汽车传动系组成及工作原理修订版

合集下载

汽车传动系统的构造与原理

汽车传动系统的构造与原理

汽车传动系统的构造与原理汽车传动系统是汽车的重要组成部分之一,它负责将发动机的动力传递给车轮,使汽车得以行驶。

了解汽车传动系统的构造和原理对于驾驶员和维修人员都非常重要。

本文将详细介绍汽车传动系统的构造和原理。

一、传动系统的基本构造汽车传动系统主要由以下几个部分组成:1. 发动机:发动机是汽车传动系统的源头,它负责产生动力。

发动机的类型有多种,包括汽油发动机、柴油发动机以及电动机等。

2. 配气机构:配气机构控制发动机进气和排气过程,影响着发动机的效率和动力输出。

常见的配气机构有气门、凸轮轴等。

3. 离合器:离合器连接发动机和变速器,使发动机的动力能够顺利传递给变速器。

离合器可以通过踩下踏板来实现离合和结合的功能。

4. 变速器:变速器负责调节发动机输出的转速和扭矩,并将其传递给车轮。

常见的变速器类型包括手动变速器和自动变速器。

5. 传动轴:传动轴将变速器的动力传递给车轮。

根据车辆类型不同,传动轴可以是前驱、后驱或四驱传动系统。

6. 差速器:差速器是传动系统的重要组成部分,它分配动力到车辆的左右两侧,使车辆转弯时左右轮胎能够旋转不同的速度。

7. 车轮和轮胎:车轮和轮胎是汽车传动系统的最终输出部分,承载着整个车辆的重量,为车辆提供行驶的支撑和牵引力。

二、传动系统的工作原理汽车传动系统的工作原理主要是将发动机的转动力通过离合器、变速器和传动轴传递给车轮。

其主要步骤如下:首先,当驾驶员发动汽车并踩下离合器踏板时,离合器与发动机分离,发动机转动的动力不再传递到变速器上。

接着,驾驶员将档位调整到合适的位置,从而选择了合适的齿轮比。

变速器会根据驾驶员选择的档位,改变输入轴和输出轴的转速比例。

然后,通过传动轴将变速器输出的动力传递给差速器。

差速器会将动力分配到车辆的左右两侧,并使车轮能够以不同的速度旋转。

最后,车轮通过与地面的摩擦力,将动力转化为行驶的力量,使汽车得以行驶。

三、传动系统的优化与创新随着科技的进步和汽车工业的发展,传动系统也在不断优化和创新。

《汽车传动系》课件

《汽车传动系》课件

排除方法:更换密封垫片和油封,检查并紧固螺丝。
故障现象
差速器内部发出异常响声。

故障现象
主减速器周围出现漏油现象。
故障原因
密封垫片老化或损坏、油封损坏等。
排除方法:更换密封垫片和油封,检查并紧固螺丝。
05
CHAPTER
汽车传动系的维修实例分析
离合器打滑
当汽车起步或加速时,发动机转速上升,但车速却无法相应提高,这是离合器打滑的典型表现。可能的原因包括离合器摩擦片磨损、压盘弹簧断裂等。维修方法包括更换摩擦片、调整离合器间隙等。
主减速器是用于进一步降低转速和增大扭矩的装置,提高汽车的牵引力。
总结词
主减速器由多个齿轮组成,通过多级减速实现转速的降低和扭矩的增大,从而提高汽车的牵引力,使汽车能够克服更大的阻力。
详细描述
03
CHAPTER
汽车传动系的维护与保养
传动系是汽车的重要部分,定期检查与保养可以预防故障,确保汽车在行驶过程中安全可靠。
离合器是连接发动机和变速器的装置,用于控制动力的传递和切断。
详细描述
离合器通过摩擦片之间的摩擦力将发动机的动力传递给变速器,同时通过调节摩擦片的压紧程度来控制动力的传递程度。
总结词
变速器是改变传动比和传动方向的装置,用于适应不同的行驶需求。
详细描述
变速器由多个齿轮组成,通过切换不同的齿轮组合来改变传动比和传动方向,实现倒车、加速和减速等功能。
功能
根据结构和用途的不同,汽车传动系可以分为机械传动、液力传动和电力传动等类型。
汽车传动系主要由离合器、变速器、传动轴、主减速器、差速器和半轴等组成。
组成
类型
03
高效能
提高传动效率、降低能耗也是汽车传动系的重要发展方向,如高效变速器和新型传动材料的应用。

