数字调制概述

合集下载

无线通信中的信号调制技术

无线通信中的信号调制技术

无线通信中的信号调制技术随着科技的不断进步,人们的通信方式也在不断地变化。

现在,无线通信已经成为我们日常中不可或缺的一部分。

而无线通信的基础就是信号调制技术。

信号调制技术是指将模拟信号或数字信息转换为适合载波信号传输的信号形式的技术。

本文将介绍无线通信中常用的信号调制技术。

一、模拟调制技术模拟调制技术是指将模拟信号转换成适合在载波上进行传输的信号形式。

常见的模拟调制技术有调幅(AM)、调频(FM)、单边带(SSB)等。

其中,调幅技术是将模拟信号通过幅度调制的方式转化为适合在载波上传输的信号形式。

调频技术则是将模拟信号通过频率调制的方式转化为适合在载波上传输的信号形式。

而单边带技术则是将信号的一个单边带(一半)通过滤波器去除,从而使其更适合在有限频带范围内进行传输。

二、数字调制技术数字调制技术指的是将数字信息转化为适合在载波上传输的信号形式。

数字调制技术常见的有ASK(振幅移位键控)、FSK(频率移位键控)、PSK(相位移位键控)、QAM(正交振幅调制)等。

其中,PSK技术是利用信号的相位进行调制,而ASK技术则是利用信号的振幅进行调制。

FSK技术则是利用不同频率进行调制,QAM技术则是采用相位和振幅的双重调制方式。

三、OFDM技术OFDM技术(正交频分复用技术)是一种在宽带传输系统中广泛应用的数字调制技术。

它将数据信号分为多个子信号,并在不同的频率上对不同的子信号进行调制。

OFDM技术可增加传输速率,提高信号的抗噪性能,减少传输时的误码率,因此其已成为4G和5G数字移动通信系统中常用的技术。

OFDM技术在实现高速数据传输、频谱利用率优化等方面发挥了重要作用。

结尾无线通信中的信号调制技术是通信技术中一个非常重要的部分。

通过了解以上几种常见的信号调制技术,我们可以更好地理解和使用无线通信设备。

信号调制技术与传输性能、功率和频率带宽密切相关,因此在实际应用中,需要根据通信环境、传输要求和技术条件进行合理的选择和运用。

数字调制技术

数字调制技术

S BPSK
或写成: 或写成:
S BPSK
2 Eb = m(t ) COS ( 2πf c t + θ c ) Tb
2
( 4.8) ( 4 .9 )
其中E b = 0.5 Ac Tb , Tb为码元宽度, m(t)为调制波形
BPSK信号也可表示成: BPSK信号也可表示成: 信号也可表示成
S g
BPSK
对于GSM目前实际数据速率为270.833kbps,只达到 对于GSM目前实际数据速率为270.833kbps,只达到 GSM目前实际数据速率为270.833kbps, SNR条件下信道容量的40%。 条件下信道容量的40% 10dB SNR条件下信道容量的40%。
移动通信中的调制技术
标准 GSM DCSDCS-1800 ISIS-54 ISIS-95 PDC CT2 DECT PHS PACS 服务类型 蜂窝 蜂窝 蜂窝 蜂窝 蜂窝 无绳 无绳 无绳 个人通信 调制技术 GMSK GMSK π/4-DQPSK /4QPSK/BPSK π/4-DQPSK /4GFSK GFSK π/4-DQPSK /4/4π/4-DQPSK 信道带宽 200 kHz 200 kHz 1.25M Hz 1.25M Hz 25 kHz 100 kHz 1728 kHz 300 kHz 300 kHz
移相键控(PSK) 移相键控(PSK)
1986年前,线性高功率放大器成本较高, 1986年前,线性高功率放大器成本较高,因此 年前 采用恒包络的CPM调制实现高功率效率。之后, CPM调制实现高功率效率 采用恒包络的CPM调制实现高功率效率。之后, 线性功率放大器已取得实质性进展。 线性功率放大器已取得实质性进展。 PSK是一种线性调制技术 具有带宽效率高、 是一种线性调制技术, PSK是一种线性调制技术,具有带宽效率高、 频谱利用率高等特点 移动通信中, 移动通信中,一般采用性能优良的绝对移相体 制而不采用相对移相体制, 制而不采用相对移相体制,虽然相对移相体制 可以解决相位模糊度问题。 CDMA中 可以解决相位模糊度问题。而CDMA中,常采 用导频信道传送载波信息进行相干解调。 用导频信道传送载波信息进行相干解调。

通信原理-第7章-数字调制系统

通信原理-第7章-数字调制系统
CPM系统的频带利用率取决于权重和相位偏移的配置,通常高于单纯的调相信号和 调频信号。
05
数字调制系统的实现
数字信号的生成
01
数字信号的生成
通过将数字信号转换为模拟信号,实现数字信号的生成。常用的方法包
括脉码调制(PCM)和增量调制(ΔM)。
02 03
PCM编码
将数字信号转换为模拟信号的一种方法是通过脉码调制(PCM)。 PCM编码器将输入的数字信号转换为模拟信号,通常使用8位、12位或 16位量化器进行量化。
由离散的二进制比特流表示的信息。
数字调制系统的应用场景
01
02

