11章回归分析
定量分析方法(11-1)
第十一章 回 归 分 析本章以一元线性回归模型为重点介绍回归分析方法,对于一元线性回归模型所建立的理论与方法作适当的修改便可推广到多元线性回归模型。
§1 回归的概念一、变量之间的关系现实中,各种变量相互依赖、相互影响,存在着某种关系。
如:价格与需求量、利率与投资、收入与消费,等等。
大致可以归纳为两类关系:确定性关系(函数关系),非确定性关系(统计关系)。
1. 确定性关系:变量之间存在着某种完全确定的关系。
如:总收益Y 与产量X 之间的关系:X P Y ⋅=当价格一定时,Y 由X 完全确定。
表现在图形上,()Y X ,的所有点位于一条直线上。
一般地:()n X X X f Y ,,21= (多元函数)2. 非确定性关系:变量之间由于受到某些随机因素的影响而呈现出一种不确定的关系。
如:农业产量主要受到降雨量、施肥量、温度等的影响,但决定产量的并非完全是这些因素,还要受到许多其它因素的影响,如冰雹、蝗灾等自然灾害。
非确定性关系可以分为两大类:1) 相关关系:两个变量处于完全对等的位置,且两个变量皆为随机变量,常用相关系数来度量。
如:计量经济学成绩与统计学成绩,物价水平和股票价格,等等。
2) 回归关系:一个变量的变化是另一个变量变化的原因,而不是相反。
如:消费量Y 与可支配收入X 之间便是一种回归关系。
一般来讲,随着可支配收入的增加,消费增加,可支配收入是影响消费的主要因素,但并非唯一的因XYPX Y =素,影响消费的因素还有消费习惯、地区差异、年龄构成、宗教信仰等等。
同样收入的家庭,有的支出多,有的支出少,即使是同一家庭,其每个月的收入相同的话,各个月的支出也不会完全一样。
这样,对应于一个X 的值,Y 有多个不同的值相对应,X 与Y 呈现出不确定性的关系。
此时:()u X f Y += (u 为随机影响)表现在图形上,()Y X ,的点不是完全处于一条直线(或曲线)上,而是围绕在一条理论线的两旁变化。
第11章回归分析习题解答
B. 是随机变量,且有 y0 N (β0 + β1x0 ,σ 2 ) .
C. 当 β0 , β1 确知时等于 β0 + β1x0 .
D. 等于 βˆ0 + βˆ1x0 .
6. 在回归分析中,检验线性相关显著性常用的三种检验方法,不包含(
A. 相关系数显著性检验法.
B. t 检验法.
; 若 新 保 单 数 x0 = 1000 , 给 出 Y 的 估 计 值 为
yˆ0 = 0.118129 + 0.003585×1000 = 3.703129 .
16. 下表是 16 只公益股票某年的每股帐面价值 x 和当年红利 y ,利用 Excel 的数据分
析功能得到的统计分析结果如下:
方差分析
过 10 周时间,收集了每周加班工作时间的数据和签发的新保单数目, x 为每周签发的新保
单数目,Y 为每周加班工作时间(小时).利用 Excel 的数据分析功能得到统计分析如下表.
Coefficients
标准误差
Intercept X Variable 1
0.118129 0.003585
0.355148 0.000421
15.1
15.1
228.01
228.01
18
15.1
14.5
228.01
210.25
列和
270.1
265
计算可得:
4149.39
3996.14
∑ Syy =
y2 i
−
ny 2
=94.75
∑ Sxx =
x2 i
−
nx 2
=96.39
∑ Sxy = xi yi − nxy = 95.24
《SPSS统计分析》第11章 回归分析
返回目录
多元逻辑斯谛回归
返回目录
多元逻辑斯谛回归的概念
回归模型
log( P(event) ) 1 P(event)
b0
b1 x1
b2 x2
bp xp
返回目录
多元逻辑斯谛回归过程
主对话框
返回目录
多元逻辑斯谛回归过程
参考类别对话框
保存对话框
返回目录
多元逻辑斯谛回归过程
收敛条件选择对话框
创建和选择模型对话框
返回目录
曲线估计
返回目录
曲线回归概述
1. 一般概念 线性回归不能解决所有的问题。尽管有可能通过一些函数
的转换,在一定范围内将因、自变量之间的关系转换为线性关 系,但这种转换有可能导致更为复杂的计算或失真。 SPSS提供了11种不同的曲线回归模型中。如果线性模型不能确 定哪一种为最佳模型,可以试试选择曲线拟合的方法建立一个 简单而又比较合适的模型。 2. 数据要求
线性回归分析实例1输出结果2
方差分析
返回目录
线性回归分析实例1输出结果3
逐步回归过程中不在方程中的变量
返回目录
线性回归分析实例1输出结果4
各步回归过程中的统计量
返回目录
线性回归分析实例1输出结果5
当前工资变量的异常值表
返回目录
线性回归分析实例1输出结果6
残差统计量
返回目录
线性回归分析实例1输出结果7
返回目录
习题2答案
使用线性回归中的逐步法,可得下面的预测商品流通费用率的回归系数表:
将1999年该商场商品零售额为36.33亿元代入回归方程可得1999年该商场 商品流通费用为:1574.117-7.89*1999+0.2*36.33=4.17亿元。
管理统计学习题参考答案第十一章
