2.4过不共线三点作圆(第一课时)
湘教版九年级数学下册电子课本课件【全册】
![湘教版九年级数学下册电子课本课件【全册】](https://img.taocdn.com/s3/m/dbf48e14b9d528ea80c7794a.png)
0002页 0048页 0075页 0117页 0174页 0209页 0240页 0258页 0282页 0309页 0341页
第1章 二次函数 1.2 二次函数的图像与性质 1.4 二次函数与一元二次方程的联系 第2章 圆 2.2 圆心角、圆周角 2.4 过不共线三点作圆 2.6 弧长与扇形面积 第3章 投影与视图 3.2 直棱柱、圆锥的侧面展开图 第4章 概率 4.2 概率及其计算
第1章 二次函数
湘教版九年级数学下册电子课本课 件【全册】
1.1 二次函数
湘教版九年级数学下册电子课本课 件【全册】
1.2 二次函数的图像与性质
湘教版九年数的 表达式
湘教版九年级数学下册电子课本课 件【全册】
2.4 过不共线三点作圆
![2.4 过不共线三点作圆](https://img.taocdn.com/s3/m/83ced255b84ae45c3a358c16.png)
ቤተ መጻሕፍቲ ባይዱ复原了吗?
方法: 1、在圆弧上任取三点A、
A B
B、C;
2、作线段AB、BC的垂
直平分线,其交点O即为 圆心;
C O
3、以点O为圆心,OC长
为半径作圆.
⊙O即为所求.
2019/5/28
9
针对训练
1.某一个城市在一块空地新建了三个居民小区,它 们分别为A、B、C,且三个小区不在同一直线上, 要想规划一所中学,使这所中学到三个小区的距离 相等. 请问同学们, 这所中学建在哪个位置?你怎么 确定这个位置呢?
2019/5/28
21
3.三角形的外心具有的性质是( B ) A.到三边的距离相等. B.到三个顶点的距离相等. C.外心在三角形的外. D.外心在三角形内.
4. 正方形的四个顶点和它的中心共5个点能确定 ___5___个不同的圆.
2019/5/28
22
5. 如图,直角坐标系中一条圆弧经过网格点A、B、 C,其中,B点坐标为(4,4),则该圆弧所在圆的 圆心坐标为_(__2_,__0_)___.
A. 2 3 cm C. 6 3 cm
B. 4 3 cm D. 8 3 cm
2019/5/28
18
解析:过点A作BC边上的垂线交BC于点D,过点B作
AC边上的垂线交AD于点O,则O为圆心.
设⊙O的半径为R,由等边三角形的性质知:
∠OBC=30°,OB=R.
∴BD=cos∠OBC×OB=
3 2
R
,BC=2BD=
(3)点O应是线段AB、AC的_垂__直__平__分__线___交点,
半径为OA的长,所以__能___作圆.
2019/5/28
5
《过不共线三点作圆》导学案
![《过不共线三点作圆》导学案](https://img.taocdn.com/s3/m/197058e6561252d381eb6e23.png)
学习目标
1.了解不共线三点确定一个圆的方法,三角形的外接圆及外心等概念;
2.经历不共线三个点确定一个圆的探索过程,培养学生的探索能力.
重点难点
重点:掌握过不共线三点作圆的方法,了解三角形的外接圆及外心等概念.
难点:怎么样去确定过不在同一条直线上的三点的圆的圆心.
学习过程:
一、课前抽测: A B
A·
B· ·C
2.求边长为a的等边三角形的外接圆的半径.(用含有a的式子表示)
五、达标)⊙O是△ABC的圆.
2. 判断:
(1)经过三个点一定可以作圆;( )
(2)任意一个三角形一定有一个外接圆,并且只有一个外接圆;( )
(3)任意一个圆一定有一个内接三角形,并且只有一个内接三角形;( )
1.(1)经过一个已知点A画圆; ·A
想一想:经过已知点A可以画多少个圆?
(2)经过两个已知点C、B画圆.
想一想:①经过两个已知点可以画多少个圆?
C· · B
②圆心在哪儿?半径怎么确定?
2.设三点A,B,C不在同一直线上.
⑴过三点A,B,C的圆的圆心在哪儿?怎么确定?
A· ·B
C·
⑵过不在同一直线上的三点A,B,C如何作圆?
强调:(1)过同一直线上三点不行; (2)“确定”一词应理解成“有且只有”.
3.三角形的外接圆:.
圆的内接三角形:.
外心:.
三、合作探究:
例1:作出下列三角形的外接圆(只要作图痕迹,不要求作法)
归纳:锐角三角形的外心在三角形的
直角三角形的外心是三角形
钝角三角形的外心在三角形的
四、展示质疑:
1.如图,A、B、C表示三个工厂,要建一个供水站,使它到这三个工厂的距离相等,求供水站的位置(用点P表示,保留作图痕迹)。
九年级数学平面几何过三点的圆和垂径定理人教四年制知识精讲
![九年级数学平面几何过三点的圆和垂径定理人教四年制知识精讲](https://img.taocdn.com/s3/m/c2d8fcdaa5e9856a571260e0.png)
九年级数学平面几何过三点的圆和垂径定理人教四年制【同步教育信息】一. 本周教学内容:平面几何过三点的圆和垂径定理二. 学习要求:(过三点的圆)1. 定理:不在同一直线上的三个点确定一个圆:它的意思是如果有三个点,它们三点不共线,那么经过这三个点可以作一个圆并且只可以做一个圆。
2. 三角形的外接圆,外心以及圆的内接三角形:经过三角形三个顶点的圆叫做三角形的外接圆,外接圆的圆心叫三角形的外心,这个三角形叫做这个圆的内接三角形,如图:A、(二)学习要点:1. 圆的轴对称性:圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
2. 垂径定理:垂直于弦的直径平分这条弦且平分这条弦所对的两条弧。
如图:CD 是直径,AB 是弦,AB CD ⊥于E ,则有:AE=EB ,⋂⋂=DB AD ,⋂⋂=CB AC 。
理由是:因为圆是轴对称图形,CD 是直径是圆的对称轴,若延CD 将圆对折,则CD⋂⋂⋂⋂【典型例题】[例1] 如图,已知直径AB 和CD 相交于点E ,︒=∠==60,5,1BED cm BE cm AE ,求:OA B CD证:依题意:OC=OD ,OA=OB∴OD OBOC OA =且夹角O ∠∴OAB ∆∽OCD ∆ ∴ABCD OA OC =∴CD OA AB OC ⋅=⋅ [例3] ABC ∆中,︒=∠90C 直角边a 、b 分别是方程0132=+-x x 的两个根,求ABC Rt ∆外接圆面积。
解:∵a 、b 是0132=+-x x 两个根∴1,3==+ab b a72132)(22222=⨯-=-+==+ab b a c b a∴7=c ,而ABC Rt ∆外接圆半径=27 ∴ππ47)27(2=⋅=圆S [例4] 已知四边形ABCD 中,︒=∠=∠90D B ,求证ABCD 有外接圆。
ADBCO证:连AC ,取AC 中点O在ABC Rt ∆和ADC Rt ∆中,连OB 、OD 则OC AO AC OD OB ====21∴A 、B 、C 、D 在以O 为圆心,以OA 为半径的圆上[例5] 如图,AB 是⊙O 的直径,CD 是⊙O 的一条弦,延长DC 与BA 的延长线交于P ,且PC=OB ,︒=∠99BOD ,求P ∠的度数。
《圆的确定》教学设计
![《圆的确定》教学设计](https://img.taocdn.com/s3/m/e490af89370cba1aa8114431b90d6c85ed3a886f.png)
《圆的确定》教学设计一.内容和内容分析【内容】沪科版教材九年级下册“25.3圆的确定(第一课时)”【内容分析】“圆的确定”首先与作直线类比, 引入经过已知点作圆的问题即探索经过一个点、两个点、三个点分别能否作出圆、能作多少个圆的问题, 归纳总结出“不在同一直线上的三个点确定一个圆的结论, 培养学生的探索精神, 体会在这一过程中体现的归纳思想。
基于此, 本节课的教学重点是:1.理解不共线三点确定一个圆及其作图方法。
2.了解三角形的外接圆、三角形的外心等概念.二.教学目标【知识与技能】1.理解不在同一直线上的三个点确定一个圆;2.掌握过不在同一直线上的三个点作圆的方法;3.了解三角形的外接圆、三角形的外心等概念, 提高应用数学知识解决实际问题的能力。
【过程与方法】经历不在同一直线上的三个点确定一个圆的探索过程,体会归纳、类比以及由特殊到一般的数学思想方法。
【情感态度价值观】1.形成解决问题的一些基本策略, 体验解决问题策略的多样性, 发展实践能力与创新精神.2.学会与人合作, 并能与他人交流思维的过程和结果.三、学情分析学生已有的认知基础有:(1)圆的初步认识;(2)线段的垂直平分线的性质定理。
(3)尺规作图的基本步骤。
本节课所探究的是“过不在同一直线上三点能确定一个圆”的性质, 学生的思维需要有一个渐进过程。
基于此, 本节课的教学难点是:经历不在同一条直线上的三个点确定一个圆的探索过程, 并能过不在同一条直线上的三个点作圆.四、教学支持条件利用多媒体展示教学的部分环节, 如创设情境, 推导规律等, 以支持课堂教学, 突出重点, 突破难点。
五.教学过程设计(一)创设情境快乐起航问题1:小明不慎把家里的圆形玻璃打碎了, 其中四块碎片如图所示, 为配到与原来大小一样的圆形玻璃, 小明带到商店去的一块玻璃碎片应该是哪一块?问题2:玻璃店里的师傅, 要划出一块与原来大小一样的圆形玻璃, 他只要知道圆的什么就可以了?为什么?板书课题 25.3 圆的确定(二)、知识回顾1、过一点可以作几条直线?2、过几点可确定一条直线?那么, 过几点可以确定一个圆呢?(三)探究新知, 构建课堂活动一:过定点A是否可以作圆?如果能作?可以作几个?学生交流讨论投影演示活动二:过两个定点A、B是否可以作圆?如果能作, 可以作几个?学生交流讨论:圆心的位置在哪儿?投影演示活动三:过三点, 是否可以作圆, 如果能, 可以作几个?1、如图, 过A、B、C三点如何作圆?分析:(1)过A、B、C三点能否作圆, 关键是看能否找到一点O, 使OA=OB=0C.(2)若经过A、B两点, 圆心O的位置应在哪儿?经过B、C两点呢?作法:作法图示1.连结AB、BC2.分别作AB、BC的垂直平分线DE和FG, DE和FG相交于点O3.以O为圆心, OA为半径作圆O就是所要求作的圆2、讨论:过同一直线上三点(如图所示)能不能做圆? 为什么?C.B.A.[师]由上可知, 过已知一点可作无数个圆.过已知两点也可作无数个圆, 过不在同一条直线上的三点可以作一个圆, 并且只能作一个圆.定理不在同一直线上的三个点确定一个圆.活动四:合作交流, 再获新知连接AC, 得ABC,形成概念:三角形的外接圆、三角形的外心、圆的内接三角形。
过不共线三点做圆
![过不共线三点做圆](https://img.taocdn.com/s3/m/b22034e4970590c69ec3d5bbfd0a79563c1ed436.png)
如图:⊙O是△ABC的
外接圆, △ABC是⊙O
的内接三角形,点O是
O C △ABC的外心
B
外心是△ABC三条边的垂
直平分线的交点,它到三角
形的三个顶点的距离相等。
A
A
A
●O
●O
B
┐
CB
C
●O
B
C
锐角三角形的外心位于三角形内. 直角三角形的外心位于直角三角形斜边中点. 钝角三角形的外心位于三角形外.