汽车底盘构造与维修之汽车传动系

汽车底盘构造与维修之汽车传动系

2-2 离合器
二、膜片弹簧离合器
1.膜片弹簧离合器结构 膜片式离合器组成:主动部分、从动部分、和操作机构,与周布弹 簧离合器相比省略了压紧装置。 1)主动部分 由飞轮、压盘、离合器盖等组成。 2)从动部分 由带有扭转减振器的从动盘组件组成。 3)操作机构 操纵机构由分离和传动两部分组成。
膜片式离合器总成图
绳索式操纵机构图
2-2 离合器
(2)自动调节绳索式操纵机构 自动调节的绳索式操纵机构是用于监视踏板行程。需要时自动
对其自动调整。棘轮带有棘爪和齿扇,棘爪在弹簧的作用下,压在 棘轮上,棘爪只允许齿扇相对于棘爪单方向转动。离合器拉索绕在 齿扇上,张力弹簧拉着齿扇与拉索处于平衡状态。
棘轮式离合器自动调整机构图
不带扭转减振器的从动盘图
带扭转减振器的离合器从动盘图
(a)不工作时
(b)工作时
弹簧摩擦式扭转减振器工作示意图
2-2 离合器
课题二:离合器总成
一、周向布置螺旋弹簧式离合器
1.周布弹簧离合器主要部件结构及功用 组成:主动部分、从动部分、压紧装置和操纵机构。
2-2 离合器
1)主动部分 组成:飞轮、离合器盖和压盘 结构特点:离合器盖由低碳钢冲压而成,通过螺钉与飞轮固定。(注 意有定位销)离合器盖与压盘通过由弹簧钢片制成的传动片连接。离 合器结合与分离时,依靠传动片的弹性变形,使压盘能轴向移动。
1)机械式传动系 组成:离合器、变速器、万向传动装置和驱动桥。 动力传递路线:发动机发出的动力——离合器——变速器——万向传 动装置——驱动桥——主减速器——差速器——半轴——驱动车轮。
2-1 传动系概述
2)液力机械式传动系 组成:液力变矩器、自动变速器、万向传动装置和驱动桥。 特点:液力机械式传动系是以液体作为介质,利用液体在主动元件和 从动元件之间循环流动过程中的动能变化传递动力,并能根据道路阻 力的变化,自动地在若干个车速范围内分别实现无级变速,而且其中 的有级式机械变速器还可以实现自动或半自动操纵,因而可使驾驶员 的操作大为简化。

汽车原理与构造--第二章 汽车传动系

汽车原理与构造--第二章 汽车传动系
第二章 汽车传动系
内容提要
• • • • • 2-1传动系概述 2-2离合器 2-3变速器与分动器 2-4自动变速器 2-5万向传动装置与驱动桥
2-1 传动系概述
一、传动系的功用及组成 基本功用:将发动机发出的动力传递给驱 动车轮。
组成:离合器、变速器、万向传动装置、 主减速器、差速器、半轴及驱动车轮。
为何要采用同步器进行换档?
功用:使结合套与待啮合齿圈迅速同步,缩短 换档时间,同时防止啮合时齿间冲击。
分类: 常压式 惯性式 自行增力式
(一)锁环式惯性同步器
1)组成
2)结构
(二)锁销式惯性同步器
三、换挡机构
1、功能:保证驾驶员 能准确可靠地进行挂 档和退档操作。 2、组成:操纵杆(变速 杆)、拨叉、拨叉轴、 安全装置 (传动杆 系)——远距离操纵 时要求:刚度好、间 隙小。
Balance patch rear patch
Undee spring billet
Former patch Press patch Driven set form Driven set billet
Driven set hub
扭转减振器从动盘
扭转减振器:减振器盘 和减振器弹簧构成, 将从动盘和盘毂弹性 连接
作用:避免传动系共振, 缓和制动时对传动系 的冲击。
Friction bur
Undee spring billet
Driven set hub
spacer spool special type rivet friction wafer Driven set billet Absorber spring
二、手动变速器构造及其工作原理
1、组成: 传动机构(壳内) 、操纵机构(盖上) 2、分类: 三轴式变速器:应用于FR的汽车上 二轴式变速器:应用于FF及RR的汽车上 3、功用: 传动机构:改变转速比 操纵机构:实现换档

