过不共线三点作圆

合集下载

《过不在同一直线上的三点作圆》教案-02

《过不在同一直线上的三点作圆》教案-02

《过不在同一直线上的三点作圆》教案【知识与技能】1.理解确定圆的条件及外接圆外心的定义。

2.掌握三角形外接圆的画法。

【过程与方法】经历过不在一直线上的三点确定一个圆的探索过程,让学生会用尺规作过不在同一直线上的三点的圆。

【情感态度与价值观】在探究过不在同一直线上的三点确定一个圆的过程中,进一步培养探究能力和动手能力。

教学重点和难点【重点】(1)确定圆的条件和外心的定义。

(2)三角形外接圆的画法。

【难点】过不共线的三点的圆的圆心的确定。

教学过程一 创设情境,导入新课1.几点确定一条直线?既然一条直线可以由两点确定,那么一个圆需要几点才能确定呢?2.如图一考古学家在马王堆汉墓挖掘时,发现一圆形瓷器碎片,为了便于进行研究,这位考古学家想画出这个碎片所在的圆,你能帮助他解决这个问题吗?为了解决上面问题我来学习:3.1.3过不在同一直线上的三点作圆二合作交流,探究新知 1探究确定圆的条件(1)如何过点A 作圆,可以作多少个圆?(学生独立完成) 教师归纳:任意取点O 作圆心,OA 为半径作圆。

(2)如何过两点作圆?过两点可以作多少个圆?已知点,圆心确定以后,半径也随之确定,因此,关键是确定圆心. ①过A 、B 两点的圆的圆心在哪儿?由于A 、B 两点在圆上,所以OA=OB,因此点O 在AB 的垂直平分线上。

② 如何过A 、B 两点作圆?以线段AB 垂直平分线上任意一点O 为圆心,OA 长为半径作圆。

③ 过A 、B 两点可以作多少个圆?由于AB 垂直平分线上任意一点都可以作为圆心,因此可以作无数个圆。

学生完成作图(3)如何过不在同一直线上的三点作圆? 已知:不在同一直线上的三点A、B、C(如图) 求作:⊙O,使它经过点A、B、C.分析:由于圆O 经过点A 、B 、C ,因此点OA=OB=OC,于是点O 在线段AB 的垂直平分线上,也在BC 的垂直平分线上。

作法:① 连接AB ,作AB 的垂直平分线EF , ② 连接BC ,作BC 的垂直平分线MN 交EF 于O.③ 以O 为圆心,OA 为半径作圆,则圆O 就是要作的圆。

过不共线三点作圆

过不共线三点作圆
在上面的作图过程中.
∵直线DE和FG只有一个交点O,并且点O到 A,B,C三个点的距离相等,
∴经过点A,B,C三点可以作一个圆,并且只能作 一个圆.
经过不在同一直线上的三点可以
作一个圆,并且只能作一个圆。
A
定理:
O C
B
不在同一直线上的三
点确定一个圆。
1。由定理可知:经过三角 形三个顶点可以作一个圆. 并且只能作一个圆.
即没有过这三点的圆心
2、三点不共线
已知:不在同一直线上的三点
F
A、B、C
求作:⊙O,使它经过A、B、C
A
B
作法:
O
1、连结AB,作线段AB的
C
垂直平分线DE,
2、连结BC,作线段BC的垂直平 G
分线FG,交DE于点O,
3、以O为圆心,OB为半径作圆,
⊙O就是所求作的圆
请你证明你作得圆符合要求
证明:∵点O在AB的垂直平分线上, ∴OA=OB. 同理,OB=OC. ∴OA=OB=OC. ∴点A,B,C在以O为圆心,OA长为半径的圆上. ∴⊙O就是所求作的圆,
三、为美化校园,学校要把一块三角
形空地扩建成一个圆形喷水池,在三
角形三个顶点处各有一棵名贵花树(A、
B、C),若不动花树,还要建一个
最大的圆形喷水池,请设计你的实施
方案。
A
C B
的中点
钝角三角形外心在 △ABC的外面
如何解决“破镜重圆” 的问题:
B
A
C
O
圆心一定在弦的 垂直平分线上
如图所示,△ABC中,AB=AC=10,BC=12, 求△ABC外接圆的半径.
如图,圆O是△ABC的外接圆,AD是圆O的直径 ,若圆O的半径为3/2,AC=2,则sinB的值是多少?

《过不共线三点作圆》导学案

《过不共线三点作圆》导学案
2.4 过不共线三点作圆
学习目标
1.了解不共线三点确定一个圆的方法,三角形的外接圆及外心等概念;
2.经历不共线三个点确定一个圆的探索过程,培养学生的探索能力.
重点难点
重点:掌握过不共线三点作圆的方法,了解三角形的外接圆及外心等概念.
难点:怎么样去确定过不在同一条直线上的三点的圆的圆心.
学习过程:
一、课前抽测: A B

B· ·C
2.求边长为a的等边三角形的外接圆的半径.(用含有a的式子表示)
五、达标)⊙O是△ABC的圆.
2. 判断:
(1)经过三个点一定可以作圆;( )
(2)任意一个三角形一定有一个外接圆,并且只有一个外接圆;( )
(3)任意一个圆一定有一个内接三角形,并且只有一个内接三角形;( )
1.(1)经过一个已知点A画圆; ·A
想一想:经过已知点A可以画多少个圆?
(2)经过两个已知点C、B画圆.
想一想:①经过两个已知点可以画多少个圆?
C· · B
②圆心在哪儿?半径怎么确定?
2.设三点A,B,C不在同一直线上.
⑴过三点A,B,C的圆的圆心在哪儿?怎么确定?
A· ·B

⑵过不在同一直线上的三点A,B,C如何作圆?
强调:(1)过同一直线上三点不行; (2)“确定”一词应理解成“有且只有”.
3.三角形的外接圆:.
圆的内接三角形:.
外心:.
三、合作探究:
例1:作出下列三角形的外接圆(只要作图痕迹,不要求作法)
归纳:锐角三角形的外心在三角形的
直角三角形的外心是三角形
钝角三角形的外心在三角形的
四、展示质疑:
1.如图,A、B、C表示三个工厂,要建一个供水站,使它到这三个工厂的距离相等,求供水站的位置(用点P表示,保留作图痕迹)。

点和圆的位置关系-课件

点和圆的位置关系-课件
弹着点与靶心的距离决定了它在哪个圆内,弹 着点离靶心越近,它所在的区域就越靠内,对 应的环数也就越高,射击的成绩越好.
例题
已知⊙O 的半径为10cm,A,B,C 三点到圆心O 的距离分 别为8cm,10cm,12cm,则点A,B,C 与⊙O 的位置关 系点A是在: __圆__内_____. 点B在__圆___上____. 点C在__圆___外____.
点P在圆外
d>r
点P在圆上
d=r
点P在圆内
d<r
这个符号读作“等价于”,它表示从该符号的左端 可以推出右端,右端也能推出左端.
点和圆的位置关系
你知道击中靶上不同位置的成绩是如何计算的吗 ?
射击靶图上,有一组以靶心为圆心的大小不同 的圆,他们把靶图由内到外分成几个区域.
这些区域用由高到底的环数来表示,射击成绩 用弹着点位置对应的环数来表示.
练习
已知⊙O 的半径为5,M 为ON的中点,当OM=3时 ,N点与⊙O 的位置关系是N 在⊙O 外的部_____________.
练习 ⊙O 直径为d,点A到圆心的距离为m,若点 A不在圆
外,则d与m的关系是_____________.
练习
有一张矩形纸片,AB =3cm,AD =4cm,若以A为圆 心作圆,并且要使点D 在⊙A内,而点C 在⊙A外, ⊙A的半径 r 的取值范围是__________________.
例题
如图所示,已知⊙O 和直线l,过圆心O 作OP⊥l,P 为 垂足,A,B,C为直线l上三个点,且PA=2cm,PB =3cm,PC =4cm,若⊙O的半径为5cm,OP=4cm, 判断A,B,C三点与⊙O的位置关系. 点A在__圆___内____.
点B在__圆___上____. 点C在__圆___外____.

九年级数学平面几何过三点的圆和垂径定理人教四年制知识精讲

九年级数学平面几何过三点的圆和垂径定理人教四年制知识精讲

九年级数学平面几何过三点的圆和垂径定理人教四年制【同步教育信息】一. 本周教学内容:平面几何过三点的圆和垂径定理二. 学习要求:(过三点的圆)1. 定理:不在同一直线上的三个点确定一个圆:它的意思是如果有三个点,它们三点不共线,那么经过这三个点可以作一个圆并且只可以做一个圆。

2. 三角形的外接圆,外心以及圆的内接三角形:经过三角形三个顶点的圆叫做三角形的外接圆,外接圆的圆心叫三角形的外心,这个三角形叫做这个圆的内接三角形,如图:A、(二)学习要点:1. 圆的轴对称性:圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

2. 垂径定理:垂直于弦的直径平分这条弦且平分这条弦所对的两条弧。

如图:CD 是直径,AB 是弦,AB CD ⊥于E ,则有:AE=EB ,⋂⋂=DB AD ,⋂⋂=CB AC 。

理由是:因为圆是轴对称图形,CD 是直径是圆的对称轴,若延CD 将圆对折,则CD⋂⋂⋂⋂【典型例题】[例1] 如图,已知直径AB 和CD 相交于点E ,︒=∠==60,5,1BED cm BE cm AE ,求:OA B CD证:依题意:OC=OD ,OA=OB∴OD OBOC OA =且夹角O ∠∴OAB ∆∽OCD ∆ ∴ABCD OA OC =∴CD OA AB OC ⋅=⋅ [例3] ABC ∆中,︒=∠90C 直角边a 、b 分别是方程0132=+-x x 的两个根,求ABC Rt ∆外接圆面积。

解:∵a 、b 是0132=+-x x 两个根∴1,3==+ab b a72132)(22222=⨯-=-+==+ab b a c b a∴7=c ,而ABC Rt ∆外接圆半径=27 ∴ππ47)27(2=⋅=圆S [例4] 已知四边形ABCD 中,︒=∠=∠90D B ,求证ABCD 有外接圆。

ADBCO证:连AC ,取AC 中点O在ABC Rt ∆和ADC Rt ∆中,连OB 、OD 则OC AO AC OD OB ====21∴A 、B 、C 、D 在以O 为圆心,以OA 为半径的圆上[例5] 如图,AB 是⊙O 的直径,CD 是⊙O 的一条弦,延长DC 与BA 的延长线交于P ,且PC=OB ,︒=∠99BOD ,求P ∠的度数。

