坐标系统和时间系统1

合集下载

大地测量学基础-第2章坐标系统与时间系统

大地测量学基础-第2章坐标系统与时间系统
的影响,地球的旋转轴在空间围绕黄极缓慢旋转,类似于一个旋 转陀螺,形成一个倒圆锥体(见左下图),其锥角等于黄赤交角 ε=23.5 °。 • 旋转周期为25786年,这种运动称为岁差,是地轴方向在宇宙空 间中的长周期运动(以黄极为中心)。
章动(周期18.6年)
岁差(周期25786年)
23.5 °
黄道 赤道
PS
πS
πN
πS
6、春分点与秋分点
• 黄道与赤道的两个交点称为春 分点和秋分点。
• 从地球上看,太阳沿黄道逆时 针运动。
• 黄道和赤道在天球上存在相距 180°的两个交点,其中太阳沿 黄道从天赤道以南向北通过天 赤道的那一点,称为春分点(3 月21日前后),与春分点相隔 180°的另一点,称为秋分点(9 月23日前后) 。
• GAMT 表示格林尼治平太阳时角。
• 未经任何改正的世界时表示为UT0;
• 经过极移改正的世界时表示为UT1:
UT1=UT0+Δλ
§2-1 地球的运转 §2-2 时间系统 §2-3 坐标系统
§2-1 地球的运转
• 众所周知,我们生存的地球一直处于运动之中。 • 从不同的角度来看,地球的运转可分为四类: (1)与银河系一起在宇宙中运动 (2)与太阳系一起在银河系内运动 (3)与其它行星一起绕太阳旋转(公转) (4)绕其自身旋转轴(瞬时)旋转(自转,或叫周日视运动) • 大地测量学主要研究后两类运动。
• 考虑岁差和章动的共同影响时,相应的旋转轴、天极、天球赤道 等术语前加上“真”,即真旋转轴、真天极、真天球赤道。
• 若只考虑岁差,则分别称作平旋转轴、平天极、平天球赤道。
章动(周期18.6年)
岁差(周期25786年)
23.5 °

第二章坐标系统和时间系统

第二章坐标系统和时间系统
的椭圆。
• 4)黄 极
•天 球
•黄道
•黄赤交角23°27′
第一节 地球的运转
2. 地球自转:绕其自身旋转轴的转动。周期为24小时。 • 2.1 地轴方向相对于空间的变化:由于日月等天体的影响 及地球自身的不规则,地球自转轴方向是不断变化的。
• 1)岁差:在日月引力和其它天体引力对地球隆起部分的作 用下,地球在绕太阳运行时,自转轴的方向不再保持不变 ,从而使春分点在黄道上产生缓慢的西移,这种现象在天 文学中称为岁差。
第一节 地球的运转
① 行星运行的轨道是一个椭圆,该椭圆的一个焦点与 太阳的质心相重合
② 行星质心与太阳质心间的距离向量,在相同的时间 内所扫过的面积相等
③ 行星运动周期的平方与轨道椭圆长半径的立方之比 为一常量
第一节 地球的运转
• 2)天 :以地球质心为中心以无穷大为半径的假想球体。 球
① 天轴与天极:地球自转轴的延伸直线为天轴;天轴与天
• 其中,Δψ为黄经章动 ,ε黄赤交角
•第二节 时间系 统
•2.平太阳时(MT) •(1)真太阳时:以真太阳作为参考点,由它的周日视运动所确定 的 • 时间; •(2)平太阳:由于真太阳的视运动速度是不均匀的,因而真太阳 时 • 不是均匀的时间尺度。为此引入虚拟的在赤道上匀速运行的 • 平太阳,其速度等于真太阳周年运动的平均速度。 •(3)平太阳时:以平太阳作为参考点,由它的周日视运动所确定 的 • 时间。 •(4)计量时间单位:平太阳日、平太阳小时、平太阳分、平太阳 • 秒;
•第一节 地球的运转
•⑤
• :地球公转的轨道面与天球相交的大圆,黄道面
黄道
与赤道面的夹角,称为黄赤交角,约为 。
• ⑥ 春分 • :当太阳在黄道上从天球南半球刚北半球运行时

成都理工大学GPS课程本科试题库第二章坐标系统和时间系统

成都理工大学GPS课程本科试题库第二章坐标系统和时间系统

第二章GPS测量所涉及的时间系统与坐标系统一、填空题1、黄道是指()。

答案:太阳的视运动的轨迹与天球表面的交线或地球公转的轨迹与天球表面的交线2、GPS目前所采用的坐标系统,是()。

答案:WGS-84系3、岁差是指()。

答案:由于日月的引力,平北天极绕着北黄极做圆周运动的现象4、卫星二体问题是指()。

答案:在研究卫星运动时,仅考虑卫星受到地心引力作用下的运动问题称之为卫星二体问题。

5、升交点是指()。

答案:卫星在轨道上由难向北运动时轨道与赤道的交点。

6、GPS高程属于()高程系统。

答案:大地7、建立协议地球坐标系的原因是()。

答案:存在极移现象8、虚拟参考站法是指()。

答案:一台接收机静止在地球表面,同步观测4颗以上卫星,确定接收机天线相位中心相对于地球质量中心的三维位置的定位方式称谓静态绝对定位9、我国常用的高程系统有()、()、()。