汽车传动系的工作原理

汽车传动系的工作原理

汽车传动系的工作原理
汽车传动系统是指汽车发动机输出的动力经过一系列传动装置传递到车轮,使车辆能够前进或后退的机制。

传动系统包括离合器、变速器、传动轴、差速器和驱动轮等部件。

其工作原理如下:
1. 离合器:位于发动机和变速器之间,通过与发动机输出轴相连,用于在发动机工作时将动力传递给传动系统。

当驾驶员踩下离合器踏板时,离合器分离发动机和传动系统,使发动机不再传递动力。

2. 变速器:用于调整发动机输出转速和扭矩,以适应不同的行驶工况。

变速器有多个齿轮组成的齿轮箱,通过切换不同齿轮比来实现不同的速度和扭矩输出。

比如,低速齿轮比适用于起步和爬坡,而高速齿轮比适用于高速行驶。

3. 传动轴:将动力从变速器传递到驱动轮。

传动轴是一根连接前后轴的金属轴杆,它通过万向节和万向轴传递动力,并且能够适应车辆转向和悬挂系统的运动。

4. 差速器:用于将动力分配给两个驱动轮。

差速器允许内外驱动轮在行驶过程中以不同的速度转动,以适应转弯时内外侧轮胎的滑动差异。

差速器还可以通过限滑差速器等装置来提供更好的牵引力。

5. 驱动轮:接受动力并将其传递到路面,从而推动车辆行驶。

驱动轮通常采用前驱、后驱或全驱的方式,其中前驱为前轮驱
动,后驱为后轮驱动,而全驱则同时由前后轮提供驱动力。

通过以上一系列的传动装置,汽车传动系统能够将发动机输出的动力传递到驱动轮,使车辆能够行驶并完成各种工况下的驾驶需求。

传动系统工作原理

传动系统工作原理

传动系统工作原理传动系统是指将发动机产生的动力传递到车辆的驱动轮上,从而推动车辆行驶的系统。

传动系统的工作原理是通过一系列的机械装置和传动元件,将发动机的动力传递到车轮上,实现车辆的运动。

传动系统通常包括离合器、变速器、传动轴、差速器和驱动轮等部件,下面我们将逐一介绍这些部件的工作原理。

首先是离合器,它位于发动机和变速器之间,主要作用是在换挡时断开发动机与变速器之间的动力传递。

当离合器踏板踩下时,离合器压盘与离合器壳体分离,发动机输出的动力不再传递到变速器,从而实现换挡操作。

接下来是变速器,它的作用是根据车速和行驶条件来改变发动机输出的扭矩和转速,以满足车辆行驶的需要。

变速器内部包含多个齿轮和离合器组件,通过它们的组合和配合,可以实现不同档位的换挡和传动。

然后是传动轴,传动轴是将变速器输出的动力传递到车辆的驱动轮上的装置。

传动轴通常分为前传动轴和后传动轴,通过万向节和传动轴的连接,将动力传递到驱动轮上,推动车辆行驶。

差速器是传动系统中的重要部件,它的作用是平衡车辆驱动轮的转速差异,确保车辆在转弯时能够平稳行驶。

差速器内部包含一组齿轮和差速器壳体,当车辆转弯时,驱动轮的转速会有所不同,差速器通过齿轮的组合和配合来平衡这种差异,使车辆能够顺利转弯。

最后是驱动轮,它是车辆行驶的关键部件,直接受到传动系统传递的动力作用,推动车辆前进。

驱动轮通常采用胎面粗糙的花纹设计,以增加与地面的摩擦力,提高车辆的牵引力和抓地力。

总的来说,传动系统通过离合器、变速器、传动轴、差速器和驱动轮等部件的协同作用,将发动机产生的动力传递到车辆的驱动轮上,实现车辆的运动。

每个部件都发挥着重要的作用,任何一个部件的故障都可能导致传动系统失效,因此对传动系统的定期检查和维护至关重要。

汽车传动系统的组成及工作原理

汽车传动系统的组成及工作原理

2. 后置后驱—RR
即发动机后置、后轮驱动。在大型客车上多采用这种 布置型式,少量微型、轻型轿车也采用这种型式。
3. 前置前驱—FF
发动机前置、前轮驱动。这种型式操纵机构简单、发 动机散热条件好。但上坡时汽车质量后移,使前驱动轮的 附着质量减小,驱动轮易打滑;下坡制动时则由于汽车质 量前移,前轮负荷过重,高速时易发生翻车现象。大多数 轿车采取这种布置型式。
(3)前进档
能够使汽车向前行驶的档位。倒档,能够使汽车倒退 行驶的档位。空档,变速器中各档齿轮都不在工作位置上 ,此时发动机动力输入到输入轴后,不再向输出轴传输。
(4)直接档
发动机动力不经过变速器中的任何齿轮的传递,而是 经变速器输入轴和与它直接连接为一体的输出轴直接输出 的档位称为直接档。直接档传动比为1。
半轴用来在差速器与驱动轮之间传递动力。普通非断 开式驱动桥的半轴,可根据外端支承形式不同分为全浮式 、3/4浮式和半浮式3种。
(1)全浮式半轴
工作时仅承受转矩,它的两端不承受任何力和弯矩的 半轴称全浮式半轴。半轴的外端凸缘用螺栓紧固到轮毂上 ,轮毂又通过两个相距较远的轴承装在半轴套管上。结构 上全浮式半轴的内端做有花键,外端做有凸缘,凸缘上有 若干孔。如图1-7所示,汽车全浮式半轴。
(1)主动齿轮、从动齿轮
输入轴可理解为是与离合器连接的,并在发动机驱动 下转动,固定在输入轴上的齿轮随之同步转动,该齿轮称 为主动齿轮此后与输出轴连接为一体的齿轮被迫转动,所 以该齿轮称之为从动齿轮。
(2)传动比
从动齿轮的齿数与主动齿轮的齿数之比定义为传动比 。当从动齿轮的齿数与主动齿轮的齿数之间的关系发生变 化时,传动比i改变,在发动机转速不变的条件下,会影响 输出轴转速改变,即车轮转速改变。

