2.4 过不共线三点作圆 (1)
苏科版2022年九年级数学上册 《确定圆的条件》教材预习辅导讲义(附解析)

2.3 确定圆的条件确定圆的条件(1)经过一个已知点能作无数个圆;(2)经过两个已知点A、B能作无数个圆,这些圆的圆心在线段AB的垂直平分线上;(3)不在同一直线上的三个点确定一个圆.(4)经过三角形各个顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做圆的内接三角形.如图:⊙O是△ABC的外接圆,△ABC是⊙O的内接三角形,点O是△ABC的外心.外心的性质:外心是△ABC三条边的垂直平分线的交点,它到三角形的三个顶点的距离相等.【点拨】(1)不在同一直线上的三个点确定一个圆.“确定”的含义是“存在性和唯一性”.(2)只有确定了圆心和圆的半径,这个圆的位置和大小才唯一确定.【例题1】(1)请借助网格和一把无刻度直尺找出△ABC的外心点O;(2)设每个小方格的边长为1,求出外接圆⊙O的面积.【例题2】如图,Rt△ABC,∠ACB=90°,尺规作图,作Rt△ABC外接圆⊙O.(保留作图痕迹,不写作法)【例题3】我们将能完全覆盖某平面图形的最小圆称为该平面图形的最小覆盖圆.如图,将△ABC放在每个看例题,涨知识教材知识总结小正方形边长为1的网格中,点A、B、C均落在格点上.(1)用无刻度直尺画出△ABC的最小覆盖圆的圆心(保留作图痕迹);(2)该最小覆盖圆的半径是.【例题4】已知,如图,点A为⊙O上的一点(1)用没有刻度的直尺和圆规作一个⊙O的内接正三角形ABC(保留作图痕迹并标出B、C);(2)若⊙O半径为10,则三角形ABC的边长为一、单选题1.下列判断中正确的是()A.平分弦的直径垂直于弦B.垂直于弦的直线平分弦所对的弧C.平分弧的直径平分弧所对的的弦D.三点确定一个圆2.如图,在平面直角坐标系xOy中,点A(0,3),点B(2,1),点C(2,-3).则经画图操作可知:△ABC 的外接圆的圆心坐标是()A.(-2,-1)B.(-1,0)C.(-1,-1)D.(0,-1)3.对于以下说法:①各角相等的多边形是正多边形;②各边相等的三角形是正三角形;③各角相等的圆内课后习题巩固一下接多边形是正多边形;④各顶点等分外接圆的多边形是正多边形.正确的有()A.1个B.2个C.3个D.4个4.给定下列条件可以确定唯一的一个圆的是()A.已知圆心B.已知半径C.已知直径D.不在同一直线上的三个点5.从一块圆形玻璃镜残片的边缘描出三点A、B、C,得到△ABC,则这块玻璃镜的圆心是()A.AB、AC边上的高所在直线的交点B.AB、AC边的垂直平分线的交点C.AB、AC边上的中线的交点D.∠BAC与∠ABC的角平分线的交点6.下列说法中错误的是()A.直径是弦B.经过不在同一直线上三点可以确定一个圆C.三角形的外心到三个顶点的距离相等D.两个半圆是等弧7.如图,点O是△ABC的外心(三角形三边垂直平分线的交点),若∠BOC=96°,则∠A的度数为()A.49°B.47.5°C.48°D.不能确定A B,C在平面直角坐标系中,则ABC的外心在()8.如图,点(0,3),(2,1)A.第四象限B.第三象限C.原点O处D.y轴上9.如图,已知平面直角坐标系内三点A(3,0)、B(5,0)、C(0,4),⊙P经过点A、B、C,则点P的坐标为()A.(6,8)B.(4,5)C.(4,318)D.(4,338)10.如图,ABC为锐角三角形,6BC=,45A∠=︒,点O为ABC的重心,D为BC中点,若固定边BC,使顶点A在ABC所在平面内进行运动,在运动过程中,保持A∠的大小不变,设BC的中点为D,则线段OD的长度的取值范围为()A521OD≤B531OD≤C.131OD≤<D.121OD<≤二、填空题11.如图,点O是△ABC的外心,连接OB,若∠OBA=17°,则∠C的度数为_________°.12.三角形两边的长是3和4,第三边的长是方程2-12+35=0x x的根,则该三角形外接圆的半径为______.13.如图,已知AB=AC=BE=CD,AD=AE,点F为△ADE的外心,若∠DAE=40°,则∠BFC=______°.14.有一种化学实验中用的圆形过滤纸片,如果需要找它的圆心,请你简要说明你找圆心的方法是__________________15.如图,在57⨯网格中,各小正方形边长均为1,点O,A,B,C,D,E均在格点上,点O是ABC的外心,在不添加其他字母的情况下,则除ABC外把你认为外心也是O的三角形都写出来__________________________.16.