过不共线三点做圆

过不共线三点做圆


如图:⊙O是△ABC的
外接圆, △ABC是⊙O
的内接三角形,点O是
O C △ABC的外心
B
外心是△ABC三条边的垂
直平分线的交点,它到三角
形的三个顶点的距离相等。
A
A
A
●O
●O
B

CB
C
●O
B
C
锐角三角形的外心位于三角形内. 直角三角形的外心位于直角三角形斜边中点. 钝角三角形的外心位于三角形外.
运用新知
某一个城市在一块空地新建了三个居 民小区,它们分别为A、B、C,且三个小区 不在同一直线上,要想规划一所中学,使 这所中学到三个小区的距离相等。请问同 学们这所中学建在哪个位置?你怎么确定 这个位置呢?
●A
B●
●C
课堂小结
1、通过本课的学习,你有什么收获?还有什么问题?
2、确定圆的条件——
长沙马王堆一号汉墓的 发掘,在我国的考古界算得 上惊人的发现,在世界考古 学史上,也产生了深远的影 响。一位考古学家在马王堆 汉墓挖掘时,发现一圆形瓷 器碎片,你能帮助这位考古 学家将这个破损的圆形瓷器 复原,以便于进行深入的研 究吗?
知识回顾
1、确定一个圆的基本条件是 什么?
2、如何作线段的垂直平分线, 它有什么性质?
A N
F
作法: 1、连结AB,作线段AB的垂
直平分线MN;
B
EO
M
C 2、连接AC,作线段AC的垂 直平分线EF,交MN于点O;
3、以O为圆心,OA为半径作
圆。
所以⊙O就是所求作的圆。
课题:不在同一条直线 上的三个点确定一个圆
如果三个点在同一直线时可以作圆吗? 为什么?

2024年人教版九年级数学上册教案及教学反思全册第24章 圆(教案) 点和圆的位置关系教案

2024年人教版九年级数学上册教案及教学反思全册第24章 圆(教案) 点和圆的位置关系教案

24.2 点和圆、直线和圆的位置关系24.2.1 点和圆的位置关系一、教学目标【知识与技能】1.掌握点与圆的三种位置关系及数量间的关系.2.探求过点画圆的过程,掌握过不在同一直线上三点画圆的方法.3.了解运用“反证法”证明命题的思想方法.【过程与方法】通过生活中的实例探求点和圆的三种位置关系,并提炼出数量关系,从而渗透数形结合,分类讨论等数学思想.【情感态度与价值观】形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神.二、课型新授课三、课时1课时。

四、教学重难点【教学重点】(1)点与圆的三种位置关系.(2)过三点作圆.【教学难点】点与圆的三种位置关系及其数量关系反证法五、课前准备课件、图片、圆规、直尺等.六、教学过程(一)导入新课我国射击运动员在奥运会上获金牌,为我国赢得荣誉.如图是射击靶的示意图,它是由许多同心圆(圆心相同,半径不相同)构成的,你知道击中靶上不同位置的成绩是如何计算的吗?(出示课件2)解决这个问题要研究点和圆的位置关系.(板书课题)(二)探索新知探究一点和圆的位置关系教师问:观察下图中点和圆的位置关系有哪几种?(出示课件4)学生交流,回答问题.教师点评:点与圆的位置关系有三种:点在圆内,点在圆上,点在圆外.教师问:设点到圆心的距离为d,圆的半径为r,量一量在点和圆三种不同位置关系时,d与r有怎样的数量关系?(出示课件5)学生答:教师问:反过来,由d与r的数量关系,怎样判定点与圆的位置关系呢?学生观察思考交流后,师生共同得到结论:(出示课件6)点与圆的三种位置关系及其数量间的关系:边结论.读作“等价于”.⑵要明确“d”表示的意义,是点P到圆心O的距离.出示课件7,8:例如图,已知矩形ABCD的边AB=3,AD=4.(1)以A为圆心,4为半径作⊙A,则点B、C、D与⊙A的位置关系如何?(2)若以A点为圆心作⊙A,使B、C、D三点中至少有一点在圆内,且至少有一点在圆外,求⊙A的半径r的取值范围?(直接写出答案)学生独立思考后,师生共同解答.解:⑴AD=4=r,故D点在⊙A上;AB=3<r,故B点在⊙A内;AC=5>r,故C点在⊙A外.⑵3≤r≤5.巩固练习:(出示课件9)1.⊙O的半径为10cm,A、B、C三点到圆心的距离分别为8cm、10cm、12cm,则点A、B、C与⊙O的位置关系是:点A在_______;点B在_______;点C在_______.2.圆心为O的两个同心圆,半径分别为1和2,若,则点P在()A.大圆内B.小圆内C.小圆外D.大圆内,小圆外学生独立思考后口答:1.圆内;圆上;圆外 2.D探究二过不共线三点作圆教师问:如何过一个点A作一个圆?过点A可以作多少个圆?(出示课件10)学生动手探究,作图,交流,得出结论,教师点评并总结.以不与A点重合的任意一点为圆心,以这个点到A点的距离为半径画圆即可;可作无数个圆.教师问:如何过两点A、B作一个圆?过两点可以作多少个圆?(出示课件11)学生动手探究,作图,交流,得出结论,教师点评并总结.作线段AB的垂直平分线,以其上任意一点为圆心,以这点和点A或B的距离为半径画圆即可;可作无数个圆.教师问:过不在同一直线上的三点能不能确定一个圆?(出示课件12)学生思考后师生共同解答:经过A,B两点的圆的圆心在线段AB的垂直平分线上.经过B,C两点的圆的圆心在线段BC的垂直平分线上.经过A,B,C三点的圆的圆心应该在这两条垂直平分线的交点O的位置.教师归纳:不在同一直线上的三点确定一个圆.(出示课件13)出示课件14:例已知:不在同一直线上的三点A、B、C.求作:⊙O,使它经过点A、B、C.学生动手探究,作图,交流后,师生共同解答.作法:1.连接AB,作线段AB的垂直平分线MN;2.连接AC,作线段AC的垂直平分线EF,交MN于点O;3.以O为圆心,OB为半径作圆.所以⊙O就是所求作的圆.教师问:现在你知道怎样将一个如图所示的破损的圆盘复原了吗?(出示课件15)学生动手探究,交流,在教师指导下作图.作法:1.在圆弧上任取三点A、B、C;2.作线段AB、BC的垂直平分线,其交点O即为圆心;3.以点O为圆心,OC长为半径作圆.⊙O即为所求.巩固练习:(出示课件16)如图,CD所在的直线垂直平分线段AB,怎样用这样的工具找到圆形工件的圆心.学生独立思考后口答:∵A、B两点在圆上,所以圆心必与A、B两点的距离相等,又∵和一条线段的两个端点距离相等的点在这条线段的垂直平分线上,∴圆心在CD所在的直线上,因此可以做任意两条直径,它们的交点为圆心.探究三三角形的外接圆及外心已知△ABC,用直尺与圆规作出过A、B、C三点的圆.(出示课件17)学生复述作法.教师对照图形进行归纳:(出示课件18)1.外接圆:经过三角形三个顶点可以作一个圆,这个圆叫做三角形的外接圆.⊙O叫做△ABC的外接圆,△ABC叫做⊙O的内接三角形.2.三角形的外心定义:外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.作图:三角形三边中垂线的交点.性质:到三角形三个顶点的距离相等.练一练:判断下列说法是否正确.(出示课件19)(1)任意的一个三角形一定有一个外接圆.( )(2)任意一个圆有且只有一个内接三角形.( )(3)经过三点一定可以确定一个圆. ( )(4)三角形的外心到三角形各顶点的距离相等.( )学生口答:⑴√⑵×⑶×⑷√画一画:分别画一个锐角三角形、直角三角形和钝角三角形,再画出它们的外接圆,观察并叙述各三角形与它的外心的位置关系.(出示课件20)学生动手探究,作图,交流后,教师总结.锐角三角形的外心位于三角形内,直角三角形的外心位于直角三角形斜边的中点,钝角三角形的外心位于三角形外.出示课件21,22:例1 如图,将△AOB置于平面直角坐标系中,O为原点,∠ABO=60°,若△AOB的外接圆与y轴交于点D(0,3).(1)求∠DAO的度数;(2)求点A的坐标和△AOB外接圆的面积.学生独立思考后师生共同解答.解:(1)∵∠ADO=∠ABO=60°,∠DOA=90°,∴∠DAO=30°;⑵∵点D的坐标是(0,3),∴OD=3.在Rt△AOD中,∵∠DOA=90°,∴AD为直径.又∵∠DAO=30°,∴AD=2OD=6,OA=因此圆的半径为3.点A的坐标(0),∴△AOB外接圆的面积是9π.教师强调:解题妙招:图形中求三角形外接圆的面积时,关键是确定外接圆的直径(或半径)长度.巩固练习:(出示课件23)如图,已知直角坐标系中,A(0,4),B(4,4),C(6,2).(1)写出经过A,B,C三点的圆弧所在圆的圆心M的坐标.(2)判断点D(5,-2)和圆M的位置关系.学生独立解答.解:(1)在方格纸中,线段AB和BC的垂直平分线相交于点(2,0),所以圆心M的坐标为(2,0).(2)圆的半径AM==线段DM所以点D在圆M内.出示课件24:例2 如图,在△ABC中,O是它的外心,BC=24cm,O到BC的距离是5cm,求△ABC的外接圆的半径.学生独立思考后师生共同解答.解:连接OB ,过点O 作OD ⊥BC.则OD =5cm ,112cm 2BD BC ==在Rt △OBD 中,13cm OB ==,即△ABC 的外接圆的半径为13cm.巩固练习:(出示课件25)在Rt △ABC 中,∠C=90°,AC=6 cm,BC=8cm,则它的外心与顶点C 的距离为( )A.5cmB.6cmC.7cmD.8cm学生思考后口答:A探究四 反证法教师问:经过同一条直线上的三个点能作出一个圆吗?(出示课件26)学生动手探究,作图,交流后,师生共同解答.如图,假设过同一条直线l 上三点A 、B 、C 可以作一个圆,设这个圆的圆心为P.那么点P 既在线段AB 的垂直平分线l 1上,又在线段BC 的垂直平分线l 2上,即点P 为l 1与l 2的交点.而l 1⊥l ,l 2⊥l 这与我们以前学过的“过一点有且只有一条直线与已知直线垂直”相矛盾.所以过同一条直线上的三点不能作圆.教师归纳:(出示课件27)1.反证法的定义先假设命题的结论不成立,然后由此经过推理得出矛盾(常与公理、定理、定义或已知条件相矛盾),由矛盾判定假设不正确,从而得到原命题成立,这种方法叫做反证法.2.反证法的一般步骤⑴假设命题的结论不成立(提出与结论相反的假设);⑵从这个假设出发,经过推理,得出矛盾;⑶由矛盾判定假设不正确,从而肯定命题的结论正确.出示课件28:例求证:在一个三角形中,至少有一个内角小于或等于60°.师生共同解答.已知:△ABC.求证:△ABC中至少有一个内角小于或等于60°.证明:假设△ABC中没有一个内角小于或等于60°,则∠A>60°,∠B>60°,∠C>60°.因此∠A+∠B+∠C>180°.这与三角形的内角和为180度矛盾.假设不成立.因此△ABC中至少有一个内角小于或等于60°.巩固练习:(出示课件29)利用反证法证明“在直角三角形中,至少有一个锐角不大于45°”时,应先假设()A.有一个锐角小于45°B.每一个锐角都小于45°C.有一个锐角大于45°D.每一锐角都大于45°学生口答:D(三)课堂练习(出示课件30-36)1.已知△ABC的三边a,b,c,满足a+b2+|c﹣,则△ABC的外接圆半径=______.2.如图,⊙O是△ABC的外接圆,∠A=45°,BC=4,则⊙O的直径为______.3.如图,请找出图中圆的圆心,并写出你找圆心的方法?4.正方形ABCD的边长为2cm,以A为圆心2cm为半径作⊙A,则点B在⊙A______;点C在⊙A______;点D在⊙A______.5.⊙O的半径r为5cm,O为原点,点P的坐标为(3,4),则点P与⊙O的位置关系为()A.在⊙O内B.在⊙O上C.在⊙O外D.在⊙O上或⊙O外6.已知:在Rt△ABC中,∠C=90°,AC=6,BC=8,则它的外接圆半径=______.7.如图,△ABC内接于⊙O,若∠OAB=20°,则∠C的度数是________.8.如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是()A.点P B.点Q C.点R D.点M9.画出由所有到已知点的距离大于或等于2cm并且小于或等于3cm的点组成的图形.10.某地出土一明代残破圆形瓷盘,如图所示.为复制该瓷盘要确定其圆心和半径,请在图中用直尺和圆规画出瓷盘的圆心.参考答案:1.2582.3.解:如图所示.4.上;外;上5.B6.57.70°8.B9.解:如图所示.10.解:(1)在圆形瓷盘的边缘选A、B、C三点;(2)连接AB、BC;(3)分别作出AB、BC的垂直平分线;(4)两垂直平分线的交点就是瓷盘的圆心.(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流.(五)课前预习预习下节课(24.2.2第1课时)的相关内容.七、课后作业1.教材95页练习2.2.配套练习册内容八、板书设计:九、教学反思:本节课通过学生操作,总结出了点与圆的三种位置关系,其中渗透着分类讨论的思想,经过探讨过一点、两点、三点作圆,得出了不在同一直线上三点确定一个圆,从而自然引出三角形外接圆、外心及圆内接三角形的定义,此外还学习了用反证法证明命题的方法和步骤.这些定理都是从学生实践中得出的,培养了学生动手的能力.。