传动系工作原理

传动系工作原理

传动系工作原理
传动系是指由动力装置、离合器、变速器和传动轴等组成的用于传递动力和变速的系统。

它的工作原理可以分为以下几个步骤:
1. 当驾驶员踩下离合器踏板时,离合器分离,动力装置与变速器的输入轴断开连接。

这样可以实现发动机的启停以及换挡时的动力中断。

2. 当离合器释放时,动力装置的动力通过变速器输出轴传递到传动轴上。

传动轴将动力传递给车辆的驱动轮,从而推动车辆前进。

3. 变速器的工作原理是通过不同的齿轮组合来改变输出轴的转速和扭矩。

例如,低速挡齿轮比较大,可以提供更大的扭矩,适用于爬坡和起步;高速挡齿轮比较小,可以提供更高的转速,适用于高速行驶。

通过选择不同的齿轮组合,可以实现不同的车速和扭矩输出。

4. 在传动过程中,还可能存在不同的传动方式,如前驱、后驱和四驱。

前驱车型的传动轴连接在前轮上,后驱车型的传动轴连接在后轮上,四驱车型则通过差速器将动力传递给前后两对轮胎。

总之,传动系通过离合器、变速器和传动轴等组件的协调作用,将动力源的动力传递到车辆的驱动轮上,实现车辆的变速和推
动。

不同的传动方式和变速器设计,可以适应不同驾驶场景和需求,提供更好的动力输出和驾驶性能。

汽车传动系统的工作原理

汽车传动系统的工作原理

汽车传动系统的工作原理汽车传动系统是驱动汽车前进的关键部件,它将发动机产生的动力转化为车轮的转动力,从而实现汽车的运动。

汽车传动系统的工作原理十分复杂,涉及到各种机械和电子元件的协同作用。

本文将详细介绍汽车传动系统的工作原理,并分点列出其主要组成部分和功能。

一、主要组成部分1. 发动机:传动系统的源动力,通过燃烧混合气体产生动力。

2. 变速器:用于改变发动机转速和车辆行进速度之间的关系,分为手动变速器和自动变速器两种。

3. 离合器:连接发动机和变速器之间的元件,用于断开和连接发动机的动力传递。

4. 传动轴:将变速器输出的动力传输到车轮上,并带动车辆前进。

5. 差速器:在车轮转速不一致时,调节驱动力的分配,使车轮能够平稳转动。

二、工作原理1. 发动机工作原理:发动机通过燃烧混合气体产生爆发力,将活塞推动,进而带动曲轴转动。

曲轴输出的动力通过连杆和活塞转化为线性运动,然后通过曲轴的转动带动传动系统。

2. 变速器工作原理:变速器可以改变发动机转速和车辆行进速度之间的关系。

手动变速器通过改变齿轮之间的组合来实现速度的变化,而自动变速器则通过液压或电子控制系统来自动调整齿轮组合。

变速器的齿轮间传递动力的方式有直接齿轮传动、经济性齿轮传动和行星齿轮传动等。

3. 离合器工作原理:离合器用于连接和断开发动机的动力传递。

当离合器踏板踩下时,离合器压盖向发动机方向移动,使离合器片与发动机之间的摩擦片脱开,发动机动力不再传递到传动轴;当离合器踏板松开时,离合器压盖松开,摩擦片与发动机之间的摩擦片紧密接触,发动机动力得以传递到传动轴。