十一章1. 解:回归分析是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。
回归分析按照涉及的变量的多少,分为一元回归和多元回归分析;在线性回归中,按照因变量的多少,可分为简单回归分析和多重回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。
如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。
如果回归分析中包括两个或两个以上的自变量,且自变量之间存在线性相关,则称为多元线性回归分析。
相关分析,相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度,是研究随机变量之间的相关关系的一种统计方法。
相关分析和回归分析是研究客观现象之间数量联系的重要统计方法。
既可以从描述统计的角度,也可以从推断统计的角度来说明。
所谓相关分析,就是用一个指标来表明现象间相互依存关系的密切程度。
所谓回归分析,就是根据相关关系的具体形态,选择一个合适的数学模型,来近似地表达变量间的平均变化关系。
它们具有共同的研究对象,在具体应用时,相关分析需要依靠回归分析来表明现象数量相关的具体形式,而回归分析则需要依靠相关分析来表明现象数量变化的相关程度。
只有当变量之间存在着高度相关时,进行回归分析寻求其相关的具体形式才有意义。
由于相关分析不能指出变量间相互关系的具体形式,所以回归分析要对具有相关关系的变量之间的数量联系进行测定,从而为估算和预测提供了一个重要的方法。
在有关管理问题的定量分析中,推断统计加具有更加广泛的应用价值。
需要指出的是,相关分析和回归分析只是定量分析的手段。
通过相关与回归分析,虽然可以从数量上反映现象之间的联系形式及其密切程度,但是现象内在联系的判断和因果关系的确定,必须以有关学科的理论为指导,结合专业知识和实际经验进行分析研究,才能正确解决。
因此,在应用时要把定性分析和定量分析结合起来,在定性分析的基础上开展定量分析。
概率论与数理统计_回归分析
概率论与数理统计_回归分析第11章回归分析设x 为普通变量,Y 为随机变量。
如果当x 变化时,Y 随着x 的变化⼤体上按某种趋势变化,则称x 与Y 之间存在相关关系,即),0(~,)(2σεεN x f Y +=例如,某地⼈均收⼊x 与某种商品的消费量Y 之间的关系;森林中树⽊的断⾯直径x 与⾼度Y 之间的关系;某种商品的价格x与销售量Y 之间的关系;施⽤氮肥、磷肥、钾肥数量1x ,2x ,3x 与某种农作物产量Y 之间的关系。
在⽣产实践和科学研究中,常常有这样的问题:由实验或测量得到变量间的⼀批离散样点,要求由此建⽴变量之间的近似函数关系或得到样点之外的数据。
我们确定的函数要求在某种距离意义下的误差达到最⼩(通常⽤最⼩⼆乘法,即考虑使各数据点误差平⽅和最⼩)。
由⼀个(或⼏个)普通变量来估计或预测某个随机变量的取值时,所建⽴的数学模型及所进⾏的统计分析称为回归分析。
§11.1 ⼀元线性回归假设有⼀批关于x 与Y 的离散样点),(,),,(),,(2211n n y x y x y x集中在⼀条直线附近,说明x 与Y 之间呈线性相关关系,即),0(~,2σεεN bx a Y ++=称为⼀元线性回归模型。
⼀、模型中的参数估计 1、b a ,的估计⾸先引进记号∑∑∑∑∑=====-=-=-===ni i i xy ni i yy ni i xx ni ini iyx n y x S y n y S x n x S y n y x n x 11221221111按最⼩⼆乘法可得到xxxy S S b =? x b y a ??-= 称x b a y+=为Y 关于x 的⼀元线性回归⽅程。
2、2σ的估计)?(21?22xxyy S b S n --=σ求出关于的⼀元线性回归⽅程。
解:先画出散点图如下计算出 3985193282503.6714510======xy yy xx S S S y x n483.0?==xxxy S S b 735.2??-=-=x b y a 所求的回归⽅程是x y483.0735.2?+-=。
第11章多重线性回归分析思考与练习参考答案
0.674
5
0.795
0.809
1.734
1.715
0.549
0.654
6
0.787
0.779
1.509
1.474
0.782
0.571
7
0.933
0.880
1.695
1.656
0.737
0.803
8
0.799
0.851
1.740
1.777
0.618
0.682
9
0.945
0.876
1.811
三、计算题
为确定老年妇女进行体育锻炼还是增加营养会减缓骨骼损伤,一名研究者用光子吸收法测量了骨骼中无机物含量,对三根骨头主侧和非主侧记录了测量值,结果见教材表11-20。分别用两种桡骨测量结果作为反应变量对其他骨骼测量结果作多重线性回归分析,提出并拟合适当的回归模型,分析残差。
解:答案提示,需要对自变量进行筛选,而且要考虑是否存在多重共线性,如果存在,应进行适当的处理。
5.如何判断、分析自变量间的交互作用?
