面张力, 提高液体的润湿 性和渗透性
应用领域:洗涤 剂、乳化剂、分 散剂等
表面活性剂的吸附作用:表面活性剂分子在固体表面形成单分子层,降低表 面张力
润湿温度:温度 越高,表面活性 剂的润湿速率越 快
润湿环境:不同 的润湿环境,如 空气、水、油等, 对润湿速率的影 响不同
01
02
03
04
表面活性剂的分 子结构:亲水基 团和亲油基团
乳化作用的原理: 表面活性剂的亲 水基团与水分子 结合,亲油基团 与油分子结合, 形成乳状液
乳化剂的选择: 根据油和:乳化剂的乳化 能力会影响乳状液的稳定性
04
乳化剂的乳化温度:乳化剂的乳化 温度会影响乳状液的稳定性
06
01
降低界面张力:表面活性剂能够降低 油水界面张力,使油水混合更加容易。
02
形成胶团:表面活性剂在油水界面上 形成胶团,将油滴包裹起来,使其分 散在水中。
03
乳化稳定性:表面活性剂的乳化作用 能够提高乳状液的稳定性,使油滴在 水中保持均匀分布。
01 表面活性剂降低表面张
力,使液体更容易铺展 在固体表面
03 液体在固体表面形成薄
层,增加液体与固体的 接触面积
表面活性剂形成胶团, 02
吸附在固体表面,降低 表面能
液体在固体表面形成均 04
匀的薄膜,提高润湿效 果
接触角:液体与 固体表面之间的 夹角
润湿角:液体与 固体表面之间的 夹角,表示液体 在固体表面的润 湿程度
表面活性剂性质与应用

第二章表面活性剂性质与应用1.表面活性剂的化学结构及特点是什么?(P21)表面活性剂的化学结构:由性质不同的两部分组成,一部分是疏水亲油的碳氢链组成的非极性基团,另一部分为亲水疏油的极性基,这两部分分别处于表面活性剂的两端,为不对称的分子结构。
特点:是一种既亲油又亲水的两亲分子,不仅能防止油水相排斥,而且具有把两相结合起来的功能。
2.表面活性剂有哪些类型举例说明。
按溶解性分类:有水溶性和油溶性两大类;按照其是否离解分类:离子型和非离子型两大类;根据其活性部分的离子类型又分为:阴离子、阳离子和两性离子三大类。
3.表面活性剂的水溶液的特点是什么?(1)浓度↑,表面张力↑。
如:NaCl,Na2SO4,KOH,NaOH,KNO3等无机酸、碱、盐溶液。
(2)浓度↑,表面张力↓。
如:有机酸、醇、醛、酮、醚、酯等极性物质溶液。
(3)随浓度增大,开始表面张力急剧下降,但到一定程度便不再下降。
如:肥皂、长链烷基苯磺酸钠等溶液。
这些物质称为表面活性剂。
4.何谓表面活性?表面活性剂是这样一种物质,它活跃于表面和界面上,具有极高的降低表、界面张力的能力和效率;在一定浓度以上的溶液中能形成分子有序组合体,从而具有一系列应用功能(表面活性是一种动力学现象,表面或界面的最终状态表示了两种趋势之间的动态平衡,即朝向表面吸附的趋势和由于分子热运动而朝向完全混合的趋势之间的平衡)5.简述Traube规则的内容。
特劳贝规则:即每增加一个-CH2-基团时,其π/C 约为原来的三倍。
6.试述阳离子SAA的主要用途。
广泛应用于非纺织物的防水剂、优柔剂、抗静电剂、染料的固色剂、医用消毒剂、金属防腐剂,矿石浮选剂、头发调理剂、沥青乳化剂等。
7.两性离子SAA有什么特点。
最大特征在于它既能给出质子又能接受质子。
(1)对织物有优异的柔软平滑性和抗静电性。
(2)有一定的杀菌性和抑霉性。
(3)有良好的乳化性和分散性。
(4)与其他类型表面活性剂有良好的配伍性。
表面活性剂介绍

表面活性剂的分类
01
按化学结构分类
阴离子型、阳离子型、非离子型和 两性离子型等。
按应用分类