运用新知
某一个城市在一块空地新建了三个居 民小区,它们分别为A、B、C,且三个小区 不在同一直线上,要想规划一所中学,使 这所中学到三个小区的距离相等。请问同 学们这所中学建在哪个位置?你怎么确定 这个位置呢?
●A
B●
●C
课堂小结
1、通过本课的学习,你有什么收获?还有什么问题?
2、确定圆的条件——
长沙马王堆一号汉墓的 发掘,在我国的考古界算得 上惊人的发现,在世界考古 学史上,也产生了深远的影 响。一位考古学家在马王堆 汉墓挖掘时,发现一圆形瓷 器碎片,你能帮助这位考古 学家将这个破损的圆形瓷器 复原,以便于进行深入的研 究吗?
知识回顾
1、确定一个圆的基本条件是 什么?
2、如何作线段的垂直平分线, 它有什么性质?
A N
F
作法: 1、连结AB,作线段AB的垂
直平分线MN;
B
EO
M
C 2、连接AC,作线段AC的垂 直平分线EF,交MN于点O;
3、以O为圆心,OA为半径作
圆。
所以⊙O就是所求作的圆。
课题:不在同一条直线 上的三个点确定一个圆
如果三个点在同一直线时可以作圆吗? 为什么?
2024年人教版九年级数学上册教案及教学反思全册第24章 圆(教案) 点和圆的位置关系教案
![2024年人教版九年级数学上册教案及教学反思全册第24章 圆(教案) 点和圆的位置关系教案](https://img.taocdn.com/s3/m/22d8cb42a66e58fafab069dc5022aaea998f412d.png)
24.2 点和圆、直线和圆的位置关系24.2.1 点和圆的位置关系一、教学目标【知识与技能】1.掌握点与圆的三种位置关系及数量间的关系.2.探求过点画圆的过程,掌握过不在同一直线上三点画圆的方法.3.了解运用“反证法”证明命题的思想方法.【过程与方法】通过生活中的实例探求点和圆的三种位置关系,并提炼出数量关系,从而渗透数形结合,分类讨论等数学思想.【情感态度与价值观】形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神.二、课型新授课三、课时1课时。
四、教学重难点【教学重点】(1)点与圆的三种位置关系.(2)过三点作圆.【教学难点】点与圆的三种位置关系及其数量关系反证法五、课前准备课件、图片、圆规、直尺等.六、教学过程(一)导入新课我国射击运动员在奥运会上获金牌,为我国赢得荣誉.如图是射击靶的示意图,它是由许多同心圆(圆心相同,半径不相同)构成的,你知道击中靶上不同位置的成绩是如何计算的吗?(出示课件2)解决这个问题要研究点和圆的位置关系.(板书课题)(二)探索新知探究一点和圆的位置关系教师问:观察下图中点和圆的位置关系有哪几种?(出示课件4)学生交流,回答问题.教师点评:点与圆的位置关系有三种:点在圆内,点在圆上,点在圆外.教师问:设点到圆心的距离为d,圆的半径为r,量一量在点和圆三种不同位置关系时,d与r有怎样的数量关系?(出示课件5)学生答:教师问:反过来,由d与r的数量关系,怎样判定点与圆的位置关系呢?学生观察思考交流后,师生共同得到结论:(出示课件6)点与圆的三种位置关系及其数量间的关系:边结论.读作“等价于”.⑵要明确“d”表示的意义,是点P到圆心O的距离.出示课件7,8:例如图,已知矩形ABCD的边AB=3,AD=4.(1)以A为圆心,4为半径作⊙A,则点B、C、D与⊙A的位置关系如何?(2)若以A点为圆心作⊙A,使B、C、D三点中至少有一点在圆内,且至少有一点在圆外,求⊙A的半径r的取值范围?(直接写出答案)学生独立思考后,师生共同解答.解:⑴AD=4=r,故D点在⊙A上;AB=3<r,故B点在⊙A内;AC=5>r,故C点在⊙A外.⑵3≤r≤5.巩固练习:(出示课件9)1.⊙O的半径为10cm,A、B、C三点到圆心的距离分别为8cm、10cm、12cm,则点A、B、C与⊙O的位置关系是:点A在_______;点B在_______;点C在_______.2.圆心为O的两个同心圆,半径分别为1和2,若,则点P在()A.大圆内B.小圆内C.小圆外D.大圆内,小圆外学生独立思考后口答:1.圆内;圆上;圆外 2.D探究二过不共线三点作圆教师问:如何过一个点A作一个圆?过点A可以作多少个圆?(出示课件10)学生动手探究,作图,交流,得出结论,教师点评并总结.以不与A点重合的任意一点为圆心,以这个点到A点的距离为半径画圆即可;可作无数个圆.教师问:如何过两点A、B作一个圆?过两点可以作多少个圆?(出示课件11)学生动手探究,作图,交流,得出结论,教师点评并总结.作线段AB的垂直平分线,以其上任意一点为圆心,以这点和点A或B的距离为半径画圆即可;可作无数个圆.教师问:过不在同一直线上的三点能不能确定一个圆?(出示课件12)学生思考后师生共同解答:经过A,B两点的圆的圆心在线段AB的垂直平分线上.经过B,C两点的圆的圆心在线段BC的垂直平分线上.经过A,B,C三点的圆的圆心应该在这两条垂直平分线的交点O的位置.教师归纳:不在同一直线上的三点确定一个圆.(出示课件13)出示课件14:例已知:不在同一直线上的三点A、B、C.求作:⊙O,使它经过点A、B、C.学生动手探究,作图,交流后,师生共同解答.作法:1.连接AB,作线段AB的垂直平分线MN;2.连接AC,作线段AC的垂直平分线EF,交MN于点O;3.以O为圆心,OB为半径作圆.所以⊙O就是所求作的圆.教师问:现在你知道怎样将一个如图所示的破损的圆盘复原了吗?(出示课件15)学生动手探究,交流,在教师指导下作图.作法:1.在圆弧上任取三点A、B、C;2.作线段AB、BC的垂直平分线,其交点O即为圆心;3.以点O为圆心,OC长为半径作圆.⊙O即为所求.巩固练习:(出示课件16)如图,CD所在的直线垂直平分线段AB,怎样用这样的工具找到圆形工件的圆心.学生独立思考后口答:∵A、B两点在圆上,所以圆心必与A、B两点的距离相等,又∵和一条线段的两个端点距离相等的点在这条线段的垂直平分线上,∴圆心在CD所在的直线上,因此可以做任意两条直径,它们的交点为圆心.探究三三角形的外接圆及外心已知△ABC,用直尺与圆规作出过A、B、C三点的圆.(出示课件17)学生复述作法.教师对照图形进行归纳:(出示课件18)1.外接圆:经过三角形三个顶点可以作一个圆,这个圆叫做三角形的外接圆.⊙O叫做△ABC的外接圆,△ABC叫做⊙O的内接三角形.2.三角形的外心定义:外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.作图:三角形三边中垂线的交点.性质:到三角形三个顶点的距离相等.练一练:判断下列说法是否正确.(出示课件19)(1)任意的一个三角形一定有一个外接圆.( )(2)任意一个圆有且只有一个内接三角形.( )(3)经过三点一定可以确定一个圆. ( )(4)三角形的外心到三角形各顶点的距离相等.( )学生口答:⑴√⑵×⑶×⑷√画一画:分别画一个锐角三角形、直角三角形和钝角三角形,再画出它们的外接圆,观察并叙述各三角形与它的外心的位置关系.(出示课件20)学生动手探究,作图,交流后,教师总结.锐角三角形的外心位于三角形内,直角三角形的外心位于直角三角形斜边的中点,钝角三角形的外心位于三角形外.出示课件21,22:例1 如图,将△AOB置于平面直角坐标系中,O为原点,∠ABO=60°,若△AOB的外接圆与y轴交于点D(0,3).(1)求∠DAO的度数;(2)求点A的坐标和△AOB外接圆的面积.学生独立思考后师生共同解答.解:(1)∵∠ADO=∠ABO=60°,∠DOA=90°,∴∠DAO=30°;⑵∵点D的坐标是(0,3),∴OD=3.在Rt△AOD中,∵∠DOA=90°,∴AD为直径.又∵∠DAO=30°,∴AD=2OD=6,OA=因此圆的半径为3.点A的坐标(0),∴△AOB外接圆的面积是9π.教师强调:解题妙招:图形中求三角形外接圆的面积时,关键是确定外接圆的直径(或半径)长度.巩固练习:(出示课件23)如图,已知直角坐标系中,A(0,4),B(4,4),C(6,2).(1)写出经过A,B,C三点的圆弧所在圆的圆心M的坐标.(2)判断点D(5,-2)和圆M的位置关系.学生独立解答.解:(1)在方格纸中,线段AB和BC的垂直平分线相交于点(2,0),所以圆心M的坐标为(2,0).(2)圆的半径AM==线段DM所以点D在圆M内.出示课件24:例2 如图,在△ABC中,O是它的外心,BC=24cm,O到BC的距离是5cm,求△ABC的外接圆的半径.学生独立思考后师生共同解答.解:连接OB ,过点O 作OD ⊥BC.则OD =5cm ,112cm 2BD BC ==在Rt △OBD 中,13cm OB ==,即△ABC 的外接圆的半径为13cm.巩固练习:(出示课件25)在Rt △ABC 中,∠C=90°,AC=6 cm,BC=8cm,则它的外心与顶点C 的距离为( )A.5cmB.6cmC.7cmD.8cm学生思考后口答:A探究四 反证法教师问:经过同一条直线上的三个点能作出一个圆吗?