九年级数学下册《过不共线三点作圆》优秀教学案例

九年级数学下册《过不共线三点作圆》优秀教学案例
4.通过对几何美的感悟,培养学生的审美情趣,提高他们对数学美的鉴赏能力。
在本章节的教学过程中,教师应关注学生的全面发展,将知识与技能、过程与方法、情感态度与价值观有机地结合起来,使学生在掌握基本几何知识的同时,提高自身的综合素质,为未来的学习和发展奠定坚实的基础。
三、教学策略
(一)情景创设
1.创设生活化的教学情境,以学生熟悉的事物或场景作为引入,如校园里的圆形花坛、篮球场的圆形边界等,让学生感受到圆就在我们的身边,激发他们的学习兴趣。
4.通过对几何性质的学习和证明,使学生掌握几何学的基本研究方法和思维方式,提高学生的几何素养。
(三)情感态度与价值观
1.激发学生对数学几何学科的兴趣,培养他们主动探究、勇于创新的科学精神。
2.培养学生严谨、细心的学习态度,使他们认识到几何学习的严密性和逻辑性,从而提高学习的自觉性和自律性。
3.引导学生关注数学与生活的联系,体会数学在现实生活中的广泛应用,增强数学学习的实用性和价值感。
3.教师巡回指导,关注每个小组的讨论情况,给予适当的提示和引导,确保讨论的有效性。
(四)总结归纳
1.邀请各小组代表汇报讨论成果,让学生在倾听他人观点的过程中,加深对知识点的理解。
2.教师针对学生的讨论成果进行点评,总结“过不共线三点作圆”的基本原理、尺规作图方法以及几何证明过程。
3.强调本节课的重点和难点,指导学生掌握几何学习的思维方法和技巧。
4.能够运用所学的知识,解决一些与圆相关的实际问题,如测量圆形场地、设计圆形图案等。
(二)过程与方法
1.通过小组合作和自主探究,培养学生的团队合作意识和解决问题的能力,让学生在实践中学会如何观察、分析和解决问题。
2.引导学生运用尺规作图、直观演示等方法,提高学生的动手操作能力和空间想象能力。

湘教版数学九年级下册《2.4 过不共线三点作圆》教学设计2

湘教版数学九年级下册《2.4 过不共线三点作圆》教学设计2

湘教版数学九年级下册《2.4 过不共线三点作圆》教学设计2一. 教材分析《2.4 过不共线三点作圆》是湘教版数学九年级下册的一节内容。

本节课主要让学生掌握过不共线三点作圆的方法,理解圆的性质,并能够运用这些知识解决一些实际问题。

教材通过实例引入,让学生观察、思考、探索,从而得出圆的定义和性质。

教材还提供了丰富的练习题,帮助学生巩固所学知识。

二. 学情分析学生在学习本节课之前,已经掌握了圆的基本概念和性质,如圆的周长、面积等。

但学生对于过不共线三点作圆的方法可能还比较陌生,需要通过实例和练习来逐步理解和掌握。

此外,学生可能对圆的性质的理解还不够深入,需要在教学中进行引导和拓展。

三. 教学目标1.知识与技能目标:让学生掌握过不共线三点作圆的方法,理解圆的性质。

2.过程与方法目标:通过观察、思考、探索,培养学生的逻辑思维能力和解决问题的能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。

四. 教学重难点1.重点:过不共线三点作圆的方法,圆的性质。

2.难点:对圆的性质的理解和运用。

五. 教学方法1.情境教学法:通过实例引入,让学生观察、思考、探索,从而得出圆的定义和性质。

2.问题驱动法:提出问题,引导学生思考,激发学生的学习兴趣。

3.合作学习法:分组讨论,培养学生的团队合作意识和自主学习能力。

六. 教学准备1.准备相关的实例和练习题,用于引导学生观察、思考、探索。

2.准备多媒体教学设备,如投影仪、电脑等,用于展示实例和讲解。

七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,如地图上的圆形区域,引起学生的兴趣。

提出问题:如何通过这三个点作圆呢?引导学生思考。

2.呈现(10分钟)通过实例展示过不共线三点作圆的方法,引导学生观察、思考。

讲解圆的定义和性质,如圆的半径、直径等。

3.操练(10分钟)让学生分组讨论,每组选择三个不共线的点,尝试用所学的方法作圆。

教师巡回指导,解答学生的问题。

人教版九年级数学上24章《圆》基础测试(含答案及解析)

人教版九年级数学上24章《圆》基础测试(含答案及解析)