洗涤剂、化妆品、食品工业、医药、 农药等专用表面活性剂。
03
02
按来源分类
天然表面活性剂和合成表面活性剂。
表面活性剂能够降低固体表面与液体的接 触角,提高固体表面的润湿性,有利于物 质的分离和制备。
在泡沫体系中,表面活性剂可以控制泡沫 的大小和稳定性,发泡和消泡在日化、食 品、医药等领域有广泛应用。
03
表面活性剂的应用领域
工业清洗
总结词
表面活性剂在工业清洗中发挥重要作用,能够降低水的表面张力,使污渍和油 脂更容易被去除。
THANKS
感谢观看
石油工业
总结词
表面活性剂在石油工业中用于提高采收率和油水分离效果。
详细描述
表面活性剂能够降低油水界面张力,改善原油的流动性,提高采收率。同时,它 们在油水分离过程中发挥重要作用,能够将水和原油有效分离,提高油品质量和 产量。
食品工业
总结词
表面活性剂在食品工业中用于食品加工、乳化、增稠和稳定食品体系。
04
表面活性剂的发展趋势与展望
新材料与新技术的应用
纳米材料的应用
表面活性剂在纳米材料制备中发 挥重要作用,如纳米颗粒、纳米 纤维和纳米膜等。
高分子材料的应用
高分子表面活性剂在胶束、乳液 、微乳液等领域具有广泛应用, 可提高材料的性能和稳定性。
绿色环保与可持续发展
生物可降解表面活性剂
随着环保意识的提高,生物可降解表 面活性剂成为研究热点,如脂肪酸酯 、烷基多糖苷等。
表面活性剂在化妆品中的应用

01 引言
03 应用
目录
02 定义 04 参考内容
引言
表面活性剂是一类具有特定分子结构的化合物,具有亲水亲油性质,通常用 于清洁、保护和美化肌肤的化妆品中。在化妆品领域,表面活性剂的主要作用是 作为添加剂,提高产品的使用体验、增加产品销售以及提升产品品质。本次演示 将详细介绍表面
4、抗菌和防腐作用
一些两性表面活性剂还具有抗菌和防腐作用,可以有效地延长化妆品的保质 期,防止细菌和霉菌的滋生。例如,季铵盐类两性表面活性剂具有广谱抗菌作用, 能够杀灭多种细菌和真菌。
四、总结
本次演示主要介绍了两性表面活性剂的合成方法及其在洗涤化妆品中的应用。 由于两性表面活性剂具有出色的洗涤、润湿、乳化、分散等性能以及温和不刺激、 抗菌防腐等特性,因此在洗涤化妆品领域具有广泛的应用前景。随着人们对于化 妆品安全和
人们将更加表面活性剂的安全性和生物学性质,尽量避免对人体有害的成分, 同时追求更加温和、不刺激的配方。此外,表面活性剂的复配技术也将得到更加 广泛的应用,通过不同类型表面活性剂的复配,可以获得更好的性能和效果。
除了传统类型的表面活性剂之外,新型的表面活性剂也在不断开发。例如, 含有氨基酸、糖类等天然成分的表面活性剂,具有更好的生物可降解性和皮肤相 容性,将在化妆品中发挥越来越重要的作用。另外,一些具有特殊功能的表面活 性剂也在研发中
活性剂的基本概念、在化妆品中的应用情况、优势以及未来发展趋势。
定义
表面活性剂是一种具有极性基团和疏水基团的化合物。极性基团可以与水分 子相互作用,使表面活性剂在水溶液中溶解;而疏水基团则倾向于与非极性物质 结合,使表面活性剂在界面上富集。这种特殊的分子结构使得表面活性剂具有降 低表面张力、润湿、乳化、分散等特性。
化学表面活性剂的性质与应用

化学表面活性剂的性质与应用化学表面活性剂是一类广泛应用于工业和生活中的重要物质。
它们以其特殊的性质,在各种领域中起着关键作用。
本文将详细介绍化学表面活性剂的性质和应用。
一、化学表面活性剂的定义化学表面活性剂是一类具有分子结构上的特殊性质,能够吸附在液体表面并降低表面张力的物质。