(出示课件26)学生动手探究,作图,交流后,师生共同解答.如图,假设过同一条直线l 上三点A 、B 、C 可以作一个圆,设这个圆的圆心为P.那么点P 既在线段AB 的垂直平分线l 1上,又在线段BC 的垂直平分线l 2上,即点P 为l 1与l 2的交点.而l 1⊥l ,l 2⊥l 这与我们以前学过的“过一点有且只有一条直线与已知直线垂直”相矛盾.所以过同一条直线上的三点不能作圆.教师归纳:(出示课件27)1.反证法的定义先假设命题的结论不成立,然后由此经过推理得出矛盾(常与公理、定理、定义或已知条件相矛盾),由矛盾判定假设不正确,从而得到原命题成立,这种方法叫做反证法.2.反证法的一般步骤⑴假设命题的结论不成立(提出与结论相反的假设);⑵从这个假设出发,经过推理,得出矛盾;⑶由矛盾判定假设不正确,从而肯定命题的结论正确.出示课件28:例求证:在一个三角形中,至少有一个内角小于或等于60°.师生共同解答.已知:△ABC.求证:△ABC中至少有一个内角小于或等于60°.证明:假设△ABC中没有一个内角小于或等于60°,则∠A>60°,∠B>60°,∠C>60°.因此∠A+∠B+∠C>180°.这与三角形的内角和为180度矛盾.假设不成立.因此△ABC中至少有一个内角小于或等于60°.巩固练习:(出示课件29)利用反证法证明“在直角三角形中,至少有一个锐角不大于45°”时,应先假设()A.有一个锐角小于45°B.每一个锐角都小于45°C.有一个锐角大于45°D.每一锐角都大于45°学生口答:D(三)课堂练习(出示课件30-36)1.已知△ABC的三边a,b,c,满足a+b2+|c﹣,则△ABC的外接圆半径=______.2.如图,⊙O是△ABC的外接圆,∠A=45°,BC=4,则⊙O的直径为______.3.如图,请找出图中圆的圆心,并写出你找圆心的方法?4.正方形ABCD的边长为2cm,以A为圆心2cm为半径作⊙A,则点B在⊙A______;点C在⊙A______;点D在⊙A______.5.⊙O的半径r为5cm,O为原点,点P的坐标为(3,4),则点P与⊙O的位置关系为()A.在⊙O内B.在⊙O上C.在⊙O外D.在⊙O上或⊙O外6.已知:在Rt△ABC中,∠C=90°,AC=6,BC=8,则它的外接圆半径=______.7.如图,△ABC内接于⊙O,若∠OAB=20°,则∠C的度数是________.8.如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是()A.点P B.点Q C.点R D.点M9.画出由所有到已知点的距离大于或等于2cm并且小于或等于3cm的点组成的图形.10.某地出土一明代残破圆形瓷盘,如图所示.为复制该瓷盘要确定其圆心和半径,请在图中用直尺和圆规画出瓷盘的圆心.参考答案:1.2582.3.解:如图所示.4.上;外;上5.B6.57.70°8.B9.解:如图所示.10.解:(1)在圆形瓷盘的边缘选A、B、C三点;(2)连接AB、BC;(3)分别作出AB、BC的垂直平分线;(4)两垂直平分线的交点就是瓷盘的圆心.(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流.(五)课前预习预习下节课(24.2.2第1课时)的相关内容.七、课后作业1.教材95页练习2.2.配套练习册内容八、板书设计:九、教学反思:本节课通过学生操作,总结出了点与圆的三种位置关系,其中渗透着分类讨论的思想,经过探讨过一点、两点、三点作圆,得出了不在同一直线上三点确定一个圆,从而自然引出三角形外接圆、外心及圆内接三角形的定义,此外还学习了用反证法证明命题的方法和步骤.这些定理都是从学生实践中得出的,培养了学生动手的能力.。
湘教版初中数学九年级下册课程目录与教学计划表
![湘教版初中数学九年级下册课程目录与教学计划表](https://img.taocdn.com/s3/m/c56e67bc87c24028905fc377.png)
湘教版初中数学九年级下册课程目录与教学计划表
教材课本目录是一本书的纲领,是教与学的路线图。
不管是做教学计划、实施教学活动,还是做复习安排、工作总结,都离不开目录。
目录是一本书的知识框架,要做到心中有书、胸有成竹,就从目录开始吧!
课程目录教学计划、进度、课时安排
第1章二次函数
1.1 二次函数
1.2 二次函数的图象与性质
*1.3 不共线三点确定二次函数的表达式
1.4 二次函数与一元二次方程的联系
1.5 二次函数的应用
小结与复习
第2章圆
2.1 圆的对称性
2.2 圆心角、圆周角
*2.3 垂径定理
2.4 过不共线三点作圆
2.5 直线与圆的位置关系
2.6 弧长与扇形面积
2.7 正多边形与圆
小结与复习
第3章投影与视图
3.1 投影
3.2 直棱柱、圆锥的侧面展开图
3.3 三视图
小结与复习
第4章概率
4.1 随机事件与可能性4.2 概率及其计算4.2.1 概率的概念
4.2.2 用列举法求概率4.3 用频率估计概率小结与复习
总复习。
九年级数学下册《过不共线三点作圆》优秀教学案例
![九年级数学下册《过不共线三点作圆》优秀教学案例](https://img.taocdn.com/s3/m/ad5baa12ce84b9d528ea81c758f5f61fb73628cd.png)
在本章节的教学过程中,教师应关注学生的全面发展,将知识与技能、过程与方法、情感态度与价值观有机地结合起来,使学生在掌握基本几何知识的同时,提高自身的综合素质,为未来的学习和发展奠定坚实的基础。
三、教学策略
(一)情景创设
1.创设生活化的教学情境,以学生熟悉的事物或场景作为引入,如校园里的圆形花坛、篮球场的圆形边界等,让学生感受到圆就在我们的身边,激发他们的学习兴趣。
4.通过对几何性质的学习和证明,使学生掌握几何学的基本研究方法和思维方式,提高学生的几何素养。
(三)情感态度与价值观
1.激发学生对数学几何学科的兴趣,培养他们主动探究、勇于创新的科学精神。
2.培养学生严谨、细心的学习态度,使他们认识到几何学习的严密性和逻辑性,从而提高学习的自觉性和自律性。
3.引导学生关注数学与生活的联系,体会数学在现实生活中的广泛应用,增强数学学习的实用性和价值感。
3.教师巡回指导,关注每个小组的讨论情况,给予适当的提示和引导,确保讨论的有效性。
(四)总结归纳
1.邀请各小组代表汇报讨论成果,让学生在倾听他人观点的过程中,加深对知识点的理解。
2.教师针对学生的讨论成果进行点评,总结“过不共线三点作圆”的基本原理、尺规作图方法以及几何证明过程。
3.强调本节课的重点和难点,指导学生掌握几何学习的思维方法和技巧。
4.能够运用所学的知识,解决一些与圆相关的实际问题,如测量圆形场地、设计圆形图案等。
(二)过程与方法
1.通过小组合作和自主探究,培养学生的团队合作意识和解决问题的能力,让学生在实践中学会如何观察、分析和解决问题。
2.引导学生运用尺规作图、直观演示等方法,提高学生的动手操作能力和空间想象能力。
《点和圆的位置关系》圆PPT精品课件
![《点和圆的位置关系》圆PPT精品课件](https://img.taocdn.com/s3/m/bfc0a58e77eeaeaad1f34693daef5ef7ba0d12cb.png)
A N
作法:1. 连接AB,作线段AB的垂 F 直平分线MN;
2. 连接AC,作线段AC的垂直平分 B E O M C 线EF,交MN于点O;
3. 以O为圆心,OB为半径作圆.
所以⊙O就是所求作的圆.
探究新知
问题4:现在你知道怎样将一个如图所示的破损的圆盘复原
了吗?
方法: 1. 在圆弧上任取三点A、B、C;
点 △ABC叫做⊙O的__内__接__三__角__形__.
●O
归
三角形的外心:
B
C
定义:外接圆的圆心是三角形三条边垂直平分线的交点,
纳
叫做三角形的外心. 作图:三角形三边中垂线的交点.
性质:到三角形三个顶点的距离相等.
探究新知
【练一练】 判断下列说法是否正确.
(1)任意的一个三角形一定有一个外接圆.( √ ) (2)任意一个圆有且只有一个内接三角形.( × ) (3)经过三点一定可以确定一个圆. ( × ) (4)三角形的外心到三角形各顶点的距离相等.( √ )
r≤d≤R
注意:同一直线上的三个点不能作圆
课堂小结
一个三角形的外 接圆是唯一的
反定
义
证
法步
骤
三
定义
角 形
性质
的
外
在各类三角形
心
中的位置
假设,推理,得证
例1 如图,将△AOB置于平面直角坐标系中,O为原点, ∠ABO=60°,若△AOB的外接圆与y轴交于点D(0,3). (1)求∠DAO的度数; (2)求点A的坐标和△AOB外接圆的面积.
解:(1)∵∠ADO=∠ABO=60°, ∠DOA=90°,
∴∠DAO=30°;
探究新知 (2)求点A的坐标和△AOB外接圆的面积.