人教版九年级数学上24章《圆》基础测试(含答案及解析)1 / 12《圆》基础测试题时间:90分钟 总分: 100一、选择题(本大题共10小题,共30.0分)1. 下列语句正确的个数是过平面上三点可以作一个圆;平分弦的直径垂直于弦;在同圆或等圆中,相等的弦所对的圆周角相等;三角形的内心到三角形各边的距离相等.A. 1个B. 2个C. 3个D. 4个2. 生活中处处有数学,下列原理运用错误的是A. 建筑工人砌墙时拉的参照线是运用“两点之间线段最短”的原理B. 修理损坏的椅子腿时斜钉的木条是运用“三角形稳定性”的原理C. 测量跳远的成绩是运用“垂线段最短”的原理D. 将车轮设计为圆形是运用了“圆的旋转对称性”原理3. 下列说法错误的是( )A. 圆有无数条直径B. 连接圆上任意两点之间的线段叫弦C. 过圆心的线段是直径D. 能够重合的圆叫做等圆4. 下列说法中,正确的是A. 弦是直径B. 半圆是弧C. 过圆心的线段是直径D. 圆心相同半径相同的两个圆是同心圆5. 如图,在 中, , ,以C 为圆心,CB 为半径的圆交AB 于点D ,连接CD ,则A.B.C.D.6. 下列判断中正确的是 A. 长度相等的弧是等弧B. 平分弦的直线也必平分弦所对的两条弧C. 弦的垂直平分线必平分弦所对的两条弧D. 平分一条弧的直线必平分这条弧所对的弦7. 下列说法: 平面上三个点确定一个圆; 等弧所对的弦相等; 同圆中等弦所对的圆周角相等; 三角形的内心到三角形三边的距离相等,其中正确的共有A. 1个B. 2个C. 3个D. 4个8. 过圆上一点可以作出圆的最长弦的条数为A. 1条B. 2条C. 3条D. 无数条9. 中央电视台“开心辞典”栏目曾有这么一道题:圆的半径增加了一倍,那么圆的面积增加了A. 一倍B. 二倍C. 三倍D. 四倍10.下列说法:弧分为优弧和劣弧;半径相等的圆是等圆;过圆心的线段是直径;长度相等的弧是等弧;半径是弦,其中错误的个数为A. 2B. 3C. 4D. 5二、填空题(本大题共10小题,共30.0分)11.如图,小量角器的刻度线在大量角器的刻度线上,且小量角器的中心在大量角器的外缘边上如果它们外缘边上的公共点P在大量角器上对应的度数为,那么在小量角器上对应的度数为______ 只考虑小于的角度12.下列说法:直径是弦;经过三点一定可以作圆;三角形的外心到三角形各顶点的距离相等;长度相等的弧是等弧;平分弦的直径垂直于弦其中正确的是______ 填序号.13.如图,直角坐标系中一条圆弧经过网格点A,B,C,其中B点坐标为,则该圆弧所在圆的圆心坐标为______.14.如图,点A,B,C均在的正方形网格格点上,过A,B,C三点的外接圆除经过A,B,C三点外还能经过的格点数为______.15.半径为5的中最大的弦长为______ .16.圆是中心对称图形,______ 是它的对称中心.17.已知点P到的最近距离是3cm、最远距离是7cm,则此圆的半径是______ .18.如图,AB为的直径,,,则______ .19.中若弦AB等于的半径,则的形状是______ .20.已知中最长的弦为16cm,则的半径为______ cm.三、计算题(本大题共2小题,共12.0分)21.如图所示,AB为的直径,CD是的弦,AB、CD的延长线交于点E,已知,求的度数.人教版九年级数学上24章《圆》基础测试(含答案及解析)3 / 1222. 如图, 中, ,点D 为BC 上一点,且,过A 、B 、D 三点作圆O ,AE 是圆O 的直径,连接DE .求证:AC 是圆O 的切线;若 , ,求AE 的长.四、解答题(本大题共4小题,共32.0分)23. 如图,在平面直角坐标系内,已知点 ,, .求 的外接圆的圆心点M 的坐标;求 的外接圆在x 轴上所截弦DE 的长.24.已知:如图,中,,.尺规作图:求作的外接圆,保留作图痕迹,不写作法;求中所求作的圆的面积.25.已知,直线l经过的圆心O,且与交于A、B两点,点C在上,且゜,点P是直线l上的一个动点与O不重合,直线CP与交于点Q,且.如图1,当点P在线段AO上时,求的度数.如图2,当点P在OA的延长线上时,求的度数.如图3,当点P在OB的延长线上时,求的度数.26.如图,已知同心圆O,大圆的半径AO、BO分别交小圆于C、D,试判断四边形ABDC的形状并说明理由.人教版九年级数学上24章《圆》基础测试(含答案及解析)5 / 12答案和解析【答案】1. A2. A3. C4. B5. A6. C7. B8. A9. C10. C11.12.13.14. 515. 1016. 圆心17. 5cm或2cm18.19. 等边三角形20. 821. 解:连接OD,如图,,而,,,,而,,.22. 证明:,,,,由圆周角定理得,,是圆O的直径,,即,,即,是圆O的切线;取AC的中点H,连接DH,,,在中,,,,,,,∽ ,,即,解得,.23. 解:,,线段BC的垂直平分线是,人教版九年级数学上24章《圆》基础测试(含答案及解析)7 / 12 , ,线段AC 的垂直平分线是 ,的外接圆的圆心M 的坐标为: ;连接OM ,作 于N ,由题意得, , ,由勾股定理得, ,则 ,由垂径定理得, .24. 解: 如图所示, 即为所求作的圆.连接OA ,OC ., ,,是等边三角形,圆的半径是3,圆的面积是 .25. 解: 如图1,设 ,, ,, ,由三角形的外角性质, ,在 中, ,解得 ,即 ;如图2,设 ,,,,, 由三角形的外角性质, ,,解得 ,;如图3,设 ,,,,,由三角形的外角性质,,解得,.26. 证明:,,四边形ABDC是梯形,即:四边形ABDC是等腰梯形.【解析】1. 解:过平面上不在同一直线上的三点可以作一个圆,错误;平分弦不是直径的直径垂直于弦,故错误;在同圆或等圆中,相等的弦所对的圆周角相等,错误;三角形的内心到三角形各边的距离相等,正确,正确的有1个,故选A.利用确定圆的条件、垂径定理、圆周角定理及三角形的内心的性质分别判断后即可确定正确的选项;本题考查了确定圆的条件、垂径定理、圆周角定理及三角形的内心的性质等知识,解题的关键是能够了解有关的定义及定理,难度不大.2. 解:A、错误建筑工人砌墙时拉的参照线是运用“两点确定一条直线”的原理;B、正确修理损坏的椅子腿时斜钉的木条是运用“三角形稳定性”的原理;C、正确测量跳远成绩的依据是垂线段最短;D、正确将车轮设计为圆形是运用了“圆的旋转对称性”的原理;故选:A.A、这是一道关于两点确定一条直线的应用的题目;B、根据三角形的稳定性进行判断;C、利用点到直线的距离中垂线段最短判断即可;D、根据圆的有关性质进行解答.本题考查了圆的认识、三角形的稳定性、确定直线的条件等知识,解题的关键是熟练掌握这些定理,难度不大.3. 解:A、圆有无数条直径,故本选项说法正确;B、连接圆上任意两点的线段叫弦,故本选项说法正确;C、过圆心的弦是直径,故本选项说法错误;D、能够重合的圆全等,则它们是等圆,故本选项说法正确;故选:C.根据直径、弧、弦的定义进行判断即可.本题考查圆的认识,学习中要注意区分:弦与直径,弧与半圆之间的关系.4. 解:A、直径是弦,但弦不一定是直径,故错误;B、半圆是弧,正确;C、过圆心的弦是直径,故错误;D、圆心相同半径不同的两个圆是同心圆,故错误,故选B.利用圆的有关定义及性质分别判断后即可确定正确的选项.本题考查了圆的认识,了解有关圆的定义及性质是解答本题的关键,难度不大.人教版九年级数学上24章《圆》基础测试(含答案及解析)5. 解:,,,,,;故选:A.先求得,再由等腰三角形的性质求出,则与互余.本题考查了三角形的内角和定理和等腰三角形的性质,是基础知识比较简单.6. 解:A、等弧是能重合的两弧,长度相等的弧不一定是等弧,故选项错误;B、平分弦的直线也必平分弦所对的两条弧,注意被平分的弦不是直径,故选项错误;C、弦的垂直平分线必平分弦所对的两条弧,正确,故选项正确;D、平分一条弧的直径必平分这条弧所对的弦,故选项错误.故选C.利用等弧的定义以及垂径定理和垂径定理的推论即可作出判断.本题考查了等弧的概念和垂径定理的推论,理解垂径定理的内容是关键.7. 解:平面上不在同一直线上的三个点确定一个圆,所以错误;等弧所对的弦相等,所以正确;同圆中等弦所对的圆周角相等或互补,所以错误;三角形的内心到三角形三边的距离相等,所以正确.故选B.根据确定圆的条件对进行判断;根据圆心角、弦、弧的关系对进行判断;根据圆周角定理和圆内接四边形的性质对进行判断;根据三角形内心的定义对进行判断.本题考查了确定圆的条件:不在同一直线上的三点确定一个圆也考查了圆心角、弧、弦的关系此题比较简单,注意掌握定理的条件在同圆或等圆中是解此题的关键.8. 解:圆的最长的弦是直径,直径经过圆心,过圆上一点和圆心可以确定一条直线,所以过圆上一点可以作出圆的最长弦的条数为一条.故选A.由于直径是圆的最长弦,经过圆心的弦是直径,两点确定一条直线,所以过圆上一点可以作出圆的最长弦的条数为一条.本题考查了直径和弦的关系,直径是弦,弦不一定是直径,直径是圆内最长的弦.9. 解:设圆的原来的半径是R,增加1倍,半径即是2R,则增加的面积是,即增加了3倍.故选C.根据圆的半径的计算公式即可解决.能够根据圆面积公式计算增加后的面积.10. 解:根据半圆也是弧,故此选项错误,符合题意;由等圆的定义可知,半径相等的两个圆面积相等、周长相等,所以为等圆,故此选项正确,不符合题意;过圆心的线段是直径,根据圆的直径的含义可知:通过圆心的线段,因为两端不一定在圆上,所以不一定是这个圆的直径,故此选项错误,符合题意;长度相等的弧不一定是等弧,因为等弧就是能够重合的两个弧,而长度相等的弧不一定是等弧,所以等弧一定是同圆或等圆中的弧,故此选项错误,符合题意;半径不是弦,故此选项错误,符合题意;故选:C.利用等弧和弦的概念,垂径定理以及弧,弦与圆心角之间的关系进行判断.此题主要考查了确定圆的条件以及圆的相关定义,熟练掌握其定义是解题关键.9 / 1211. 解:设大量角器的左端点是A,小量角器的圆心是B,连接AP,BP,则,,因而,在小量角器中弧PB所对的圆心角是,因而P在小量角器上对应的度数为.故答案为:;设大量角器的左端点为A,小量角器的圆心为利用三角形的内角和定理求出的度数然后根据圆的知识可求出小量角器上对应的度数.本题主要考查了直径所对的圆周角是90度能把实际问题转化为数学问题是解决本题的关键.12. 解::直径是弦,所以正确;经过不共线的三点一定可以作圆,所以错误;三角形的外心到三角形各顶点的距离相等,所以正确;能够完全重合的弧是等弧,所以错误;平分弦非直径的直径垂直于弦.故答案为.根据直径的定义对进行判断;根据确定圆的条件对进行判断;根据三角形外心的性质对进行判断;根据等弧的定义对进行判断;根据垂径定理的推论对进行判断.本题考查了确定圆的条件:不在同一直线上的三点确定一个圆也考查了圆的认识和垂径定理.13. 解:根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.如图所示,则圆心是.故答案为:根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.能够根据垂径定理的推论得到圆心的位置.14. 解:如图,分别作AB、BC的中垂线,两直线的交点为O,以O为圆心、OA为半径作圆,则即为过A,B,C三点的外接圆,由图可知,还经过点D、E、F、G、H这5个格点,故答案为:5.根据圆的确定先做出过A,B,C三点的外接圆,从而得出答案.本题主要考查圆的确定,熟练掌握圆上各点到圆心的距离相等得出其外接圆是解题的关键.人教版九年级数学上24章《圆》基础测试(含答案及解析)11 / 12 15. 解:半径为5的 的直径为10,则半径为5的 中最大的弦是直径,其长度是10.故答案是:10.直径是圆中最大的弦.本题考查了圆的认识 需要掌握弦的定义.16. 解:圆是中心对称图形,圆心是它的对称中心.故答案为:圆心.根据圆的定义即可得出结论.本题考查的是圆的认识,熟知圆是中心对称图形是解答此题的关键.17. 解:当点P 在圆内时,点P 到圆的最大距离与最小距离的和为10cm ,就是圆的直径,所以半径是5cm .当点P 在圆外时,点P 到圆的最大距离与最小距离的差为4cm ,就是圆的直径,所以半径是2cm .故答案是:5cm 或2cm .当点P 在圆内时,点P 到圆的最大距离与最小距离之和就是圆的直径 当点P 在圆外时,点P 到圆的最大距离与最小距离的差就是圆的直径 知道了直径就能确定圆的半径. 本题考查的是点与圆的位置关系,根据点到圆的最大距离和最小距离,可以得到圆的直径,然后确定圆的半径.18. 解: ,,,,又 ,.故答案为: .根据半径相等和等腰三角形的性质得到 ,利用三角形内角和定理可计算出 ,然后根据平行线的性质即可得到 的度数.本题考查了有关圆的知识:圆的半径都相等 也考查了等腰三角形的性质和平行线的性质.19. 解:如图, ,为等边三角形.故答案为等边三角形.根据圆的半径相等和等边三角形的判定方法进行判断.本题考查了圆的认识:掌握与圆有关的概念 弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等 也考查了等边三角形的判定.20. 解: 中最长的弦为16cm ,即直径为16cm ,的半径为8cm .故答案为:8.最长的弦就是直径从而不难求得半径的长.圆中的最长的弦就是直径,是需要熟记的.21. 连接OD ,如图,由 , 得到 ,根据等腰三角形的性质得 ,再利用三角形外角性质得到 ,加上 ,然后再利用三角形外角性质即可计算出 .本题考查了圆的认识:掌握与圆有关的概念 弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等 也考查了等腰三角形的性质.22. 根据等腰三角形的性质、圆周角定理证明 ,根据切线的判定定理证明;取AC的中点H,连接DH,根据等腰三角形的三线合一得到,根据余弦的定义求出CD,根据勾股定理求出DH,根据相似三角形的判定和性质计算.本题考查的是切线的判定定理、相似三角形的判定和性质以及圆周角定理,掌握相似三角形的判定定理和性质定理、切线的判定定理是解题的关键.23. 根据三角形的外心是三角形三边垂直平分线的交点解答;连接OM,作于N,根据勾股定理求出DN,根据垂径定理求出DE.本题考查的是三角形的外接圆和外心,掌握三角形的外心的概念、垂径定理的应用是解题的关键.24. 此题主要是确定三角形的外接圆的圆心,根据圆心是三角形边的垂直平分线的交点进行作图:作线段AB的垂直平分线;作线段BC的垂直平分线;以两条垂直平分线的交点O为圆心,OA长为半圆画圆,则圆O即为所求作的圆.连接OA,先证明是等边三角形,从而得到圆的半径,即可求解.本题考查了作图复杂作图,掌握三角形的外接圆的作法三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心找一个三角形的外心,就是找一个三角形的两条边的垂直平分线的交点,三角形的外接圆只有一个.25. 设,根据等边对等角可得,,再根据三角形的一个外角等于与它不相邻的两个内角的和表示出,然后根据三角形的内角和定理列出方程求解即可;设,根据等边对等角可得,,再根据三角形的一个外角等于与它不相邻的两个内角的和可得,然后列出方程求出x,再根据邻补角的定义列式计算即可得解;设,根据等边对等角可得,,根据三角形的一个外角等于与它不相邻的两个内角的和可得,,然后求出x,从而得解.本题是圆的综合题型,主要利用了等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,读懂题目信息,作出图形更形象直观.26. 首先判断,然后利用半径相等证得其腰相等即可说明其是等腰梯形.本题考查了圆的认识及等腰梯形的判定,解题的关键是了解等腰梯形的判定方法.。

