晶体的种类和应用1
一、晶体常识1.晶体与非晶体(1)晶体与非晶体的区别.
(3)离子晶体
一般地说,阴阳离子的电荷数越多,离子半径越小,则离
子间的作用力就越强,相应的晶格能大,其晶体的熔、沸 点就越高,如熔点:MgO>MgCl2,NaCl>CsCl. (4)分子晶体 ①分子间作用力越大,物质的熔、沸点越高;具有氢键的
分子晶体熔、沸点反常的高,如H2O>H2Te>H2Se>H2S.
②组成和结构相似的分子晶体,相对分子质量越大,熔、 沸点越高,如SnH4>GeH4>SiH4>CH4.
③组成和结构不相似的物质(相对分子质量接近),分子的极
性越大,其熔、沸点越高,如CO>N2,CH3OH>CH3CH3. ④同分异构体,支链越多,熔、沸点越低,如 CH3—CH2—CH2—CH2—CH3>
类型 比较
分子晶体
原子晶体
金属晶 体
离子晶体
大多数非金属单质
(如P4、Cl2)、气态
一部分非
金属单质 金属单 质与合
金属氧化物
(如K2O、 Na2O)、强
氢化物、酸(如HCl、 (如金刚石、
物质类别 H2SO4)、非金属氧
SiO2除外)、绝
硅、晶体
及举例 化物(如SO2、CO2, 硼),一部 分非金属
金
属 晶 体
钾型
典型代表Na、K、Fe,空间
利用率68%,配位数为8 典型代表Mg、Zn、Ti,空 间利用率74%,配位数为12 典型代表Cu、Ag、Au,空 间利用率74%,配位数为12
镁型
铜型
[例1]如图,直线交点处的圆圈为NaCl晶体中Na+或Cl-所
一、晶体常识1.晶体与非晶体(1)晶体与非晶体的区别
的晶体
构的晶体
成的晶体 形成的晶体
构成粒
分子
子
结
粒子间
构
分子间的作
的相互
用力
作用力
原子 共价键
金属阳离子、 阴、阳离子
自由电子
金属键
离子键
类型 分子晶体 原子晶体 金属晶体 比较
密度 较小
较大
有的很大,有 的很小
硬度 较小
有的很大,有
很大
的很小
熔、沸 较低
很高 有的很高,有
性 质
点 溶解性
相似相溶
2.晶胞 (1)晶胞与晶体的关系
①晶胞是描述晶体结构的基本单元. ②数量巨大的晶胞“无隙并置”构成晶体. (2)晶胞中粒子数目的计算方法
二、四种晶体的比较
1.晶体的基本类型和性质比较
类型 分子晶体
比较
原子晶体
金属晶体
离子晶体
分子间靠分 原子之间以共价 金属阳离子和 阳离子和阴
概念
子间作用力 键结合而形成的 自由电子以金 离子通过离 结合而形成 具有空间网状结 属键结合而形 子键结合而
(如K2O、
物质类别 H2SO4)、非金属氧
质与合 硅、晶体
Na2O)、强
金(如Na、 碱(如KOH、
及举例 化物(如SO2、CO2, 硼),一部 Al、Fe、 NaOH)、绝
SiO2除外)、绝
分非金属 青铜) 大部分盐(如
大多数有机物(如 化合物(如
NaCl)
CH4,有机盐除外) SiC、SiO2)
难溶于任 何溶剂
的很低 难溶于常见溶
剂
一般不导
导电、 电,溶于 一般不具 电和热的良导
传热性 水后有的 有导电性
原子晶体和金属晶体
原子晶体和金属晶体
原子晶体和金属晶体都属于晶体结构,是由原子或离子通过规则排列而形成的具有一定几何形态的固体。
它们之间的区别在于原子或离子的性质和排列方式有所不同。
原子晶体是由原子通过共价键或离子键结合而形成的晶体。
原子晶体中的原子通过共用电子或者通过正负电荷间的相互作用结合在一起。
常见的原子晶体有金刚石、石英等。
金属晶体是由金属原子通过金属键结合而形成的晶体。
金属晶体中的金属原子通过共享电子而形成的金属键相互连接在一起。
金属晶体具有典型的共性结构和金属特性,如高导电性、高热导性和可塑性等。
常见的金属晶体有铜、铁、铝等。
总的来说,原子晶体和金属晶体都是由原子或离子通过规则排列而形成的晶体,但它们的结合方式和性质有所不同。
原子晶体主要由原子通过共价键或离子键结合,金属晶体主要由金属原子通过金属键结合,且金属晶体具有典型的金属特性。
高考化学晶体结构:晶体类型与性质比较
高考化学晶体结构:晶体类型与性质比较在高考化学中,晶体结构是一个重要的知识点,其中晶体类型与性质的比较更是常考的内容。
理解和掌握不同晶体类型的特点及其性质差异,对于我们解决相关问题、提高化学成绩具有关键作用。
晶体,是由原子、离子或分子在空间按一定规律周期性地重复排列构成的固体物质。
根据构成晶体的粒子种类以及粒子间相互作用力的不同,晶体可以分为离子晶体、分子晶体、原子晶体和金属晶体这四大类型。
首先来看看离子晶体。
离子晶体是由阴、阳离子通过离子键结合而成的晶体。
常见的离子晶体有氯化钠、氯化铯等。
离子晶体具有较高的熔点和沸点,因为离子键是一种较强的化学键,要破坏离子键需要消耗大量的能量。