新湘教版九年级下册第二章圆教案
![新湘教版九年级下册第二章圆教案](https://img.taocdn.com/s3/m/7e9bc055be23482fb4da4c57.png)
一、情境导入,初步认识若∠OAB=50°,圆心角定理是圆中证弧等、弦等、弦心距等、圆心角等的常用方法.1.教材P56第1、2题一、情境导入,初步认识阅读教材上,并且两边都与圆_________的角叫做圆周角.,_____或_______所对的圆周角相等,都等于这条弧所对的第2题图第3题图1.教材P56第3~5题.一、情境导入,初步认识则凹面是半圆形状,与该圆⊥AB于E,BD1.教材P57第7~9题.一、情境导入,初步认识能发现图中有哪些等量关系?与垂径定理有关的证明.于1.教材P60第1、2题一、情境导入,初步认识学生就读的学校离家太远,给让三个村到学校的).试求小明家圆形花坛的面积.一条边上的是()1.教材P63第1、2题一、情境导入,初步认识O的位置关系是1.教材P65第1题.一、情境导入,初步认识有怎样的位置关系?为什么?来得到切线的判定.到直线的距离的大小关系,让学生用自己的以三角形的一边长为直径的圆切三角形的另一边,则该三角形为()BE=CF,试本堂课主要学习了切线的判定定理及切线的画法,通过1.教材P75第2~3题.如图,两个圆心图,大圆的半径为5,小圆的半径为3,若大圆的弦为直径,以O为圆心的半圆为△ABC的角平分线,且一、情境导入,初步认识、PB为⊙O的两条切BPO.BAC的度数是_____.第1题图第2题图外一点P引⊙O的两条切线PA、PB,切点分别为第3题图第4题图,AD,DC,BC都与⊙O相切则∠DOC=______.是⊙O的直径,AM和是它的两条切线,DE切⊙1.教材P75第5题,P一、情境导入,初步认识教师引导学生,作与三角形三边相切的圆,圆心到三角形的三条边的距离相等的度数.第2题图第3题图中,∠C=90°,AC=5,⊙O与Rt△ABC的三边r=2,则△ABC的周长为______.第4题图5题图1.教材P75第6、7题,一、情境导入,初步认识二、思考探究,获取新知在同圆或等圆中,如果圆心角相等那么它们所对的弧长_______.度的圆心角所对的弧长,则这个扇形的半径为()第4题图第5题图一块等边三角形的木板,边长为1,现将木板沿水平线无滑动翻滚1.教材P81页第1题.一、情境导入,初步认识你能求出做这把扇子用了多少纸吗,完成下列各题:求阴影部分的面积.为半径1.教材P81第2、3题动手画一画.段弧,依次连接各分点得六边形ABCDEF,该六边形与正方形、正五边形、正六边形进行探若是轴对称图形,请画出所有对湖北恩施中考)下列图形中,有且只有两条对称轴的中心对称图形是()求1.教材P86第1、2题一、知识框图,整体把握二、释疑解惑,加深理解1.垂径定理及推论的应用垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧D.PO=PD 第1题图第2题图分别为1.布置作业:从教材“复习题。
《过不共线三点作圆》习题
![《过不共线三点作圆》习题](https://img.taocdn.com/s3/m/89ce213d192e45361166f50c.png)
《过不共线三点作圆》习题
1、经过一点可以作个圆,经过两点可以作个圆,经过不在同一条直线上的三个点个圆;
2、经过三角形三个顶点的圆叫做三角形的,这个圆的圆心是三角形三条边的的交点,叫做三角形的,它到三角形的距离相等;
3、锐角三角形的外心位于,直角三角形的外心位于,钝角三角形的外心位于.
4、钝角三角形的外心在三角形的外部.()
5、锐角三角形的外心在三角形的内部.()
6、有一个三角形的外接圆的圆心在它的某一边上则这个三角形一定是直角三角形.()
7、下列条件,可以画出圆的是()
A.已知圆心B.已知半径
C.已知不在同一直线上的三点D.已知直径
8、三角形的外心是()
A.三条中线的交点B.三条边的中垂线的交点
C.三条高的交点D.三条角平分线的交点
9、下列命题不正确的是()
A.三点确定一个圆B.三角形的外接圆有且只有一个
C.经过一点有无数个圆D.经过两点有无数个圆
10、一个三角形的外心在它的内部,则这个三角形一定是()
A.等腰三角形B.直角三角形
C.锐角三角形D.等边三角形
11、已知三角形的三边长分别为,,,求它的外接圆半径.。
24.2.1点和圆的位置关系(教案)
![24.2.1点和圆的位置关系(教案)](https://img.taocdn.com/s3/m/e9591fd980c758f5f61fb7360b4c2e3f572725ee.png)
24.2点和圆、直线和圆的位置关系24.2.1点和圆的位置关系【知识与技能】1•掌握点与圆的三种位置关系及数量间的关系.2.探求过点画圆的过程,掌握过不在同一直线上三点画圆的方法.3.了解运用“反证法〃证明命题的思想方法.【过程与方法】通过生活中的实例探求点和圆的三种位置关系,并提炼出数量关系,从而渗透数形结合,分类讨论等数学思想.【情感态度】形成解决问题的一些根本策略,体验解决问题策略的多样性,开展实践能力与创新精神.【教学重点】〔1〕点与圆的三种位置关系.〔2〕过三点作圆.【教学难点】点与圆的三种位置关系及其数量关系反证法一、情境导入,初步认识射击是奥运会的一个正式体育工程,我国运发动在奥运会上屡获金牌,为我国赢得了荣誉,如下图是射击靶的示意图,它是由假设干个同心圆组成的,射击成绩是由击中靶子不同位置所决定的•图中是一位运发动射击10发子弹在靶上留下的痕迹.你知道如何计算运发动的成绩吗?点在圆外.解*.*OB=4cm, 从数学的角度来看,这是平面上的点与圆的位置关系,我们今天这节课就来研究这一问题,引出课题.【教学说明】随着现在经济科技的开展,奥运会越来越被人们所重视.本节通过学生熟悉的射击比赛成绩的算法,使学生在开拓知识视野的同时,感知点与圆的几种位置关系,体会数学在生活中应用.二、思考探究,获取新知1•点与圆的位置关系我们取刚刚射击靶上的一局部图形来研究点与圆存在的几种位置关系. 议一议如下列图,O O 的半径为4cm,0A=2cm,0B=4cm,0C=5cm ,那么,点A 、B 、C 与©O 有怎样的位置关系?°・°OA=2cm V 4cm ,・°・点A 在©O 内.•・・OC=5cm >4cm ,・・・点C 在©O 夕卜.【教学说明】由前面所学的“圆上的点到圆心的距离都等于半径〃,反之“到圆心的距离都等于半径的点都在圆上〃可知点B 一定在©O 上.然后引导学生看图形,初步体会并认识到点与圆的位置关系可以转化为数量关系•为下面得出结论作铺垫.点在圆【归纳结论】点与圆的三种位置关系及其数量间的关系:设©0的半径为r,点P到圆心0的距离为d.则有:点P在©0外d>r点P在©0上d=r点P在©0内d V r注:①“〃表示可以由左边推出右边的结论,也可由右边推出左边结论.读作“等价于〃.②要明确“d〃表示的意义,是点P到圆心0的距离.2•圆确实定探究〔1〕如图〔1〕,作经过点的圆,这样的圆你能作出多少个?〔2〕如图〔2〕,作经过点A、B的圆,这样的圆能作多少个?它们的圆心分布有什么特点?学生动手探究,作图,交流,得出结论,教师点评并总结.解:〔1〕过点A画圆,可作无数个圆.这些圆的圆心分布于平面的任意一点,半径是任意长的线段〔仅过点A,既不能确定圆心,也不能确定半径.〕〔2〕过的两点A、B也可作无数个圆.这些圆的圆心分布在线段AB的垂直平分线上•因为线段垂直平分线上的点到线段两端点的距离相等.〔注:仅过点A、B,同样不能确定圆心,也不能确定半径.〕思考在平面上有不共线的三点A、B、C,过这三个点能画多少个圆?圆心在哪里?解:经过A、B两点的圆,圆心在线段AB的垂直平分线上.经过A、C两点的圆,圆心在线段AC的垂直平分线上,那么这两条垂直平分线一定相交,设交点为0,则OA=OB=OC,于是以O为圆心,以OA为半径的圆,必过B、C两点,所以过不在同一直线上的A、B、C三点有且仅有一个圆.【归纳结论】不在同一直线上的三点确定一个圆.由此结论要延伸到:经过三角形三个顶点可以作一个圆,并且只能作一个,这个圆叫做三角形的外接圆.三角形的外接圆的圆心叫做这个三角形的外心.这个三角形叫做这个圆的内接三角形.三角形的外心一一三角形三边垂直平分线的交点.它到三角形三个顶点的距离相等.【教学说明】这段中心问题是过点作圆,在帮助学生分析这一问题时,紧紧抓住圆心和半径来研究.在三点共圆的问题上,一定要强调“不共线的三点〃.这里学生实际动手作图的内容很多,可以充分调动学生学习的主动性和积极性,通过学生的动手操作和动脑思考,增强学生对知识的理解和领悟.议一议如果A、B、C三点在同一直线上,能画出经过这三点的圆吗?为什么?f\1 1.4B(:解:如图,假设过同一直线l上的三点A、B、C能作一个圆,圆心为P,则点P既在线段AB的垂直平分线11上,又在线段BC的垂直平分线12上,即点P 是直线11与直线12的交点,由此可得:过直线l外一点P作直线l的垂线有两条1]和12,这与以前学的“过一点有且仅有一条直线与直线垂直〃相矛盾,•:过同一直线上的三点不能作圆.【教学说明】所有学生都会看出这问题一定不能作圆,但如何证明呢这是一个事实,直接证明有些困难,于是引入了反证法.反证法是间接证明问题的一种方法.它不是直接从命题的得出结论,而是假设命题的结论不成立,由此经过推理得出矛盾,从矛盾断定所作的假设不成立,从而得出原命题成立,这种方法叫做反证法•阶段接触的较为简单.三、典例精析,掌握新知例1©0的半径为10cm,根据点P到圆心的距离:⑴8cm,⑵10cm,⑶13cm,判断点P与©O的位置关系?并说明理由.解:由题意可知:r=10cm.(1)d=8cm V10cm,d V r点P在©O内;(2)d=10cm,d=r点P在©O上;(3)d=13cm>10cm,d>r点P在©O夕卜.例2如图,在A地往北90m处的B处,有一栋民房,东120m的C处有一变电设施,在BC的中点D处有一古建筑.因施工需要必须在A处进行一次爆破,为使民房,变电设施,古建筑都不遭破坏,问爆破影响的半径应控制在什么范围之内?解:由题设可知:AB=90m,AC=120m,Z BAC=90°,由勾股定理可得:BC=JAB2+AC2^.'902+1202=150〔m〕.又T D是BC的中点,・・・AD=1/2BC=75〔m〕.・•・民房B,变电设施C,古建筑D到爆破中心的距离分别为:AB=90m,AC=120m,AD=75m.