《过不共线三点作圆》习题

《过不共线三点作圆》习题

《过不共线三点作圆》习题
1、经过一点可以作个圆,经过两点可以作个圆,经过不在同一条直线上的三个点个圆;
2、经过三角形三个顶点的圆叫做三角形的,这个圆的圆心是三角形三条边的的交点,叫做三角形的,它到三角形的距离相等;
3、锐角三角形的外心位于,直角三角形的外心位于,钝角三角形的外心位于.
4、钝角三角形的外心在三角形的外部.()
5、锐角三角形的外心在三角形的内部.()
6、有一个三角形的外接圆的圆心在它的某一边上则这个三角形一定是直角三角形.()
7、下列条件,可以画出圆的是()
A.已知圆心B.已知半径
C.已知不在同一直线上的三点D.已知直径
8、三角形的外心是()
A.三条中线的交点B.三条边的中垂线的交点
C.三条高的交点D.三条角平分线的交点
9、下列命题不正确的是()
A.三点确定一个圆B.三角形的外接圆有且只有一个
C.经过一点有无数个圆D.经过两点有无数个圆
10、一个三角形的外心在它的内部,则这个三角形一定是()
A.等腰三角形B.直角三角形
C.锐角三角形D.等边三角形
11、已知三角形的三边长分别为,,,求它的外接圆半径.。

不共线的三点计算圆半径matlab

不共线的三点计算圆半径matlab

题目:不共线的三点计算圆半径matlab1. 引言在数学和计算机科学中,计算圆的半径是一个常见的问题。

特别是当给定不共线的三个点时,我们可以利用这些点来确定一个唯一的圆。

本文将使用Matlab来探讨如何计算这个问题,并分析其中的数学原理。

2. 数学模型假设我们有三个不共线的点A、B和C,它们的坐标分别为(x1, y1)、(x2, y2)和(x3, y3)。

现在我们希望求解通过这三个点的圆的半径。

根据数学原理,我们可以建立如下的方程组:(x - x1)² + (y - y1)² = r²(x - x2)² + (y - y2)² = r²(x - x3)² + (y - y3)² = r²其中,(x, y)是圆心的坐标,r是圆的半径。

我们可以将这个方程组进行整理,转化为线性方程组的形式,并求解出圆的半径。

3. Matlab实现在Matlab中,我们可以使用符号计算工具箱来进行符号计算。

我们需要定义三个点的坐标和圆的半径,然后建立上述的线性方程组。

通过Matlab提供的方程求解函数来求解这个线性方程组,并得到圆的半径。

我们还可以通过Matlab绘图工具箱来绘制这个圆,以便直观地观察结果。

4. 代码示例下面是一个简单的Matlab代码示例,用于计算不共线的三点确定的圆的半径:```matlabsyms x y req1 = (x - x1)^2 + (y - y1)^2 == r^2;eq2 = (x - x2)^2 + (y - y2)^2 == r^2;eq3 = (x - x3)^2 + (y - y3)^2 == r^2;sol = solve([eq1, eq2, eq3], [x, y, r]);radius = sol.r;```通过上述代码,我们可以求解出圆的半径radius。

我们还可以利用Matlab的绘图工具箱来绘制这个圆,并将结果可视化。

过不共线三点作圆优秀教案

过不共线三点作圆优秀教案

过不共线三点作圆【教学目标】(一)知识与技能:1.理解确定圆的条件及外接圆和外心的定义。

2.掌握三角形外接圆的画法。

(二)过程与方法:经过不在同一直线上的三点确定一个圆的探索过程,让我们学会用尺规作不在同一直线上的三点的圆。

(三)情感态度:在探究过不在同一直线上的三点确定一个圆的过程中,进一步培养探究能力和动手能力,提高学习数学的兴趣。

【教学重点】确定圆的条件及外接圆和外心的定义。

【教学难点】任意三角形的外接圆的作法。

【教学过程】一、情境导入,初步认识:如图所示,点A,B,C表示因支援三峡工程建设而移民的某县新建的三个移民新村。

这三个新村地理位置优越,空气清新,环境幽雅。

花园式的建筑住宅让人心旷神怡,但安居后发现一个极大的现实问题:学生就读的学校离家太远,给学生上学和家长接送学生带来了很大的麻烦。

根据上面的实际情况,政府决定为这三个新村就近新建一所学校,让三个村到学校的距离相等,你能帮助他们为学校选址吗?二、思考探究,获取新知:(一)确定圆的条件:活动1:如何过一点A作一个圆?过点A可以作多少个圆?活动2:如何过两点A、B作一个圆?过两点可以作多少个圆?以上两个问题要求学生独立动手完成,让学生初步体会,已知一点和已知两点都不能确定一个圆,并帮助学生得出如下结论。

1.过平面内一个点A的圆,是以点A以外的任意一点为圆心,以这点到A的距离为半径的圆,这样的圆有无数个。

2.经过平面内两个点A,B的圆,是以线段AB垂直平分线上的任意一点为圆心,以这一点到A或B的距离为半径的圆。

这样的圆有无数个。

活动3:如图,已知平面上不共线三点A,B,C,能否作一个圆,使它刚好都经过A,B,C三点。

假设经过A、B、C三点的圆存在,圆心为O,则点O到A、B、C三点的距离相等,即OA=OB=OC,则点O位置如何确定?是否唯一确定?教师提示到此,让学生动手画圆,最后教师归纳出。

3.经过不在同一直线上的三个点A、B、C的圆,是以AB、BC、CA的垂直平分线的交点为圆心,以这一点到点A,点B或点C的距离为半径的圆,这样的圆只有一个。

初中数学《圆周角定理及点圆关系》讲义及练习

初中数学《圆周角定理及点圆关系》讲义及练习

内容基本要求略高要求较高要求圆的有关概念 理解圆及其有关概念 会过不在同一直线上的三点作圆;能利用圆的有关概念解决简单问题圆的性质 知道圆的对称性,了解弧、弦、圆心角的关系能用弧、弦、圆心角的关系解决简单问题能运用圆的性质解决有关问题圆周角 了解圆周角与圆心角的关系;了解直径所对的圆周角是直角会求圆周角的度数,能用圆周角的知识解决与角有关的简单问题能综合运用几何知识解决与圆周角有关的问题一、圆周角定理圆心角和圆周角1. 圆心角:顶点在圆心的角叫做圆心角.将整个圆分为360等份,每一份的弧对应1︒的圆心角,我们也称这样的弧为1︒的弧.圆心角的度数和它所对的弧的度数相等. 2. 圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角. 3. 圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等. 推论2:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.4. 圆心角、弧、弦、弦心距之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量分别相等.圆是平面几何中的一个重要内容.由于圆与直线型图形可组合成一些复杂的几何问题,所以它经常出现在数学竞赛中. 圆的基本性质有:⑴ 直径所对的圆周角是直角. ⑵ 同弧所对的圆周角相等.⑶ 经过圆心及一弦中点的直线垂直平分该弦.二、圆心角、弧、弦、弦心距之间的关系在同圆或等圆中,两个圆心角、两条弧、两条弦、两条弦的弦心距中有一组量相等,其它各组量都相等。