4. 传动轴工作原理:传动轴将变速器输出的动力传输到车轮上,并带动车辆前进。

传动轴通常由多个关节和轴段组成,能够适应车轮悬挂的运动。

传动轴通过万向节和轴段的协同作用,将动力从变速器传递到驱动轮。

5. 差速器工作原理:差速器在车轮转速不一致时,能够调节驱动力的分配,使车轮能够平稳转动。

差速器通常由主行星齿轮、副行星齿轮和差速锁等组成。

汽车传动系知识点总结

汽车传动系知识点总结

汽车传动系知识点总结一、汽车传动系统的组成部分汽车传动系统主要包括离合器、变速箱、传动轴、传动齿轮和差速器等部件。

这些部件共同协作,使得发动机产生的动力得以传输至车轮,从而推动汽车前进。

1. 离合器:离合器是连接发动机和变速箱之间的部件,它可以实现发动机和变速箱的分离和连接。

当驾驶员踩下离合器踏板时,发动机与变速箱之间的连接就会断开,从而实现换挡或停车。

离合器由离合器盘、压盘和释放器等部件组成。

2. 变速箱:变速箱是汽车传动系统的核心部件,它可以改变发动机输出转速,并将动力传递至传动轴。

变速箱通常分为手动变速箱和自动变速箱两种类型,不同类型的变速箱采用不同的工作原理和结构。

3. 传动轴:传动轴是将发动机产生的动力传输至车轮的关键部件,它连接变速箱和车轮,并通过传递轴上的传动齿轮来实现动力输出。

4. 传动齿轮:传动齿轮位于传动轴上,它通过齿轮之间的啮合传递动力,实现发动机输出转矩的调节和传递。

5. 差速器:差速器位于车轮之间,它能够使车轮以不同的转速转动,从而使车辆能够顺利转弯。

差速器还可以避免车辆在转弯时出现打滑或侧滑等现象。

以上就是汽车传动系统的主要组成部分,它们共同协作,使得车辆能够顺利行驶并完成各项操控。

二、汽车传动系统的工作原理汽车传动系统的工作原理是将发动机输出的动力通过传动轴传递至车轮,从而推动汽车前进。

具体工作原理如下:1. 发动机输出动力:发动机通过燃烧燃料产生的动力通过曲轴输出,并通过离合器连接至变速箱。

2. 变速箱调节转速:变速箱通过齿轮组的组合来实现对发动机输出转速的调节,从而满足不同车速和扭矩需求。

3. 传动轴传递动力:变速箱输出的动力通过传动轴传递至车轮,因此汽车得以行驶。

4. 差速器转向调节:差速器使车轮能够以不同的转速转动,从而实现车辆的转弯操作。

以上就是汽车传动系统的工作原理,通过这些部件的协作,汽车得以行驶并完成各项操控。

三、汽车传动系统常见故障及维护保养汽车传动系统是汽车的核心部件之一,它的正常工作对于车辆的性能和安全有着重要的影响。

汽车传动系的组成与布置

汽车传动系的组成与布置

汽车传动系的组成与布置
汽车传动系是指从发动机到驱动轮之间的所有动力传递装置,其主要作用是将发动机的动力传递给驱动轮,使汽车能够行驶。

汽车传动系的组成和布置方式会因车型和设计要求的不同而有所差异,但通常包括以下几个部分:
1. 离合器:离合器位于发动机和变速器之间,用于控制发动机与变速器之间的动力传递。

当离合器踏板被踩下时,离合器分离,发动机的动力不再传递给变速器;当离合器踏板松开时,离合器结合,发动机的动力传递给变速器。

2. 变速器:变速器是汽车传动系的核心部件,用于改变发动机输出的扭矩和转速,以适应不同的行驶条件。

变速器通常包括多个档位,可以通过换挡来实现不同的传动比。

3. 传动轴:传动轴用于将变速器输出的动力传递到驱动轮。

传动轴通常由两个半轴组成,中间通过万向节连接。

4. 主减速器:主减速器位于传动轴和驱动轮之间,用于降低传动轴输出的转速并增加扭矩。

主减速器通常采用齿轮传动或链条传动。

5. 差速器:差速器位于主减速器和驱动轮之间,用于允许左右驱动轮以不同的转速旋转。

差速器可以使汽车在转弯时更加平稳和灵活。

汽车传动系的布置方式主要有前置前驱、前置后驱、后置后驱和中置后驱等。

不同的布置方式会对汽车的性能和操控产生影响,例如前置前驱的汽车通常具有较好的燃油经济性和空间利用率,而后置后驱的汽车通常具有更好的操控性能和平衡性能。

总之,汽车传动系的组成和布置方式是汽车设计中非常重要的部分,它们会直接影响汽车的性能、操控和燃油经济性。

汽车传动系各个部分的工作原理以及作用

汽车传动系各个部分的工作原理以及作用

汽车传动系各个部分的工作原理以及作用【答案解析】汽车发动机与驱动轮之间的动力传递装置称为汽车的传动系。

它应保证汽车具有在各种行驶条件下所必需的牵引力、车速,以及保证牵引力与车速之间协调变化等功能,使汽车具有良好的动力性和燃油经济性;还应保证汽车能倒车,以及左、右驱动轮能适应差速要求,并使动力传递能根据需要而平稳地结合或彻底、迅速地分离。

传动系包括离合器、变速器、传动轴、主减速器、差速器及半轴等部分。

下面分别介绍传动系各个分总成的工作原理以及作用:1、离合器:离合器位于发动机和变速箱之间的飞轮壳内,用螺钉将离合器总成固定在飞轮的后平面上,离合器的输出轴就是变速箱的输入轴。