答案:大地高系统正高系统正常高系统。

10、GPS 时间系统是()。

答案:GPS 时间系统:GPS 时间系统采用原子时ATI 秒长作为时间基准,时间起算原点定义在1980 年1 月6 日UTC0 时。

二、单选题1、未经美国政府特许的用户不能用()来测定从卫星至接收机间的距离。

A、C/A 码B、Ll载波相位观测值C、载波相位观测值D、Y 码答案:D2、利用广播星历进行单点定位时,所求得的站坐标属于()。

A、1954 北京坐标系B、1980 年西安坐标系C、WGS-84D、ITRF答案:C3、计量原子时的时钟称为原子钟,国际上是以()为基准。

A、铷原子钟B、氢原子钟C、铯原子钟D、铂原子钟答案:C4、我国西起东经72°,东至东经135°,共跨有5 个时区,我国采用( A )的区时作为统一的标准时间,称作北京时间。

A、东8 区B、西8 区C、东6 区D、西6 区答案:A5.卫星钟采用的是GPS 时,它是由主控站按照美国海军天文台(USNO) ()进行调整的。

坐标系统和时间系统

坐标系统和时间系统
站心地平直角坐标系
旋转变换 (2-6)
站心赤道直角坐标系
平移变换 (2-5)
地心空间直角坐标系
(三)站心(左手)地平直角坐标系与地心空 间直角坐标系之间的转换
旋转矩阵
X -sinBcosL sinL cosBcosLx
Y
=sinBsinL
cosL
cosBsinLy
Z地心 cosB
0
sinB z地平 (2-7)
通过天球中黄心道,面且与垂赤直道于面黄的道夹面角的直线与 天球的交点
√8.春分点
地球公转的轨道面与天球相交的大圆。 当太阳即在当黄地道球上绕,太从阳天公球转南时半,球地向球北上半的球观测者
运行时,所黄见道到与的天,球太赤阳道在的天交球点上运动的轨迹
(二)天球坐标系的定义
假设地球为均质的球体,且没有其它天体摄动力 的影响;即假定地球的自转轴,在空间的方向是 固定的,春分点在天球上的位置保持不变。
t时刻的瞬 时极地球 坐标系
x
x
y
Rz ( G ) y
z et
z ct
对应格林尼治平子 午面的真春分点时

(2-10)
t时刻的瞬时 极天球坐标

三、天球坐标系与地球坐标系 之间的坐标转换
(二)协议天球坐标系与协议地球坐标系的坐标 转换
协议天球坐标系 瞬时极天球坐标系
(2-11) (2-12)
3、协议地球坐标系与瞬时极地球坐标系 的坐标转换
二者存在旋转关系:
x
x
y Ry xp Rx yp y
zem
zet
(2-13)
(xp , y p ) 为瞬时地极相对于CIO的坐标。
三、天球坐标系与地球坐标系 之间的坐标转换

四种卫星定位导航系统的坐标系统与时间系统以及他们的转换关系

四种卫星定位导航系统的坐标系统与时间系统以及他们的转换关系

GLONASS
坐标系统名:PE-90 时间系统名:GLONASS时
-4-
定义
GLONASS坐标系统:采用的是基于Parameters of the Earth 1990框架的PE-90大地坐标系,其 几何定义为:原点位于地球质心,Z轴指向IERS 推荐的协议地球极(CTP)方向,即1900-1905年 的平均北极,X指向地球赤道与BH定义的零点子 午线交点,Y轴满足右手坐标系。 GLONASS时间系统:采用原子时AT1秒长作为 时间基准,是基于前苏联莫斯科的协调世界时 UTC(SU),采用的UTC时并含有跳秒改正。
GPS
坐标系统名:WGS-84 时间系统名:GPS时
-1-
定义
GPST规定它的起点在1980年1月6日UTC的0点, 它的秒长始终与主控站的原子钟同步,启动之后不 采用跳秒调整。根据对GPS时间系统起点的规定, 知道GPST与国际原子时有固定19秒的常数差,而 且在1980年之后与UTC另外还有随时间不断变化 的常数差。如1985年12月,常数差为4秒。 GPST=UTC十4秒 总结 原点:1980年1月6日UTC零时 秒长:原子时秒长 不跳秒
Galileo
坐标系统名:ITRS 时间系统名:伽利略系统时间
-6-
定义
伽利略地球参考框架(Galileo Terrestrial Reference Frame,GTRF)是实现伽利略所有产品和服务的基础, 它由伽利略大地测量服务原型(GGSP)负责定义、建立、 维持与精化。GTRF符合ITRS定义,并与ITRF对准,它 的维持主要基于GTRF周解。除GTRF外,GGSP还提供 地球自转参数、卫星轨道、卫星和测站钟差改正等产品。 GTRF的发展早在2011年10月首批Galileo卫星升空前, GTRF就完成了它的初始实现(2007年)。它采用了42 个位于伽利略跟踪站(GSS)附近的IGS站、33个其他 IGS站和13个伽利略实验站(GESS)从2006年11月至 2007年6月的GPS观测数据。后续的GTRF将由使用 GPS/Galileo数据逐步过渡到只使用Galileo数据。从2013 年4颗Galileo卫星组网并开始提供导航服务以来,GTRF 每年都会发布新的版本并进行2~3次更新。