它们以亲水性和疏水性部分构成,因此可以在液体中形成胶束,并在界面上发挥应用。
二、化学表面活性剂的性质1. 降低表面张力化学表面活性剂能在液体表面或液体-固体界面降低表面张力,由于其分子结构的特殊性质,使其在水中部分分子吸附在液体表面上,使表面张力降低。
2. 分散作用化学表面活性剂能使油和水两种互不溶于单质混合,分散作用使油颗粒分散在水中,形成乳状液。
这对于液体的混合、溶解和吸收有着重要的应用。
3. 乳化作用化学表面活性剂在水和油界面能够形成乳状液,使两者混合得更加均匀。
这种乳化作用在食品、化妆品和润滑剂等领域有广泛应用。
4. 润湿性化学表面活性剂具有良好的润湿性,能够降低固体表面的接触角,使液体能够在固体表面上均匀分布。
这对于清洁剂、涂料和涂层等领域非常重要。
5. 增稠性化学表面活性剂在高浓度时能形成胶束,形成网状结构,增加液体的黏性。
这种增稠性在洗涤剂、油漆和胶水等领域有广泛应用。
三、化学表面活性剂的应用1. 清洁剂化学表面活性剂作为清洁剂的重要组分,能够有效降低水的表面张力,增强溶解能力,使污垢更容易被清洗。
例如,洗衣粉中的表面活性剂能够去除衣物上的污渍。
2. 洗护产品化学表面活性剂在洗发水、沐浴露等洗护产品中发挥重要作用。
它们能够降低洗涤液的表面张力,使洗涤剂更容易被清洗,从而有效去除头发和皮肤上的油脂和污垢。
3. 化妆品化学表面活性剂在化妆品中起到乳化、稳定和润湿的作用。
例如,乳状化妆品中的表面活性剂能够使油和水充分混合,使化妆品更易于使用和吸收。
4. 农药与肥料化学表面活性剂在农药和肥料中用作助剂,能够提高药剂或肥料对植物和土壤的附着性,提高效果,并降低泥土中的表面张力。
表面活性剂的基本性质及作用

新型绿色表面活性剂的研究与开发
1
新型绿色表面活性剂是指具有环保、低毒、生物 可降解等优点的表面活性剂,如糖基表面活性剂、 磷脂表面活性剂等。
2
新型绿色表面活性剂的合成方法主要包括化学合 成和生物合成两种,其中生物合成方法具有环境 友好、生产成本低等优点。
3
新型绿色表面活性剂在应用过程中需注意其性能 与其他传统表面活性剂的差异,以及大规模生产 和应用的可行性问题。
选择合适的润湿剂需要考虑其润湿性能和稳定性,同时还需要考虑其与其他化学品的兼 容性。
起泡和消泡作用
起泡作用
表面活性剂能够降低液体的表面张力,使气体更容易在液体中形成气泡。在泡 沫灭火器、泡沫混凝土、泡沫清洗等领域中,起泡作用是表面活性剂的重要应 用之一。
消泡作用
在一些工业过程中,如纸浆制造、石油开采等,会产生大量的泡沫,影响生产 效率和产品质量。表面活性剂可以作为消泡剂,有效抑制泡沫的产生和稳定, 提高生产效率和产品质量。
详细描述
农药和医药中间体中的表面活性剂能够增加药物的溶解度,使其更好地分散在水中或穿透细胞膜,从而提高药物 的生物利用度和治疗效果。此外,表面活性剂还可以作为药物的载体,帮助药物在体内更好地分布和吸收。
05
词
磺化法是一种常用的表面活性剂合成方法, 通过将芳香族化合物与硫酸反应,引入磺酸 基团,从而制备出阴离子型表面活性剂。
总结词
化妆品中添加表面活性剂是为了提高产品的稳定性、润湿性和乳化效果。
详细描述
在化妆品中,表面活性剂可以作为乳化剂、润湿剂和分散剂,有助于将油性成分和水性成分混合在一 起,形成稳定且易于涂抹的质地。同时,表面活性剂还能帮助增加皮肤的水合作用,使皮肤更加柔软 光滑。
农药和医药中间体
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