答:基于专业背景知识,构造可能的交互作用项,并检验交互作用项是否有统计学意义。
6.多重线性回归模型的基本假定有哪些?如何判断资料是否满足这些假定?如果资料不满足假定条件,常用的处理方法有哪些?
答:多重线性回归的前提条件是线性、独立性、正态性和等方差性,可以借助残差分析等方法判断资料是否满足条件。如果资料不满足前提条件,可以采用变量变换和非线性回归等方法处理。
19
0.856
0.786
1.390
1.324
0.578
0.610
20
0.890
0.950
2.187
第11章 多重线性回归分析思考与练习参考答案
第11章多重线性回归分析思考与练习参考答案一、最佳选择题1.逐步回归分析中,若增加自变量的个数,则(D)。
A.回归平方和与残差平方和均增大B.回归平方和与残差平方和均减小C.总平方和与回归平方和均增大D.回归平方和增大,残差平方和减小E.总平方和与回归平方和均减小2.下面关于自变量筛选的统计学标准中错误的是(E)。
A.残差平方和(SS残差)缩小B.确定系数(R)增大2C.残差的均方(MS残差)缩小D.调整确定系数(Rad)增大2E.Cp统计量增大3.多重线性回归分析中,能直接反映自变量解释因变量变异百分比的指标为(C)。
A.复相关系数B.简单相关系数C.确定系数D.偏回归系数E.偏相关系数4.多重线性回归分析中的共线性是指(E)。
A.Y关于各个自变量的回归系数相同B.Y关于各个自变量的回归系数与截距都相同C.Y变量与各个自变量的相关系数相同D.Y与自变量间有较高的复相关E.自变量间有较高的相关性5.多重线性回归分析中,若对某一自变量的值加上一个不为零的常数K,则有(D)。
A.截距和该偏回归系数值均不变B.该偏回归系数值为原有偏回归系数值的K 倍C.该偏回归系数值会改变,但无规律D.截距改变,但所有偏回归系数值均不改变E.所有偏回归系数值均不会改变二、思考题1.多重线性回归分析的用途有哪些?答:多重线性回归在生物医学研究中有广泛的应用,归纳起来,可以包括以下几个方面:定量地建立一个反应变量与多个解释变量之间的线性关系,筛选危险因素,通过较易测量的变量估计不易测量的变量,通过解释变量预测反应变量,通过反应变量控制解释变量。
2.多重线性回归模型中偏回归系数的含义是什么?答:偏回归系数的含义是:在控制其他自变量的水平不变的情况下,该自变量每改变一个单位,反应变量平均改变的单位数。
3.请解释用于多重线性回归参数估计的最小二乘法的含义。
答:最小二乘法的含义是:残差的平方和达到最小。
4.如何判断和处理多重共线性?答:如果自变量之间存在较强的相关,则存在多重共线性。
管理统计学习题参考答案第十一章
一章1. 解:回归分析是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。
回归分析按照涉及的变量的多少,分为一元回归和多元回归分析;在线性回归中,按照因变量的多少,可分为简单回归分析和多重回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。
如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。
如果回归分析中包括两个或两个以上的自变量,且自变量之间存在线性相关,则称为多元线性回归分析。
相关分析,相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度,是研究随机变量之间的相关关系的一种统计方法。
相关分析和回归分析是研究客观现象之间数量联系的重要统计方法。
既可以从描述统计的角度,也可以从推断统计的角度来说明。
所谓相关分析,就是用一个指标来表明现象间相互依存关系的密切程度。
所谓回归分析,就是根据相关关系的具体形态,选择一个合适的数学模型,来近似地表达变量间的平均变化关系。
它们具有共同的研究对象,在具体应用时,相关分析需要依靠回归分析来表明现象数量相关的具体形式,而回归分析则需要依靠相关分析来表明现象数量变化的相关程度。
只有当变量之间存在着高度相关时,进行回归分析寻求其相关的具体形式才有意义。
由于相关分析不能指出变量间相互关系的具体形式,所以回归分析要对具有相关关系的变量之间的数量联系进行测定,从而为估算和预测提供了一个重要的方法。