例如氯化钠,在通常情况下是固体,需要加热到 801℃才会熔化。
而且离子晶体在熔融状态或水溶液中能够导电,这是因为离子可以自由移动。
但在固态时,由于离子被束缚在晶格中,不能自由移动,所以不能导电。
接下来是分子晶体。
分子晶体是由分子通过分子间作用力(范德华力或氢键)结合而成的晶体。
像干冰(固态二氧化碳)、冰等都是典型的分子晶体。
分子晶体的熔点和沸点通常较低,因为分子间作用力相对较弱。
例如干冰,在常温常压下就会直接升华变成气体。
分子晶体一般不导电,除非其溶于水后形成了能够自由移动的离子。
再说说原子晶体。
原子晶体是由原子通过共价键结合而成的空间网状结构的晶体。
金刚石、晶体硅、二氧化硅等是常见的原子晶体。
原子晶体具有很高的熔点和沸点,硬度大。
这是因为共价键的强度很大,要破坏共价键需要很高的能量。
比如金刚石,是自然界中最硬的物质之一,其熔点高达 3550℃。
最后是金属晶体。
金属晶体是由金属阳离子和自由电子通过金属键结合而成的晶体。
大多数金属单质都属于金属晶体,如铁、铜、铝等。
金属晶体具有良好的导电性、导热性和延展性。
这是因为自由电子能够在金属阳离子之间自由移动。
金属晶体的熔点和沸点差异较大,这取决于金属键的强弱。
在性质方面,除了熔点、沸点和导电性有所不同外,晶体的硬度和溶解性也各有特点。
第1节晶体和非晶体
实验2:单晶体和多晶体导电性能的比较 现象:方铅矿石不同方向接入电路,电流计读数发生变化;金属条 不同方向接入电路,电流计读数不变。 说明:方铅矿石各向导电性能不同。
对各向异性与各向同性的理解
(1)在物理性质上,单晶体具有各向异性,而多晶体和非 晶体则是各向同性的。
①单晶体的各向异性是指单晶体在不同方向上的力学、 热学、电学、光学等物理性质不同,也就是沿不同方向去测 试单晶体的物理性能时测试结果不同。
答案:D
2.某球形固体物质,其各向导热性能相同,则该物体 (
)
A.一定是非晶体
B.可能具有确定的熔点
C.一定是单晶体,因为它有规则的几何外形
D.一定是多晶体,因为它具有各向同性的物理性质
解析:导热性能各向相同的物体可能是非晶体,也可能是多晶
体,因此 A 选项错误;多晶体虽具有各向同性但具有确定的熔
③立方的铜晶体在弹性上表现出显著的各向异性——沿 不同方向的弹性不同。
④方解石晶体在光的折射上表现出各向异性——沿不同 方向的折射率不同。
三、晶体与非晶体 1.晶体 (1)结构特点:分子的空间排列有规律。 (2)物理性质:具有固定的熔点和沸点。 2.非晶体 (1)结构特点:分子的空间排列没有规律,没有规则的几 何形状。 (2)物理性质:①各向同性;②没有固定的熔点;③有的 晶体与非晶体在一定条件下可以相互转化。
2.冰制成的冰雕作品是晶体还是非晶体? 构成冰雕的物质是冰,冰微粒具有规则的几何形状及确定的熔点,所以冰雕作 品是晶体。
第1节 晶体和非晶体
,由大量细微的小晶粒杂乱无
章地排列在一起构成的.
物理
(2)物理性质:
①在机械强度、导热性、导电性及光学性质等方面,体现出 各向同性 .
② 有 确定的熔点.
三、晶体与非晶体
1.晶体和非晶体的熔化过程
(1)晶体:未熔化时,温度逐渐 升高 ,温度达到熔点时,开始熔化,固态
与 液 态共存,但温度保持 不变
区分晶体和非晶体、单晶体和多晶体的方法
(1)区分晶体和非晶体的方法是看其有无确定的熔点,晶体具有确定的熔 点,而非晶体没有确定的熔点,仅从各向同性或几何形状不能判断某一固 体是晶体还是非晶体. (2)区分单晶体和多晶体的方法是看其是否具有各向异性,单晶体表现出 各向异性,而多晶体表现出各向同性.
物理
物理
解析:由图(甲)、(乙)、(丙)可知:甲、乙各向同性,丙各向异性;由图 (丁)可知:甲、丙有固定熔点,乙无固定熔点,所以甲、丙为晶体,乙为 非晶体,其中甲可能为多晶体,丙为单晶体,故D正确.
物理
误区警示 单晶体的各向异性体现在某些物理性质上,并不是所有的物理性质都是 各向异性.
物理
针对训练2-1:关于晶体和非晶体,下列说法中正确的是( C ) A.可以根据各向同性或各向异性来鉴别晶体和非晶体 B.一块均匀薄片,沿各个方向对它施加拉力,发现其强度一样,则此薄片 一定是非晶体 C.一个固体球,如果沿其各条直径方向的导电性不同,则该球一定是单 晶体 D.一块晶体,若其各个方向的导热性相同,则一定是多晶体
答案:区分晶体和非晶体的方法是看其有无确定的熔点,晶体具有确定的 熔点,而非晶体没有确定的熔点,仅从各向同性或几何形状不能判断某一 固体是晶体还是非晶体.区分单晶体和多晶体的方法是看其是否具有各 向异性,单晶体表现出各向异性,而多晶体表现出各向同性.
