简单效应SPSS编程

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

被试内、被试间、混合实验设计简单效应分析

简单效应(simple effect)分析

简单效应(simple effect)分析通常是在作方差分析时存在交互效应的情况下的进一步分析。你需要在SPSS中编写syntax实现。

一、完全随机因素实验中简单效应得分析程序

假如一个两因素随机实验中,A因素有两个水平、B因素有三个水平,因变量是Y,检验B因素在A因素的两个水平上的简单效应分析。

TWO-FACTOR RANDOMIZED EXPERIMENT

SIMPLE EFFECTS.

DATA LIST FREE /A B Y.

BEGIN DATA

1 3 4

1 1 2

1 1 3

2 2 5

2 1 6

1 2 8

2 1 9

1 2 8

2 3 10

2 3 11

2 3 9

2 3 8

END DATA.

MANOVA y BY A(1,2) B(1,3)

/DESIGN

/DESIGN=A WITHIN B(1)

A WITHIN B(2)

A WITHIN B(3).

若A与B存在交互作用而进行的进一步分析(即简单效应分析)。同时你可以再加一个design: /DESIGN=B WITHIN A(1)

B WITHIN A(2).

自编数据试试

y A B

4.00 1.00 3.00

2.00 1.00 1.00

3.00 1.00 1.00

5.00 2.00 2.00

6.00 2.00 1.00

8.00 1.00 2.00

9.00 2.00 1.00

8.00 1.00 2.00

10.00 2.00 3.00

11.00 2.00 3.00

9.00 2.00 3.00

8.00 1.00 2.00

当然,你可也直接贴下述语句至syntax编辑框:

应会输出下述结果:

The default error term in MANOVA has been changed from WITHIN CELLS to WITHIN+RESIDUAL. Note that these are the same for all full factorial designs.

* * * * * * A n a l y s i s o f V a r i a n c e * * * * * *

12 cases accepted.

0 cases rejected because of out-of-range factor values.

0 cases rejected because of missing data.

6 non-empty cells.

3 designs will be processed.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

* * * * * * A n a l y s i s o f V a r i a n c e -- design 1 * * * * * *

Tests of Significance for Y using UNIQUE sums of squares

Source of Variation SS DF MS F Sig of F

X1 15.00 1 15.00 9.00 .024

X2 6.46 2 3.23 1.94 .224

X1 BY X2 33.00 2 16.50 9.90 .013

(Model) 80.92 5 16.18 9.71 .008

(Total) 90.92 11 8.27

R-Squared = .890

Adjusted R-Squared = .798

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

* * * * * * A n a l y s i s o f V a r i a n c e -- design 2 * * * * * *

Tests of Significance for Y using UNIQUE sums of squares

Source of Variation SS DF MS F Sig of F

WITHIN+RESIDUAL 16.46 8 2.06

X1 WITHIN X2(1) 25.00 1 25.00 12.15 .008

X1 WITHIN X2(2) 8.15 1 8.15 3.96 .082

X1 WITHIN X2(3) 43.74 1 43.74 21.26 .002

(Model) 74.46 3 24.82 12.06 .002

R-Squared = .819

Adjusted R-Squared = .751

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

* * * * * * A n a l y s i s o f V a r i a n c e -- design 3 * * * * * *

Tests of Significance for Y using UNIQUE sums of squares

Source of Variation SS DF MS F Sig of F

WITHIN+RESIDUAL 25.00 7 3.57

X2 WITHIN X1(1) 30.30 2 15.15 4.24 .062

X2 WITHIN X1(2) 35.58 2 17.79 4.98 .045

(Model) 65.92 4 16.48 4.61 .039

(Total) 90.92 11 8.27

R-Squared = .725

Adjusted R-Squared = .568

另外,三因素完全随机实验中的简单效应和简单简单效应的分析。

当实验设计中的因素多于两个时,做简单效应检验的前提仍然是,方差分析中发现了显著的两次交互作用。而当三因素完全随机实验中发现了显著的三次交互作用时,可以进一步作简单简单效应检验。也是DESIGN。/DESIGN=A WITHIN B(1) WITHIN C(1)

A WITHIN B(2) WITHIN C(2).

例如:

THREE-FACTOR RANDOMIZED EXPERIMENT

相关文档
最新文档