第二章 坐标系统和时间系统

第二章 坐标系统和时间系统

地球坐标系根据描述点位方式的不同分作: 1、地球空间直角坐标系
原点O与地球质心重合,Z轴指向地球北极,X轴 指向格林尼治子午面与地球赤道的交点,Y轴垂 直于XOZ平面,构成右手坐标系统。 P(X,Y,Z)
2、大地坐标系统
参考椭球----参考椭球的中心与地球的质心重合,椭球的短轴与 地球自转轴重合,根据科学家测量的长半轴a和短半轴b来近似模 a b 拟地球的数学球体。
天球赤道面与天球赤道-——通过地球质心与天轴垂直的平 面,称为天球赤道面。该赤道面与天球相交的大圆,称为天 球赤道。 黄道——地球公转的轨道面与天球相交的大圆,即地球上的 观测者所看到的,太阳绕地球运动的轨迹。 春分点——当太阳在黄道上从地球南半球向北半球运行时, 黄道与天球赤道面的交点。春分点不随地球转动。
对应于 WGS-84大地坐标系有一个WGS-84椭球,其常数 采用 IUGG第 17届大会大地测量常数的推荐值。下面给 出WGS-84椭球两个最常用的几何常数: 长半轴: 6378137± 2(m) 扁 率: 1:298.257223563
§2.3坐标系之间的变换
1.
2.
3.
坐标系的变换包括: 不同空间直角坐标系之间的转换(3参数 或7参数) 不同大地坐标系(球面坐标系)之间的转 换(5参数和9参数) 大地坐标系(B,L)转换为高斯平面坐标 (X,Y)
大地坐标系——是建立在参考椭球上,原点与地球质 建立在参考椭球 建立在参考椭球上 心重合,大地纬度B为过某地面点的椭球法线与椭球 赤道面的夹角;大地经度L为过该地面点的椭球子午 面与格林尼治子午面之间的夹角,大地高H为地面点 沿椭球法线至椭球面的距离。 地面点P的大地坐标为 (B,L,H)
对同一空间点,直角坐标系与大地坐标系参数间有如下转换关系:

第2-1章 坐标系统和时间系统

第2-1章 坐标系统和时间系统
张德勒运动(周期 个月 振幅0.2秒) 个月, 张德勒运动(周期14个月,振幅 秒 季节性运动(周期12个月 振幅0.1秒) 个月, 季节性运动(周期 个月,振幅 秒
极 移
G P S 测 量 原 理 及 应 用
中 南 大 学
国际天文学联合会和大地测量学协会在1967建 建 国际天文学联合会和大地测量学协会在 G 采用国际上5个纬度服务站 个纬度服务站, 年的平 P 议,采用国际上 个纬度服务站,以1900-1905年的平 均纬度所确定的平均地极位置作为基准点, S 均纬度所确定的平均地极位置作为基准点 , 平极的 测 位置是相应上述期间地球自转轴的平均位置 , 通常 位置是相应上述期间地球自转轴的平均位置, 量 称 为 国 际 协 议 原 点 ( Conventional International 原 ) 理 Origin——CIO)。与之相应的地球赤道面称为平赤 道面或协议赤道面。 至今仍采用CIO作为协议地极 及 道面或协议赤道面 。 至今仍采用 CIO 作为协议地极 应 ( conventional Terrestrial Pole——CTP) , 以协议 ) 用 地 极 为 基 准 点 的 地 球 坐 标 系 称 为 协 议 地 球 坐 标系 ) 中 (Conventional Terrestrial System——CTS),而与 南 瞬时极相应的地球坐标系称为瞬时地球坐标系。 瞬时极相应的地球坐标系称为瞬时地球坐标系。
G P S 测 量 原 理 及 应 用
中 南 大 学
第二章 坐标系统和时间系统
2.1 天球坐标系和地球坐标系
G P S • 全球定位系统(GPS)的最基本任务是确定用户在空间的 测 位置。而所谓用户的位置,实际上是指该用户在特定坐标 量 系的位置坐标,位置是相对于参考坐标系而言的,为此, 原 首先要设立适当的坐标系。 理 • 为了描述卫星在其轨道上的运动规律,需要建立不随地球 及 自转的地心坐标系--空间固定坐标系(天球坐标系); 应 另一方面观测站是在地球表面,随地球自转而运动,因此 用 需要建立与地球固联的地心坐标系--地固坐标系(地球 坐标系)。 中 • 由上可看出在不同观测时间,其各自的坐标轴指向不同。