无线通信
数字调制系统广泛应用于 无线通信系统,如移动电 话、无线局域网和卫星通 信。
有线通信
在有线通信中,数字调制 系统用于光纤、电缆和其 他传输介质。
数据传输
数字调制系统用于高速数 据传输,如数字电视、高 速互联网接入和数据中心 内部通信。
频率调制(FM)
总结词
频率调制是利用载波的频率变化来传递信息的一种调制方式。
详细描述
在频率调制中,载波的频率随着调制信号的幅度变化而变化,从而将信息编码 到载波信号中。解调时,通过检测载波的频率变化来恢复原始信息。
相位调制(PM)
总结词
相位调制是利用载波的相位变化来传递信息的一种调制方式 。
详细描述
数字调制系统的实验
实验是学习和研究数字调制系统的重要手段。通过搭建实验平台,可以观察和分 析数字调制系统的实际性能,验证理论的正确性。实验中常用的设备包括信号发 生器、频谱分析仪和误码测试仪等。
06
数字调制系统的应用与发 展
数字调制系统在通信领域的应用
数字电视广播

数字调制技术

数字调制技术

数字调制技术数字调制技术调制技术概述调制基础信号的表示方法IQ调制实现方式基本数字调制:ASK、FSK、PSK FSK、MSK和GMSKPSK调制BPSKQPSKOQPSKQAM调制正交频分复用OFDM各种调制的应用调制调制——就是对消息源信息进行编码的过程,其目的就是使携带信息的信号与信道特性相匹配以及有效的利用信道。

多径衰落、多普勒频率扩展;日益增加的用户数目,无线信道频谱的拥挤这些因素对调制方式的选择都有重大的影响。

信号的表示I/Q信号基础I/Q是什么?--I/Q调制过程基带复信号表示方法I/Q调制实现过程数字调制基本类型U MOD(t)=ÛC(t)cos[ C t+ C(t)]AMConventional ModulationDigital ModulationASK,Amplitude Shift KeyingU 01110数字调制基本类型U MOD(t)=ÛC(t)cos[ C t+ C(t)]FMConventional ModulationDigital Modulation FSK,Frequency Shift KeyingU11100tPSK,Phase Shift Keying 数字调制基本类型tU0000111U MOD (t)=ÛC (t)cos [ C t + C (t)]MConventional Modulation Digital ModulationFSKs 2FSK (t )b (t )f 1f 1f 1f 2f 2f 2111000(a )相位不连续的FSK波形22cos()t +11cos()t +(b )相位连续的FSK波形b (t )111s 2FSK (t )c (t )f 1f 1f 1f 2f 2f 2()t (载波)图3.32FSK信号的波形MSK-最小相移键控MSK的频谱frequency:500MHz,bitrate:270kBit/sec,data:PRBS-sequence (511Bits)MSK特点MSK信号是恒包络信号码元转换时刻,信号的相位是连续的,以载波相位为基准的信号相位在一个码元期间内线性的变化+/-90度。

数字调制技术

数字调制技术

数字调制技术一般情况下,信道不能直接传输由信息源产生的原始信号,信息源产生的信号需要变换成适合信号,才能在信道中传输。

将信息源产生的信号变换成适合于信道传输的信号的过程称为调制。

在调制电路中,调制信号是数字信号,因此这种调制称为数字调制。

数字调制是现代通信的重要方法,它与模拟调制相比有许多优点:数字调制具有更好的抗干扰性能、更强的抗信道损耗及更高的安全性。

在数字调制中,调制信号可以表示为符号或脉冲的时间序列,其中每个符号可以有m种有限状态,而每个符号又可采用n比特来表示。

主要的数字调制方式包括幅移键控(amplitude shift keying,ASK)、频移键控(frequency shift keying,FSK)、相移键控(phase shift keying,PSK)、多电平正交调幅(multi level quadrature amplitude modulation,mQAM)、多相相移键控(multiphase shift keying,mPSK),也包括近期发展起来的网格编码调制(trellis coded modulation,TCM)、残留边带(vestigial sideband,VSB)调制、正交频分复用(orthogonal frequency division multiplexing,OFDM)调制等。