在有关管理问题的定量分析中,推断统计加具有更加广泛的应用价值。
需要指出的是,相关分析和回归分析只是定量分析的手段。
通过相关与回归分析,虽然可以从数量上反映现象之间的联系形式及其密切程度,但是现象内在联系的判断和因果关系的确定,必须以有关学科的理论为指导,结合专业知识和实际经验进行分析研究,才能正确解决。
因此,在应用时要把定性分析和定量分析结合起来,在定性分析的基础上开展定量分析。
统计学(贾5)课后练答案(11-14章)
第11章 一元线性回归分析11.1(1)散点图(略),产量与生产费用之间正的线性相关关系。
(2)920232.0=r(3) 检验统计量2281.24222.142=>=αt t ,拒绝原假设,相关系数显著。
11.2 (1)散点图(略)。
(2) 8621.0=r11.3 (1)0ˆβ表示当0=x 时y 的期望值。
(2)1ˆβ表示x 每变动一个单位y 平均下降0.5个单位。
(3) 7)(=y E 11.4 (1)%902=R (2)1=e s11.5 一家物流公司的管理人员想研究货物的运输距离和运输时间的关系,为此,他抽出了公司最近10(1)绘制运送距离和运送时间的散点图,判断二者之间的关系形态: (2)计算线性相关系数,说明两个变量之间的关系强度。
(3)利用最小二乘法求出估计的回归方程,并解释回归系数的实际意义。
(2)x 运送距离(km )y 运送时间(天)x 运送距离(km )Pearson 相关性 1.949(**) 显著性(双侧)0.000 N10 10 y 运送时间(天)Pearson 相关性 .949(**) 1显著性(双侧) 0.000 N**. 在 .01 水平(双侧)上显著相关。
有很强的线性关系。
(3)模型非标准化系数标准化系数t显著性B标准误Beta1 (常量)0.118 0.355 0.333 0.748 x 运送距离(km )a. 因变量: y 运送时间(天)回归系数的含义:每公里增加0.004天。
(1)人均GDP作自变量,人均消费水平作因变量,绘制散点图,并说明二者之间的关系形态。
(2)计算两个变量之间的线性相关系数,说明两个变量之间的关系强度。
(3)利用最小二乘法求出估计的回归方程,并解释回归系数的实际意义。
(4)计算判定系数,并解释其意义。
(5)检验回归方程线性关系的显著性(a=0.05)。
(6)如果某地区的人均GDP 为5 000元,预测其人均消费水平。
《回归分析》课件 刘超——回归分析教学大纲-hep
回归分析教学大纲概述本书主要内容、特点及全书章节主要标题并附教学大纲本书基于归纳演绎的认知规律,把握统计理论的掌握能力和统计理论的应用能力的平衡,依据认知规律安排教材各章节内容。
教材不仅阐述了回归分析的基本理论和具体的应用技术,还按照认知规律适当拓宽学生思维,介绍了伴前沿回归方法。
教材采用了引例、解题思路、解题模型、概念、案例、习题、统计软件七要素合一的教材内容安排模式,有助于培养学生的统计思维与统计能力。
全书共分14章,包括绪论、一元线性回归、多元线性回归、模型诊断、自变量的问题、误差的问题、模型选择、收缩方法、非线性回归、广义线性模型、非参数回归、机器学习的回归模型、人工神经网络以及缺失数据等内容。
第1章对回归分析的研究内容和建模过程给出综述性介绍;第2章和第3章详细介绍了一元和多元线性回归的参数估计、显著性检验及其应用;第4章介绍了回归模型的诊断,对违背回归模型基本假设的误差和观测的各种问题给出了处理方法;第5章介绍了回归建模中自变量可能存在的问题及处理方法,包括自变量的误差、尺度变化以及共线性问题;第6章介绍了回归建模中误差可能存在的问题及处理方法,包括广义最小二乘估计、加权最小二乘估计;第7章介绍了模型选择方法,包括基于检验的方法、基于标准的方法;第8章介绍了模型估计的收缩方法,包括岭回归、lasso、自适应lasso、主成分法、偏最小二乘法;第9章介绍了非线性回归,包括因变量、自变量的变换以及多项式回归、分段回归、内在的非线性回归等方法;第10章介绍了广义线性模型,包括logistic回归、Softmax回归、泊松回归等;第11章介绍了非参数回归的方法,包括核估计、局部回归、样条、小波、非参数多元回归、加法模型等方法;第12章介绍了机器学习中可用于回归问题的方法,包括决策树、随机森林、AdaBoost模型等;第13章介绍了人工神经网络在回归分析中的应用;第14章介绍了常见的数据缺失问题及处理方法,包括删除、单一插补、多重插补等。