要使B、C、D三点不受到破坏,即B、C、D三点都在©A 外,•:©A的半径要小于75m.即:爆破影响的半径控制在小于75m的范围,民房、变电设施,古建筑才能不遭破坏.【教学说明】例1可让学生独立思考,尝试写出过程;教师点评,并标准书写格式•例2是对本节知识的实际应用,教师引导学生分析问题,使学生学会将实际问题转化为数学问题,从而认识到问题的本质,也让学生体会到数学是与实际生活紧密相连的.四、运用新知,深化理解1.如图,在Rt A ABC中,Z C=90°,AC=4,BC=3,D、E分别为AB、AC的中点,现以点B为圆心,BC的长为半径作©B,试问A、C、D、E四点分别与©B的位置关系?2.如图,①0是厶ABC的外接圆,且AB=AC=13,BC=24,求©0的半径.3.如图,有一个三角形鱼塘,在它的3个顶点A、B、C三处均有一棵大白杨树,现设想把三角形鱼塘扩建成圆形养鱼场,但必须保持白杨树不动,请问能否实现这一设想?假设能,请设计画出示意图;假设不能,说明理由.【教学说明】上述三道题,教师可先给出提示,再让学生自主探究,或分组讨论,最后加以评析.题1是有关点和圆的位置关系,意在帮助学生加深理解新知,题2是外接圆的知识,题3是确定圆的知识的实际应用.【答案】1.解:连接EB.VZ C=90°,AC=4,BC=3,A AB=5.V E>D分别为AC、AB的中点,・・・DB=1/2AB=2.5,EC=1/2AC=2,EB=.EC2+BC2•・・AB=5>3,・・・点A在©B夕卜;•・・CB=3,・・・点C在©B上;V DB=2.5<3,・••点D在©B内;・.・EB=33>3,・・・点E在©B夕卜.2.解:・.・AB=AC,・•・AB二AC,即A是BC的中点.故连接OB,0A,则0A丄BC,设垂足为D.在Rt A ABD中,AD=\;'AB2-BD2=032-122=5.设©O的半径为r,则在Rt^OBD中,r2=(r-5)2+122,解得r=16.9.3.只要作厶ABC的外接圆即可.五、师生互动,课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流•【教学说明】学生自主发言,教师进行点评和补充,要向学生强调反证法和数形结合的数学思想.1.布置作业:从教材“习题24.2〃中选取.2.完成练习册中本课时练习的“课后作业〃局部.本节课通过复习圆的定义入手,通过学生操作,总结出了点与圆的三种位置关系,其中渗透着分类讨论的思想,经过探讨过一点、两点、三点作圆,得出了不在同一直线上三点确定一个圆,从而自然引出三角形外接圆、外心及圆内接三角形的定义,此外还学习了用反证法证明命题的方法和步骤•这些定理都是从学生实践中得出的,培养了学生动手的能力.。
过不共线三点作圆优秀教案
![过不共线三点作圆优秀教案](https://img.taocdn.com/s3/m/1920b479866fb84ae45c8dc6.png)
过不共线三点作圆【教学目标】(一)知识与技能:1.理解确定圆的条件及外接圆和外心的定义。
2.掌握三角形外接圆的画法。
(二)过程与方法:经过不在同一直线上的三点确定一个圆的探索过程,让我们学会用尺规作不在同一直线上的三点的圆。
(三)情感态度:在探究过不在同一直线上的三点确定一个圆的过程中,进一步培养探究能力和动手能力,提高学习数学的兴趣。
【教学重点】确定圆的条件及外接圆和外心的定义。
【教学难点】任意三角形的外接圆的作法。
【教学过程】一、情境导入,初步认识:如图所示,点A,B,C表示因支援三峡工程建设而移民的某县新建的三个移民新村。
这三个新村地理位置优越,空气清新,环境幽雅。
花园式的建筑住宅让人心旷神怡,但安居后发现一个极大的现实问题:学生就读的学校离家太远,给学生上学和家长接送学生带来了很大的麻烦。
根据上面的实际情况,政府决定为这三个新村就近新建一所学校,让三个村到学校的距离相等,你能帮助他们为学校选址吗?二、思考探究,获取新知:(一)确定圆的条件:活动1:如何过一点A作一个圆?过点A可以作多少个圆?活动2:如何过两点A、B作一个圆?过两点可以作多少个圆?以上两个问题要求学生独立动手完成,让学生初步体会,已知一点和已知两点都不能确定一个圆,并帮助学生得出如下结论。
1.过平面内一个点A的圆,是以点A以外的任意一点为圆心,以这点到A的距离为半径的圆,这样的圆有无数个。
2.经过平面内两个点A,B的圆,是以线段AB垂直平分线上的任意一点为圆心,以这一点到A或B的距离为半径的圆。
这样的圆有无数个。
活动3:如图,已知平面上不共线三点A,B,C,能否作一个圆,使它刚好都经过A,B,C三点。
假设经过A、B、C三点的圆存在,圆心为O,则点O到A、B、C三点的距离相等,即OA=OB=OC,则点O位置如何确定?是否唯一确定?教师提示到此,让学生动手画圆,最后教师归纳出。
3.经过不在同一直线上的三个点A、B、C的圆,是以AB、BC、CA的垂直平分线的交点为圆心,以这一点到点A,点B或点C的距离为半径的圆,这样的圆只有一个。
初中数学《圆周角定理及点圆关系》讲义及练习
![初中数学《圆周角定理及点圆关系》讲义及练习](https://img.taocdn.com/s3/m/7c2bfb979b6648d7c0c746ea.png)
内容基本要求略高要求较高要求圆的有关概念 理解圆及其有关概念 会过不在同一直线上的三点作圆;能利用圆的有关概念解决简单问题圆的性质 知道圆的对称性,了解弧、弦、圆心角的关系能用弧、弦、圆心角的关系解决简单问题能运用圆的性质解决有关问题圆周角 了解圆周角与圆心角的关系;了解直径所对的圆周角是直角会求圆周角的度数,能用圆周角的知识解决与角有关的简单问题能综合运用几何知识解决与圆周角有关的问题一、圆周角定理圆心角和圆周角1. 圆心角:顶点在圆心的角叫做圆心角.将整个圆分为360等份,每一份的弧对应1︒的圆心角,我们也称这样的弧为1︒的弧.圆心角的度数和它所对的弧的度数相等. 2. 圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角. 3. 圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等. 推论2:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.4. 圆心角、弧、弦、弦心距之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量分别相等.圆是平面几何中的一个重要内容.由于圆与直线型图形可组合成一些复杂的几何问题,所以它经常出现在数学竞赛中. 圆的基本性质有:⑴ 直径所对的圆周角是直角. ⑵ 同弧所对的圆周角相等.⑶ 经过圆心及一弦中点的直线垂直平分该弦.二、圆心角、弧、弦、弦心距之间的关系在同圆或等圆中,两个圆心角、两条弧、两条弦、两条弦的弦心距中有一组量相等,其它各组量都相等。
三、点与圆的位置关系点与圆的位置关系知识点睛中考要求第十讲圆周角定理及点与圆关系点与圆的位置关系有:点在圆上、点在圆内、点在圆外三种,这三种关系由这个点到圆心的距离与半径的大小关系决定.设O⊙的半径为r,点P到圆心O的距离为d,则有:点在圆外⇔d r>;点在圆上⇔d r<.=;点在圆内⇔d r确定圆的条件1. 圆的确定确定一个圆有两个基本条件:①圆心(定点),确定圆的位置;②半径(定长),确定圆的大小.只有当圆心和半径都确定时,圆才能确定.2. 过已知点作圆⑴经过点A的圆:以点A以外的任意一点O为圆心,以OA的长为半径,即可作出过点A的圆,这样的圆有无数个.⑵经过两点A B、、的圆:以线段AB中垂线上任意一点O作为圆心,以OA的长为半径,即可作出过点A B 的圆,这样的圆也有无数个.⑶过三点的圆:若这三点A B C、、三点不共线时,圆心是线段AB、、共线时,过三点的圆不存在;若A B C与BC的中垂线的交点,而这个交点O是唯一存在的,这样的圆有唯一一个.n≥个点的圆:只可以作0个或1个,当只可作一个时,其圆心是其中不共线三点确定的圆的圆⑷过n()4心.3. 定理:不在同一直线上的三点确定一个圆.注意:⑴”不在同一直线上”这个条件不可忽视,换句话说,在同一直线上的三点不能作圆;⑵”确定”一词的含义是”有且只有”,即”唯一存在”.4. 三角形的外接圆⑴经过三角形三个顶点的圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,这个三角形叫做这个圆的内接三角形.⑵三角形外心的性质:①三角形的外心是指外接圆的圆心,它是三角形三边垂直平分线的交点,它到三角形各顶点的距离相等;②三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合.⑶锐角三角形外接圆的圆心在它的内部;直角三角形外接圆的圆心在斜边中点处(即直角三角形外接圆半径等于斜边的一半);钝角三角形外接圆的圆心在它的外部.四、相交弦定理(选讲)相交弦定理:圆内的两条相交弦被交点分成的两条线段长的乘积相等.如图,弦AB和CD交于O⋅=⋅.⊙内一点P,则PA PB PC PDP ODC BA相交弦定理的推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项.教学重点:圆周角的概念和圆周角定理教学难点:圆周角定理的证明中由“一般到特殊”的数学思想方法和完全归纳法的数学思想.一、圆周角定理【例1】 (08山西太原)如图,AB 是⊙O 的直径,CD 是⊙O 的弦,连接AC AD ,,若35CAB ∠=,则ADC ∠的度数为 .【解析】 直径所对圆周角是90°且同弧所对圆周角相等. 所以得55°. 【巩固】⑴(08龙岩)如图,量角器外沿上有A B 、两点,它们的度数分别是7040︒︒、,则1∠的度数为_________.⑵ 如图,ABC △的三个顶点都在O ⊙上,302cm C AB ∠==,,则O ⊙的半径为______cm .O1BAOCBAOCBA【解析】 ⑴ ()117040152∠=︒-︒=︒. ⑵ 连接OA ,OB∵30C ∠=︒,∴260O C ∠=∠=︒,又∵OA OB =,∴OAB ∆为等边三角形, ∴2OA AB ==,即O 的半径为2.【巩固】⑴ 已知O ⊙的弦AB 长等于圆的半径,求该弦所对的圆周角.