三、点与圆的位置关系点与圆的位置关系知识点睛中考要求第十讲圆周角定理及点与圆关系点与圆的位置关系有:点在圆上、点在圆内、点在圆外三种,这三种关系由这个点到圆心的距离与半径的大小关系决定.设O⊙的半径为r,点P到圆心O的距离为d,则有:点在圆外⇔d r>;点在圆上⇔d r<.=;点在圆内⇔d r确定圆的条件1. 圆的确定确定一个圆有两个基本条件:①圆心(定点),确定圆的位置;②半径(定长),确定圆的大小.只有当圆心和半径都确定时,圆才能确定.2. 过已知点作圆⑴经过点A的圆:以点A以外的任意一点O为圆心,以OA的长为半径,即可作出过点A的圆,这样的圆有无数个.⑵经过两点A B、、的圆:以线段AB中垂线上任意一点O作为圆心,以OA的长为半径,即可作出过点A B 的圆,这样的圆也有无数个.⑶过三点的圆:若这三点A B C、、三点不共线时,圆心是线段AB、、共线时,过三点的圆不存在;若A B C与BC的中垂线的交点,而这个交点O是唯一存在的,这样的圆有唯一一个.n≥个点的圆:只可以作0个或1个,当只可作一个时,其圆心是其中不共线三点确定的圆的圆⑷过n()4心.3. 定理:不在同一直线上的三点确定一个圆.注意:⑴”不在同一直线上”这个条件不可忽视,换句话说,在同一直线上的三点不能作圆;⑵”确定”一词的含义是”有且只有”,即”唯一存在”.4. 三角形的外接圆⑴经过三角形三个顶点的圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,这个三角形叫做这个圆的内接三角形.⑵三角形外心的性质:①三角形的外心是指外接圆的圆心,它是三角形三边垂直平分线的交点,它到三角形各顶点的距离相等;②三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合.⑶锐角三角形外接圆的圆心在它的内部;直角三角形外接圆的圆心在斜边中点处(即直角三角形外接圆半径等于斜边的一半);钝角三角形外接圆的圆心在它的外部.四、相交弦定理(选讲)相交弦定理:圆内的两条相交弦被交点分成的两条线段长的乘积相等.如图,弦AB和CD交于O⋅=⋅.⊙内一点P,则PA PB PC PDP ODC BA相交弦定理的推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项.教学重点:圆周角的概念和圆周角定理教学难点:圆周角定理的证明中由“一般到特殊”的数学思想方法和完全归纳法的数学思想.一、圆周角定理【例1】 (08山西太原)如图,AB 是⊙O 的直径,CD 是⊙O 的弦,连接AC AD ,,若35CAB ∠=,则ADC ∠的度数为 .【解析】 直径所对圆周角是90°且同弧所对圆周角相等. 所以得55°. 【巩固】⑴(08龙岩)如图,量角器外沿上有A B 、两点,它们的度数分别是7040︒︒、,则1∠的度数为_________.⑵ 如图,ABC △的三个顶点都在O ⊙上,302cm C AB ∠==,,则O ⊙的半径为______cm .O1BAOCBAOCBA【解析】 ⑴ ()117040152∠=︒-︒=︒. ⑵ 连接OA ,OB∵30C ∠=︒,∴260O C ∠=∠=︒,又∵OA OB =,∴OAB ∆为等边三角形, ∴2OA AB ==,即O 的半径为2.【巩固】⑴ 已知O ⊙的弦AB 长等于圆的半径,求该弦所对的圆周角.⑵ (06年安徽课改)如图所示,在ABC ∆中,45C ∠=︒,4AB =,则O ⊙的半径为( )A.22B.4C.23D.5CBD OA重、难点例题精讲BABA【解析】 ⑴ 连接OA 、OB ,设弦AB 所对的圆周角为ACB ∠.∵AB OA OB ==∴AOB ∆是等边三角形 ∴60AOB ∠=︒∴当点C 在AB 上时(劣弧上),1(360)2ACB AOB ∠=︒-∠1(36060)1502=⨯︒-︒=︒.当点C 在AmB 上时(优弧上),1302ACB AOB ∠=∠=︒故该弦所对的圆周角为30︒或150︒. ⑵ 如右图所示连接OA 、OB ,因为45C ∠=︒,290AOB C ∠=∠=︒4AB=,所以半径为OA OB ==.【例2】 (07年威海中考题)如图,AB 是O 的直径,点C ,D ,E 都在O 上,若C D E ==∠∠∠,求A B +∠∠.B ABA【解析】 连接AC 、BC∵AB 是O 的直径,∴90ACB ∠=︒,∴90CAB CBA ∠+∠=︒, 又∵D CBA ∠=∠,E CAB ∠=∠,∴90D E ∠+∠=︒, 又∵DCE D E ∠=∠=∠,∴45DCE D E ∠=∠=∠=︒,∴9045135DAB EBA DCB ECA ACB DCE ∠+∠=∠+∠=∠+∠=︒+︒=︒, 即135A B +=︒∠∠【巩固】(08年济宁改编)如图,四边形ABCD 中,AB AC AD ==,若7613CAD BDC ∠=︒∠=︒,,则CBD ∠=_________,BAC ∠=__________.DCBA【解析】 以A 为圆心,AB 为半径作辅助圆则C D 、均在A ⊙上,∴1382CBD CAD ∠=∠=︒,226BAC BDC ∠=∠=︒.【例3】 如图,AB 为O ⊙的直径,CD 是O ⊙的弦,AB CD 、的延长线交于点E ,若218AB DE E =∠=︒,,求AOC ∠的度数.EE【解析】 连结OD∵AB 是直径,2AB DE =,∴12DE AB OD ==∴18DOE E ∠=∠=︒,∴36ODC DOE E ∠=∠+∠=︒∵OC OD =,∴36OCD ODC ∠=∠=︒, ∴54AOC OCD E ∠=∠+∠=︒.【巩固】如图所示CD 是O ⊙的直径,87EOD ∠=︒,AE 交O ⊙于B ,且AB OC =,求A ∠ 的度数.DD【解析】 连结OB∵AB OC =,OB OC =,∴OB AB = 设A x ∠=,则BOA x ∠=. ∴2OBE BOA A x ∠=∠+∠=. ∵OE OB =,∴2OEA OBE x ∠=∠=.∴387EOD E A x ∠=∠+∠==︒ ∴29x =︒,即29A ∠=︒.【巩固】如图,已知AB 为⊙O 的直径,20E ∠=︒,50DBC ∠=︒,则CBE ∠=______.B【解析】 连结AC .设∠DCA =x°,则∠DBA =x°,所以∠CAB =x°+20°.因为AB 为直径,所以∠BCA=90°,则∠CBA +∠CAB =90°.又 ∠DBC =50°,∴ 50+x +(x +20)=90. ∴ x =10.∴∠CBE =60°.所以答案是60°.【例4】 (07重庆)已知,如图:AB 为O ⊙的直径,AB AC =,BC 交O ⊙于点D ,AC 交O ⊙于点E ,45BAC ∠=︒.给出以下五个结论:①22.5EBC ∠=︒,;②BD DC =;③2AE EC =;④劣弧AE 是劣弧DE 的2倍;⑤AE BC =.其中正确结论的序号是 .【解析】 由题意可知122.52EBC BAC ∠=∠=︒,故①正确,连接AD 可得90ADB ∠=︒,由等腰三角形三线合一的性质可知BD DC =,故②正确;2ABE EBD ∠=∠,由弧的度数和它所对的圆心角是相等的,可知2AE DE =,故④正确, ∴正确结论的序号是:①②④.【例5】 如图AB 是半圆O 的直径,点C D 、在弧AB 上,且AD 平分CAB ∠,已知106AB AC ==,,求AD的长.【解析】 延长AC 交BD 的延长线于E ,∵AB 是半圆的直径,AD 平分CAB ∠, 则可得10AE AB ==,BD ED =, ∴4CE AE AC =-=,∵90ACB ∠=︒,∴8BC =,在RtBCE ∆中,BE =,∴BD DE ==∴AD =【例6】 (08乌鲁木齐)如图所示的半圆中,AD 是直径,且32AD AC ==,,则sin B 的值是________.DCA B【例7】 ⑴(09河北)如下左图,四个边长为1的小正方形拼成一个大正方形,A B O 、、是小正方形顶点,O ⊙的半径为1,P 是O ⊙上的点,且位于右上方的小正方形内,则APB ∠等于__________.PO BAB⑵(09四川成都)如上右图,ABC ∆内接于O ⊙,120AB BC ABC =∠=︒,,AD 为O ⊙的直径,6AD =,那么BD =_________.⑶(09山东泰安)O ⊙的半径为1,AB 是O ⊙的一条弦,且AB =AB 所对圆周角的度数为_____________.【解析】 ⑴45︒;⑵60︒或120︒.【例 1】 (07年枣庄中考题)如图,ABC ∆内接于O ⊙,120BAC ∠=︒,AB AC =,BD 为O ⊙的直径,6AD =,则BC = .A【解析】 连接CD .证明ABD CDB ∆∆≌,∴6BC AD ==.【例8】 如图,过O ⊙的直径AB 上两点M N ,,分别作弦CD EF ,,若CD EF AC BF =,∥.求证:⑴BEC ADF =;⑵ AM BN =.【解析】 ⑴ ∵AC BF =,∴AC BF =, ∵AB 是直径,∴AEB ADB =,∴AEB AC ADB BF -=-,即BEC ADF =. ⑵ 由⑴可知CAM FBN ∠=∠,∵CD EF ∥,∴CMA DMB FNB ∠=∠=∠,又AC BF =,∴ACM BFN ∆∆≌,∴AM BN =.【例9】 如图,点A B C 、、是O ⊙上的三点,AB OC ∥.⑴ 求证:AC 平分OAB ∠;⑵ 过点O 作OE AB ⊥于点E ,交AC 于点P .若230AB AOE =∠=︒,,求PE 的长.【解析】 ⑴ ∵AB OC ∥,∴BAC C ∠=∠,∵OA OC =,∴OAC C ∠=∠,∴BAC OAC ∠=∠,∴AC 平分OAB ∠.⑵ ∵OE AB ⊥,∴112AE AB ==,在Rt AOE ∆中,9030OEA AOE ∠=︒∠=︒,,∴22AO AE OE ==,以下可以用两种不同方法解答:解法一:∵AB OC ∥,∴12AE PE OC OP ==∴13PE OE =解法二:由⑴得AC 平分OAB ∠,∴2OA OPAE PE==,∴13PE OE =【例10】 ⑴如图,AB 是O ⊙的直径,CD AB ⊥,设COD α∠=,则2sin 2AB AD α⋅=_____________.O PFEDC B A⑵ 如图,AB 是O ⊙的直径,弦PC 交OA 于点D ,弦PE 交OB 于点F ,且OC DC OF EF ==,.若C E ∠=∠,则CPE ∠=___________.