1.幅移键控幅移键控就是用数字信号控制高频振荡的幅度,可以通过乘法器和开关电路来实现。

幅移键控载波在数字信号1或0的控制下通或断。

在信号为1的状态下,载波接通,此时传输信道上有载波出现;在信号为0的状态下,载波被关断,此时传输信道上无载波传送。

那么,在接收端就可以根据载波的有无还原出数字信号1和0。

移动通信要求调制方式抗干扰能力强、误码性能好、频谱利用率高。

二进制幅移键控的抗干扰能力和抗衰落能力差,误码率高于其他调制方式,因此一般不在移动通信中使用。

2. 频移键控频移键控或称数字频率控制,是数字通信中较早使用的一种调制方式。

数字调制解调技术

数字调制解调技术

抗多径干扰能力主要取决于调制解调 算法的设计和实现,以及信号处理技 术的运用。常用的抗多径干扰技术包 括RAKE接收、信道估计与均衡、多 天线技术等。这些技术的应用可以有 效抑制多径干扰的影响,提高数字信 号的传输质量和稳定性。
05
数字调制解调技术的未 来发展
高频谱效率的调制解调技术
总结词
随着通信技术的发展,对频谱效率的要求越来越高,高频谱效率的调制解调技术成为研 究热点。
02
通过将多个载波信号进行调制 ,多载波调制能够提高信号传 输的效率和可靠性。
03
多载波调制具有频谱利用率高 、抗多径干扰能力强等优点, 因此在无线通信、宽带接入等 领域得到广泛应用。
03
数字解调技术
相干解调
相干解调是一种基于相位的解调方法,它利用发送信号的相位信息来恢复原始信 号。在相干解调中,接收到的信号与本地振荡器产生的信号进行相位比较,以恢 复原始信号的相位信息。
抗多径干扰能力
抗多径干扰能力
总结词
详细描述
抗多径干扰能力是指数字调制解调技 术在存在多径干扰的情况下仍能保持 正常工作的能力。多径干扰是无线通 信中常见的问题,良好的抗多径干扰 能力能够提高通信质量。
抗多径干扰能力是评估数字调制解调 技术性能的重要指标,尤其在无线通 信中,它直接影响到通信的质量和稳 定性。
思路。
多模态调制解调技术
总结词
随着通信环境的多样化,多模态调制解 调技术成为研究的热点,以满足不同通 信环境下的需求。
VS
详细描述
多模态调制解调技术是指能够处理多种通 信模式的调制解调技术。目前已经出现了 一些多模态调制解调技术,如OFDM (Orthogonal Frequency Division Multiplexing,正交频分复用)和SC-FDE (Single Carrier Frequency Domain Equalization,单载波频域均衡)等。这 些技术通过融合不同的通信模式,提高了 通信系统的灵活性和适应性,为未来通信 技术的发展提供了新的方向。

数字调制基本原理及调制质量参数

数字调制基本原理及调制质量参数

2FSK调制的实现
振荡器1
f1
选通开关
模拟 调频器 基带信号 2FSK信号
基带信 号
反相器
相加器
e 2FSK(t )
振荡器2
模拟调频方法
f2
选通开关
键控法
CPFSK
占用带宽
>
调制指数: h=| f1-f2|*Tb
Tb为码元长度
调制指数增大,带宽增加,但调制指数过小意味着两个信号 频率过于接近,不利于分辨信号。
{bn } 为 “ ⊕ ”为模2加符号。 {a n } 为绝对码, 相对码,也称差分码。
四相调制QPSK
(基站Æ移动台)
GMSK
QPSK信号实际上是把两个BPSK信号相加。但由于QPSK信 号的比特率是BPSK的两倍,所以QPSK的频带利用率要比 BPSK高出一倍。
用基带滤波器的方法进行限带
升余弦滤波器
模拟调制和数字调制的区别
模拟还 是数字 信号?
基带信号
调制
已调信号V(t)
数字信号 模拟信号
载波信号 (通常使用正弦信号)
模拟调制和数字调制的区别
数字调制的优势
1. 可以提高机器的处理速度; 2. 更好的抗干扰能力; 3. 更易于加密处理; 4. 更高的频谱利用率; 5. 与数据业务兼容; 6. 更低的成本。
"1" "0"
¾2ASK 是用 “0” 、 “1” 码基带矩形脉冲去键控一个 连续的载波,使载波时断时续地输出。 ¾最早使用的载波电报就是这种情况。
MASK信号
3A 2A A O t 2 3 0 1
TB
多进制调制系统频带利用率的提高是通过牺牲功率利用 率来换取的,随着M值的增加,当信号受到噪声和干扰的 损害时,接收信号错误概率也将随之增大。

数字调制系统

数字调制系统
数字信号的传输
数字信号在传输过程中可能会受到各种干扰和噪声的影响,导致信号失真或误码。因此,在传输过程 中需要进行适当的信号处理和纠错编码,以保证信号的可靠传输。
数字信号的接收
接收端在接收到信号后,需要进行解调和解码操作,以获取原始的数字信息。在接收过程中,还需要 进行必要的信号质量评估和误码检测,以确保信号的准确性和可靠性。
数字信号的生成
数字信号的生成通常由数字信号发生器完成,它能够根据需要产生各种数字信 号。这些信号可以是二进制、八进制、十六进制等不同进制形式的信号。
数字信号的编码
在数字信号的生成过程中,为了提高信号的抗干扰能力和传输效率,通常需要 对数字信号进行编码。常见的编码方式有曼彻斯特编码、差分曼彻斯特编码等。
现代数字调制系统
随着技术的发展,现代数字调制系统如16QAM、64QAM和256QAM等高阶调制方式 逐渐成为主流,能够实现高速数据传输。
未来发展趋势
未来数字调制系统将朝着更高阶的调制方式、更高的频谱利用率和更强的抗干扰能力方 向发展,以满足不断增长的数据传输需求。
02
数字调制系统的基本原 理
调制解调的基本概念
信道编码与解码技术
总结词
信道编码与解码技术是数字调制系统中用于 提高传输可靠性的关键技术。
详细描述
信道编码通过在信息位中添加冗余位,使得 在接收端能够检测和纠正传输过程中可能出 现的错误。常见信道编码技术包括线性分组 码、循环码、卷积码等。解码技术则是与编 码相对应的过程,用于从接收信号中提取原 始信息位。解码算法的选择应根据编码方式 和具体应用场景而定。
04
数字调制系统的性能优 化
调制方式的优化选择
总结词
调制方式的选择对于数字调制系统的性 能至关重要,合适的调制方式能够提高 系统的传输效率和可靠性。