⑵ (06年安徽课改)如图所示,在ABC ∆中,45C ∠=︒,4AB =,则O ⊙的半径为( )A.22B.4C.23D.5CBD OA重、难点例题精讲BABA【解析】 ⑴ 连接OA 、OB ,设弦AB 所对的圆周角为ACB ∠.∵AB OA OB ==∴AOB ∆是等边三角形 ∴60AOB ∠=︒∴当点C 在AB 上时(劣弧上),1(360)2ACB AOB ∠=︒-∠1(36060)1502=⨯︒-︒=︒.当点C 在AmB 上时(优弧上),1302ACB AOB ∠=∠=︒故该弦所对的圆周角为30︒或150︒. ⑵ 如右图所示连接OA 、OB ,因为45C ∠=︒,290AOB C ∠=∠=︒4AB=,所以半径为OA OB ==.【例2】 (07年威海中考题)如图,AB 是O 的直径,点C ,D ,E 都在O 上,若C D E ==∠∠∠,求A B +∠∠.B ABA【解析】 连接AC 、BC∵AB 是O 的直径,∴90ACB ∠=︒,∴90CAB CBA ∠+∠=︒, 又∵D CBA ∠=∠,E CAB ∠=∠,∴90D E ∠+∠=︒, 又∵DCE D E ∠=∠=∠,∴45DCE D E ∠=∠=∠=︒,∴9045135DAB EBA DCB ECA ACB DCE ∠+∠=∠+∠=∠+∠=︒+︒=︒, 即135A B +=︒∠∠【巩固】(08年济宁改编)如图,四边形ABCD 中,AB AC AD ==,若7613CAD BDC ∠=︒∠=︒,,则CBD ∠=_________,BAC ∠=__________.DCBA【解析】 以A 为圆心,AB 为半径作辅助圆则C D 、均在A ⊙上,∴1382CBD CAD ∠=∠=︒,226BAC BDC ∠=∠=︒.【例3】 如图,AB 为O ⊙的直径,CD 是O ⊙的弦,AB CD 、的延长线交于点E ,若218AB DE E =∠=︒,,求AOC ∠的度数.EE【解析】 连结OD∵AB 是直径,2AB DE =,∴12DE AB OD ==∴18DOE E ∠=∠=︒,∴36ODC DOE E ∠=∠+∠=︒∵OC OD =,∴36OCD ODC ∠=∠=︒, ∴54AOC OCD E ∠=∠+∠=︒.【巩固】如图所示CD 是O ⊙的直径,87EOD ∠=︒,AE 交O ⊙于B ,且AB OC =,求A ∠ 的度数.DD【解析】 连结OB∵AB OC =,OB OC =,∴OB AB = 设A x ∠=,则BOA x ∠=. ∴2OBE BOA A x ∠=∠+∠=. ∵OE OB =,∴2OEA OBE x ∠=∠=.∴387EOD E A x ∠=∠+∠==︒ ∴29x =︒,即29A ∠=︒.【巩固】如图,已知AB 为⊙O 的直径,20E ∠=︒,50DBC ∠=︒,则CBE ∠=______.B【解析】 连结AC .设∠DCA =x°,则∠DBA =x°,所以∠CAB =x°+20°.因为AB 为直径,所以∠BCA=90°,则∠CBA +∠CAB =90°.又 ∠DBC =50°,∴ 50+x +(x +20)=90. ∴ x =10.∴∠CBE =60°.所以答案是60°.【例4】 (07重庆)已知,如图:AB 为O ⊙的直径,AB AC =,BC 交O ⊙于点D ,AC 交O ⊙于点E ,45BAC ∠=︒.给出以下五个结论:①22.5EBC ∠=︒,;②BD DC =;③2AE EC =;④劣弧AE 是劣弧DE 的2倍;⑤AE BC =.其中正确结论的序号是 .【解析】 由题意可知122.52EBC BAC ∠=∠=︒,故①正确,连接AD 可得90ADB ∠=︒,由等腰三角形三线合一的性质可知BD DC =,故②正确;2ABE EBD ∠=∠,由弧的度数和它所对的圆心角是相等的,可知2AE DE =,故④正确, ∴正确结论的序号是:①②④.【例5】 如图AB 是半圆O 的直径,点C D 、在弧AB 上,且AD 平分CAB ∠,已知106AB AC ==,,求AD的长.【解析】 延长AC 交BD 的延长线于E ,∵AB 是半圆的直径,AD 平分CAB ∠, 则可得10AE AB ==,BD ED =, ∴4CE AE AC =-=,∵90ACB ∠=︒,∴8BC =,在RtBCE ∆中,BE =,∴BD DE ==∴AD =【例6】 (08乌鲁木齐)如图所示的半圆中,AD 是直径,且32AD AC ==,,则sin B 的值是________.DCA B【例7】 ⑴(09河北)如下左图,四个边长为1的小正方形拼成一个大正方形,A B O 、、是小正方形顶点,O ⊙的半径为1,P 是O ⊙上的点,且位于右上方的小正方形内,则APB ∠等于__________.PO BAB⑵(09四川成都)如上右图,ABC ∆内接于O ⊙,120AB BC ABC =∠=︒,,AD 为O ⊙的直径,6AD =,那么BD =_________.⑶(09山东泰安)O ⊙的半径为1,AB 是O ⊙的一条弦,且AB =AB 所对圆周角的度数为_____________.【解析】 ⑴45︒;⑵60︒或120︒.【例 1】 (07年枣庄中考题)如图,ABC ∆内接于O ⊙,120BAC ∠=︒,AB AC =,BD 为O ⊙的直径,6AD =,则BC = .A【解析】 连接CD .证明ABD CDB ∆∆≌,∴6BC AD ==.【例8】 如图,过O ⊙的直径AB 上两点M N ,,分别作弦CD EF ,,若CD EF AC BF =,∥.求证:⑴BEC ADF =;⑵ AM BN =.【解析】 ⑴ ∵AC BF =,∴AC BF =, ∵AB 是直径,∴AEB ADB =,∴AEB AC ADB BF -=-,即BEC ADF =. ⑵ 由⑴可知CAM FBN ∠=∠,∵CD EF ∥,∴CMA DMB FNB ∠=∠=∠,又AC BF =,∴ACM BFN ∆∆≌,∴AM BN =.【例9】 如图,点A B C 、、是O ⊙上的三点,AB OC ∥.⑴ 求证:AC 平分OAB ∠;⑵ 过点O 作OE AB ⊥于点E ,交AC 于点P .若230AB AOE =∠=︒,,求PE 的长.【解析】 ⑴ ∵AB OC ∥,∴BAC C ∠=∠,∵OA OC =,∴OAC C ∠=∠,∴BAC OAC ∠=∠,∴AC 平分OAB ∠.⑵ ∵OE AB ⊥,∴112AE AB ==,在Rt AOE ∆中,9030OEA AOE ∠=︒∠=︒,,∴22AO AE OE ==,以下可以用两种不同方法解答:解法一:∵AB OC ∥,∴12AE PE OC OP ==∴13PE OE =解法二:由⑴得AC 平分OAB ∠,∴2OA OPAE PE==,∴13PE OE =【例10】 ⑴如图,AB 是O ⊙的直径,CD AB ⊥,设COD α∠=,则2sin 2AB AD α⋅=_____________.O PFEDC B A⑵ 如图,AB 是O ⊙的直径,弦PC 交OA 于点D ,弦PE 交OB 于点F ,且OC DC OF EF ==,.若C E ∠=∠,则CPE ∠=___________.⑶ 已知:如图,MN 是O ⊙的直径,点A 是半圆上一个三等分点,点B 是AN 的中点,P 是MN 上一动点,O ⊙的半径为1,则PA PB +的最小值是_____________.【解析】 ⑴1;⑵40︒;⑶作B 点关于MN 的对称点B ′,连结AB ′与MN 交于点P , 易证得,此时PA PB +取得最小值.根据圆的对称性,B ′点在O ⊙上,且B N BN =′, ∵A 是半圆的三等分点,∴13AN MAN =,∴60AON ∠=︒,∵B 是AN 的中点,∴1302BON AON ∠=∠=︒,∴30B ON ∠=︒′,∴90AOB AON B ON ∠=∠+∠=︒′′, ∵O ⊙半径为1,∴1OA OB ==′,∴AB ′,∴PA PB +【巩固】(09浙江衢州)如图,AD 是O ⊙的直径.⑴ 如图1,垂直于AD 的两条弦11B C ,22B C 把圆周4等分,则1B ∠的度数是___________,2B ∠的度数是____________;⑵ 如图2,垂直于AD 的三条弦112233B C B C B C 、、把圆周6等分,分别求123B B B ∠∠∠,,的度数;⑶ 如图3,垂直于AD 的n 条弦112233n n B C B C B C B C ,,,…,把圆周2n 等分,请你用含n 的代数式表示n B ∠的度数(只需直接写出答案).图3图2图1-1n -2B n 3B B 2【解析】 ⑴ 22.567.5︒︒,;⑵ ∵圆周被6等分,∴111223360660B C C C C C ===÷=︒.∵直径11AD B C ⊥,∴1111302AC B C ==︒,∴()()12311153060453060607522B B B ∠=︒∠=⨯︒+︒=︒∠=⨯︒+︒+︒=︒,,.⑶ ()()90451136036012222n n B n n n n -︒︒︒⎡⎤∠=⨯+-⋅=⎢⎥⎣⎦(或3604590908nB n n ︒︒∠=︒-=︒-)【例11】 已知如图,ACD ∆的外角平分线CB 交其外接圆于B ,连接BA 、BD ,求证:BA BD =.N【解析】 ∵ACB BCN ∠=∠,又∵ACB ADB ∠=∠;BCN BAD ∠=∠, ∴BAD BDA ∠=∠, ∴BA BD =.【巩固】已知如图,ACD ∆的外角平分线CB 交其外接圆于B ,连接BA 、BD ,过B 作BM AC ⊥于M ,BN CD ⊥于N ,则下列结论中一定正确的有 .①CM CN =;②MBN ABD ∠=∠;③AM DN =;④BN 为⊙O 的切线.【解析】 可证得BCM ∆≌BCN ∆.∴CM CN =,故①正确;四边形BMCN 的内角和为360︒可知,180MBN MCN ∠+∠=︒, 又∵180MCN ACD ∠+∠=︒, ∴MBN ACD ∠=∠, ∵ACD ABD ∠=∠,∴MBN ABD ∠=∠,故②正确;利用外角平分线易证AB BD =,又∵BM BN =,AMB DNB ∠=∠, ∴ABM DBN ∆∆≌,∴AM DN =,故③正确;若BN 为⊙O 的切线,则NBC BAC ∠=∠, ∵90NBC BCN ∠+∠=︒,而BCN ACB ∠=∠, ∴90BAC ACB ∠+∠=︒, ∴AC 为O ⊙直径.而AC 不一定为O ⊙直径,故④不正确.【巩固】(09辽宁)已知∆ABC 中,=AB AC ,D 是∆ABC 外接圆劣弧AC 上的点(不与点A C ,重合),延长BD 至E .