材料科学基础I 第一章(晶体学基础)
第一章 晶体学基础
1、晶面指数 、
方法和步骤与三指数时相同, 方法和步骤与三指数时相同, 只是要找出晶面 在四个坐标 轴上的截距。 轴上的截距。 例如: 例如: a3 o a1 a2
(1010) (0110) (1100)
(1010)
2、晶向指数: 、晶向指数:
四坐标晶向指数的确定方法有行走法和解析法。 四坐标晶向指数的确定方法有行走法和解析法。由于行走法 确定的晶向指数不是唯一的,所以这里仅介绍解析法 解析法。 确定的晶向指数不是唯一的,所以这里仅介绍解析法。 步骤: 步骤: 1)求出待定晶向在 1,a2,c三个坐标轴下的指数:U, V, W 求出待定晶向在a 三个坐标轴下的指数: 求出待定晶向在 三个坐标轴下的指数 2)按以下公式算出在四坐标轴下的指数:u, v, t, w 按以下公式算出在四坐标轴下的指数: 按以下公式算出在四坐标轴下的指数
多数金属和非金属材料都是晶体。因此, 多数金属和非金属材料都是晶体。因此,首先 要掌握晶体的特征及其描述方法。 要掌握晶体的特征及其描述方法。 晶体——组成晶体的质点在三维空间作周期性地、 组成晶体的质点在三维空间作周期性地、 晶体 组成晶体的质点在三维空间作周期性地 规则地排列。 规则地排列。 晶体的特点: 晶体的特点: 质点排列具有规则性、 质点排列具有规则性、周期性 有固定熔点(结晶温度) 非晶体没有固定的熔点 非晶体没有固定的熔点] 有固定熔点(结晶温度)[非晶体没有固定的熔点 各向异性(包含多种性能) 各向异性(包含多种性能)
高中化学-3-1晶体结构和性质(晶体常识)优秀课件
8×1/8+6×1/2+4=8
举一反三·分析 NaCl晶胞中氯离子和钠离子的个数
Cl- 顶点: ( 1/8 ) 8 = 1,
面心 : ( 1/2 ) 6 = 3 , 共4个
Na+ 棱上 : ( 1/4 ) 12 = 3 ,
体心 : 1 共4个
NaCl晶胞 ----Na+ ---- Cl-
2、推算晶体的化学式
思考与交流
1、某同学在网站上找到一张
玻璃的结构示意图,如右图,
这张图说明玻璃是不是晶体?
为什么?
玻璃的结构示意图
不是,质点不是有序排列
2、根据晶体的物理性质的各向异性的特点, 人们很容易识别用玻璃仿造的假宝石。你能列 举一些可能有效的方法鉴别假宝石吗?
(四)鉴别晶体和非晶体
〔1〕性质差异 ------外形、硬度、熔点、折光率等
顶点:1/8
位于顶点上的粒子为8个小立方体所共有,每个 立方体拥有其1/8
棱心:1/4
位于棱心上的离子为4个小立方体所 共有,每个立方体拥有其1/4
面心: 1/2
位于面心上的离子为2个小立方体所 共有,每个立方体拥有其1/2
体心:1
位于体心上的离子为1个小立方体所 有,每个立方体拥有1个离子
立方晶胞对粒子〔质点〕的占有率:
----求晶体中微粒个数最简整数比
例题1 下图所示是晶体结构中具有代表性的最小重 复单元(晶胞)的排列方式,其对应的化学式正确的
是(图中:O-X,●-Y,○-Z)( )C
XY
X3Y
XY3Z
例题 2 2001年报道的硼和镁形成的化合物刷新了金 属化合物超导温度的最高记录。如下图的是该化合物 的晶体结构单元:镁原子间形成正六棱柱,且棱柱的 上下底面还各有1个镁原子,6个硼原子位于棱柱内。 那么该化合物的化学式可表示为( )
光子晶体分类
光子晶体分类光子晶体是一种具有周期性结构的材料,它的晶格周期与光波的波长相当,因此可以对光波进行调控和控制。
光子晶体的研究是光学领域的一个重要课题,也是材料科学和光电子技术的前沿领域之一。
根据光子晶体的不同特性和应用,可以将其分为三类:一维光子晶体、二维光子晶体和三维光子晶体。
一维光子晶体是指具有一维周期结构的光子晶体。
它由周期性交替排列的高折射率和低折射率材料组成。
在一维光子晶体中,光波在垂直于周期方向的传播受到限制,只能在特定的频率范围内传播。
一维光子晶体具有禁带结构,可以通过调节周期或改变材料的折射率来调控禁带的位置和宽度。
一维光子晶体的应用包括光纤通信、光学传感和光子集成电路等。
二维光子晶体是指具有二维周期结构的光子晶体。
它由周期性排列的高折射率和低折射率材料组成,形成了一个平面上的周期性结构。
二维光子晶体具有二维布里渊区,可以通过控制布里渊区的大小和形状来调控光波的传播和散射。
二维光子晶体具有丰富的光学性质,如光子带隙、光学导波和光学共振等。
二维光子晶体的应用包括光学传感、光电子器件和光学器件等。
三维光子晶体是指具有三维周期结构的光子晶体。
它由周期性排列的高折射率和低折射率材料组成,形成了一个立体的周期性结构。
三维光子晶体具有三维布里渊区,可以在整个光谱范围内形成光子带隙。
光子带隙是指光波在特定频率范围内不能传播的现象,类似于电子在晶体中的能带隙。