现代数字通信技术-第三章-数字调制ppt课件

现代数字通信技术-第三章-数字调制ppt课件
MSK属于恒包络数字调制技术。现代数字调制技术的研究,主 要是围绕着充分的节省频谱和高效率地利用可用频带这个中心而 展开的。随着通信容量的迅速增加,致使射频频谱非常拥挤,这 就要求必须控制射频输出信号的频谱。但是由于现代通信系统中 非线性器件的存在,引入了频谱扩展,抵消了发送端中频或基带 滤波器对减小带外衰减所做的贡献。
4状态8PSK TCM码结构
以4状态8PSK网格编码调制为例,如图6-2,它是 Ungerboeck 1975研究出的第一种TCM码。
第一部分 差分编码
第二部分 卷积编码
第三部分 分集映射
.
19
§3.3 TCM网格编码调制
网格编码调制器的一般构成法
把4状态8PSK TCM码的概念推广到一般。网格编 码调制(TCM)一般由三部分组成:第一部分是差分 编码,它与第三部分的合理结合可以解决接收端解 调时信号集相位的混淆问题。第二部分是卷积编织 器,将m比特编码成m+1比特。第三部分叫分集映射 (mapping by set partitioning),其任务将一个 (m+1)比特组对应为一个调制符号输出。(m+1) 比特组有2m+1种可能的组合,调制后的信号集星座 (constellation)想要与之一一对应,显然必须是 2m+1点的星座。
第三章 数字调制
§3.1 数字调制概述 简单数字调制 2ASK 2FSK BPSK DBPSK等 多进制调制 相移键控 QPSK 8PSK 正交幅度调制 16QAM 256QAM等
.
1
§3.1 数字调制概述
QPSK(4PSK) 信号星座图
01
01
00 11
10 11
.
00
10

第6章 正弦载波数字调制

第6章  正弦载波数字调制
振幅键控(ASK—Amplitude Shift Keying)又称 为幅度键控或幅移键控,它是数字调制中出现最早的, 也是最简单的一种方式。这种方式最初用于电报系统, 但由于它的抗噪声性能差,故在数字通信系统中用得不 多。不过,在信道条件较好的数字通信系统中也还有用, 而且二进制振幅键控是研究其他数字调制方式的基础, 因此,熟悉它仍然是必要的。
第四章 数字调制宽
图6-5 2ASK信号的功率谱密度及带宽 a)“1”码波形的频谱 b) 基带信号的功率谱 c) 2ASK信号功率谱
第四章 数字调制与解调技术
由图可看出,2ASK信号的带宽是基带信号带宽的2 倍,若只计及基带信号功率谱主瓣宽度 B g ,则2ASK信 号占用的信道带宽为
第四章 数字调制与解调技术
图6-2
2ASK信号的波形示例
第四章 数字调制与解调技术
2ASK的调制器可以用乘法器法来实现,如图6-3所示。
图6-3 用乘法器实现2ASK调制器
第四章 数字调制与解调技术
图中,输入随机信息序列以a k 表示, 其取值服从下述关系
1 , 概率为 P a k 0 , 概率为 ( 1 P )
二进制频率键控,记为2FSK或BFSK(Binary FSK),是利用二进制数字基带信号去控制载波信号的 频率,即以不同频率的载波来表示数字信息“1”或“0” 的调制方式。2FSK 信号的波形示例如图6-10所示。
第四章 数字调制与解调技术
图6-10 2FSK 信号的波形示例
第四章 数字调制与解调技术
第四章 数字调制与解调技术
二、二进制频率键控
频率键控(FSK—Frequency Shift Keying)又称 为频移键控,它在短波通信中应用较广泛,这是因为 它除了设备简单,调制与解调方便外,更重要的是这 种调制方式具有较好的抗多径时延性能。

数字调制基本原理及调制质量参数

数字调制基本原理及调制质量参数

2FSK信号
1 f(t) 0 0 1
⎧ A cos ω1t ϕ FSK (t ) = ⎨ ⎩ A cos ω 2 t
"1" "0"
1码用频率f1来传送;0码用频率f2来传送。
Ts (a) f2 f1 f1 f2 f1 t
(b) f1 f1 f1
t
(c) f2 f2
t
FSK信号可看作是两个交错的ASK信号之和。
{bn } 为 “ ⊕ ”为模2加符号。 {a n } 为绝对码, 相对码,也称差分码。
四相调制QPSK
(基站Æ移动台)
GMSK
QPSK信号实际上是把两个BPSK信号相加。但由于QPSK信 号的比特率是BPSK的两倍,所以QPSK的频带利用率要比 BPSK高出一倍。
用基带滤波器的方法进行限带
升余弦滤波器
ACPR(Adjacent Channel Power Ratio) ACPR 常定义为邻频率信道(或偏移量)的平均 功率和发射频率信道的平均功率之比。
ACPR
邻道功率
ACPR测量参数 IS-95 CDMA cdma2000
主通道测量带宽 邻道频偏 邻道测量带宽 次邻道频偏 30KHz ±750kHz 30kHz ±750kHz 1.23MHz ±750kHz 30kHz ±750kHz ±1.98MHz