已知ABC的三边a,b,c满足|c﹣4|+b+a2﹣10a=1b+30,则ABC的外接圆半径的长为___.三、解答题17.为了美化校园,某小区要在如图所示的三角形空地(ABC)上作一个半圆形花坛并使之满足以下要求;①圆心在边BC上,②该半圆面积最大.请你帮忙设计这一花坛.18.如图,学校某处空地上有A、B、C三棵树,现准备建一个圆形景观鱼池,要求A、B、C三棵树恰在圆周上,请你帮助设计鱼池,在图中作出它的鱼池轮廓,保留作图痕迹并将圆心标记为点O.19.有趣的倍圆问题:校园里有个圆形花坛,春季改造,负责该片花园维护的某班同学经过协商,想把该花坛的面积扩大一倍.他们在图纸上设计了以下施工方案:①在⊙O中作直径AB,分别以A、B为圆心,大于1AB长为半径画弧,两弧在直径AB上方交于点C,作2射线OC交⊙O于点D;②连接BD,以O为圆心BD长为半径画圆;③大⊙O 即为所求作.(1)使用直尺和圆规,补全图形(保留作图痕迹); (2)完成如下证明: 证明:连接CA 、CB在△ABC 中,∵CA =CB ,O 是AB 的中点, ∴CO ⊥AB ( )(填推理的依据) 设小O 半径长为r ∵OB =OD ,∠DOB =90° ∴BD 2∴S 大⊙O =π2)2= S 小⊙O . 20.如图,ABC 是直角三角形,90ACB ∠=︒.(1)利用尺规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法). ①作ABC 的外接圆O ;②以线段AC 为一边,在AC 的右侧作等边三角形ACD ; ③连接BD ,交O 于点E ,连接AE ;(2)在(1)中所作的图中,若4AB =,2BC =,则线段AE 的长为______.2.3 确定圆的条件解析确定圆的条件(1)经过一个已知点能作无数个圆;(2)经过两个已知点A 、B 能作无数个圆,这些圆的圆心在线段AB 的垂直平分线上; (3)不在同一直线上的三个点确定一个圆.(4)经过三角形各个顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做圆的教材知识总内接三角形.如图:⊙O是△ABC的外接圆,△ABC是⊙O的内接三角形,点O是△ABC的外心.外心的性质:外心是△ABC三条边的垂直平分线的交点,它到三角形的三个顶点的距离相等. 【点拨】(1)不在同一直线上的三个点确定一个圆.“确定”的含义是“存在性和唯一性”.(2)只有确定了圆心和圆的半径,这个圆的位置和大小才唯一确定.【例题1】(1)请借助网格和一把无刻度直尺找出△ABC的外心点O;(2)设每个小方格的边长为1,求出外接圆⊙O的面积.【答案】(1)见解析;(2)10π【分析】(1)根据三角形的外心是三边垂直平分线的交点作出点O;(2)根据勾股定理求出圆的半径,根据圆的面积公式计算,得到答案.【解析】解:(1)如图所示,点O即为所求;(2)连接OB,由勾股定理得:OB223110+=∴外接圆⊙O的面积为:π×102=10π.看例题,涨知识【例题2】如图,Rt△ABC,∠ACB=90°,尺规作图,作Rt△ABC外接圆⊙O.(保留作图痕迹,不写作法)【答案】见详解【分析】作AB的垂直平分线,找到AB的中点,则以AB为直径作圆就是三角形的外接圆.【解析】解:如图所示:【例题3】我们将能完全覆盖某平面图形的最小圆称为该平面图形的最小覆盖圆.如图,将△ABC放在每个小正方形边长为1的网格中,点A、B、C均落在格点上.(1)用无刻度直尺画出△ABC的最小覆盖圆的圆心(保留作图痕迹);(2)该最小覆盖圆的半径是.【答案】(1)见解析;(25【分析】(1)作出线段AB,AC的垂直平分线的交点O即可.(2)连接OA,利用勾股定理求出OA即可.【解析】解:(1)如图,点O即为所求.(2)半径OA22+1255【例题4】已知,如图,点A为⊙O上的一点(1)用没有刻度的直尺和圆规作一个⊙O的内接正三角形ABC(保留作图痕迹并标出B、C);(2)若⊙O半径为10,则三角形ABC的边长为【答案】(1)图见详解;(2)三角形ABC的边长为103【分析】(1)以OA为半径,在圆上依次截取得到圆的6等分点,从而得到圆的三等分点,进而问题可求解;(2)连接OB、OC,延长AO交BC于点D,则有AD⊥BC,然后根据等边三角形的性质及垂径定理可求解.【解析】接:(1)等边三角形ABC如图所示:(2)连接OB、OC,延长AO交BC于点D,如图,∵△ABC是等边三角形,∴AB=AC=BC,∠ABC=∠BAC=∠ACB=60°,∴AD⊥BC,∠BOD=∠COD=60°,∴∠OBD=30°,BC=2BD,∵⊙O半径为10,∴152OD OB==,∴2253 BD OB OD-∴103BC=∴三角形ABC的边长为103故答案为3一、单选题1.