利用光子带隙的特性,可以实现光学滤波、光学存储和光学信息处理等应用。
除了以上三类光子晶体,还有一些特殊类型的光子晶体,如非线性光子晶体、拓扑光子晶体和光子晶体波导等。
非线性光子晶体是指具有非线性光学性质的光子晶体,可以实现光学调制和频率转换等功能。
拓扑光子晶体是指具有拓扑性质的光子晶体,可以实现无损传输和边缘态传输等特殊功能。
光子晶体波导是指在光子晶体中形成的光波导道,可以实现光的传输和耦合等功能。
光子晶体的研究不仅具有基础科学意义,还具有重要的应用价值。
第一章 晶体
第四节 晶体的形成(第八章)
一、形成晶体的方式
晶体是在物相转变的情况下形成的。物 相有三种,即气体、液体和固体。 1.由液相结晶析出晶体 2.由气相转变为晶体 3.由固态再结晶为新晶体
1. 由液相结晶析出晶体 熔体
晶体
溶液
1) 从熔体中结晶 当温度低于熔点时,晶体开始析出,即过 冷却条件下晶体才能发生。如岩浆岩中的橄
行列(row):质点在一条直线上的排列 结点间距:同一行列中相邻两质点间的距离 行列是无限多的。 在相互平行的行列中,结点间距相等;不平行 的行列中结点间距一般不相等。
面网:结点在平面上的分布即构成面网
任意两个相交的行列就可决定一个面网。面网上单位 面积内的结点数称为面网密度。相互平行的面网,其 面网密度相同,且任二相邻面网间的垂直距离——面 网间距也必定相等;互不平行的面网,其面网密度一 般不同。
a 立方格子
b 四方格子
c 六方格子
d 三方格子
e 斜方格子
f 单斜格子
g 三斜格子
同平行六面体中结点的分布情况也不相同,按分布方式又划 分出格子基本类型: 原始格子P:结点分布于角顶,三方菱面体格子用R 表示; 底心格子C:结点分布于角顶和一对面的面心; 体心格子I:结点分布于角顶和体中心; 面心格子F:结点分布于角顶和各面的中心。
远程规律:构成晶体的原子在整个 空间(或者至少在长距离的宏观范 围内)的排列是有规则的、周期性 的。整个晶体可看作是一个小单 位——原胞的周期性重复。 近程规律:在非晶体中一个宏观范 围内,原子在空间排列是不规则的, 但每个局部,在几或十几个原子间 距的范围内,却常常有一定程度的 规则排列,在液体中,原子的空间 排列同样是长程无序,短程有序的。
晶面、晶棱、角顶与面网、行 列、结点的关系示意图
工业中的常见晶体材料
工业中的常见晶体材料常见的工业晶体材料一、晶体材料简介晶体是具有有序排列的原子、分子或离子结构的固体物质。
晶体材料在工业中具有广泛的应用,包括电子、光电子、光学、光纤通信等领域。
下面将介绍一些常见的工业晶体材料。
二、硅晶体材料硅是工业中最常用的晶体材料之一,具有良好的机械性能和电特性,广泛应用于电子器件制造。
硅晶体材料可通过Czochralski法生长,其制备工艺成熟,可以得到高纯度、大尺寸的单晶硅。
硅晶体材料可用于制造集成电路、光伏电池、传感器等。
三、镁铝酸盐晶体材料镁铝酸盐晶体材料是一类具有优良光学性能的晶体材料。
它们具有高的激光光学性能和热机械性能,可用于制造激光器、光学器件等。
常见的镁铝酸盐晶体材料包括:Nd:YAG晶体、Nd:YVO4晶体、KTP 晶体等。
这些晶体材料在激光工艺、激光医疗和激光通信等领域有着重要的应用。
四、硼酸盐晶体材料硼酸盐晶体材料具有较高的硬度、热稳定性和光学透明性,可以用于制造高功率激光器、光学器件等。
常见的硼酸盐晶体材料包括:Nd:YAG晶体、Nd:GdVO4晶体、Nd:YLF晶体等。
这些晶体材料在激光加工、激光雷达和光学测量等领域有着广泛的应用。
五、锗晶体材料锗晶体材料是一种重要的红外光学材料,具有较好的红外透过性和热稳定性。
锗晶体材料可用于制造红外光学器件、红外探测器等。
此外,锗晶体材料还可以用于制造太阳能电池、热电材料等。
六、锂离子电池材料锂离子电池材料是一类重要的电池材料,具有较高的能量密度和循环寿命。
锂离子电池正极材料主要包括锂铁磷酸盐、锂钴酸锂、锂镍酸锂等。
这些晶体材料在电动汽车、移动通信设备等领域有着广泛的应用。
七、氮化物晶体材料氮化物晶体材料具有优异的光电特性和热稳定性,可用于制造高亮度LED、激光器等。
氮化物晶体材料主要包括氮化镓、氮化铝、氮化硅等。
这些晶体材料在光电子、照明等领域有着重要的应用。
八、磷化物晶体材料磷化物晶体材料具有宽的能带隙和高的电子迁移率,可用于制造高电子迁移率晶体管、高功率电子器件等。
晶体及晶体分类1
四面体
4个全等的等边三角形
五角三四面体
四面体的每个三角形 晶面分成3个五边形
三角三四面体
四面体的每个三角形 晶面分成3个三角形
四角三四面体
四面体的每个三角形 晶面分成3个四边形
六四面体
四面体的每个三角形 晶面分成6个三角形