分类资料的回归分析
第十一章分类资料的回归分析――Regression菜单详解(下)(医学统计之星:张文彤)在很久很久以前,地球上还是一个阴森恐怖的黑暗时代,大地上恐龙横行,我们的老祖先--类人猿惊恐的睁大了双眼,围坐在仅剩的火堆旁,担心着无边的黑暗中不知何时会出现的妖魔鬼怪,没有电视可看,没有网可上...我是疯了,还是在说梦话?都不是,类人猿自然不会有机会和恐龙同时代,只不过是我开机准备写这一部分的时候,心里忽然想到,在10年前,国内的统计学应用上还是卡方检验横行,分层的M-H卡方简直就是超级武器,在流行病学中称王称霸,更有那些1:M的配对卡方,N:M的配对卡方,含失访数据的N:M 配对卡方之类的,简直象恐龙一般,搞得我头都大了。
其实恐龙我还能讲出十多种来,可上面这些东西我现在还没彻底弄明白,好在社会进步迅速,没等这些恐龙完全统制地球,Logistic模型就已经飞速进化到了现代人的阶段,各种各样的Logistic模型不断地在蚕食着恐龙爷爷们的领地,也许还象贪吃的人类一样贪婪的享用着恐龙的身体。
好,这是好事,这里不能讲动物保护,现在我们就远离那些恐龙,来看看现代白领的生活方式。
特别声明:我上面的话并非有贬低流行病学的意思,实际上我一直都在做流行病学,我这样写只是想说明近些年来统计方法的普及速度之快而已。
据我一位学数学的师兄讲,Logistic模型和卡方在原理上是不一样的,在公式推演上也不可能划等号,只是一般来说两者的检验结果会非常接近而已,多数情况下可忽略其不同。
§10.3 Binary Logistic过程所谓Logistic模型,或者说Logistic回归模型,就是人们想为两分类的应变量作一个回归方程出来,可概率的取值在0~1之间,回归方程的应变量取值可是在实数集中,直接做会出现0~1范围之外的不可能结果,因此就有人耍小聪明,将率做了一个Logit变换,这样取值区间就变成了整个实数集,作出来的结果就不会有问题了,从而该方法就被叫做了Logistic回归。
第11章 多因素分析
多因素分析温州医学院环境与公共卫生学院叶晓蕾概念多因素分析是同时对观察对象的两个或两个以上的变量进行分析。
常用的统计分析方法有:多元线性回归、Logistic回归、COX比例风险回归模型、因子分析、主成分分析,等。
一、多元线性回归(multiple linear regressoin)Y,X——直线回归;Y,X1,X2,…X p——多元回归(多重回归)。
例:欲研究血压受年龄、性别、体重、性格、职业(体力劳动或脑力劳动)、饮食、吸烟、血脂水平等因素的影响。
一. 多元回归模型多元回归分析数据格式X2…X p Y 例号X11X11X12…X1p Y1 2X21X22…X2p Y2┆┆┆…┆┆n X n1X n2…X np Y nβ0为回归方程的常数项(constant),表示各自变量均为0时y 的平均值;p 为自变量的个数;β1、β2、βp 为偏回归系数(Partial regression coefficient )意义:如β1表示在X 2、X 3 …… X p 固定条件下,X 1 每增减一个单位对Y 的效应(Y 增减β个单位)。
e 为去除m 个自变量对Y 影响后的随机误差,或称残差(residual)。
eX X X Y p p +++++=ββββ 22110多元回归方程的一般形式为y 的估计值或预测值(predicted value);b 0为回归方程的常数项(constant),表示各自变量均为0时y 的估计值;pp X b X b X b b Y ++++= 22110ˆYˆ由样本估计而得的多元回归方程:b 1、b 2、b p 为偏回归系数(Partial regression coefficient )意义:如b 1表示在X 2、X 3 …… X p 固定条件下,X 1 每增减一个单位对Y 的效应(Y 增减b 个单位)。
适用条件:线性(linear)、独立性(independent)、正态性(normal)、等方差(equal variance)——―LINE‖。