模拟调制和数字调制的区别
调制: 将各种基带信号转换成适于信道传输的频带信号; 解调: 在接收端将收到的频带信号还原成基带信号。
C=λ×f
调制的目的:
假设f=10KHz 则λ=30000m
1. 将基带信号变换成适合在信道中传输的已调信号; 2. 改善系统的抗噪声性能; 3. 实现信道的多路复用。

常见数字调制方式简述

常见数字调制方式简述
模拟调制 指调制信号和载波都是连续波的调制方式。 它有调幅、调频和调相三种基本形式
数字调制 一般指调制信号是离散的,而载波是连续 波的调制方式。
各种数字调制方式
ASK--又称幅移键控法。这种调 制方式是根据信号的不同,调节 正弦波的幅度。
PSK--在相移键控中,载波相位 受数字基带信号的控制,如二进 制基带信号为0时,载波相位为0, 为1时载波相位为π,载波
各种数字调制方式
相位和基带信号有一一对应的关 系。
FSK--称频移键控法,就是用数字 信号去调制载波的频率。
QAM--又称正交幅度调制法。根 据数字信号的不同,不仅载波相 位发生变化,而且幅度也变化
ASK-数字幅度调制
二进制信号的数字幅度调制的数学表达式:
vam(t) [1 vm(t)][ A cos(ct)]
其中,vfsk(t) =二进制FSK波形
Vc =载波幅度峰值(V)
f =频率偏移量峰值(Hz)
vm(t) =二进制输入调制信号(±1)
FSK-频移键控
调制信号是一个普通二进制波形 ,其 中逻辑1=+1,逻辑0=-1。这样,对于逻 辑1输入,vm(t)=+1,之前基本表达式可以 写为:
vfsk(t) Vc cos{2 [ fc f ]t}
BPSK真值表
二进制输入
输出相位
逻辑0 逻辑1
180度 0度
BPSK相位图
BPSK星座图
BPSK调制器的输出相位和时间关系
QPSK-四相相移键控
四相相移键控(QPSK),或称为正交 PSK,是另一种角度调制、等幅数字 调制形式。采用QPSK,一个载波上可 能有四个输出相位。因为有四个不同 的输出相位,必须有四个不同的输入

4.3 数字调制技术

4.3 数字调制技术

功率谱密度
4.3.5 GMSK
要求带外辐射功率为-60~要求带外辐射功率为-60~-80dB GMSK是GSM的优选方案 GMSK是GSM的优选方案
实现简单,在原MSK调制器增加前置滤波器 实现简单,在原MSK调制器增加前置滤波器 对前置滤波器的要求
带宽窄且为锐截止型 有较低的过脉冲响应 保持输出脉冲的面积不变
第一准则:抽样点无失真, 第一准则:抽样点无失真,升余弦滚降滤波 第二准则: 第二准则:转换点无失真 第三准则: 第三准则:脉冲波形面积保持不变
移动通信中的脉冲成型技术
升余弦滚降滤波 高斯脉冲成型滤波器
4.3.2 升余弦滚降滤波器
升余弦滚降滤波器的传递函数见书P61 升余弦滚降滤波器的传递函数见书P61
4.3.5 FSK和CPFSK FSK和
2FSK
调制指数: 调制指数: 当h=0.5时,S0与S1为正交信号 h=0.5时 CPFSK(连续相位移频键控) CPFSK(连续相位移频键控) 在时间T 在时间Tb内,相位是线形变化的,每经过时间Tb,相 相位是线形变化的,每经过时间T 位变化π/2,且在t=kT 位变化π/2,且在t=kTb时相位连续
MSK也是一类特殊形式的OQPSK,用半正弦脉冲 MSK也是一类特殊形式的OQPSK,用半正弦脉冲 取代OQPSK的基带矩形脉冲 取代OQPSK的基带矩形脉冲 信号表达式: 信号表达式:
4.3.5 MSK的调制和解调 MSK的调制和解调
4.3.5 MSK信号的特征和功率谱密度 MSK信号的特征和功率谱密度
4.3.6 OQPSK的调制和解调 OQPSK的调制和解调
4.3.6 π/4QPSK
4.3.7 各种调制的BER性能 各种调制的BER性能