3.常见单形及特征 (3)等轴晶系的单形
八面体类:
八面体
8个全等的等边三角形
3.利用模型工具,可让学生亲自动手,培养学生细致的观察 能力及寻找事物与事物之间变化规律的能力。
4.思考和练习可使知识得到消化和吸收。 5.知识应用模块的设计,可以让学生了解学习目的;培养学 生运用知识解决实际问题的能力;还可为后面的知识作铺垫。
6.总结概括了本次课所学内容及前后知识的关联。
有一个L3 有一个L4
只有一 个2次 以上的 高次轴
L66L25PC
有一个L6
L66P
3L44L36L29PC 有4个L3 3L24L33PC
有 多个高 次轴
由此可见不同 类型晶形其对 称特点不一样, 因此可根据晶 体的对称特点 对晶体进行合 理分类。
一、晶体分类
晶体按其对称型中有无高次轴及高次轴的多少分为三个晶族,
总结性评价
1.本课件是基于网上资源和模型工具的一种教学模式。体 现了对前次知识分析整理、导入新课、观察思考、利用网上资 源和模型工具自主学习探讨和交流、学习效果检查、学习方法 点评、重点和难点分析、思考练习、知识应用、小结等教学环 节。
2.利用网络资源自主学习探讨,以激发学生的学习兴趣和培 养学生的学习能力。
度 斜方晶系 斜方柱 斜方四面体 斜方单锥 斜方双锥
(黄玉 金绿宝石 橄榄石)
晶体学基础第1章-课件1
晶体学基础绪论刘彤固体中的晶体气态:内部微粒(原子、分子、离子)无规运动液态:内部微粒(原子、分子、离子)无规运动固态:内部微粒(原子、分子、离子)振动自然界中绝大多数固体物质都是晶体。
如:食盐、冰糖、金属、岩石等。
¾单质金属和合金在一般条件下都是晶体。
¾一些陶瓷材料是晶体。
¾高聚物在某些条件下也是晶体。
“德里紫蓝宝石”如何在千姿百态的晶体中发现其规律?熔体凝固液相结晶晶体并非局限于天然生成的固体人工单晶飞机发动机叶片飞机发动机晶体的共同规律和基本特征?水晶石英晶体具有规则的凸多面体外形。
α石英的内部结构大球代表小球代表晶体的概念NaCl的晶体结构晶体(crystal):其内部质点(原子、分子或离子)在3维空间周期性重复排列的固体。
也称具有格子构造的固体。
晶体材料:单晶,多晶¾在一个单晶体的范围内,晶格中的质点均呈有序分布。
多晶体内形成许多局限于每个小区域内的有序结构畴,但在畴与畴之质点的分布是无序的或只是部分有序的。
晶界(晶体缺陷)Be 2O 3非晶体Be 2O 3 晶体分子晶体(范德华力)晶体学的发展历史¾有文字记载以前,人们对矿物晶体瑰丽的色彩和特别的多面体外形引起了的注意,开始观察研究晶体的外形特征。
¾17世纪中叶,丹麦学者斯丹诺(steno)1669年提出面角守恒定律,这可以说是晶体学作为一门正式科学的标志,它找出了晶体复杂外形中的规律性,从而奠定了几何晶体学的基础。
¾1801年,法国结晶学家阿羽依(Haüy)基于对方解石晶体沿解理面破裂现象的观察,发现晶体学基本定律之一的整数定律。
¾1805-1809年,德国学者魏斯(Weiss)发现晶带定律以及晶体外形对称理论。
几何晶体学发展到了相当高的程度。
¾1830年,德国学者赫塞尔(Hessel)推导出描述晶体外形对称性的32种点群。
¾1837年,英国学者米勒(Miller)提出晶面在三维空间位置的表示方法---米勒指数。
光学晶体材料分类
光学晶体材料分类光学晶体是指能够具有光学性质并且具有晶体结构的材料。
根据其晶体结构和光学特性的不同,光学晶体材料可以分为多个类别。
本文将对光学晶体材料进行分类介绍,以帮助读者更好地了解和理解这一领域。
一、单晶体单晶体是指具有完美的晶体结构,没有晶界或晶界很少的晶体。
单晶体具有高度的各向同性,可以用来制备高质量的光学元件。
常见的单晶体材料包括石英、硫化锌、硫化镉等。
这些材料具有良好的光学性能,广泛应用于激光器、光纤通信等领域。
二、多晶体多晶体是由多个晶粒组成的晶体材料。
由于晶粒之间存在晶界,多晶体的各向异性较强。
多晶体材料一般具有较低的光学性能,但其制备成本相对较低,可以满足一些普通光学应用的需求。
常见的多晶体材料有石英玻璃、硅等。
三、非线性光学晶体非线性光学晶体是指在外界光场作用下,其光学性质随光场强度的变化而变化。
这些晶体通常具有非线性折射率、非线性吸收等特性,可用于频率倍增、光学调制、光学开关等领域。
常见的非线性光学晶体有二硫化碳、铌酸锂、硼硅酸锂等。
四、光学非晶体光学非晶体是指没有典型晶体结构的材料,其原子排列呈现无规则的非晶态。
光学非晶体具有宽的透明窗口和较低的散射损耗,常用于光纤放大器、光学传感器等领域。
常见的光学非晶体材料有磷硅酸盐玻璃、硅基非晶体等。
五、铁电晶体铁电晶体是指在外界电场作用下,其晶格结构发生可逆的电极化现象。
铁电晶体具有良好的电光效应和压电效应,广泛应用于光学调制器、光学存储等领域。