11第11章 偏最小二乘回归分析汇总
基础部数学教研室
数学 ห้องสมุดไป่ตู้模
否则继续第二对成分的提取,直到能达到满意的 精度为止。若最终对自变量集提取r 个成分 u1 , u2 , , ur ,偏最小二乘回归将通过建立 y1 , , y p 与
u1 , u2 , , ur 的回归式,然后再表示为 y1 ,
, y p 与原自变
量的回归方程式,即偏最小二乘回归方程式。
12/49
基础部数学教研室
数学 建模
(2) 建立 y1 ,
, y p 对 u1 的回归及 x1 ,
, xm 对 u1 的回
归。 假定回归模型为 (1)T ˆ A u A1 , 1 (1)T ˆ B u B1 , 1 其中 (1) [ 11 , , 1m ]T , (1) [ 11 ,
ˆ1 B (1) v b11 bn1 b1 p 11 . bnp 1 p
(11.2)
10/49
基础部数学教研室
数学 建模
第一对成分 u1 和 v1 的协方差Cov( u1 , v1 ) 可用第一 ˆ1 和 v ˆ1 的内积来计算。故而以上两 对成分的得分向量 u 个要求可化为数学上的条件极值问题 ˆ1 v ˆ1 ) ( A (1) B (1) ) (1)T AT B (1) max ( u
(2) [ 21 , , 2 m ]T , (2) [ 21 , , 2 p ]T ,
15/49
基础部数学教研室
数学 建模
ˆ 2 A1 (2) , v ˆ2 B1 (2) 为第二对成分的得分向量, 而u 2 2 (2) T (2) T ˆ2 u ˆ 2 , B1 u ˆ2 u ˆ2 A1 u
【统计分析】简单线性回归
年龄与运动后最大心率的回归方程
X =41.8
Y 166.8
lXX 381.2 lYY 4477.2 lXY
1226.8
b lXY lXX
1226.8 381.2
3.218
a 166.8-(-3.218) 41.8 301.3124
Yˆ 301.3124 3.218X
2.研究目的不同:回归用来说明两变量数量上的依存 变化关系,相关说明变量间的相关关系。
小结
简单线性回归是研究两个变量间线性关系的数量表 达式。根据最小二乘法原则,计算回归方程。
进行简单线性回归分析需要满足线性、独立 、正 态 与等方差4个条件。
在简单线性回归分析中,对回归方程的检验等价于 对回归系数的假设检验,可通过方差分析或t检验 完成。
区别
1.资料要求不同:回归要求y服从正态分布,x是可以 精确测量和严格控制的变量,一般称为Ⅰ型回归; 相关要求两个变量服从双变量正态分布。这种资料 若进行回归分析称为Ⅱ回归,可计算两个方程。
I型回归:X是精确控制的; II型回归:X是随机的。 由X推算Y: Yˆ aY .X bY .X X 由Y推算X: Xˆ aX .Y bX .YY
n
(X X )2
Y 的容许区间估计 个体Y值的容许区间
给定 X 时 Y 的估计值是 Y 的均数 Y的一个估计。
给定X 时 Y 值的容许区间是 Y 值的可能范围。
Y 的100(1- )%容许限:
1 (X X )2
Y t ,n2 sY Y t ,n2 sY .X
1 n
(X X )2
小的。(最小二乘)
三、总体回归系数的假设检验
抽样技术第11章复杂调查数据的回归
如 且果服模从型均为值:为Yi0,x方iT 差为i,i2 的其正中态分i 是布独。立那的,
么i / i 即为均值为0,方差为1的正态分布。 ❖ 那么加权最小二乘法估计即为:
( X T 1X ) X T 1 y WLS
❖ B0 和 B1 可以用总体的函数来表示
❖
❖ ❖
B
1
N
N
N
xi yi ( xi )( yi ) /
i 1
i1 i1
N
N
xi2 ( xi )2 / N
i 1
i 1
N
txy
txty N
tx2
(tx )2 (11.4)
N
N
N
B
yi i1
1 xi
i 1
ty
B1tx
B ❖ 0
N
N
(11.5)
❖ ①基于设计
在基于设计的方法中,我们感兴趣的是能够 反映有限总体特征的量,而忽略这个模型是 否能够很好拟合总体。推断基于来自有限总 体中的重复样本。也许一个产生这个数据的 模型存在,但是我们并不需要知道,因此分 析并不是需要基于任何的理论模型。在估计 总体总值和总体均值的时应该使用权重,同 理,在线性回归分析中也应当如此。