在汽车行驶过程中,驾驶员可根据需要踩下或松开离合器踏板,使发动机与变速箱暂时分离和逐渐接合,以切断或传递发动机向变速器输入的动力。

2、变速器:变速器是用来改变来自发动机的转速和转矩的机构,它能固定或分档改变输出轴和输入轴传动比,又称变速箱。

通过改变传动比,改变发动机曲轴的转拒,适应在起步、加速、行驶以及克服各种道路阻碍等不同行驶条件下对驱动车轮牵引力及车速不同要求的需要。

一般上讲,汽车变速器为手动变速器(MT),自动变速器(AT),双离合变速器(DCT),无级式变速器(CVT)。

变速器的功能是变速变扭,并且能让车辆实现倒车和怠速停车功能。

变速箱、发动机桥人同称为汽车三大核心部件,由此可见,变速器对于汽车来讲非常重要。

3、传动轴:传动轴总成由外万向节(RF 节)、内万向节(VL 节)和花键轴组成,RF 节和 VL 节均为球笼式等速万向节。

VL 节用螺栓与差速器传动轴凸缘相连接,RF 节通过外星轮端部的花键轴与前轮相连接,左、右前轮分别由 1 根等速万向节传动轴驱动。

4、主减速器:主减速器是汽车传动系中减小转速、增大扭矩的主要部件。

对发动机纵置的汽车来说,主减速器还利用锥齿轮传动以改变动力方向。

主减速器通常装在车桥里,因外观似一鼓包,俗称后桥牙包。

汽车知识讲座:汽车传动系统ppt课件

汽车知识讲座:汽车传动系统ppt课件
位于两轴交角的平分面上。
50
汽车工程基础
51
汽车基础讲座
52
车桥
汽车基础讲座
车桥分类:驱动桥、转向桥、转向驱动桥和 支持桥。
驱动桥由主减速器、差速器、半轴、驱动桥 壳(或变速器壳体)等零部件组成。
53
驱动桥的功用
汽车基础讲座
1)通过主减速器齿轮的传动,降低转速,增 大转矩;
2)主减速器采用锥齿轮传动,改变转矩的传 递方向;
3)通过差速器可以使内外侧车轮以不同转速 转动,适应汽车的转向要求;
4)通过桥壳和车轮,实现承载及传力作用。
54
主减速器
功用 1)降低转速,增大转矩; 2)改变转矩旋转方向;
汽车基础讲座
55
汽车工程基础
56
汽车工程基础
57
汽车基础讲座
差速器 功用:传递转矩,使两侧车轮以不同转速旋转 组成:行星齿轮、行星齿轮轴、半轴齿轮和差速 器壳等
3.十字轴式万向节传动的等速条件 (1)采用双万向节传动;
(2)第一万向节两轴间的夹角α1与第二万向节两轴间的夹 角α2 相等;
(3)第一万向节的从动叉与第二万向节的主动叉在同一平 面内。
48
汽车工程基础
49
等速万向节
汽车基础讲座
❖ 2.等速万向节 ❖ 工作原理:保证万向节在工作过程中,其传力点永远
汽车基础讲座
观看手 动变速 箱原理 视频3, 4
32
DSG 双离合自动变速箱
汽车基础讲座
❖ DSG双离合变速箱主要组成部分有:双质量飞轮、 双离合器、齿轮箱、换挡拨叉以及滑阀箱(机电控 制模块)等
33
DSG 双离合自动变速箱
汽车基础讲座
❖ 双离合变速箱是机械式自动变速器的一种,它有两根动力 输入轴,一根连一个离合,一个控制1357挡,另一个离合 控制246倒挡,在整个换档过程中,当一组齿轮在输出动 力时,另一组齿轮已经待命,总是保持有一组齿轮在输出 动力,不会出现动力传递的间断,使换档过程更加快捷、 顺畅,提速更为迅猛。