2、时间系统和坐标系统

2、时间系统和坐标系统
(1)区时 15º 时区地方时 格林尼治0子午线东西个7.5º 为0时区 (2)世界时
格林尼治起始子午线处的平太阳时(地方时)
经极移改正:UTI=UT0+Δλ 1 X P sin YP cos tan 15 经地球自转季节性改正:UT2=UT1+ΔT
T 0.022s sin 2 t 0.012s cos 2 t 0.006s sin 4 t 0.007 s cos 4 t
4.授时和时间对比
5.时钟的主要技术指标
频率标准度、频率漂移率、频率稳定度
(1)频率标准度 与理论频率之差
(2)频率漂移率(频漂) 频率的变化率(老化率)
(3)频率稳定度 随机变化程度
(二)恒星时与太阳时
1.恒星时
以春分点为参考点
恒星时在数值上等于春分点相对于本地子午圈的时角 是地方时 真恒星时与平恒星时
(二)恒星时与太阳时
2.真太阳时和平太阳时
(1)真太阳时
以地球自转为基础,以太阳中心为参考点 太阳时=本地子午圈时角+12 太阳时长度不同,不具备时间系统条件
(2)平太阳时
以地球自转为基础,以平太阳中心为参考点
周年是运动轨迹位于赤道面,角速度恒定 太阳时=平太阳时角+12 由归算得到 是地方时
3. 区时和世界时
更多见教材P26
(3)阴阳历(农)
年以回归年为依据,而月则按朔望月为依据。 单月为30日,双月为29日,每月平均为29.5日; 以新月始见为月首,12个月为一年,总共354日。 每19年中有7年为闰年。闰年中增加一个月,称 为闰月。 更多见教材P26
2.儒略日JD
根据公历的年(Y)、月(M)、日(D)来计算对应的儒略日JD

第二章 坐标系统和时间系统

第二章 坐标系统和时间系统
" "
" sin y p " cos y p 0
• 7、了解天球坐标系建立的意义和方法;
• 8、GPS时间系统。
第二章坐标系统和时间系统 2
GPS定位所采用的坐标系与经典测量的坐标 系的特点
• GPS卫星的运行是建立在地球与卫星之间的万有引力基础 上的,而经典大地测量主要是以几何原理为基础的,因而 GPS定位中采用的地球坐标系的原点与经典大地测量坐标 系的原点不同。经典大地测量是根据本国的大地测量数据 进行参考椭球体定位,以此参考椭球体中心为原点建立坐 标系,称为参心坐标系。而GPS定位的地球坐标系原点在 地球的质量中心,称为地心坐标系。因而进行GPS测量, 常需进行地心坐标系与参心坐标系的转换。
第二章坐标系统和时间系统 27
2、平地球坐标系
• 取平地极为原点,z轴指向CIO,x轴指向协定赤道面与格 林尼治子午线的交点,y轴指向经度270度的方向,与xoz 构成右手系统而成的坐标系统称为平地球坐标系。 • 平地球坐标系与瞬时地球坐标系的转换公式:
x y z
如果月球的引力及其运行的轨道都 是固定不变的,同时忽略其它行星引力 的微小影响,那么日月引力的影响,仅 将使北天极绕北黄极以顺时针方向缓慢 地旋转,构成一个圆锥面;这时,在天 球上,北天极的轨迹近似地构成一个以 北黄极n为中心,以黄赤交角为半径 的小圆。在这个小圆上,北天极每年西 移约为50.371"。周期大约为25800年。
一、地球坐标系 1、地球直角坐标系 • 原点O与地球质心重合,Z轴指向地球北极,X轴 指向地球赤道面与格林尼治子午面的交点,Y轴 在赤道平面里与XOZ构成球椭球的中心与地球质心重合椭球的短轴与地 球自转轴重合。空间点位臵在该坐标系中表述为 (L,B,H)。

坐标系统与时间系统

坐标系统与时间系统
可推得GALILEO系统与GPS系统间的转换系数为:
Page
11

时间系统
Page
12
1.时间系统——GPS
GPS时间系统采用原子时AT1秒长作时间基准,秒长定义 为铯原子CS133基态的两个超精细能级间跃迁幅射振荡192631170 周所持续的时间,时间起算的原点定义在1980年1月6日世界协调时 UTC0时,启动后不跳秒,保证时间的连续。以后随着时间积累, GPS时与UTC时的整秒差以及秒以下的差异通过时间服务部门定期 公布。 目前,GPS卫星广播星历采用WGS-84(G873)世界大地 坐标系,其起始时元为1996年9月29日,而它的坐标基准时元是 1997.0。【6】
Page
3
1.坐标系统——GPS
WGS-84坐标系是目前GPS所采用的坐标系统,GPS所发布的 星历参数就是基于此坐标系统的。WGS-84坐标系统的全称是World Geodetic System(世界大地坐标系-84),它是一个地心地固坐标系统。 WGS-84坐标系统由美国国防部制图局建立,于1987年取代了当时GPS 所采用的坐标系统―WGS-72坐标系统而成为GPS的所使用的坐标系统。 WGS-84坐标系的坐标原点位于地球的质心,Z轴指向BIH1984.0定义 的协议地球极方向,X轴指向BIH984.0的起始子午面和赤道的交点,Y 轴与X轴和Z轴构成右手系。采用椭球参数为: a=6 378 137m f=1/298.257 223 563 【2】
Page
7
5.坐标系统转换
在GPS与GLONASS之间的坐标系转换,即为WGS—84 与PE—90间的转换。俄罗斯MCC(Russian Mision Control Center)的Mitrikas等 人经过长期实验与精确计算,所提出的且已经应用于GPS/GLONASS组合型接 收机中的转换参数, 被认为是目前最精确的坐标转换参数,其表达式为:

坐标系统与时间系统

坐标系统与时间系统

坐标系统与时间系统在物理学和数学中,坐标系统和时间系统是两个基本概念。

坐标系统是一种方式来描述一个物体在空间中的位置,而时间系统则是一种方式来描述事件的顺序和时间。

在本文中,我们将探究什么是坐标系统与时间系统,它们的重要性以及它们如何相互关联。

什么是坐标系统?坐标系统是一个用于描述物体在空间中位置的方法。

它通常由一个数轴组成,数轴上的每个点都对应一个唯一的位置,这个点就是物体的坐标。

坐标系统通常使用x、y和z轴来描述三维空间中的位置。

在二维坐标系中,我们使用x、y轴来描述平面上的位置。

例如,图中所示的点(3,4)代表了在平面上x轴方向上距离原点3个单位,y轴方向上距离原点4个单位的位置。

此外,在三维坐标系中,我们需要使用z轴来描述物体在z轴方向上的位置。

二维坐标系示意图二维坐标系示意图图:二维坐标系示意图坐标系统不仅仅被用于描述物体在空间中的位置,还可以用来描述其他属性,例如温度,压力,颜色等等。

坐标系统在物理学,数学,计算机科学等领域都有广泛的应用。

什么是时间系统?时间系统是一种用于描述事件顺序和时间的系统。

尽管它看起来很简单,但其实是一个非常复杂的概念。

时间是一个连续的进程,它不能被随意停止或复制。

因此,每个时间点都是唯一的,它不能被重复。

时间系统通常由一组标准组成,这些标准被用来标记时间和时间间隔。

例如,在天文学中,我们使用“儒略日”来标记时间。

儒略日是指从公元前4713年1月1日中午12点到某个时刻之间的天数。

在其他领域,例如计算机科学和物理学中,我们通常使用时间戳来标记事件发生的时间。

时间戳是指从一个特定的时间点到事件发生时的时间间隔。

时间系统的设计是为了表达时间的准确性和可靠性。

因此,它在日常生活和科学研究中都有重要意义。

例如,在国际贸易和金融市场中,时间掌控着交易的进程,是有效监管和管理交易的重要工具,使得交易双方能够基于同一标准和时间计量单位。

坐标系统与时间系统的关系坐标系统和时间系统之间存在着密切的关系。

GPS定位的坐标系统和时间系统精选全文

GPS定位的坐标系统和时间系统精选全文
• 一般做法: –选择某一时刻t0作为原则历元,此刻旳瞬时北天极、瞬 时春分点和瞬时天球赤道经该时刻岁差和章动改正后, 可构成一种天球坐标系。这个坐标系称为原则历元t0旳 平天球坐标系,或协议天球坐标系,也叫协议惯性坐标 系(CIS)
目前使用旳协议天球坐标系要求如下
1980年,国际大地测量学会(IGA)和国际天文学会(IAU)决定,自1984年1 月1后来启用新原则历元旳协议天球坐标系,以儒略日JD=2451545.0为原则历 元(记为JD2000.0,公历为2023年1月1日12hr00min00s),其坐标轴指向是以 原则历元旳赤道和春分点所定义
2.2 GPS使用旳坐标系统
2.2.1 协议天球坐标系 2.2.2 协议地球坐标系(CTS) 2.2.3 坐标转换 2.2.4 地图投影与高斯-克吕格平面直角坐标系
2.2.1 协议天球坐标系
•主要内容 1.天球旳基本概念 2.天球坐标系 3.岁差与章动 4.协议天球坐标系
1.天球及其基本概念
• 天球(Celestial Sphere):是一种半径巨大旳假想旳虚球, 是天文学上用来描述天体位置旳参照物 有日心天球、地心天球和站心天球
•自然地表形状起伏较大且极不规则, 不适合用来代表地球旳形状 •人们是利用大地水准面来替代地球 旳形状
大地水准面
•水准面:水处于静止时旳表面 •与水准面相切旳平面称为水平面 •大地水准面:假设在重力作用下,静止海水面无限延伸,穿 越大陆、岛屿、山川、平原而形成旳一种假想旳自行封闭曲面
大地水准面示意图
间系统可有不同旳时间原点。 • 时间单位尺度是由时钟来拟定旳,不同步钟有不同旳度量
时间方式 • 从本质上讲,时间系统间旳差别体目前时钟上。
时间度量旳精度对GPS定位非常主要