总体,B应该接近 。
❖ ②是否为一个概率抽样?如果不是,我们就 只能使用基于模型的方法。
❖ ③样本大小多大?基于设计的理论是依靠大 样本来推断参数的。如果样本过小,那则需 要使用基于模型的方法。
❖ ④这方面有没有人之前被广泛地研究过。如 果科学理论和之前的经验调查支持你所计划 研究的模型,那你则可以充分相信基于模型 的方法。
贾俊平版统计学课件 第11章
从相关矩阵可以看出,在不良贷款与其他几个变量的关 系中,与贷款余额的相关系数最大,而与固定资产投资额的 相关系数最小。
11.1.3 相关系数的显著性检验
1. r 的抽样分布
回归模型
1、回答“变量之间是什么样的关系?” 2、方程中运用 1 个数值型因变量(响应变量) 被预测的变量 1 个或多个数值型或分类型自变量 (解释变量) 用于预测的变量 3、主要用于预测和估计
11.2.1 一元线性回归模型
1.回归模型(regression model)
y 0 1 x
i 1 i 1 i 1
n
n
n
相关系数的取值范围及意义
1. r 的取值范围为[-1,1]. 2. r 1 ,称完全相关,即存在线性函数关系. r =1,称完全正相关. r =-1,称完全负相关. 3. r =0,称零相关,即不存在线性相关关系.
4. r <0,称负相关.
5. r >0,称正相关. 6. r 愈大,表示相关关系愈密切.
t 0.05 (23) 2.069
2
由于
t 7.5344 t 0.05 (23) 2.069
2
因此,拒绝 H 0,认为 x 和 y 的相关系数 0 ,即不良贷 款与贷款余额之间的线性相关关系显著.
表11-3 各相关系数显著性检验的t 统计量值
11.2 一元线性回归
11.2.1 一元线性回归模型 11.2.1 参数的最小二乘估计
相关系数的性质
性质 1 : r 具有对称性。即 x 与 y 之间的相关系数和 y 与 x 之间 的相关系数相等,即rxy= ryx 性质 2 : r 数值大小与 x 和 y 原点及尺度无关 ,即改变 x 和 y 的 数据原点及计量尺度,并不改变r数值大小 性质3:仅仅是x与y之间线性关系的一个度量,它不能用 于描述非线性关系。这意味着, r=0只表示两个变量之间 不存在线性相关关系,并不说明变量之间没有任何关系 性质 4 : r 虽然是两个变量之间线性关系的一个度量,却不 一定意味着x与y一定有因果关系
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Liner:线性回归 Curve Estimation:曲线估计 Binary Logistic: 二分变量逻辑回归
第4页/共55页
回归分析的过程
Multinomial Logistic:多分变量逻辑回归 Ordinal 序回归 Probit:概率单位回归 Nonlinear:非线性回归 Weight Estimation:加权估计 2-Stage Least squares:二段最小平方法 Optimal Scaling 最优编码回归
第14页/共55页
多元线性回归分析中的自变量筛选
自变量筛选法 向前筛选法(forward),是自变量不断进入回归
方程的过程. 向后筛选法(backward),是自变量不断剔除出
回归方程的过程 逐步筛选法(stepwise),是“向前法”和“向
后法”的结合 多元线性回归一般采用逐步回归方法-Stepwise
第9页/共55页
奇异值(Casewise或Outliers)诊断
概念 奇异值指样本数据中远离均值的样本数据
点,会对回归方程的拟合产生较大偏差影响。 诊断标准
一般认为,如果某样本点对应的标准化残 差值超出了[-3,+3]的范围,就可以判定该 样本数据为奇异值。
第10页/共55页
线性回归方程的预测
点估计 y0 区间估计
第15页/共55页
逐步回归方法的基本思想