⑴ 求证:AD 的延长线平分∠CDE ;⑵ 若30∠=︒BAC ,∆ABC 中BC边上的高为2∆ABC 外接圆的面积.AB CD【解析】 ⑴ 如图,设F 为AD 延长线上一点∵D 在∆ABC 外接圆上(A B C D 、、、四点共圆) ∴∠=∠CDF ABC又=AB AC ,∴∠=∠ABC ACB , 且∠=∠ADB ACB ,∴∠=∠ADB CDF对顶角∠=∠EDF ADB ,故∠=∠EDF CDF , 即AD 的延长线平分∠CDE .⑵ 设O 为外接圆圆心,连接AO 交BC 于H ,则⊥AH BC . 连接OC ,由题意15∠=∠=︒OAC OCA ,75∠=︒ACB , ∴60∠=︒OCH .设圆半径为r,则2+=r 2=r ,外接圆的面积为4π.二、圆心角、弧、弦、弦心距之间的关系【例12】 如图所示在O ⊙中,2AB CD =,那么( )A.2AB CD >B.2AB CD <C.2AB CD =D.AB 与2CD的大小关系不能确定【解析】 如图所示,作DE CD =,则2CE CD =,∵在CDE ∆中CD DE CE +>,∴2CD CE >, ∵2AB CD =,∴AB CE >,∴AB CE >,即2AB CD >. 故选A .【例13】 已知AB AC 、是O ⊙的弦,AD 平分BAC ∠交O ⊙于D ,弦DE AB ∥交AC 于P ,求证:OP 平分APD ∠.【解析】 过O 点分别作OF AC OG DE ⊥⊥,,垂足分别为F G 、.∵DE AB ∥,∴BAD D ∠=∠,∵AD 平分BAC ∠,∴BAD CAD ∠=∠,∴CAD D ∠=∠, ∴AE CD =,∴AE EC CD EC +=+,即AC DE = ∴AC DE =, ∵OF AC OG DE ⊥⊥,,∴OF OG =,∴点O 在APD ∠的平分线上,即OP 平分APD ∠.【巩固】已知,如图M N ,为O 中劣弧AB 的三等分点,E F ,为弦AB 的三等分点,连接ME 并延长,交直线MF 于点P ,连接AP BP ,交O 于C D ,两点,求证:3AOB APB ∠=∠.PNMOFEDCBAQPNMOFEDCBA【解析】 连接CN AN ,,ON OM ,,连接MN 并延长,交PA 的延长线于Q .∵M N ,三等分AB ,∴AM BN =,故MN AB ∥,由AE EF =,可证得QM MN =, 由AM MN =得AM MN =, ∴MA MQ MN ==, ∴QAN ∠为直角,∴90CAN ∠=︒,故CN 为O 直径, 故O 在CN 上∴22AON ACN MON ∠=∠=∠∴MON ACN ∠=∠,故OM AP ∥, 同理可证:ON AB ∥于是可证得:MON APB ∠=∠,∵3AOB MON ∠=∠,∴3AOB APB ∠=∠.【例14】 (2008年广州市数学中考试题)如图,射线AM 交一圆于点B C ,,射线AN 交该圆于点D 、E ,且BC DE =.⑴ 求证:AC AE =⑵ 分别作线段CE 的垂直平分线与MCE ∠的平分线,两线交于点F .求证:EF 平分CEN ∠.NME【解析】 ⑴ 作OP AM ⊥,OQ AN ⊥,由BC DE =,得OP OQ =,证APO AQO ∆∆≌,可得AP AQ =, 由BC CD =,得CP EQ = ∴AC AE =. ⑵ ∵AC AE =,∴ACE AEC ∠=∠,∴MCE NEC ∠=∠, ∵F 在线段CE 的中垂线上, ∴FC FE =,∴FCE FEC ∠=∠,∵12FCE MEC ∠=∠,∴12FEC NEC ∠=∠,即EF 平分CEN ∠.三、点与圆的位置关系【例15】 一个已知点到圆周上的点的最大距离为5cm ,最小距离为1cm ,则此圆的半径为______.【解析】 ⑴ 当点在圆外时,512cm 2r -==,⑵ 当点在圆内时,513cm 2r +==.【例16】 已知:四边形ABCD 中,AB CD ∥,AD BC =,135BAD ∠=︒,20AB =,40CD =,以A 为圆心,AB 长为半径作圆.求证:在A ⊙上,在A ⊙内,A ⊙外都有线段DC 上的点.C【解析】 如图所示,作AE CD ⊥于E∵ABCD 是等腰梯,AE CD ⊥,135BAD ∠=︒,20AB =,40CD =∴20AD =<,20AC = ∴D 点在A ⊙内,C 点在A ⊙外,圆内一点与圆外一点的连线,必与圆有一交点, 所以A ⊙上,A ⊙内, A ⊙外都有线段DC 上的点.【例17】 在平面直角坐标系内,以原点O 为圆心,5为半径作O ⊙,已知A ,B ,C 三点的坐标分别为()34A ,,()33B --,,(4C ,,试判断A ,B ,C 三点与O ⊙的位置关系.【解析】∵5OA =5OB =5OC >∴点A 在O ⊙上,点B 在O ⊙内,点C 在O ⊙外.【点评】要判定点与圆的位置关系,就是要比较点到圆心的距离与半径的大小关系.【例18】 在ABC ∆ 中,90C ∠=︒,4AC =,5AB =,以点C 为圆心,以r 为半径作圆,请回答下列问题,并说明理由.⑴ 当r 取何值时,点A 在C ⊙上,且点B 在C ⊙内部?⑵ 当r 在什么范围内取值时,点A 在C ⊙外部,且点B 在C ⊙的内部? ⑶ 是否存在这样的实数r ,使得点B 在C ⊙上,且点A 在C ⊙内部?CBA【解析】 如右图所示在Rt ABC ∆中,90C ∠=︒,4AC =,5AB =,根据勾股定理得:3BC ==⑴ 当4r =时,点A 在C ⊙上,且点B 在C ⊙内.因为4AC r ==,所以点A 在C ⊙上,34BC r =<=,所以B 在C ⊙内; ⑵ 当34r <<时,点A 在C ⊙的外部,且点B 在C ⊙的内部.由于3BC =,要使点B 在C ⊙的内部,必须C ⊙的半径3r >;又由于4AC =,要使点A 在C ⊙的外部,必须C ⊙的半径4r <. 综合上述两方面可知,34r <<.⑶ 不存在这样的实数r ,使得点B 在C ⊙上,且点A 在C ⊙内部.因为3BC =,要使点B 在C ⊙上,必须3r =,此时,由于4AC r =>,所以点A 在C ⊙的外部,点A 不在C ⊙的内部,所以这样的实数r 不存在.【例19】 已知ABC ∆中,90C ∠=︒,2AC =,3BC =,AB 的中点为M ,⑴ 以C 为圆心,2为半径作C ⊙,则点A ,B ,M 与C ⊙的位置关系如何? ⑵ 若以C 为圆心作C ⊙,使A ,B ,M 三点至少有一点在C ⊙内,且至少有一点在C ⊙外,求C ⊙半径r 的取值范围.M CBA【解析】 如右图所示⑴ ∵2AC =,且C ⊙的半径也为2,即AC r =∴点A 在C ⊙上.又∵3BC =,2R =,BC r > ∴点B 在C ⊙外.在ABC ∆中,AB = ∵M 为AB 的中点∴122MC AB ==<∴点M 在C ⊙内; ⑵ ∵2AC =,3BC =,MC ∴BC AC MC >>∴要使A ,B ,M 三点中至少有一点在C ⊙内,且至少有一点在C ⊙外,则C ⊙的半径r 的3r <<.【点评】⑴ 要判定点A ,B ,M 与C ⊙的位置关系,只要比较AC ,BC ,MC 的长度与C ⊙的半径的大小关系即可;⑵ 由⑴求得AC ,BC ,MC 的长度即可确定C ⊙的半径r 的取值范围.【例20】 ABC ∆中,10AB AC ==,12BC =,求其外接圆的半径.【解析】 作高AD ,设点O 是ABC ∆OB∵AB AC =,AD BC ⊥,∴16BD BC ==在Rt ABD ∆中,8AD 设O ⊙的半径为R ,则OB AO R ==,8OD R =-. 在Rt OBD ∆中, 222OB BD OD =+∴2226(8)R R =+-,解得254R =.∴外接圆的半径为254.【点评】运用外心到三角形的三个顶点的距离相等这一性质,注意,三角形的外心在等腰三角形底边的中垂线上.四、相交弦定理(选讲)相交弦定理:圆内的两条相交弦被交点分成的两条线段长的乘积相等.如图,弦AB 和CD 交于O ⊙内一点P ,则PA PB PCPD ⋅=⋅.相交弦定理的推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项. 【例21】 ⑴ 如下左图,在O ⊙中,弦AB 与CD 相交于点P ,已知3cm 4cm 2cm PA PB PC ===,,,那么PD = cm .⑵ 如下中图,在O ⊙中,弦AB 与半径OC 相交于点M ,且OM MC =,若 1.54AM BM ==,,则OC 的长为( )A. BC. D .⑶ 如下右图,在O ⊙中,P 为弦AB 上一点,PO PC ⊥,PC 交O ⊙于C ,那么( )A .2OP PA PB =⋅ B .2PC PA PB =⋅C .2PA PB PC =⋅D .2PB PA PC =⋅【解析】 ⑴6;⑵D ;⑶B .【例22】如图,圆的半径是A C 、两点在圆上,点B 在圆内,6AB =,2BC =,90ABC ∠=︒求点B到圆心的距离.【解析】 连结OB ,则线段OB 的长就是所求点B 到圆心的距离.连结OA ,延长AB 交O ⊙于D ,过O 点作OE AD ⊥于E ,延长CB 交O ⊙于F . 设BD x =,由相交弦定理可得AB BD BC BF ⋅=⋅,则3AB BDBF x BC⋅==,∵OE AD ⊥,∴()()11166222AE AD x BE x ==+=-,,()()11132232222OE CF BC x x =-=+-=-,在Rt AOE ∆中,90AEO ∠=︒,∴222OE AE OA +=,即()()22113265044x x -++=,解得4x =,∴()()1134256412OE BE=⨯-==-=,,OB =【例23】 如图,正方形ABCD 内接于O ⊙,点P 在劣弧AB 上,连结DP 交AC 于点Q .若QP QO =,则QCQA的值为___________.【解析】 连结DO ,设O ⊙半径为r ,QO m =,则QP m QC r m QA r m ==+=-,,.在O ⊙中,根据相交弦定理得QA QC QP QD ⋅=⋅,即()()r m r m mQD -+=,∴22r m QD m-=,由勾股定理得222QD DO QO =+,即22222r m r m m ⎛⎫-=+ ⎪⎝⎭,解得33m r =. ∴313231QC r m QA r m ++===+--.【习题1】 (2007浙江温州)如图,已知ACB ∠是O 的圆周角,50ACB ∠=︒,则圆心角AOB ∠是( )A .40︒B . 