坐标系统与时间系统

坐标系统与时间系统

坐标系统与时间系统坐标系统与时间系统坐标系统和时间系统是人类社会中不可或缺的重要概念,它们在我们的日常生活和科学研究中都扮演着关键角色。

坐标系统用于确定位置和距离,而时间系统用于测量和记录时间。

本文将分别探讨坐标系统和时间系统的原理、种类以及应用。

首先,让我们来了解坐标系统。

坐标系统是一种用于描述和定位点在空间中位置的数学和逻辑系统。

它由一组数值或符号组成,用于标识和表示各个点的位置。

坐标系统可以是一维、二维或三维的,分别用于描述一条直线、一个平面或一个立体。

常见的三维坐标系统是笛卡尔坐标系,它以直角坐标的形式描述点在三个互相垂直的轴上的位置坐标。

笛卡尔坐标系以坐标原点为基准,通过三个轴分别表示X、Y和Z轴。

点的位置由三个坐标值表示,分别对应X、Y和Z轴上的距离。

这种坐标系统非常常见,广泛应用于几何、物理和工程学中,用于定位和描述三维空间中的对象和位置。

除了笛卡尔坐标系,还有其他种类的坐标系统,如极坐标系、球坐标系和地理坐标系。

极坐标系使用半径和角度来描述点在平面上的位置,球坐标系使用半径、纬度和经度来描述点在球体上的位置,地理坐标系使用经度和纬度来定位地球上的地点。

不同的坐标系统适用于不同的应用领域,能够更准确地描述和定位物体和地点。

接下来,我们将关注时间系统。

时间系统是一种用于测量和记录时间的系统,用于确定事件发生的先后顺序和持续时间的长短。

时间系统可以是相对的或绝对的。

相对时间系统是以某个事件为基准,将其他事件与之进行比较和计算。

绝对时间系统则是以一个不变的基准来测量时间,如地球自转的周期。

最常见的时间系统是格林威治时间(GMT)和协调世界时(UTC)。

GMT是以伦敦格林威治天文台的时间为基准,被广泛应用于世界各地。

UTC是一种更精确的时间系统,使用原子钟来测量时间,并通过闰秒进行校正。

UTC作为国际标准时间,被广泛应用于科学、航空和通信领域。

除了GMT和UTC,还有其他种类的时间系统,如地方时、夏令时和万年历。

GPS课件-坐标系统和时间系统

GPS课件-坐标系统和时间系统

1
3 2
3
1
1
2 1
1
§2.4 WGS84坐標系
1、WGS84坐標系的定義
Z
協議地極
零子午面
協議地球坐標系
原點:地球質心M
M Y
X
Z軸:指向BIH1985.0定義的協議地極
X軸:指向BIH1985.0定義的零子午面與CTP相應的赤道交點
Y軸:垂直於XMZ平面,構成右手直角坐標系
ZCTS
ZT
xp yp
XCTS
M
協議赤道
XT
暫態赤道
YT
YCTS
X
X
Y
Ry
( x p )Rx
(
y p )Y
Z CTS
Z T
1
Ry
(
x
p
)Rx
(
y
p
)
0
0 1
xp yp
x p y p 1
4、協議天球坐標系到協議地球坐標系的轉換
兩坐標系之間的關係:
1)原點相同,均位於地球質心;
2)暫態天球坐標系的z軸和暫態地球坐標系的Z軸指向相同;
Rz

)
sin
ζ
cos ζ
0
0
0 1
z 0.6406161T 0.0003041T 2 0.0000051T 3 ζ 0.6406161T 0.0000839T 2 0.0000050T 3 θ 0.6406161T 0.0001185T 2 0.0000116T 3
T (t t0 ) 從標準曆元 t0 到觀測曆元 t 的儒略世紀數
Y
X
x D sin Z cos A
y
D