汽车动力传动系统基本原理和构成

汽车动力传动系统基本原理和构成

汽车动力传动系统基本原理和构成发动机是动力传动系统的核心部件,它将燃油的能量转化为机械能的动力。

发动机的转动力通过曲轴传递给离合器,离合器作为发动机和变速器之间的连接装置,能够实现发动机与其他传动装置的隔离和连接。

当离合器处于分离状态时,发动机的转动力无法传递给变速器和传动装置,车辆处于空档状态。

而当离合器处于结合状态时,发动机的转动力可以通过离合器传递给变速器。

变速器是动力传动系统中的重要装置,它的主要功能是根据行驶条件和驾驶要求,使发动机的转速和扭矩在较宽的范围内调整,以提供适当的车速和动力输出。

一般来说,汽车常见的变速器有手动变速器和自动变速器两种。

手动变速器需要司机通过操作离合器和换挡杆来实现档位的切换,而自动变速器则能够根据驾驶状态和车速自动调整档位。

变速器还具有适应性,能够在不同的驾驶条件下实现不同档位的自动调节。

传动轴是将变速器的输出轴转动力传递到车轮的组成部分。

传动轴通常由几节连接而成,它们通过万向节和传动罩相互配合,以接受和传递转动力。

传动轴的长度和角度是根据车辆的结构和行驶需求设计的,以保证能够将动力传递给驱动轮。

差速器是动力传动系统中的一个特殊装置,其主要作用是将传动轴的转动力平均分配给驱动轮。

差速器能够通过齿轮和差速齿轮的组合,使驱动轮在行驶过程中能够保持合适的转速差值,以降低车辆的摩擦和损耗,提高车辆的操控性。

驱动轮是汽车动力传动系统中直接与地面接触的车轮。

驱动轮接受传动轴传递的动力,并通过与地面的摩擦力推动车辆前进。

一般来说,前驱车常用前轮作为驱动轮,后驱车常用后轮作为驱动轮,而四驱车则有多个轮胎作为驱动轮。

总之,汽车动力传动系统通过发动机、离合器、变速器、传动轴、差速器和驱动轮等部件的相互配合,将发动机的动力传递给车轮,实现车辆的驱动和行驶。

这些组成部分的设计和优化直接影响着汽车的性能、燃油经济性和操控性,对于汽车的安全性和乘坐舒适性也有着重要的影响。

因此,对于汽车动力传动系统的研究和发展具有重要的意义。

汽车传动系组成及工作原理

汽车传动系组成及工作原理

汽车传动系组成及工作原理1.离合器:离合器位于发动机和变速器之间,用于控制发动机与变速器的连接与分离。

其主要工作原理是利用离合器压盘的压力,将发动机动力传递到变速器。

当踩下离合器踏板时,离合器压盘与飞轮分离,发动机与变速器断开连接,实现换挡或空档;当松开离合器踏板时,离合器压盘与飞轮接合,发动机动力传递到变速器。

2.变速器:变速器用于调整发动机输出动力的转速和扭矩,并将其输出到传动轴上。

一般汽车采用的是手动变速器和自动变速器。

手动变速器的工作原理是通过手动启用离合器来控制齿轮的换挡,使发动机功率合适地传递到动力系统;自动变速器则通过液力传递和电控系统来实现换挡的操作。

3.传动轴:传动轴是连接变速器和驱动轮的部件,用于将变速器输出的动力传递到驱动轮上。

传动轴通常由多个连接在一起的万向节组成,能够在不同角度下传递动力,并能吸收地面不平造成的震动和外部冲击。

4.差速器:差速器位于传动轴的中央,用于使两个驱动轮能够以不同速度旋转,并帮助车辆在转弯时保持稳定性。

差速器的工作原理是通过齿轮组实现驱动轮之间的不同速度分配。

当车辆行驶直线时,差速器内齿轮转动没有滑差;当车辆转弯时,差速器内齿轮就会产生滑差,使得外侧驱动轮转速加快,内侧驱动轮转速减慢,保证了车辆行驶的平稳性。

5.驱动轮:驱动轮是通过差速器传递动力、将汽车推动起来的部件。

一般情况下,汽车只有前轮驱动、后轮驱动或四轮驱动。

不同驱动方式的工作原理略有不同,但基本原理都是通过动力系统使驱动轮转动,从而推动汽车前进。

总之,汽车传动系通过离合器将发动机动力传递给变速器,然后通过传动轴将变速器输出的动力传递到差速器,最终通过驱动轮将动力转化为车辆的运动能力。

每个部分都有着不可或缺的作用,共同协作,实现汽车的正常运行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽车传动系组成及工作
原理修订版
IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】
传动系
传动系一般由离合器、变速器、万向传动装置、主减速器、差速器和半轴等组成。

功用
汽车发动机所发出的动力靠传动系传递到驱动车轮。

传动系具有减速、变速、倒车、中断动力、轮间差速和轴间差速等功能,与发动机配合工作,能保证汽车在各种工况条件下的正常行驶,并具有良好的动力性和经济性。

种类组成
传动系可按能量传递方式的不同,划分为机械传动、液力传动、液压传动、电传动等。

下面分别介绍小传动系各个分总成的工作原理以及作用:[2]
离合器:离合器位于发动机和变速箱之间的飞轮壳内,用螺钉将离合器总成固定在飞轮的后平面上,离合器的输出轴就是变速箱的输入轴。

在汽车行驶过程中,驾驶员可根据需要踩下或松开离合器踏板,使发动机与变速箱暂时分离和逐渐接合,以切断或传递发动机向变速器输入的动力。

离合器接合状态离合器切断状态离合器的功用主要有:
1、保证汽车平稳起步:起步前汽车处于静止状态,如果发动机与变速箱是刚性连接的,一旦挂上档,汽车将由于突然接上动力突然前冲,不但会造成机件的损伤,而且驱动力也不足以克服汽车前冲产生的巨大惯性力,使发动机转速急剧下降而熄火。

如果在起步时利用离合器暂时将发动机和变速箱分离,然后离合器逐渐接合,由于离合器的主动部分与从动部分之间存在着滑磨的现象,可以使离合器传出的扭矩由零逐渐增大,而汽车的驱动力也逐渐增大,从而让汽车平稳地起步。

2、便于换档:汽车行驶过程中,经常换用不同的变速箱档位,以适应不断变化的行驶条件。

如果没有离合器将发动机与变速箱暂时分离,那么变速箱中啮合的传力齿轮会因载荷没有卸除,其啮合齿面间的压力很大而难于分开。

另一对待啮合齿轮会因二者圆周速度不等而难于啮合。

即使强行进入啮合也会产生很大的齿端冲击,容易损坏机件。

利用离
合器使发动机和变速箱暂时分离后进行换档,则原来啮合的一对齿轮因载荷卸除,啮合面间的压力大大减小,就容易分开。

而待啮合的另一对齿轮,由于主动齿轮与发动机分开后转动惯量很小,采用合适的换档动作就能使待啮合的齿轮圆周速度相等或接近相等,从而避免或减轻齿轮间的冲击。

3、防止传动系过载:汽车紧急制动时,车轮突然急剧降速,而与发动机相连的传动系由于旋转的惯性,仍保持原有转速,这往往会在传动系统中产生远大于发动机转矩的惯性矩,使传动系的零件容易损坏。