常见的铁电晶体材料有二氧化锆、钛酸锶等。
六、磁光晶体磁光晶体是指在外界磁场作用下,其光学性质发生改变的晶体材料。
磁光晶体具有磁光效应,可用于制备磁光存储器、磁光开关等器件。
常见的磁光晶体材料有铁氧体、铁镁铌酸锂等。
七、光子晶体光子晶体是一种具有周期性介质结构的材料,其禁带结构可以用来控制光的传播和发射特性。
光子晶体具有光子带隙、全反射等特性,可用于制备光纤光栅、光子晶体光纤等器件。
常见的光子晶体材料有硅、硅氧化物等。
化学晶体类型与熔沸点知识点
化学晶体类型与熔沸点知识点化学晶体是晶体学的一个重要研究领域,研究的对象是晶体的结构与性质。
晶体是由原子、离子或分子有序排列而成的固体,具有规则的几何形状和对称性。
晶体的形成通常是在物质从液态或气态向固态转变时形成的。
化学晶体根据其结构和成分可以分为多种类型,其中最常见的包括金属晶体、离子晶体、共价晶体和分子晶体等。
金属晶体通常由紧密排列的金属原子组成,具有良好的导电性和变形性。
离子晶体由正负离子通过离子键相互吸引而形成,具有特定的晶体结构和化学性质。
共价晶体由共价键连接的原子或分子组成,具有高的熔沸点和硬度。
分子晶体由分子相互作用形成,具有较低的熔沸点和软度。
晶体的熔沸点是指晶体在升温过程中由固态转变为液态或气态的温度,熔沸点通常与晶体的结构和成分密切相关。
晶体的熔沸点与晶体类型有着密切的关系,不同类型的晶体具有不同的熔沸点。
金属晶体通常具有高的熔点,离子晶体和共价晶体的熔点较高,而分子晶体的熔点通常较低。
研究晶体的熔沸点可以帮助我们了解晶体的性质和应用。
通过测定晶体的熔沸点,我们可以确定晶体的热稳定性、相变特性和热力学性质。
这对于材料科学和化学工程领域的研究具有重要意义。
本文将从化学晶体类型和熔沸点的关系入手,探讨不同类型晶体的熔沸点特性,并分析晶体结构和成分对熔沸点的影响。
通过深入研究化学晶体类型和熔沸点的知识点,我们可以更好地理解晶体的性质和应用,为材料科学和化学工程领域的研究提供参考。
首先,我们将从金属晶体的熔沸点出发,探讨金属晶体的结构和熔点特性。
金属晶体是由金属原子通过金属键相互连接而成的晶体结构,具有典型的金属性质,如导电性和变形性。
金属晶体的熔点通常较高,这是由于金属原子间的金属键比较强,需要较高的能量才能破坏金属键而形成液态。
不同金属的晶体结构和成分对熔点有着重要影响。
一般来说,铁、铜、铝等过渡金属的熔点较高,而镁、钠、铅等碱金属的熔点较低。
金属的晶体结构也对熔点产生影响,例如铝的金属晶体结构为面心立方结构,熔点较高;而钠的金属晶体结构为体心立方结构,熔点较低。
02.1第二章 晶体结构及晶体学(1)
第一节 晶体结构排列的物
第一节 晶体结构 二、晶体的特性
自限性 均匀性 各向异性 对称性 稳定性
第一节 晶体结构 三、晶体的结构
基本概念
基元 点阵 晶格参数 晶胞 空间点阵类型
NaCl 晶体结构
•黄球表示钠离子(Na+) •绿球表示氯离子(Cl-) 在氯化钠晶体中,钠离子与氯 离子通过离子键相结合 每个钠离子与和它紧邻的6个氯 离子相连 每个氯离子与和它紧邻的6个钠 离子相连 钠离子和氯离子在三维空间上 交替出现,并延长形成氯化钠晶 体 氯化钠晶体中没有氯化钠分子, NaCl只是代表氯化钠晶体中钠离 子的个数和氯离子的个数为1:1
7.晶格 把点阵中的结点假想用一系列平行直线连接 起来构成空间格子称为晶格。 8.晶胞 构成晶格的最基本单元。 由于晶体中原子排列的规律性,可以用晶 胞来描述其排列特征。 9.晶格常数 晶胞的棱边长度a、b、c和棱间夹角α、β、γ 是衡量晶胞大小和形状的六个参数,其中a、 b、c称为晶格常数或点阵常数。 其大小用A来表示(1A=10-8cm) 若a=b=c,α=β=γ=90°这种晶胞就称为简单 立方晶胞。具有简单立方晶胞的晶格叫做简 单立方晶格。
30
晶向族: —— 加 < >
1. 立方晶系,数字相同,仅正负号、数字排序不同的属 同一晶向族
2. 一个晶向指数代表一系列相互平行、方向相同的晶向 3. 一个晶向族代表一系列性质地位相同的晶向 [111] [ 1 11] [1 1 1] [11 1 ] = < 111 >
[ 1 1 1] [ 1 1 1 ] [1 1 1 ] [ 1 1 1 ]
请绘出下列晶向: [001] [010] [100] [110] [1 1 0] [10 1 ] [112] 请绘出下列晶面: (001) (010) (100) (110) (1 1 0) (10 1 ) (112)
晶体类型判断——晶体专题1
晶体专题复习班级姓名座号一、判断晶体类型的依据与方法(1)依据组成晶体的微粒和微粒间的相互作用判断离子晶体的微粒是阴、阳离子,微粒间的相互作用是离子键;原子晶体的微粒是原子,微粒间的相互作用是共价键;分子晶体的微粒是分子,微粒间的相互作用为分子间作用力;金属晶体的微粒是金属阳离子和自由电子,微粒间的相互作用是金属键。