50︒C . 80︒D . 100︒【解析】 考察同弧所对圆心角圆周角关系.答案选:D .【习题2】 如图,将圆沿AB 折叠后,圆弧恰好经过圆心,则AmB 等于 .A . 60°B . 90°C . 120°D . 150°mBAO【解析】 答案选C .【习题3】 (09四川凉山)如图,O ⊙是ABC ∆的外接圆,已知50ABO ∠=︒,则ACB ∠的大小为__________.OCBA【解析】 40︒.【习题4】 (09四川南充)如图,AB 是O ⊙的直径,点C D 、在O ⊙上,110BOC ∠=︒,AD OC ∥,则AOD ∠=___________.OD CBA家庭作业【解析】 40︒.【习题5】 如果两条弦相等,那么( )A .这两条弦所对的弧相等B .这两条弦所对的圆心角相等C .这两条弦的弦心距相等D .以上答案都不对【解析】 考察圆心角定理,关键是这些条件成立的前提是在同圆或等圆中.所以选D .【习题6】 如图,AB 为⊙O 的直径,AC 交⊙O 于E 点,BC 交⊙O 于D 点,CD =BD ,∠C =70°. 现给出以下四个结论:①∠A =45°; ②AC =AB ; ③AE BE =; ④22CE AB BD ⋅=. 其中正确结论的序号是A .①②B .②③C .②④D .③④ED C BAO【解析】 考察利用圆中角可推出等弧,等弦,相似.答案选 C .【习题7】 如图,量角器外缘边上有A P Q ,,三点,它们所表示的读数分别是180,70,30,则PAQ ∠的大小为( )A .10B .20C .30D .40【解析】 考察同弧所对圆心角是圆周角的2倍.答选 B .【习题8】 (首师大附中2008-2009初三月考)定义:定点A 与O ⊙上的任意一点之间的距离的最小值称为点A 与O ⊙之间的距离.现有一矩形ABCD 如图,14cm 12cm AB BC ==,,K ⊙与矩形的边AB BC CD 、、分别相切于点E F G 、、,则点A 与K ⊙的距离为______________.GEK DB A【解析】 连结KE AK 、,由题意可知K ⊙的半径为6cm ,6cm EK AB BE ⊥=,,∴8cm AE =,∴2210cm AK AE EK =+=, ∴点A 与K ⊙的距离为1064cm -=.【备选1】 如图,CD 为O ⊙的直径,过点D 的弦DE 平行于半径OA ,若D ∠的度数是50︒,则C ∠的度数是 A .25︒ B .40︒ C .30︒ D .50︒O EDCA【解析】 A .【备选2】 (08泰安)如图,在O ⊙中,AOB ∠的度数为m ,C 是ACB 上一点,D E 、是AB 上不同的两点(不与A B 、两点重合),则D E ∠+∠的度数为____________.OEDCBA【解析】 ()136018022mD E m ∠+∠=︒-=︒-.【备选3】 如图,已知⊙O 的弦AB 、CD 相交于点E ,AC 的度数为60°,BD 的度数为100°,则AEC∠等于( )A . 60°B . 100°C . 80°D . 130°EDC BO A【解析】 连结BC ,则∠AEC =∠B +∠C =21×60°+21×100°=80°.所以答案是C .【备选4】 设Rt ABC ∆的两条直角边长分别为3,4则此直角三角形的内切圆半径为 ,外接圆半径为【解析】 内切圆半径为1()12r a b c =+-=;外接圆半径为 2.52cR ==.【备选5】 等边三角形的外接圆的半径等于边长的( )倍.月测备选A .23B .33C .3D .21【解析】 考察等边三角形与外接圆半径的关系,所以选B【备选6】 (08山东滨州)如图所示,AB 是⊙O 的直径,AD=DE ,AE 与BD 交于点C ,则图中与∠BCE相等的角有( )BAA . 2个B . 3个C . 4个D . 5个【解析】 考察同弧,等弧所对圆周角相等,所以选B .【备选7】 (宜宾)已知:如图,四边形ABCD 是O ⊙的内接正方形,点P 是劣弧CD 上不同于点C 的任意一点,则BPC ∠的度数是( )A.45︒ B .60︒ C.75︒ D.90︒P【解析】 连接BO ,CO ,可得90BOC ∠=︒,∴1452BPC BOC ∠=∠=︒,故选A .【备选8】 (09浙江温州)如图,80AOB ∠=︒,则弧AB 所对圆周角ACB ∠的度数是A .40︒B .45︒C .50︒D .80︒【解析】 A .【备选9】 Rt ABC ∆的两条直角边3BC =,4AC =,斜边AB 上的高为CD ,若以C 为圆心,分别以12r =,2 2.4r =,33r =为半径作圆,试判断D 点与这三个圆的位置关系.DCBA【解析】 在Rt ABC ∆中,90ACB ∠=︒,4AC =,3BC =,∴5AB =由面积相等得,AC BC AB CD ⋅=⋅.∴122.45AC BC CD AB ⋅===∴ 2.4d CD ==∴1d r >, 2d r =, 3d r <∴点D 与三个圆的位置关系分别是:在圆外,在圆上,在圆内.【点评】要判定点与圆的位置关系,就是要比较点到圆心的距离与半径的大小关系.。
湘教版九年级数学下册全册课件【完整版】
![湘教版九年级数学下册全册课件【完整版】](https://img.taocdn.com/s3/m/298eff8e650e52ea5418985b.png)
0002页 0031页 0078页 0115页 0154页 0209页 0234页 0242页 0260页 0323页 0369页
第1章 二次函数 1.2 二次函数的图像与性质 1.4 二次函数与一元二次方程的联系 第2章 圆 2.2 圆心角、圆周角 2.4 过不共线三点作圆 2.6 弧长与扇形面积 第3章 投影与视图 3.2 直棱柱、圆锥的侧面展开图 第4章 概率 4.2 概率及其计算
2.7 正多边形与圆
湘教版九年级数学下册全册课件【 完整版】
2.4 过不共线三点作圆
湘教版九年级数学下册全册课件【 完整版】
2.5 直线与圆的位置关系
湘教版九年级数学下册全册课件【 完整版】
2.6 弧长与扇形面积
湘教版九年级数学下册全册课件【 完整版】
湘教版九年级数学下册全册课件【 完整版】
1.4 二次函数与一元二次方程的 联系
湘教版九年级数学下册全册课件【 完整版】
1.5 二次函数的应用
湘教版九年级数学下册全册课件【 完整版】
第2章 圆
第1章 二次函数
湘教版九年级数学下册全册课件【 完整版】
1.1 二次函数
湘教版九年级ቤተ መጻሕፍቲ ባይዱ学下册全册课件【 完整版】
1.2 二次函数的图像与性质
湘教版九年级数学下册全册课件【 完整版】
1.3 不共线三点确定二次函数的 表达式
湘教版九年级数学下册全册课件【 完整版】
2.1 圆的对称性
湘教版九年级数学下册全册课件【 完整版】
2.2 圆心角、圆周角
湘教版九年级数学下册全册课件【 完整版】
2.3 垂径定理
湘教版九年级数学下册全册课件【 完整版】
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
经过两个已知点 A、B能作无数个圆
经过两个已 知点A、B所作的 圆的圆心在怎样的 一条直线上?
它们的圆心都在线段AB 的垂直平分线上。
A
B
探 索
经过不在同一直线上的三个已 知点A,B,C能确定一个圆吗?
A 假设经过A、B、C三点 N F 的⊙O存在 (1)圆心O到A、B、C三 点距离 相等 (填“相等” C O E M B 或”不相等”)。 (2)连结AB、AC,过O点 分别作直线MN⊥AB, EF⊥AC,则MN是AB 的 垂直平分线 ;EF是AC的 垂直平分线 。
课外拓展
某一个城市在一块空地新建了三个居民小区, 它们分别为A、B、C,且三个小区不在同 一直线上,要想规划一所中学,使这所中 学到三个小区的距离相等。请问同学们这 所中学建在哪个位置?你怎么确定这个位 置呢?
●
A
●
B
●
C
1、画出任意锐角三角形、直角三角形、钝角三角形的 外接圆,并说出圆心的位置?
2、下列命题不正确的是
A.过一点无数个圆. B.过两点有无数个圆.
C.弦是圆的一部分.
D.过同一直线上三点不能画圆.
3、三角形的外心具有的性质是
A.到三边的距离相等.
C.外心在三角形的外.
B.到三个顶点的距离相等.
D.外心在三角形内.
第一课时
情景引入
一位考古学家在长沙马王堆汉墓挖掘 时,发现一圆形瓷器碎片,你能帮助这位 考古学家画出这个碎片所在的整个圆,以 便于进行深入的研究吗?
要确定一个圆必须 满足几个条件?
探 索
经过一个已知点A能确 定一个圆吗?
A
你怎样画这个圆?
点 能 作经 无过 数一 个个 圆已 知
探 索
经过两个已知点A、B能 确定一个圆吗?
C
O
练 习
想一想:经过三角形的三个顶点 能作一个圆吗?为什么?
已知 △ABC, 用直尺和 圆规作出 过点A、B、 B C的圆
A
O
C
概念教学
经过三角形各个顶点的圆 叫做三角形的外接圆,外接圆 的圆心叫做三角形的外心,这 个三角形叫做圆的内接三角形。
A O 如图:⊙O是△ABC的 外接圆, △ABC是⊙O 的内接三角形,点O是 C △ABC的外心 外心是△ABC三条边的垂 直平分线的交点,它到三角 形的三个顶点的距离相等。
A
N
B E O
讨论交流
过同一直线上三点能不能 做圆? 为什么?
A
B
C
不在同一直线上的三点确定一个圆
思 考
现在你知道了怎样要 将一个如图所示的破损的 圆盘复原了吗? A
B
方法: 1、在圆弧上任取三点A、 B、C。 2、作线段AB、BC的垂 直平分线,其交点O即为 圆心。 3、以点O为圆心,OC 长为半径作圆。 ⊙O即为所求。
(3)AB、AC的中垂线的交点O到B、C的距 离 相等 。
尝 试
已知:不在同一直线上的三点A、 B、C 求作: ⊙O使它经过点A、B、C
作法:1、连结AB,作线段 F AB的垂直平分线MN; 2、连接AC,作线段AC的垂 C直平分线EF,交MN于点O; M 3、以O为圆心,OB为半径作 圆。 所以⊙O就是所求作的圆。
B
课堂小结
通过本节课的学习我们了解以下内容:
(1)只有确定了圆心和圆的半径,这个圆的位 置和大小才唯一确定。 (2)经过一个已知点能作无数个圆!
(3)经过两个已知点A、B能作无数个圆!这 些圆的圆心在线段AB的垂直平分线上。 (4)不在同一直线上的三个点确定一个圆。 (5)外接圆,外心的概念。
作业