各种数字调制方式的原理、应用和发展的重新评析

各种数字调制方式的原理、应用和发展的重新评析

各种数字调制方式的原理、应用和发展的重新评析序号. 内容1. 引言:数字调制是现代通信中的基础概念之一。

它是将数字信息转换成模拟信号或电磁波的技术,以实现信息的传输和处理。

本文将重新评析各种数字调制方式的原理、应用和发展,旨在提供一个全面、深入的理解。

2. 调幅(AM)调制- 原理:调幅是最早的数字调制方式之一,它基于模拟信号和载波信号的幅度变化来表示数字信息。

原始数字信号的振幅被乘以载波信号的振幅以实现调制。

- 应用:调幅广泛应用于广播电台、电视传输和一些简单的数据传输系统中。

它具有简单、成本低和易于实现的优势。

- 发展:随着技术的进步,调幅逐渐被其他数字调制方式所取代,因为它在传输效率和抗干扰性方面存在限制。

3. 调频(FM)调制- 原理:调频通过改变载波信号的频率来表示数字信息。

原始数字信号的频率变化被转化为载波信号的频率变化。

- 应用:调频广泛应用于广播、无线通信和卫星通信等领域。

它具有较好的抗干扰性和传输质量,适用于要求音频质量较高的应用场景。

- 发展:随着数字通信的发展,调频逐渐被更高效的数字调制方式所取代。

4. 调相(PM)调制- 原理:调相通过改变载波信号的相位来表示数字信息。

原始数字信号的相位变化被转化为载波信号的相位变化。

- 应用:调相主要应用于无线电导航、雷达和卫星通信等领域。

它具有较好的抗噪声能力和低误码率特性。

- 发展:调相在一些特定应用领域仍然具有重要意义,但随着数字技术的发展,更复杂的调制方式逐渐取代了调相。

5. 正交频分复用(OFDM)调制- 原理:OFDM是一种多子载波调制技术,它将一个宽带信号划分为多个窄带子信道进行调制。

每个子信道使用基于正交的调制技术,使得它们之间可以同时传输。

- 应用:OFDM广泛应用于Wi-Fi、4G、5G等无线通信系统中。

它通过利用频谱资源的高效利用和抗多径衰落的能力,显著提高了通信系统的传输速率和可靠性。

- 发展:OFDM是目前最常使用的数字调制方式之一,而且随着技术的不断发展,它仍在不断演进和优化。

数字调制概述

数字调制概述

3.4.1数字调制概述1934年美国学者李佛西提出脉冲编码调制(PCM)的概念,从此之后通信数字化的时代应该说已经开始了,但是数字通信的高速发展却是20世纪70年代以后才开始的。

随着时代的发展,用户不再满足于听到声音,而且还要看到图像;通信终端也不局限于单一的电话机,而且还有传真机和计算机等数据终端。

现有的传输媒介电缆、微波中继和卫星通信等将更多地采用数字传输。

1.数字调制概述数字信号的载波调制是信道编码的一部分,之所以在信源编码和传输通道之间插入信道编码是因为通道及相应的设备对所要传输的数字信号有一定的限制,未经处理的数字信号源不能适应这些限制。

由于传输信道的频带资源总是有限的,因此在充分得利用现有资源的前提下,提高传输效率就是通信系统所追求的最重要指标之一。

模拟通信很难控制传输效率,最常见到的单边带调幅(SSB)或残留边带调幅(VSB)可以节省近一半的传输频带。

由于数字信号只有“0”和“1”两种状态,所以数字调制完全可以理解为像报务员用开关键控制载波的过程,因此数字信号的调制方式一般均为较简单的键控方式。

常用的数字调制技术有2ASK(Amplitude Shift Keying,幅移键控)、4ASK、8ASK、BIT/SK(Phase Shift Keying,相移键控)、QPSK、8PSK、2FSK、4FSK等,频带利用率从1bit/s/Hz~3bit/s/Hz。

更有将幅度与相位联合调制的QAM(Quadrature Amplitude Modulation,正交振幅调制)技术,目前数字微波中广泛使用的256QAM,其频带利用率可达8bit/s/Hz,8倍于2ASK或BIT/SK。

此外,还有可采用减小相位跳变的MSK等特殊的调制技术,为某些专门应用环境提供了强大的工具。

近年来,四维调制等高维调制技术的研究也得到了迅速发展,并已应用于高速MODEM中,为进一步提高传输效率奠定了基础。

总之,数字通信所能够达到的传输效率远远高于模拟通信,调制技术的种类也远远多于模拟通信,大大提高了用户根据实际应用需要选择系统配置的灵活性。

数字调制的概念

数字调制的概念

数字调制的概念
数字调制是指将数字信号转换为模拟信号的一种技术。

其基本原理是将数字信号中的信息转换为一系列的数字码,再将这些数字码转换为相应的模拟信号,如电压、电流等。

数字调制技术包括了多种调制方式,如脉冲编码调制(PCM)、频率移键调制(FSK)、相位移键调制(PSK)和正交振幅调制(QAM)等。

这些调制方式广泛应用于数字通信、数字广播、数字电视等领域,成为现代通信技术中不可或缺的一部分。

数字调制技术的发展,不仅拓展了通信的应用范围,而且提高了通信的可靠性和传输速率。

- 1 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.4.1数字调制概述1934年美国学者李佛西提出脉冲编码调制(PCM)的概念,从此之后通信数字化的时代应该说已经开始了,但是数字通信的高速发展却是20世纪70年代以后才开始的。

随着时代的发展,用户不再满足于听到声音,而且还要看到图像;通信终端也不局限于单一的电话机,而且还有传真机和计算机等数据终端。

现有的传输媒介电缆、微波中继和卫星通信等将更多地采用数字传输。

1.数字调制概述数字信号的载波调制是信道编码的一部分,之所以在信源编码和传输通道之间插入信道编码是因为通道及相应的设备对所要传输的数字信号有一定的限制,未经处理的数字信号源不能适应这些限制。