⑶ 已知:如图,MN 是O ⊙的直径,点A 是半圆上一个三等分点,点B 是AN 的中点,P 是MN 上一动点,O ⊙的半径为1,则PA PB +的最小值是_____________.【解析】 ⑴1;⑵40︒;⑶作B 点关于MN 的对称点B ′,连结AB ′与MN 交于点P , 易证得,此时PA PB +取得最小值.根据圆的对称性,B ′点在O ⊙上,且B N BN =′, ∵A 是半圆的三等分点,∴13AN MAN =,∴60AON ∠=︒,∵B 是AN 的中点,∴1302BON AON ∠=∠=︒,∴30B ON ∠=︒′,∴90AOB AON B ON ∠=∠+∠=︒′′, ∵O ⊙半径为1,∴1OA OB ==′,∴AB ′,∴PA PB +【巩固】(09浙江衢州)如图,AD 是O ⊙的直径.⑴ 如图1,垂直于AD 的两条弦11B C ,22B C 把圆周4等分,则1B ∠的度数是___________,2B ∠的度数是____________;⑵ 如图2,垂直于AD 的三条弦112233B C B C B C 、、把圆周6等分,分别求123B B B ∠∠∠,,的度数;⑶ 如图3,垂直于AD 的n 条弦112233n n B C B C B C B C ,,,…,把圆周2n 等分,请你用含n 的代数式表示n B ∠的度数(只需直接写出答案).图3图2图1-1n -2B n 3B B 2【解析】 ⑴ 22.567.5︒︒,;⑵ ∵圆周被6等分,∴111223360660B C C C C C ===÷=︒.∵直径11AD B C ⊥,∴1111302AC B C ==︒,∴()()12311153060453060607522B B B ∠=︒∠=⨯︒+︒=︒∠=⨯︒+︒+︒=︒,,.⑶ ()()90451136036012222n n B n n n n -︒︒︒⎡⎤∠=⨯+-⋅=⎢⎥⎣⎦(或3604590908nB n n ︒︒∠=︒-=︒-)【例11】 已知如图,ACD ∆的外角平分线CB 交其外接圆于B ,连接BA 、BD ,求证:BA BD =.N【解析】 ∵ACB BCN ∠=∠,又∵ACB ADB ∠=∠;BCN BAD ∠=∠, ∴BAD BDA ∠=∠, ∴BA BD =.【巩固】已知如图,ACD ∆的外角平分线CB 交其外接圆于B ,连接BA 、BD ,过B 作BM AC ⊥于M ,BN CD ⊥于N ,则下列结论中一定正确的有 .①CM CN =;②MBN ABD ∠=∠;③AM DN =;④BN 为⊙O 的切线.【解析】 可证得BCM ∆≌BCN ∆.∴CM CN =,故①正确;四边形BMCN 的内角和为360︒可知,180MBN MCN ∠+∠=︒, 又∵180MCN ACD ∠+∠=︒, ∴MBN ACD ∠=∠, ∵ACD ABD ∠=∠,∴MBN ABD ∠=∠,故②正确;利用外角平分线易证AB BD =,又∵BM BN =,AMB DNB ∠=∠, ∴ABM DBN ∆∆≌,∴AM DN =,故③正确;若BN 为⊙O 的切线,则NBC BAC ∠=∠, ∵90NBC BCN ∠+∠=︒,而BCN ACB ∠=∠, ∴90BAC ACB ∠+∠=︒, ∴AC 为O ⊙直径.而AC 不一定为O ⊙直径,故④不正确.【巩固】(09辽宁)已知∆ABC 中,=AB AC ,D 是∆ABC 外接圆劣弧AC 上的点(不与点A C ,重合),延长BD 至E .⑴ 求证:AD 的延长线平分∠CDE ;⑵ 若30∠=︒BAC ,∆ABC 中BC边上的高为2∆ABC 外接圆的面积.AB CD【解析】 ⑴ 如图,设F 为AD 延长线上一点∵D 在∆ABC 外接圆上(A B C D 、、、四点共圆) ∴∠=∠CDF ABC又=AB AC ,∴∠=∠ABC ACB , 且∠=∠ADB ACB ,∴∠=∠ADB CDF对顶角∠=∠EDF ADB ,故∠=∠EDF CDF , 即AD 的延长线平分∠CDE .⑵ 设O 为外接圆圆心,连接AO 交BC 于H ,则⊥AH BC . 连接OC ,由题意15∠=∠=︒OAC OCA ,75∠=︒ACB , ∴60∠=︒OCH .设圆半径为r,则2+=r 2=r ,外接圆的面积为4π.二、圆心角、弧、弦、弦心距之间的关系【例12】 如图所示在O ⊙中,2AB CD =,那么( )A.2AB CD >B.2AB CD <C.2AB CD =D.AB 与2CD的大小关系不能确定【解析】 如图所示,作DE CD =,则2CE CD =,∵在CDE ∆中CD DE CE +>,∴2CD CE >, ∵2AB CD =,∴AB CE >,∴AB CE >,即2AB CD >. 故选A .【例13】 已知AB AC 、是O ⊙的弦,AD 平分BAC ∠交O ⊙于D ,弦DE AB ∥交AC 于P ,求证:OP 平分APD ∠.【解析】 过O 点分别作OF AC OG DE ⊥⊥,,垂足分别为F G 、.∵DE AB ∥,∴BAD D ∠=∠,∵AD 平分BAC ∠,∴BAD CAD ∠=∠,∴CAD D ∠=∠, ∴AE CD =,∴AE EC CD EC +=+,即AC DE = ∴AC DE =, ∵OF AC OG DE ⊥⊥,,∴OF OG =,∴点O 在APD ∠的平分线上,即OP 平分APD ∠.【巩固】已知,如图M N ,为O 中劣弧AB 的三等分点,E F ,为弦AB 的三等分点,连接ME 并延长,交直线MF 于点P ,连接AP BP ,交O 于C D ,两点,求证:3AOB APB ∠=∠.PNMOFEDCBAQPNMOFEDCBA【解析】 连接CN AN ,,ON OM ,,连接MN 并延长,交PA 的延长线于Q .∵M N ,三等分AB ,∴AM BN =,故MN AB ∥,由AE EF =,可证得QM MN =, 由AM MN =得AM MN =, ∴MA MQ MN ==, ∴QAN ∠为直角,∴90CAN ∠=︒,故CN 为O 直径, 故O 在CN 上∴22AON ACN MON ∠=∠=∠∴MON ACN ∠=∠,故OM AP ∥, 同理可证:ON AB ∥于是可证得:MON APB ∠=∠,∵3AOB MON ∠=∠,∴3AOB APB ∠=∠.【例14】 (2008年广州市数学中考试题)如图,射线AM 交一圆于点B C ,,射线AN 交该圆于点D 、E ,且BC DE =.⑴ 求证:AC AE =⑵ 分别作线段CE 的垂直平分线与MCE ∠的平分线,两线交于点F .求证:EF 平分CEN ∠.NME【解析】 ⑴ 作OP AM ⊥,OQ AN ⊥,由BC DE =,得OP OQ =,证APO AQO ∆∆≌,可得AP AQ =, 由BC CD =,得CP EQ = ∴AC AE =. ⑵ ∵AC AE =,∴ACE AEC ∠=∠,∴MCE NEC ∠=∠, ∵F 在线段CE 的中垂线上, ∴FC FE =,∴FCE FEC ∠=∠,∵12FCE MEC ∠=∠,∴12FEC NEC ∠=∠,即EF 平分CEN ∠.三、点与圆的位置关系【例15】 一个已知点到圆周上的点的最大距离为5cm ,最小距离为1cm ,则此圆的半径为______.【解析】 ⑴ 当点在圆外时,512cm 2r -==,⑵ 当点在圆内时,513cm 2r +==.【例16】 已知:四边形ABCD 中,AB CD ∥,AD BC =,135BAD ∠=︒,20AB =,40CD =,以A 为圆心,AB 长为半径作圆.求证:在A ⊙上,在A ⊙内,A ⊙外都有线段DC 上的点.C【解析】 如图所示,作AE CD ⊥于E∵ABCD 是等腰梯,AE CD ⊥,135BAD ∠=︒,20AB =,40CD =∴20AD =<,20AC = ∴D 点在A ⊙内,C 点在A ⊙外,圆内一点与圆外一点的连线,必与圆有一交点, 所以A ⊙上,A ⊙内, A ⊙外都有线段DC 上的点.【例17】 在平面直角坐标系内,以原点O 为圆心,5为半径作O ⊙,已知A ,B ,C 三点的坐标分别为()34A ,,()33B --,,(4C ,,试判断A ,B ,C 三点与O ⊙的位置关系.【解析】∵5OA =5OB =5OC >∴点A 在O ⊙上,点B 在O ⊙内,点C 在O ⊙外.【点评】要判定点与圆的位置关系,就是要比较点到圆心的距离与半径的大小关系.【例18】 在ABC ∆ 中,90C ∠=︒,4AC =,5AB =,以点C 为圆心,以r 为半径作圆,请回答下列问题,并说明理由.⑴ 当r 取何值时,点A 在C ⊙上,且点B 在C ⊙内部?⑵ 当r 在什么范围内取值时,点A 在C ⊙外部,且点B 在C ⊙的内部? ⑶ 是否存在这样的实数r ,使得点B 在C ⊙上,且点A 在C ⊙内部?CBA【解析】 如右图所示在Rt ABC ∆中,90C ∠=︒,4AC =,5AB =,根据勾股定理得:3BC ==⑴ 当4r =时,点A 在C ⊙上,且点B 在C ⊙内.因为4AC r ==,所以点A 在C ⊙上,34BC r =<=,所以B 在C ⊙内; ⑵ 当34r <<时,点A 在C ⊙的外部,且点B 在C ⊙的内部.由于3BC =,要使点B 在C ⊙的内部,必须C ⊙的半径3r >;又由于4AC =,要使点A 在C ⊙的外部,必须C ⊙的半径4r <. 综合上述两方面可知,34r <<.⑶ 不存在这样的实数r ,使得点B 在C ⊙上,且点A 在C ⊙内部.因为3BC =,要使点B 在C ⊙上,必须3r =,此时,由于4AC r =>,所以点A 在C ⊙的外部,点A 不在C ⊙的内部,所以这样的实数r 不存在.【例19】 已知ABC ∆中,90C ∠=︒,2AC =,3BC =,AB 的中点为M ,⑴ 以C 为圆心,2为半径作C ⊙,则点A ,B ,M 与C ⊙的位置关系如何? ⑵ 若以C 为圆心作C ⊙,使A ,B ,M 三点至少有一点在C ⊙内,且至少有一点在C ⊙外,求C ⊙半径r 的取值范围.M CBA【解析】 如右图所示⑴ ∵2AC =,且C ⊙的半径也为2,即AC r =∴点A 在C ⊙上.又∵3BC =,2R =,BC r > ∴点B 在C ⊙外.在ABC ∆中,AB = ∵M 为AB 的中点∴122MC AB ==<∴点M 在C ⊙内; ⑵ ∵2AC =,3BC =,MC ∴BC AC MC >>∴要使A ,B ,M 三点中至少有一点在C ⊙内,且至少有一点在C ⊙外,则C ⊙的半径r 的3r <<.【点评】⑴ 要判定点A ,B ,M 与C ⊙的位置关系,只要比较AC ,BC ,MC 的长度与C ⊙的半径的大小关系即可;⑵ 由⑴求得AC ,BC ,MC 的长度即可确定C ⊙的半径r 的取值范围.