(2)依据物质的分类判断活泼金属氧化物、强碱和绝大多数的盐类是离子晶体;大多数非金属单质、气态氢化物、非金属氧化物(除SiO2外)、酸、绝大多数有机物(除有机盐外)是分子晶体;常见的原子晶体有单质,如金刚石(C)、晶体硼(B)、晶体硅(Si)、锗(Ge)、灰锡(Sn);某些非金属化合物。
)、碳化硅(SiC;金刚砂)、氮化硼(BN)、如二氧化硅(SiO2氮化铝(AlN)、氮化硅()、刚玉()等;金属单质(除汞外)与合金是金属晶体。
(3)依据晶体的熔点判断离子晶体的熔点较高,常在数百至l 000℃;原子晶体的熔点高,常在l 000℃至几千摄氏度;分子晶体的熔点低.常在数百摄氏度以下至很低温度;金属晶体多数的熔点高,但也有相当低的。
(4)依据导电性判断离子晶体水溶液及熔化时能导电;原子晶体不导电;分子晶体为不导电,分子晶体中的电解质溶于水,也能导电;金属晶体是电的良导体。
(5)依据硬度和机械性能判断离子晶体硬度较大或较硬、脆;原子晶体硬度大;分子晶体硬度小且较脆;金属晶体多数硬度大,但也有较低的,且具有延展性。
二、物质熔、沸点高低的判断方法(1)不同类型晶体熔沸点高低的一般规律为:原子晶体>离子晶体>分子晶体(2)同种晶体类型的物质:晶体内微粒间的作用力越大,熔、沸点越高。
①分子晶体:a.分子间有氢键的,熔沸点较高。
b.组成和结构相似的物质,相对分子质量越大,范德华力越大,熔沸点越高。
c.相对分子质量相等或相近时,分子的极性越大,范德华力越大,熔沸点越高。
d.在烷烃的同分异构体中,一般来说,支链数越多,熔沸点越低。
第三章第一节晶体的常识PPT课件
A、MgB B、 MgB2 C、Mg2B D、Mg3B2
Mg原子的数目: 12×1/6+2×1/2=3 B原子的数目:6 故化学式可表示为
MgB2
5、涉及密度的计算
1
a
ρ = m = nM =
V
V
2 NA
M
a3
或者:
Na+ Cl-
ρ=
4 NA
M
(2a)3
三、晶体分类
根据组成晶体的微粒的种类及微粒之间的 作用不同而分成四种类型:
不导电
良好
溶解性
典型实例
多Na数ONNH易aaO2、O溶H等N、于aCN水la、ClH、相CHHl、似Ce、Cl相、lP2 溶C4、、l2S、S、等C金不O刚2、溶石金SiO、刚2S、石i、S、i一数等Si般与CN、不水a、溶反NFAea,应、l、少CAul
(1)性质差异——如外形、硬度、熔点、折 光率
(2)区分晶体和非晶体最科学的方法是对固
体进行X-射线衍射实验。
思考:根据已有知识,举例说明如何制得晶体?
5、晶体形成的途径: ①熔融态物质凝固. ②气态物质冷却不经液态直接凝固(凝华). ③溶质从溶液中析出.
小结:晶体和非晶体的差异
固体 外观 微观结构
定义: 晶体——具有规则几何外形的固体 非晶体——没有规则几何外形的固体
2、晶体的特点和性质:
(1)自范性 : 即晶体能自发地呈现多面体外形的性质
(2)各向异性 (3)有固定的熔点 (4)均一性 (5)对称性
3、晶体和非晶体的本质区别是什么?
构成固体的粒子在三维空间里是 否呈现周期性的有序排列
4、晶体和非晶体的鉴别:
晶体
非晶 体
液态晶体的类别1
液态晶体的类别随着人们对液晶的逐渐了解,发现液晶物质基本上都是有机化合物,现有的有机化合物中每200种中就有一种具有液晶相.从成分和出现液晶相的物理条件来看,液晶可以分为热致液晶和溶致液晶两大类.把某些有机物加热溶解,由于加热破坏结晶晶格而形成的液晶称为热致液晶,就是如前面所说由于温度变化而出现的液晶相.把某些有机物放在一定的溶剂中,由于溶剂破坏结晶晶格而形成的液晶称为溶致液晶,它是由于溶液浓度发生变化而出现的液晶相,最常见的有肥皂水等.目前用于显示的液晶材料基本上都是热致液晶,而生物系统中则存在大量溶致液晶.目前发现的液晶物质已有近万种.构成液晶物质的分子,大体上呈细长棒状或扁平片状,并且在每种液晶相中形成特殊排列.由杆形分子形成的液晶,其液晶相共有三大类:近晶相(Smectic liquid crystals)、向列相(Nematic liquid crystals)和胆甾相(Cholesteric liquid crystals).Smectic由希腊语而来,是肥皂状之意,因这种类型的液晶在浓肥皂水溶液中,都显示特有的偏光显微镜像,因而命名为皂相.分子分层排列,有同一方向,比较接近晶体,故译近晶相.Nematic也是由希腊语而来,是丝状之意,因这种液晶的薄层在偏光显微镜下观察时,呈现丝状型织构,故称之为丝相.分子位置杂乱,但方向大致一致,故译向列相.