表面活性剂的结构、性质及应用摘要:本文介绍了阴离子表面活性剂三乙醇胺的性质结构以及它的制备方法和应用,阳离子表面活性剂二乙基烯丙基胺以烯丙基氯作烷基化试剂,在常压、不加催化剂的情况下合成,并对原料配比,加料方式与时间,以及沸腾反应时间对产率的影响进行研究。
非离子表面活性剂十二烷基聚甘油醚通过缩水甘油与脂肪醇反应,并写出了它与复配体系的性能研究。
关键词:阳离子表面活性剂;阴离子表面活性剂;非离子表面活性剂;制备方法1.前言表面活性剂是一类重要的精细化学品,用途十分广泛,在洗涤、纺织、石油、建筑等各行业中发挥着智能更要作用,其应用范围几乎覆盖整个精细化工的所有领域。
近年来,随着高新技术的不断发展表面活性剂的需求量和年产量持续增长,也为其基础理论的研究和新品种的开发提出更高的要求。
本文介绍了三种表面活性剂:阴离子表面活性剂、阳离子表面活性剂和非离子表面活性剂的性能、制备方法、结构和性质。
2阴离子表面活性剂-三乙醇胺2.1 三乙醇胺名称与结构三乙醇胺、学名三羟三乙基胺,别名氨基三乙醇,又名2、2 、2 一三羟基三乙胺,英文名t Triethanelamine,简名TEA,分子式C6H15O9N。
2.2 三乙醇胺的性质三乙醇胺是一种表面活性剂可用于乳化剂、分散剂、湿润剂、渗透剂、皂化剂,早强剂以及脱硫剂等方面。
三乙醇胺是一种用途很广的弱有机碱和非离子表面活性剂具有轻微氨气味,呈粘稠状无色,或淡黄色液体。
其碱性稍低于氨,吸湿性强,易溶于水、乙醇和氯仿,微溶于乙醚和苯。
在空气中日久会变成褐色,它能与酸性物质化合成胺盐,并能与脂肪酸皂化成皂化物。
三乙醇胺能吸收二氧化碳和硫化氢等气体不能随水蒸气一同挥发。
其水溶液对钢铁、镍等均不发生作用,而对铜及其合金则有腐蚀性。
2.3 三乙醇胺的制备三乙醇胺是与一乙醇胺,二乙醇胺混合在一起制备的混合型产品,总称为乙醇胺。
这种混合型产品,其生产方法是以氯乙醇和氨为原料反应生成的。
其反应式如下:C1CH2CH2OH+NH3→NH2CH2CH2OH+HC12C1CH2CH2OH+NH3→NH(CH2CH2OH)2 +2HCI3C1CH2CH2OH+NH3→NH(CH2CH2OH)3+3HCI近年来,由于石油工业的发展,生产乙醇胺是采用环氧乙烷和氨进行合成反应。
环氧乙烷与氨的比倒不同,可以制取不同的三氧乙烷与氨的比倒不同,可以制取不同的三乙醇胺、二乙醇胺和一乙醇胺产品。
制备乙醇胺的工艺条件是以95以上的环氧乙烷与25~30的无水氨置于反应器内,先加入氨,再于30~35℃下,通人环氧乙烷,在压力为2个大气压下直接反应台成。
每小时通入的环氧乙烷不同,可得到比例不同的一乙醇胺、二乙醇胺和三乙醇胺。
制备纯度较高的三乙醇胺,其氨与环氧乙烷的比例为2 :1。
即每小时通八环氧乙烷量100~150升。
反应器液料量不超过容器1/3。
环氧乙烷通完后,将其反应物循环一小时以后,即可出料。
蒸发出过剩的氨,可用水吸收,并将水蒸发回收氨,所得的产品,据分馏要求而异。
2.4三乙醇胺的应用2.4.1 在机械工业中的应用三乙醇胺不仅在日用化工中应用广泛。
而且在机械工业中应用也很广。
三乙醇胺与油酸中和制取三乙醇胺油酸皂,不仅对动植物油有良好的脱脂能力,而且对矿物油和其它油垢也具有去污能力。
三乙醇胺与油酸反应产生的三乙醇胺油酸皂,还可作为乳化剂及防锈剂、其缩合物的性质与三乙醇胺与油酸的比例有很大关系三乙醇胺与油酸之分子比一般为1 :1,或1 :2。
1 :1的产品大都是不溶于水,而1 :2的产品则易溶于水。