对全部的自变量x1,x2,...,xp,按它们对Y贡献的大小进行 比较,并通过F检验法,选择偏回归平方和显著的变量进 入回归方程,每一步只引入一个变量,同时建立一个回 归方程。当一个变量被引入后,对原已引入回归方程的 变量,逐个检验他们的偏回归平方和。如果由于引入新 的变量而使得已进入方程的变量变为不显著时,则及时 从回归方程中剔除。在引入了两个自变量以后,便开始 考虑是否有需要剔除的变量。只有当回归方程中的所有 自变量对Y都有显著影响而不需要剔除时,在考虑从未选 入方程的自变量中,挑选对Y有显著影响的新的变量进入 方程。不论引入还是剔除一个变量都称为一步。不断重 复这一过程,直至无法剔除已引入的变量,也无法再引 入新的自变量时,逐步回归过程结束。
第16页/共55页
线性回归分析中的共线性检测
共线性带来的主要问题 主要是会给自变量的偏回归系数的估计带来困 难。偏回归系数的估计方差会随着自变量相关 性的增大而不断增大,从而使偏回归系数的置 信区间不断增大,偏回归系数假设检验的结果 不显著等。
第17页/共55页
第2页/共55页
回归分析的模型
基本的步骤:利用SPSS得到模型关系式, 是否是我们所要的,要看回归方程的显著 性检验(F检验)和回归系数b的显著性检 验(T检验),还要看拟合程度R2 (相关系数 的平方,一元回归用R Square,多元回归 用Adjusted R Square)
第3页/共55页
回归分析的过程
第7页/共55页
回归方程
附:残差分析: • 残差序列的正态性分析
可以绘制标准化残差序列的带正态曲线的直方 图或累计概率图来分析;
• 残差序列的随机性分析 可以绘制残差序列和对应的预测值序列的散点 图。如果残差序列是随机的,那么残差序列 应与预测值序列无关,残差序列点将随机地 分布在经过零的一条直线上下;
第5页/共55页
11.1 线性回归(Liner)
一元线性回归方程: y=a+bx a称为截距 b为回归直线的斜率 用R2判定系数判定一个线性回归直线的拟合
程度:用来说明用自变量解释因变量变异的 程度(所占比例)
第6页/共55页
回归方程
回归方程的显著性检验 目的:检验自变量与因变量之间的线性关系是否 显著,是否可用线性模型来表示. 检验方法: t检验 F检验(一元回归中,F检验与t检验一致, 两种检 验可以相互替代)
回归分析的概念
寻求有关联(相关)的变量之间的关系 主要内容:
从一组样本数据出发,确定这些变量间的定 量关系式 对这些关系式的可信度进行各种统计检验 从影响某一变量的诸多变量中,判断哪些变 量的影响显著,哪些不显著 利用求得的关系式进行预测和控制
第1页/共55页
回归分析的模型
按是否线性分:线性回归模型和非线性回 归模型 按自变量个数分:简单的一元回归,多元 回归
第12页/共55页
线性回归(Liner)
多元线性回归方程: y=b0+b1x1+b2x2+…+bnxn b0为常数项 b1、b2、…、bn称为y对应于x1、x2、…、
xn的偏回归系数 用Adjusted R2调整判定系数判定一个多元
线性回归方程的拟合程度:用来说明用自变 量解释因变量变异的程度(所占比例)
95%的近似置信区间: [y02Sy,y0+2Sy]. x0为xi的均值时,预测区 间最小,精度最高.x0越远离均值,预测区 间越大,精度越低.
第11页/共55页
线性回归(Liner)
一元线性回归模型的确定:一般先做散点 图(Graphs ->Scatter->Simple),以便 进行简单地观测(如:Salary与 Salbegin的关系) 若散点图的趋势大概呈线性关系,可以 建立线性方程,若不呈线性分ቤተ መጻሕፍቲ ባይዱ,可建 立其它方程模型,并比较R2 (-->1)来 确定一种最佳方程式(曲线估计)
第8页/共55页
回归方程
残差序列的独立性分析
目的是分析残差序列是否存在后期值与前期值 相关的现象。如果存在相关现象,表示残差序 列中还存有一些规律性,回归方程没能较全面 地反映因变量的变化。
一般用D-W检验作残差序列的独立性分析。 D-W值=0:完全正自相关; D-W值=4:完 全负自相关;D-W值在0和2之间:正自相关; D-W值在2和4之间:负自相关。实际应用中, 接近2就可以认为残差序列具有独立性。
第13页/共55页
多元线性回归分析中的自变量筛选
自变量筛选的目的
多元回归分析引入多个自变量. 如果引入 的自变量个数较少,则不能很好的说明因 变量的变化;
但并非自变量引入越多越好.原因: 有些 自变量可能对因变量的解释没有贡献, 自变量间可能存在较强的线性关系,即:多 重共线性. 因而不能全部引入回归方程.