胆甾相液晶则是由于此种液晶最早是从胆甾醇类物质中发现的,故称之为胆甾相.近晶相液晶是由棒状或条状分子组成,分子排列成层,层内分子长轴相互平行,其方向可以垂直于层面,或与层面成倾斜排列.因分子排列整齐,其规整性接近晶体,具有二维有序性.分子质心位置在层内无序,可以自由平移,从而有流动性,但粘滞系数很大.分子可以前后、左右滑动,但不能在上下层之间移动.因为它的高度有序性,近晶相经常出现在较低温度范围内.近晶相液晶分子排列向列相液晶的棒状分子也仍然保持着与分子轴方向平行的排列状态,但没有近晶相液晶中那种层状结构.向列相中分子的重心混乱无序,但分子(杆)的指向矢n大体一致,如图1-1-8所示.图中故意用完全对称的杆来代表分子,即杆不是一头尖,一头圆,没有n与-n 区分.这个等价性是向列相液晶与其他液晶(如近晶相)的一个基本特性.而向列相分子指向矢的有序排列,却使向列相物质的光学与电学性质,即折射系数与介电常数,沿着及垂直于这个有序排列的方向而不同.正是由于向列相液晶在光学上显示正的双折射性的单轴性与电学上的介电常数各向异性,使得用电来控制光学性能,或液晶显示成为了可能.向列相液晶分子排列此外,与近晶相液晶相比,向列液晶的粘度小,富于流动性.产生这种流动性的原因,主要是由于向列相液晶各个分子容易顺着长轴方向自由移动.事实上不少向列相液晶的粘滞系数只是水的粘滞系数的数倍.向列相液晶分子的排列和运动比较自由,对外界作用相当敏感,因而应用广泛.目前液晶显示器,例如扭曲向列相液晶显示器、超扭曲向列相液晶显示器等所用的液晶材料均属向列相液晶材料.胆甾醇经脂化或卤素取代后,呈现液晶相,称此为胆甾相液晶.这类液晶分子呈扁平形状,排列成层,层内分子相互平行.不同层的分子长轴方向稍有变化,沿层的法线方向排列成螺旋结构.液晶分子指向矢当不同的分子长轴排列沿螺方向经历360°的变化后,又回到初始取向,这个周期性的层间距离称为胆甾相液晶的螺距(P).胆甾相实际上是向列相的一种畸变状态.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
晶体的种类和应用
晶体的性能通常分为固有物性和功能物性.晶体常按功能物性进行分类,主要有以下9种.
①压电晶体:在外力作用下发生变形时,其表面产生电荷效应的晶体.可制成换能器、拾音器、振子以及传感器.最初采用酒石酸钾钠一类水溶性晶体,现已为性能优良的人工水晶、四硼酸锂(742O B Li )、铌酸锂(3LiNbO )、钽酸锂(3LiTaO )等取代.
②激光晶体:已获得有激光输出的晶体有数百种以上,但真正成为激光工作物质的主要是红宝石(Cr :O Al 32,激光波长为0.6943 μm )、钇铝石榴石(.Nd :O Al Y 1253 1.065μm ).对激光晶体的研究主要是向波长可调谐(如Ti :O Al Cr,:BeAlO 324)、高效率和大功率(钇镓石榴石系列)、多功能(Fe 、Mg :LiNbO 3等)的方向发展.
③电光晶体:在外加电场作用下折射率发生变化,从而使通过晶体的一束激光分解为两束偏振方向相互垂直的偏振光,并产生一根位差效应的晶体.适用于激光的调制和偏振.常用的电光晶体有铌酸锂、钽酸锂以及磷酸二氢钾(KDP )类晶体.
④声光晶体:具有声光效应的晶体.主要有二氧化碲(2TeO )和钼酸铅(4PbMoO ).适用于激光的偏振和调制.
⑤非线性光学晶体:组成晶体的原子因外层电子在光作用下偏离其平衡位置而发生极化.常用的有磷酸二氧钾类晶体、铌酸锂、铌酸钾以及偏硼酸钡(3BaTiO )、三硼酸锂(53O LiB )晶体.
⑥光折变晶体:在光的作用下可引起折射率变化的晶体.主要有钛酸钡(3BaTiO )、硅酸铋(2012SiO Bi )、铌酸锂、铌酸钡钠(1552O NaNb Ba )等.
⑦热释电晶体:在外界温度变化时由其自发极化引起表面电荷效应的晶体.可用于制备热释电探测器.主要有铌酸锂、钽酸锂等.
⑧闪烁晶体:具有闪烁效应的晶体.广泛用于测量核辐射能量.20世纪80年代中,用坩埚下降法生长的大尺寸锗酸铋(1234O G e Bi )晶体,取代掺铊的碘化钠(Tl :NaI )晶体,成为性能最佳的闪烁晶体.其他如氟化钡(2BaF )、氟化铈(3CeF )、氟化铅(2PbF )等正在研制中.
⑨磁光晶体:具有较大的纯法拉第效应,对使用波长的吸收系数低,磁化强度和磁导率高.用于制作光隔离器、光非互易元件、磁光存储器及磁光调制器等.
此外,晶体材料按来源又分为天然晶体和人工晶体,后者应用较多.广泛使用的晶体材料主要有人工水晶、磷酸钛氧钾晶体、铌酸锂晶体、锗酸铋晶体、四硼酸锂晶体、磷酸二氢钾晶体、钇铝石榴石、合成云母和氟化钡等.处于研究阶段的还有及其化合物.晶体材料广泛用于激光技术、电子技术、生物医学、高能物理及家用电器等方面。