缩台反应在塘瓷锅中进行,常以氢氧化钠或氢氧化钾盐少量做催化剂。
温度控制120~130℃,反应时间一般为5小时左右。
反应式为:水溶性三乙醇胺油酸皂常用于洗涤产品,而不溶于水,溶于油或溶剂的三乙醇胺油酸皂则应用于金属加工用的产品,如防锈油,切削油膏等产品。
如:它与卤化物还可置换成无腐蚀性的油酸铅盐及胺盐,其反应式如下:三乙醇胺与油酸还可制得一种机械加工用的优良防锈酯:如油酸基三乙醇胺酯,它是将油脂与等摩尔的三乙醇胺在减压下,高温脱水醣化反应生成。
酸值降至1毫克/克以下,过滤而得的产品。
这种合成酯与基础油、硅油及防锈助剂配制极压剂复合使用可显著提高齿轮油的极压抗磨性能。
在s—P型齿轮油中,加入1%就可以提高梯姆肯ok值30~50磅,并可改善油品的腐蚀性、防锈性和氧化安定性。
另外三乙醇胺与磷酸酯在反应釜中,温度控制在50~70℃,反应时间1~1.5小时,制得的磷酸酯三乙醇胺,与石油磺酸钠及机油可生产质量优良的切削乳化油。
其反应如下:2.4.2 在造纸工业中的应用在造纸工业中,采用三乙醇胺与脂肪酸制的烷基醇酰胺(尼纳尔)与其它非离子型表面活性剂复配制成的洗涤剂,用于洗涤造纸毛毯,具有脱油去污效果优良,抗静电、节约水和提高毛毯寿命等优点另外三乙醇胺还可用于特种过滤纸生产助剂。
如上海国丰造纸厂研究生产的空气滤纸、柴油滤纸,机油滤纸等新型过滤材料,广泛用于拖拉机,汽车和船舶等作过滤用。
这种纸水溶树脂配方,就是以三乙醇胺与双酚酸,甲醛按一定比例制取的。
在防锈纸生产中它可用作防锈抑制剂,在包装物品中具有防腐蚀性。
2.4.3 在其它工业方面的应用三乙醇胺在建筑工业中,不仅可以用于制备钢筋水泥缓蚀剂和防锈剂,保护钢筋水泥,保护金属防止氧化,同时还可作水泥的早强剂。
如以三乙醇胺万分之五与食盐千分之五(对水泥计),以水溶解调配水泥,可缩短水泥硬化时间,增加水泥的早期强度,即两天的强度可以达到28天强度的50%,并增加水泥的后期强度、使用简便、效果突出。
另外还可制备予应力钢筋混凝土,钢筋二水石膏百分之二,亚硝酸钠百分之一。
在电镀行业中,可代替氰化钠或采用微氰电镀或无氰电镀。
镀件内在质量完全和用氰镀件相媲美。
在电子元件清洗中,用三乙醇胺油酸皂复合配制的洗剂,不仅革掉用铬酸、盐酸、硫酸,硝酸的旧工艺,还加快了去污时间,提高效率达四倍,节约了化工原料、动力消耗和降低处理成本费用另外在丁腈橡胶聚合中用作活化剂纺织行业用作柔软剂等。
3 阴离子表面活性剂——二乙基烯丙基胺本文以二乙胺、烯丙基氯、NaOH为原料, 在常压、不加催化剂的情况下,采用先后滴加方式合成和测定了二乙基烯丙基胺。
3.1 二乙基烯丙基胺的合成与性能二乙胺是强亲核物质, 烯丙基氯易发生亲核取代反应。
根据相关文献[2,8] 对于烷基化制备胺的机理的论述, 二乙基烯丙基胺合成应经历了如下反应历程:3.1.1 叔胺合成在装有搅拌器、冷凝回流管和两个滴液漏斗的250mL四颈瓶中加入0.4mol二乙胺, 在40%水浴下,缓慢滴加0.45mol烯丙基氯, 再滴加40%的NaOH溶液50mL,控制总滴加时间为2h,然后沸腾回流反应1h,冷却得粗产品。
粗产品过滤除去NaCl晶体,滤液静置分层,分离水相与有机相。
水相用乙醚萃取3次,每次乙醚用量为30mL,萃取液与油相合并,蒸馏收集100~110%馏分,放在用NaOH固体干燥的干燥器中过夜,然后重蒸馏,常压下收集104~107%馏分即为产品。
经提纯得到的二乙基烯丙基胺的含量可以通过如下方法确定[7]:在乙二醇甲基醚(甲基溶纤剂)为溶剂的体系中,以刚果红为指示剂,用高氯酸-乙二醇甲基醚进行滴定。