由于传输信道的频带资源总是有限的,因此在充分得利用现有资源的前提下,提高传输效率就是通信系统所追求的最重要指标之一。

模拟通信很难控制传输效率,最常见到的单边带调幅(SSB)或残留边带调幅(VSB)可以节省近一半的传输频带。

由于数字信号只有“0”和“1”两种状态,所以数字调制完全可以理解为像报务员用开关键控制载波的过程,因此数字信号的调制方式一般均为较简单的键控方式。

常用的数字调制技术有2ASK(Amplitude Shift Keying,幅移键控)、4ASK、8ASK、BIT/SK(Phase Shift Keying,相移键控)、QPSK、8PSK、2FSK、4FSK等,频带利用率从1bit/s/Hz~3bit/s/Hz。

更有将幅度与相位联合调制的QAM(Quadrature Amplitude Modulation,正交振幅调制)技术,目前数字微波中广泛使用的256QAM,其频带利用率可达8bit/s/Hz,8倍于2ASK或BIT/SK。

此外,还有可采用减小相位跳变的MSK等特殊的调制技术,为某些专门应用环境提供了强大的工具。

近年来,四维调制等高维调制技术的研究也得到了迅速发展,并已应用于高速MODEM中,为进一步提高传输效率奠定了基础。

总之,数字通信所能够达到的传输效率远远高于模拟通信,调制技术的种类也远远多于模拟通信,大大提高了用户根据实际应用需要选择系统配置的灵活性。

2.映射信息与表示、承载它的信号之间存在着对应关系,这种关系称为“映射”。

接收端正是根据事先约定的映射关系从接收信号中提取发射端发送的信息的。

信息与信号间的映射方式可以有很多种,不同的通信技术就在于它们所采用的映射方式不同。

实际上,数字调制的主要目的在于控制传输效率,不同的数字调制技术正是由其映射方式区分的,其性能也是由映射方式决定的。

一个数字调制过程实际上是由两个独立的步骤实现的:映射和调制,这一点与模拟调制不同。

映射将多个二元比特转换为一个多元符号,这种多元符号可以是实数信号(在ASK调制中),也可以是二维的复信号(在PSK和QAM调制中)。

例如在QPSK调制的映射中,每两比特被转换为一个四进制的符号,对应着调制信号的4种载波。

多元符号的元数就等于调制星座的容量。

在这种多到一的转换过程中,实现了频带压缩。

3.4.2 调制方式数字调制就是将数字符号变成适合于信道传输的波形。

所用载波一般是余弦信号,调制信号为数字基带信号。

利用基带信号去控制载波的某个参数,就完成了调制。

调制的方法主要是通过改变余弦波的幅度、相位或频率来传送信息。

其基本原理是把数据信号寄生在载波的上述三个参数中的一个上,即用数据信号来进行幅度调制、频率调制或相位调制。

数字信号只有几个离散值,因此调制后的载波参数也只有有限个值,类似于用数字信息控制开关,从几个具有不同参量的独立振荡源中选择参量,为此把数字信号的调制方式称为“键控”。

数字调制分为调幅、调相和调频三类,分别对应“幅移键控”(ASK)、“相移键控”(PSK)和“频移键控”(FSK)三种数字调制方式。

在“幅移键控”方式中,当“1”出现时接通振幅为A的载波,“0”出现时关断载波,这相当于将原基带信号(脉冲列)频谱搬到了载波的两侧。

如果用改变载波频率的方法来传送二进制符号,就是“频移键控”的方法,当“1”出现时是低频,“0”出现时是高频。

这时其频谱可以看成码列对低频载波的开关键控加上码列的反码对高频载波的开关键控。

如果用“0”和“1”来改变载波的相位,则称为“相移键控”。

这时在比特周期的边缘出现相位的跳变,但在间隔中部保留了相位信息。

接收端解调通常在其中心点附近进行。

一般来说,PSK系统的性能要比开关键控FSK系统好,但必须使用同步检波。

调制的基本原理是用数字信号对载波的不同参量进行调制,其基本公式如下:载波S(t)= Acos(ωt+ψ)S(t)的参量包括:幅度A、频率ω、初相位ψ,调制就是要使A、ω或ψ随数字基带信号的变化而变化。

其中ASK调制方式是用载波的两个不同振幅表示0和1;FSK调制方式是用载波的两个不同频率表示0和1;而PSK调制方式是用载波的起始相位的变化表示0 和1。

根据传输信号是二进制信号还是多进制信号和对载波的哪个参数进行调制,可以把数字频带传输分为:二进制、多进制数字振幅键控(ASK)二进制、多进制数字频移键控(FSK)二进制、多进制数字相移键控(PSK)二进制、多进制差分相移键控(DPSK)除上面所述的二相位、二频率和二幅度系统外,还可以采用各种多相位、多振幅和多频率的方案。