坐标系统和时间系统概述

坐标系统和时间系统概述

坐标系统和时间系统概述坐标系统和时间系统是数学和物理学中重要的概念,用于描述和定位事件和物体在空间和时间上的位置。

这两个系统是相互独立的,同时也是相互关联的。

坐标系统是一种用于描述物体在空间中位置的工具。

它由一组数值构成,其中每个数值对应于一个维度。

最常见的坐标系统是笛卡尔坐标系,它由三个坐标轴x、y和z组成,分别代表空间中的长度、宽度和高度。

通过在这些轴上取特定的数值,可以确定一个点在空间中的位置。

其他常见的坐标系统包括极坐标系和球坐标系,它们在描述某些特定情况下更为方便。

时间系统是一种用于测量和描述时间的方法。

最常见的时间系统是格林威治标准时间(GMT)或协调世界时(UTC),它是以地球自转为基准的。

人们通过定义一天的长度、将一天分为不同的小时、分钟和秒来测量时间。

除了GMT/UTC,不同的国家和地区还可能使用自己的标准时间,例如中国使用的北京时间(CST)。

坐标系统和时间系统相互关联。

在物理学中,时间通常被视为第四个维度,与三维空间坐标相结合形成一种称为时空的四维坐标系统。

这种坐标系统被广泛应用于相对论和宇宙学等领域,以描述物体在空间和时间上的位置和运动。

此外,坐标系统和时间系统还被广泛应用于导航、地图制作、地理信息系统、航空航天等领域。

人们通过在地图上标记特定的坐标和使用时间系统来确定位置和计算行驶时间。

总之,坐标系统和时间系统是描述和定位事件和物体在空间和时间上位置的重要工具。

它们通过数值的组合来刻画和测量空间和时间的特征,对科学研究和实际应用起着关键的作用。

坐标系统和时间系统在现代科学和技术中发挥着巨大的作用。

它们不仅仅是用于描述和定位空间和时间的工具,还是解决各种实际问题的基础。

在地理学和地理信息系统中,坐标系统被用于描述和定位地球上的特定位置。

最常见的地理坐标系统是经纬度坐标系统,其中经度用于测量位置的东西方向,纬度用于测量位置的南北方向。

地理坐标系统能够准确地描述地球上的位置,是导航和地图制作的基础。

坐标系统与时间系统

坐标系统与时间系统

坐标系统与时间系统坐标系统是现代科学与技术领域中常用的工具,用于确定和描述地球表面上的点的位置。

它是一种将地球表面划分为一系列网格或网格线,并用坐标值来标识位置的方法。

而时间系统则是用于测量和表示时间的系统。

在现代的全球范围内,人们通常使用的是经度、纬度和协调世界时(UTC)这两个系统。

下面将对坐标系统和时间系统进行详细介绍。

首先,坐标系统是用来确定地球上某一点的位置的系统。

经度和纬度是两个用来描述地理位置的重要概念。

经度是按照东西方向的角度或弧度来测量地球上某点的位置,其基准线是通过英国伦敦的本初子午线(0度经度),向东为正值,向西为负值。

纬度是按照南北方向的角度或弧度来测量地球上某点的位置,其基准线是赤道(0度纬度),向北为正值,向南为负值。

经纬度的组合可以准确地确定地球表面上任意一点的位置。

与此同时,时间系统也是现代社会中不可或缺的一部分。

协调世界时(UTC)是国际上通用的时间系统。

它以原子钟的标准时间为基准,以24小时制度计算时间,用于统一世界各地的时间标准。

UTC与格林威治标准时间(GMT)几乎是相同的,只有在几毫秒的范围内略有差异。

现在,人们一般使用GPS卫星系统来获得准确的时间和位置数据。

坐标系统和时间系统在现代科学研究中有着广泛的应用。

例如,在地理研究中,人们可以利用坐标系统准确地标识和定位地球上的地貌、河流、山脉等自然地理要素。

在气象和气候研究中,人们可以使用坐标系统来记录和分析天气数据,了解气候变化的规律。

此外,在导航和地理信息系统(GIS)领域,坐标系统也是至关重要的一部分,人们可以通过坐标系统来实现导航和地图制作的功能。

时间系统的应用也是多种多样的。

在天文学研究中,人们可以使用绝对时间来记录和标识天体的运动和变化。

在航空航天领域,时间的准确性和同步性对于飞行安全和导航至关重要。

此外,时间系统在金融交易、信息技术和交通运输等领域也有着重要的作用。

人们可以使用时间系统来确保金融交易的准确性和一致性,以及同步全球的信息和通信网络。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.平 极:某段时间内பைடு நூலகம்极的平均位置。
4.国际协定原点CIO:国际天文联合会IAU和国际大地测量与物理联 合会IUGG采用国际上5个纬度服务站的资料,以1900至1905年地球自 转轴瞬时位置的平均位置作为地球的固定极称为国际协定原点CIO。 也称协议地球极CTP。
第一节 地球的运转
5.地极坐标系:以CIO为原点,零子午线方向为X轴,以零子午线以西 为了描述90°子午线为y轴。用来描述极移规律。任意瞬时t的极点位 置可用( xt,yt)表示。
第二节 时间系统
1. 恒星时(ST) 定义:以春分点为参考点,由它的周日视运动所确定的时间称为恒
星时。 计量时间单位:恒星日、恒星时、恒星分、恒星秒;
(1)恒星日:春分点连续两次经过同一子午圈上中天的时间间隔。 一恒星日=24恒星时=1440恒星分=86400恒星秒