由于离合器是靠磨擦力来传递转矩的,所以当传动系内载荷超过磨擦力所能传递的转矩时,离合器的主、从动部分就会自动打滑,因而起到了防止传动系过载的作用。

变速器:汽车变速器:通过改变传动比,改变发动机曲轴的转拒,适应在起步、加速、行驶以及克服各种道路阻碍等不同行驶条件下对驱动车轮牵引力及车速不同要求的需要。

通俗上分为手动变速器(MT),自动变速器(AT),手动/自动变速器,无级式变速器。

传动轴:传动轴总成由外万向节(RF节)、内万向节(VL节)和花键轴组成,RF节和VL节均为球笼式等速万向节。

VL节用螺栓与差速器传动轴凸缘相连接,RF节通过外星轮端部的花键轴与前轮相连接,左、右前轮分别由1根等速万向节传动轴驱动。

主减速器:主减速器是汽车传动系中减小转速、增大扭矩的主要部件。

对发动机纵置的汽车来说,主减速器还利用锥齿轮传动以改变动力方向。

汽车正常行驶时,发动机的转速通常在2000至3000r/min左右,如果将这么高的转速只靠变速箱来降低下来,那么变速箱内齿轮副的传动比则需很大,而齿轮副的传动比越大,两齿轮的半径比也越大,换句话说,也就是变速箱的尺寸会越大。

另外,转速下降,而扭矩必然增加,也就加大了变速箱与变速箱后一级传动机构的传动负荷。

所以,在动力向左右驱动轮分流的差速器之前设置一个主减速器,可使主减速器前面的传动部件如变速箱、分动器、万向传动装置等传递的扭矩减小,也可变速箱的尺寸质量减小,操纵省力。

现代汽车的主减速器,广泛采用螺旋锥齿轮和双曲面齿轮。

双曲面齿轮工作时,齿面间的压力和滑动较大,齿面油膜易被破坏,必须采用双曲面齿轮油润滑,绝不允许用普通齿轮油代替,否则将使齿面迅速擦伤和磨损,大大降低使用寿命。

差速器:驱动桥两侧的驱动轮若用一根整轴刚性连接,则两轮只能以相同的角速度旋转。

这样,当汽车转向行驶时,由于外侧车轮要比内侧车轮移过的距离大,将使外侧车轮在滚动的同时产生滑拖,而内侧车轮在滚动的同时产生滑转。

即使是汽车直线行驶,也会因路面不平或虽然路面平直但轮胎滚动半径不等(轮胎制造误差、磨损不同、受载不均或气压不等)而引起车轮的滑动。

车轮滑动时不仅加剧轮胎磨损、增加功率和燃料消耗,还会使汽车转向困难、制动性能变差。

为使车轮尽可能不发生滑动,在结构上必须保证各车辆能以不同的角速度转动。

通常从动车轮用轴承支承在心轴上,使之能以任何角速度旋转,而驱动车轮分别与两根半轴刚性连接,在两根半轴之间装有差速器。

这种差速器又称为轮间差速器。

多轴驱动的越野汽车,为使各驱动桥能以不同角速度旋转,以消除各桥上驱动轮的滑动,有的在两驱动桥之间装有轴间差速器。

现代汽车上的差速器通常按其工作特性分为齿轮式差速器和防滑差速器两大类。

齿轮式差速器当左右驱动轮存在转速差时,差速器分配给慢转驱动轮的转矩大于快转驱动轮的转矩。

这种差速器转矩均分特性能满足汽车在良好路面上正常行驶。

但当汽车在坏路上行驶时,却严重影响通过能力。

例如当汽车的一个驱动轮陷入泥泞路面时,虽然另一驱动轮在良好路面上,汽车却往往不能前进(俗称打滑)。

此时在泥泞路面上的驱动轮原地滑转,在良好路面上的车轮却静止不动。

这是因为在泥泞路面上的车轮与路面之间的附着力较小,路面只能通过此轮对半轴作用较小的反作用力矩,因此差速器分配给此轮的转矩也较小,尽管另一驱动轮与良好路面间的附着力较大,但因平均分配转矩的特点,使这一驱动轮也只能分到与滑转驱动轮等量的转矩,以致驱动力不足以克服行驶阻力,汽车不能前进,而动力则消耗在滑转驱动轮上。

此时加大油门不仅不能使汽车前进,反而浪费燃油,加速机件磨损,尤其使轮胎磨损加剧。

有效的解决办法是:挖掉滑转驱动轮下的稀泥或在此轮下垫干土、碎石、树枝、干草等。

为提高汽车在坏路上的通过能力,某些越野汽车及高级轿车上装置防滑差速器。

防滑差速器的特点是,当一侧驱动轮在坏路上滑转时,能使大部分甚至全部转矩传给在良好路面上的驱动轮,以充分利用这一驱动轮的附着力来产生足够的驱动力,使汽车顺利起步或继续行驶。

半轴:半轴是差速器与驱动轮之间传递扭矩的实心轴,其内端一般通过花键与半轴齿轮连接,外端与轮毂连接。

现代汽车常用的半轴,根据其支承型式不同,有全浮式和半浮式两种。

全浮式半轴只传递转矩,不承受任何反力和弯矩,因而广泛应用于各类汽车上。

全浮式半轴易于拆装,只需拧下半轴突缘上的螺栓即可抽出半轴,而车轮与桥壳照样能支持汽车,从而给汽车维护带来方便。

半浮式半轴既传递扭矩又承受全部反力和弯矩。

它的支承结构简单、成本低,因而被广泛用于反力弯矩较小的各类轿车上。

但这种半轴支承拆取麻烦,且汽车行驶中若半轴折断则易造成车轮飞脱的危险。

相关文档
最新文档