【例20】 ABC ∆中,10AB AC ==,12BC =,求其外接圆的半径.【解析】 作高AD ,设点O 是ABC ∆OB∵AB AC =,AD BC ⊥,∴16BD BC ==在Rt ABD ∆中,8AD 设O ⊙的半径为R ,则OB AO R ==,8OD R =-. 在Rt OBD ∆中, 222OB BD OD =+∴2226(8)R R =+-,解得254R =.∴外接圆的半径为254.【点评】运用外心到三角形的三个顶点的距离相等这一性质,注意,三角形的外心在等腰三角形底边的中垂线上.四、相交弦定理(选讲)相交弦定理:圆内的两条相交弦被交点分成的两条线段长的乘积相等.如图,弦AB 和CD 交于O ⊙内一点P ,则PA PB PCPD ⋅=⋅.相交弦定理的推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项. 【例21】 ⑴ 如下左图,在O ⊙中,弦AB 与CD 相交于点P ,已知3cm 4cm 2cm PA PB PC ===,,,那么PD = cm .⑵ 如下中图,在O ⊙中,弦AB 与半径OC 相交于点M ,且OM MC =,若 1.54AM BM ==,,则OC 的长为( )A. BC. D .⑶ 如下右图,在O ⊙中,P 为弦AB 上一点,PO PC ⊥,PC 交O ⊙于C ,那么( )A .2OP PA PB =⋅ B .2PC PA PB =⋅C .2PA PB PC =⋅D .2PB PA PC =⋅【解析】 ⑴6;⑵D ;⑶B .【例22】如图,圆的半径是A C 、两点在圆上,点B 在圆内,6AB =,2BC =,90ABC ∠=︒求点B到圆心的距离.【解析】 连结OB ,则线段OB 的长就是所求点B 到圆心的距离.连结OA ,延长AB 交O ⊙于D ,过O 点作OE AD ⊥于E ,延长CB 交O ⊙于F . 设BD x =,由相交弦定理可得AB BD BC BF ⋅=⋅,则3AB BDBF x BC⋅==,∵OE AD ⊥,∴()()11166222AE AD x BE x ==+=-,,()()11132232222OE CF BC x x =-=+-=-,在Rt AOE ∆中,90AEO ∠=︒,∴222OE AE OA +=,即()()22113265044x x -++=,解得4x =,∴()()1134256412OE BE=⨯-==-=,,OB =【例23】 如图,正方形ABCD 内接于O ⊙,点P 在劣弧AB 上,连结DP 交AC 于点Q .若QP QO =,则QCQA的值为___________.【解析】 连结DO ,设O ⊙半径为r ,QO m =,则QP m QC r m QA r m ==+=-,,.在O ⊙中,根据相交弦定理得QA QC QP QD ⋅=⋅,即()()r m r m mQD -+=,∴22r m QD m-=,由勾股定理得222QD DO QO =+,即22222r m r m m ⎛⎫-=+ ⎪⎝⎭,解得33m r =. ∴313231QC r m QA r m ++===+--.【习题1】 (2007浙江温州)如图,已知ACB ∠是O 的圆周角,50ACB ∠=︒,则圆心角AOB ∠是( )A .40︒B . 50︒C . 80︒D . 100︒【解析】 考察同弧所对圆心角圆周角关系.答案选:D .【习题2】 如图,将圆沿AB 折叠后,圆弧恰好经过圆心,则AmB 等于 .A . 60°B . 90°C . 120°D . 150°mBAO【解析】 答案选C .【习题3】 (09四川凉山)如图,O ⊙是ABC ∆的外接圆,已知50ABO ∠=︒,则ACB ∠的大小为__________.OCBA【解析】 40︒.【习题4】 (09四川南充)如图,AB 是O ⊙的直径,点C D 、在O ⊙上,110BOC ∠=︒,AD OC ∥,则AOD ∠=___________.OD CBA家庭作业【解析】 40︒.【习题5】 如果两条弦相等,那么( )A .这两条弦所对的弧相等B .这两条弦所对的圆心角相等C .这两条弦的弦心距相等D .以上答案都不对【解析】 考察圆心角定理,关键是这些条件成立的前提是在同圆或等圆中.所以选D .【习题6】 如图,AB 为⊙O 的直径,AC 交⊙O 于E 点,BC 交⊙O 于D 点,CD =BD ,∠C =70°. 现给出以下四个结论:①∠A =45°; ②AC =AB ; ③AE BE =; ④22CE AB BD ⋅=. 其中正确结论的序号是A .①②B .②③C .②④D .③④ED C BAO【解析】 考察利用圆中角可推出等弧,等弦,相似.答案选 C .【习题7】 如图,量角器外缘边上有A P Q ,,三点,它们所表示的读数分别是180,70,30,则PAQ ∠的大小为( )A .10B .20C .30D .40【解析】 考察同弧所对圆心角是圆周角的2倍.答选 B .【习题8】 (首师大附中2008-2009初三月考)定义:定点A 与O ⊙上的任意一点之间的距离的最小值称为点A 与O ⊙之间的距离.现有一矩形ABCD 如图,14cm 12cm AB BC ==,,K ⊙与矩形的边AB BC CD 、、分别相切于点E F G 、、,则点A 与K ⊙的距离为______________.GEK DB A【解析】 连结KE AK 、,由题意可知K ⊙的半径为6cm ,6cm EK AB BE ⊥=,,∴8cm AE =,∴2210cm AK AE EK =+=, ∴点A 与K ⊙的距离为1064cm -=.【备选1】 如图,CD 为O ⊙的直径,过点D 的弦DE 平行于半径OA ,若D ∠的度数是50︒,则C ∠的度数是 A .25︒ B .40︒ C .30︒ D .50︒O EDCA【解析】 A .【备选2】 (08泰安)如图,在O ⊙中,AOB ∠的度数为m ,C 是ACB 上一点,D E 、是AB 上不同的两点(不与A B 、两点重合),则D E ∠+∠的度数为____________.OEDCBA【解析】 ()136018022mD E m ∠+∠=︒-=︒-.【备选3】 如图,已知⊙O 的弦AB 、CD 相交于点E ,AC 的度数为60°,BD 的度数为100°,则AEC∠等于( )A . 60°B . 100°C . 80°D . 130°EDC BO A【解析】 连结BC ,则∠AEC =∠B +∠C =21×60°+21×100°=80°.所以答案是C .【备选4】 设Rt ABC ∆的两条直角边长分别为3,4则此直角三角形的内切圆半径为 ,外接圆半径为【解析】 内切圆半径为1()12r a b c =+-=;外接圆半径为 2.52cR ==.【备选5】 等边三角形的外接圆的半径等于边长的( )倍.月测备选A .23B .33C .3D .21【解析】 考察等边三角形与外接圆半径的关系,所以选B【备选6】 (08山东滨州)如图所示,AB 是⊙O 的直径,AD=DE ,AE 与BD 交于点C ,则图中与∠BCE相等的角有( )BAA . 2个B . 3个C . 4个D . 5个【解析】 考察同弧,等弧所对圆周角相等,所以选B .【备选7】 (宜宾)已知:如图,四边形ABCD 是O ⊙的内接正方形,点P 是劣弧CD 上不同于点C 的任意一点,则BPC ∠的度数是( )A.45︒ B .60︒ C.75︒ D.90︒P【解析】 连接BO ,CO ,可得90BOC ∠=︒,∴1452BPC BOC ∠=∠=︒,故选A .【备选8】 (09浙江温州)如图,80AOB ∠=︒,则弧AB 所对圆周角ACB ∠的度数是A .40︒B .45︒C .50︒D .80︒【解析】 A .【备选9】 Rt ABC ∆的两条直角边3BC =,4AC =,斜边AB 上的高为CD ,若以C 为圆心,分别以12r =,2 2.4r =,33r =为半径作圆,试判断D 点与这三个圆的位置关系.DCBA【解析】 在Rt ABC ∆中,90ACB ∠=︒,4AC =,3BC =,∴5AB =由面积相等得,AC BC AB CD ⋅=⋅.∴122.45AC BC CD AB ⋅===∴ 2.4d CD ==∴1d r >, 2d r =, 3d r <∴点D 与三个圆的位置关系分别是:在圆外,在圆上,在圆内.【点评】要判定点与圆的位置关系,就是要比较点到圆心的距离与半径的大小关系.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4)如何画三角形的外接圆?作两条边的垂直平分线 。
基础过关:
• • • • 三点确定圆的前提条件是 1.判断正误 “三点不在同一直线上” (1)经过三点可以作一个圆。(×) (2)三角形的外心就是这个三角形两边垂 直平分线的交点。 ( √ ) (3)三角形的外心到三角形三边的距离相 等。(× )
2.如图:已知A、B、C三点都在⊙O上, 内接三角形 ,⊙O是 那么△ABC是⊙O的_________ 外接圆 , △ABC的________ 外心 点O是△ABC的________ 。
1 个外接圆,一个圆 3.一个三角形有_____ 无数 个内接三角形。 有______ 4.三角形的三边分别为3、4、5,则此三 10 角形外接圆的直径是_______ 。 小结:锐角三角形的外心在三角形内 部;直角三角形的外心是斜边中点; 钝角三角形的外心在三角形外部
能力提升:
5.如图:等腰三角形ABC内接于半径为 5的⊙O,AB=AC,且tanB=1/3 。
知识梳理: 1.经过一点可以画 无数个圆;经过两个点可以画无数 个圆;经过不在同一直线上的三点可以画 1 个圆; 圆心和半径分别怎样确定? 2.定理3:不在同一直线上的三点 确定 一个圆。
经过三角形各顶点的圆。 3. 1)三角形的外接圆:
(三边垂直平分线的交点) 2)外心: 外接圆的圆心 。
3)圆的内接三角形:三个顶点在圆上的三角形 。
过不共线三点作圆
【温故知新】 1、圆周角定理:圆周角的度数等于它所 对弧上的圆心角度数的 一半 . 2、在同圆或等圆中,同弧或等弧 ___________所对的 圆周角相等,反之相等的圆周角所对的 直径 所对的圆周角是 弧 相等 ;__________ 直角,反之。90°的圆周角所对的弦是 直径 。 _________ 3、垂径定理:垂直于弦的直径 平分 这 条弦,并且平分弦所对的 两条弧 .
(1)求BC的
相关文档
最新文档