(2)分类:真恒星时和平恒星时。 真恒星时等于真春分点的地方时角(LAST),平恒星时等于平春分 点的地方时角(LMST)
GM其S中T ,1.Δ00ψ273为79黄09经3s 章UT动1 , ε24黄11赤0.5交48角41S 8640184.812866S T
0.093104s T 2 6.2 106T 3
第二节 时间系统
2.平太阳时(MT) (1)真太阳时:以真太阳作为参考点,由它的周日视运动所确定的
时间; (2)平太阳:由于真太阳的视运动速度是不均匀的,因而真太阳时
岁差
第一节 地球的运转
2)章动:在日月引力等因素的影响下,瞬时北天极将绕瞬时 平北天极产生旋转,大致成椭圆形轨迹,其长半径约为 9.2″,周期约为18.6年。这种现象称为章动。
第一节 地球的运转
真赤道: 某一时刻的赤道.(由于岁差和章动的影响,每一时 刻赤道的位置不同) 平赤道:只有岁差影响时的赤道. 交角章动:章动引起的黄赤交角的变化. 黄经章动:章动引起的黄经变化.即平春分点与真春点 的角距.
第一节 地球的运转
2.2 地轴对于地球本体内部结构的相对位置变化(极移) 1.极移:地球自转轴相对于地球体自身内部结构的相对位置变化,
从而导致极点在地球表面上的位置随时间而变化,称为地极移动,简 称极移。
2.瞬时极:与观测瞬间相对应的自转轴所处的位置,称为该瞬时的 地球极轴,相应的极点称为瞬时极。
第一节 地球的运转
1.地球公转:围绕太阳的旋转
★ 公转一周的周期为一恒星年,为365.256354个太阳日
★ 地球连续两次经过春分点所需的时间为一回归年,长
度为365.24219个太阳日。
春分点
远日点
近日点
1)满足开普勒三大行星定 地球 律
秋分点
第一节 地球的运转
① 行星运行的轨道是一个椭圆,该椭圆的一个焦点与 太阳的质心相重合
a.运动是连续的; b.周期有足够的稳定性; c.运动可观测;
第二节 时间系统
在实际应用中,根据需要选取满足上述条件的周期运动,从而 定义了多种时间系统。
例如: (1)以地球自转运动为基础,建立了恒星时(ST)和世界时(UT); (2)以地球公转运动为基础,建立了历书时(ET),并进一步发展
为太阳系质心力学时(TDB)和地球质心力学时(TDT); (3)以物质内部原子运动特征为基础,建立了原子时(TAI)。
6.平春分点:相应于平极的春分点。
第二节 时间系统
大地测量学研究的对象是随时间变化的,大地测量观测量与时间密 切相关、在卫星定位与导航技术中,时间系统是描述卫星运行位置的重 要基准。
(1) 时刻:某一时间点,也就是发生某一现象的瞬间,也称历元。 (2) 时间间隔:两个时刻之间的时间差。 (3) 时间系统的要素:时间原点、度量单位(时间尺度)。 (4) 任何一个周期运动满足如下要求方可作为计量时间的方法:
⑥ 春分点 :当太阳在黄道上从天球南半球刚北半球运行时,
黄道与天球赤道的交点r。
3)黄道
:太阳公转的轨道,是一椭圆,称为黄道。但由于 其它星球的影响,使轨道产生摄动,并不严格的 椭圆。
4)黄极
天球 黄道
黄赤交角23°27′
第一节 地球的运转
2. 地球自转:绕其自身旋转轴的转动。周期为24小时。 2.1 地轴方向相对于空间的变化:由于日月等天体的影响及 地球自身的不规则,地球自转轴方向是不断变化的。
② 行星质心与太阳质心间的距离向量,在相同的时间 内所扫过的面积相等
③ 行星运动周期的平方与轨道椭圆长半径的立方之比 为一常量
第一节 地球的运转
2)天球 :以地球质心为中心以无穷大为半径的假想球体。
① 天轴与天极:地球自转轴的延伸直线为天轴;天轴与天 球的交点称为天极( Pn 为北天极, Ps 为南天极)。
② 天球赤道面与天球赤道:通过地球质心O与天轴垂直的 平面,称为天球赤道面.它与天球相交的大圆,称为天 球赤道。
③ 天球子午面与子午圈:包含天轴并通过地球上任一点的 平面,称为天球子午面,它与天球相交的大圆,称为天 球子午圈。
④ 时圈:通过天球的平面与天球相交的半个大圆。
第一节 地球的运转
⑤ 黄道 :地球公转的轨道面与天球相交的大圆,黄道面与 赤道面的夹角,称为黄赤交角,约为 23.5。
1)岁差:在日月引力和其它天体引力对地球隆起部分的作用 下,地球在绕太阳运行时,自转轴的方向不再保持不变, 从而使春分点在黄道上产生缓慢的西移,这种现象在天文 学中称为岁差。 在岁差的影响下,地球自转轴在空间绕北黄极产生缓慢 的旋转(从北天极上方观察为顺时针方向),形成一个倒圆 锥体,其锥角等于黄赤交角23°27′。 岁差的周期约为25800年。岁差使春分点每年西移50.3″ 。
不是均匀的时间尺度。为此引入虚拟的在赤道上匀速运行的 平太阳,其速度等于真太阳周年运动的平均速度。 (3)平太阳时:以平太阳作为参考点,由它的周日视运动所确定的 时间。 (4)计量时间单位:平太阳日、平太阳小时、平太阳分、平太阳 秒;
(3)某一地点的恒星时:在数值上等于春分点相对于这一地方子午圈 的时角。
第二节 时间系统
(4) 真春分点的格 林尼 治时角 (GAST) 、平春 分 点的格 林尼 治时 角 (GMST)与LAST、LMST的关系:
LAST LMST GAST GMST cos GMST LMST GAST LAST
相关文档
最新文档