滴定测得重蒸馏物中二乙基烯丙基胺的含量达98%,因此,也可以直接采用称重法来确定目标物的含量。
3.1.2 烯丙基氯用量确定当烯丙基氯和NaOH溶液总滴加时间为2h,沸腾反应时间1h时, 烯丙基氯用量(与二乙胺的摩尔比)对产率的影响见图1.由图1可以看出,烷基化剂用量是影响产率的主要因素之一。
当摩尔比为1:1:1时,产率出现峰值。
当烯丙基氯用量继续增大时,会产生较多的铵盐,从而降低叔胺的产率,其反应过程可由下式表示:3.2 影响因素3.2.1 滴加方式与时间影响烯丙基氯与二乙胺摩尔比为1 :1、沸腾反应时间1h时, 原料滴加方式(烯丙基氯与NaOH采用先后分别滴加或交替等比例滴加)及滴加时间(如果交替滴加总时间取Nh时,对应的先后滴加中烯丙基氯和NaOH溶液滴加时间则分别取2h,对产率的影响见图3。
由图3可以看出,采用交替滴加等比例滴加方式在反应前1h 内比采用先后滴加产率高,这可能是由于式(1)产生的(CH3CH2)2NH2+Cl使二乙胺丧失了亲核性,阻碍了叔胺化的原因,加入NaOH可以及时中和HCl,使二乙胺得到释放(式2)。
当滴加时间增长后, 滴加方式对产率影响不明显, 表明式(1) 是合成反应的控制步骤; 此外,由于烯丙基氯易在碱性环境下水解(式4),交替滴加易导致局部碱性小环境的产生, 操作不当还可能导致整个体系呈现较强碱性, 不利于合成反应的进行。
3.2.2 沸腾时间的影响在烯丙基氯与二乙胺摩尔比为1 :1 :1、加料时间2h时, 沸腾时间对产率的影响见图4.可见,沸腾时间对产物产率的影响虽不如上述因素大, 但当加热沸腾时间超过1h后,大约可以提高产品的产率约5%,再延长沸腾时间,效果不明显。
3.3 结论以二乙胺为基本原料,烯丙基氯作烷基化试剂,在常压、不加催化剂的情况下, 合成了二乙基烯丙基胺。
当烯丙基氯与二乙胺摩尔比为1 :1 :1、水浴温度为40%、总加料时间为2h及沸腾反应1h时,二乙基烯丙基胺产率达78%,明显地缩短了反应时间。
滴定分析表明,经重蒸馏提纯后的产物纯度高,并对产品进行了基本表征。
4 非离子表面活性剂——十二烷基聚甘油醚4.1 缩水甘油与脂肪醇反应制备十二烷基聚甘油醚以甘油和脂肪醇为原料制备表面活性剂,若脂肪醇的羟基与聚甘油的羟基直接反应,要使用强酸脱水或贵重金属催化剂【38】引,且反应很难完成。
故考虑引入环氧基团,使两者之间的反应变得较容易进行。
因此,首先考虑是甘油中含有一个环氧基团即得缩水甘油,再通过缩水甘油与脂肪醇进行反应。
本实验选用3一氯一1,2-丙二醇与碱溶液于低温作用下脱去氯化氢制备缩水甘油。
反应方程式如下:4.1.1 实验方法a.缩水甘油的制备在三口烧瓶中加入3一氯一1,2-N--醇229(0.2mo1)和溶剂50ml溶剂,水浴控制一定的反应温度,滴加一定浓度的碱液溶液进行反应,反应进行数小时。
反应结束后,以溴百里芬蓝指示剂,滴加盐酸中和未反应的碱液(溶液由蓝色变为黄色时则到终点),加入适量吸水剂无水硫酸镁,放置过夜后进行抽虑,然后将滤液减压蒸馏除去溶剂,即得产物缩水甘油。
b.缩水甘油与十二醇反应称取十二醇109(0.05t001),溶剂50ml于四口烧瓶中,通氮气,水浴控制一定温度,加入少量催化剂三氟化硼乙醚,滴加11.19(0.15mo1)缩水甘油,反应数小时后结束反应。
最终产物分两层,上层为产品,下层为聚合甘油。
4.1.2 分析方法a.缩水甘油的分析采用红外光谱(IR)涂膜法分析表征缩水甘油的结构。