在DVB系统中卫星传输采用QPSK,有线传输采用QAM方式,地面传输采用COFDM (编码正交频分复用)方式。

但ASK、PSK和FSK这三种数字调制方式仍是最主要的,所以本节要对这三种调制技术,以及上面提到的QAM调制技术分别进行具体介绍。

1.ASK幅移键控(Amplitude Shift Keying)“幅移键控”又称为“振幅键控”,记为ASK。

也有称为“开关键控”(通断键控)的,所以又记作OOK信号。

ASK是一种相对简单的调制方式。

幅移键控(ASK)相当于模拟信号中的调幅,只不过与载频信号相乘的是二进制数码而已。

幅移就是把频率、相位作为常量,而把振幅作为变量,信息比特是通过载波的幅度来传递的。

二进制振幅键控(2ASK),由于调制信号只有0或1两个电平,相乘的结果相当于将载频或者关断,或者接通,它的实际意义是当调制的数字信号为“1”时,传输载波;当调制的数字信号为“0”时,不传输载波。

原理如图3-24所示,其中s(t)为基带矩形脉冲。

一般载波信号用余弦信号,而调制信号是把数字序列转换成单极性的基带矩形脉冲序列,而这个通断键控的作用就是把这个输出与载波相乘,就可以把频谱搬移到载波频率附近,实现2ASK。

实现后的2ASK波形如图3-25所示。

图3-24 ASK调制原理图3-25 输出后的2ASK波形2.FSK频移键控(Frequency Shift Keying)所谓FSK就是用数字信号去调制载波频率,是数字信号传输中用的最早的一种调制方式。

此方式实现起来比较容易,抗噪声和抗衰减性能好,稳定可靠,是中低速数据传输最佳选择。

频移就是把振幅、相位作为常量,而把频率作为变量,通过频率的变化来实现信号的识别,原理如图3-26所示。

在FSK中传送的信号只有0和1两个,而在M-FSK中则通过M个频率代表M个符号。

输出后的2FSK波形如图3-27所示。

图3-26 2FSK调制原理图3-27 输出后的2FSK波形3.PSK相移键控(Phase Shift Keying)在PSK调制时,载波的相位随调制信号状态不同而改变。

如果两个频率相同的载波同时开始振荡,这两个频率同时达到正最大值,同时达到零值,同时达到负最大值,此时它们就处于“同相”状态;如果一个达到正最大值时,另一个达到负最大值,则称为“反相”。

一般把信号振荡一次(一周)作为360度。

如果一个波比另一个波相差半个周期,我们说两个波的相位差180度,也就是反相。

当传输数字信号时,“1”码控制发0度相位,“0”码控制发180度相位。

PSK相移键控调制技术在数据传输中,尤其是在中速和中高速的数传机(2400bit/s~4800bit/s)中得到了广泛的应用。

相移键控有很好的抗干扰性,•在有衰落的信道中也能获得很好的效果。

我们主要讨论二相和四相调相,在实际应用中还有八相及十六相调相。

PSK也可分为二进制PSK(2PSK或BIT/SK)和多进制PSK(MPSK)。

在这种调制技术中,载波相位只有0和π两种取值,分别对应于调制信号的“0”和“1”。

传“1“信号时,发起始相位为π的载波;当传“0”信号时,发起始相位为0的载波。

2PSK的调制原理如图3-28所示。

由“0”和“1”表示的二进制调制信号通过电平转换后,变成由“–1”和“1”表示的双极性NRZ(不归零)信号,然后与载波相乘,即可形成2PSK信号,如图3-29所示。

图3-28 2PSK调制原理图3-29 输出后的2PSK波形在MPSK中,最常用的是四相相移键控,即QPSK(Quadrature Phase Shift Keying),在卫星信道中传送数字电视信号时采用的就是QPSK调制方式。

QPSK调制器及相应波形分别参见图3-30所示(而2PSK的调制器及相应波形则分别参见图3-31所示的(a)、(b)图),对比可以看出,它可以看成是由两个2PSK调制器构成的。

输入的串行二进制信息序列经串—并变换后分成两路速率减半的序列,由电平转换器分别产生双极性二电平信号I(t)和Q (t),然后对载波Acos2πfct和Asin2πfct进行调制,相加后即可得到QPSK信号。

PSK信号也可以用矢量图表示,矢量图中通常以零度载波相位作为参考相位。

四相相移调制是利用载波的四种不同相位差来表征输入的数字信息,是四进制移相键控。

QPSK是在M=4时的调相技术,它规定了四种载波相位,分别为45°,135°,225°,275°。

调制器输入的数据是二进制数字序列,为了能和四进制的载波相位配合起来,则需要把二进制数据变换为四进制数据,这就是说需要把二进制数字序列中每两比特分成一组,共有四种组合,即00,01,10,11,其中每一组称为双比特码元。

每一个双比特码元是由两位二进制信息比特组成的,它们分别代表四进制四个符号中的一个符号。

QPSK中每次调制可传输2个信息比特,这些信息比特是通过载波的四种相位来传递的。

解调器根据星座图及接收到的载波信号的相位来判断发送端发送的信息比特。

图3-30 QPSK调制原理图3-31 2PSK调制原理图3-32的PSK信号矢量图中画出了2PSK、QPSK、8PSK的矢量图。

图3-32中只画出了矢量的端点,省去了矢量箭头,这样的矢量图也称为“星座图”。

在星座图中,星座间的距离越大,信号的抗干扰能力就越强,接收端判决再生时就越不容易出现误码。

图3-32 PSK信号矢量图以上三种调制技术所对应的波形比较如图3-33所示。

相关文档
最新文档