下列判断中正确的是()A.平分弦的直径垂直于弦B.垂直于弦的直线平分弦所对的弧C.平分弧的直径平分弧所对的的弦D.三点确定一个圆【答案】C【分析】根据垂径定理和确定圆的条件对各选项进行逐一解答即可.【解析】解:A、平分弦(不是直径)的直径垂直于弦,故选项错误;B、垂直于弦的直径平分弦所对的弧,故选项错误;C、平分弧的直径平分弧所对的的弦,故选项正确;D、不共线的三点确定一个圆,故选项错误;故选C.2.如图,在平面直角坐标系xOy中,点A(0,3),点B(2,1),点C(2,-3).则经画图操作可知:△ABC 的外接圆的圆心坐标是()A.(-2,-1)B.(-1,0)C.(-1,-1)D.(0,-1)【答案】A【分析】首先由△ABC的外心即是三角形三边垂直平分线的交点,所以在平面直角坐标系中作AB与BC的垂线,两垂线的交点即为△ABC的外心.【解析】解:∵△ABC的外心即是三角形三边垂直平分线的交点,如图所示:EF与MN的交点O′即为所求的△ABC的外心,课后习题巩固一∴△ABC的外心坐标是(﹣2,﹣1).故选:A3.对于以下说法:①各角相等的多边形是正多边形;②各边相等的三角形是正三角形;③各角相等的圆内接多边形是正多边形;④各顶点等分外接圆的多边形是正多边形.正确的有()A.1个B.2个C.3个D.4个【答案】B【分析】①没有边相等的信息不能判定其是正多边形;②符合正三角形的定义;③仅有各角相等没有边相等的信息不能判定其是圆内正多边形;④符合圆内接多边形的定义.【解析】①错误,如矩形,满足条件,却不是正多边形;②正确;③错误,如圆内接矩形,满足条件,却不是正多边形;④正确.共有2个正确.故选B4.给定下列条件可以确定唯一的一个圆的是()A.已知圆心B.已知半径C.已知直径D.不在同一直线上的三个点【答案】D【分析】根据确定圆的条件,逐一判断选项,即可得到答案.【解析】A. 已知圆心,但半径不确定,不可以确定唯一的一个圆,不符合题意,B. 已知半径,但圆心位置不确定,不可以确定唯一的一个圆,不符合题意,C. 已知直径,但圆心位置不确定,不可以确定唯一的一个圆,不符合题意,D. 不在同一条直线上的三个点可以确定一个圆,符合题意.故选D.5.从一块圆形玻璃镜残片的边缘描出三点A、B、C,得到△ABC,则这块玻璃镜的圆心是()A.AB、AC边上的高所在直线的交点B.AB、AC边的垂直平分线的交点C.AB、AC边上的中线的交点D.∠BAC与∠ABC的角平分线的交点【答案】B【分析】结合图形可知所求玻璃镜的圆心是ABC外接圆的圆心,据此可得出答案.【解析】根据题意可知,所求的玻璃镜的圆心是ABC外接圆的圆心,而ABC外接圆的圆心是三边垂直平分线的交点,故选:B.6.下列说法中错误的是()A.直径是弦B.经过不在同一直线上三点可以确定一个圆C.三角形的外心到三个顶点的距离相等D.两个半圆是等弧【答案】D【分析】根据圆的性质:弦的定义、确定圆的条件、外心性质、弧的定义逐一判断解答.【解析】解:A. 直径是弦,故A正确;B. 经过不在同一直线上三点可以确定一个圆,故B正确;C. 三角形的外心到三个顶点的距离相等,故C正确;D. 两个半圆不一定是等弧,故D错误,故选:D.7.如图,点O是△ABC的外心(三角形三边垂直平分线的交点),若∠BOC=96°,则∠A的度数为()A.49°B.47.5°C.48°D.不能确定【答案】C【分析】根据三角形垂直平分线的性质以及三角形内角和定理计算即可.【解析】解:如图,连接AO,∵点O是△ABC三边垂直平分线的交点,∴AO=BO=CO,∴∠OAB=∠OBA,∠OAC=∠OCA,∠OBC=∠OCB,∴∠AOB=180°-2∠OAB,∠AOC=180°-2∠OAC,∴∠BOC=360°-(∠AOB+∠AOC)=360°-(180°-2∠OAB+180°-2∠OAC)=2∠OAB+2∠OAC=2∠BAC;∵∠BOC=96°,∴∠BAC=48°,故选:C.A B,C在平面直角坐标系中,则ABC的外心在()8.如图,点(0,3),(2,1)A.第四象限B.第三象限C.原点O处D.y轴上【答案】B【分析】根据直角坐标系的特点作AB、BC的垂直平分线即可求解.【解析】如图,作AB、BC的垂直平分线,交点在第三象限,故选B.9.如图,已知平面直角坐标系内三点A(3,0)、B(5,0)、C(0,4),⊙P经过点A、B、C,则点P的坐标为()A .(6,8)B .(4,5)C .(4,318) D .(4,338) 【答案】C【分析】先由题意可知,点P 在线段AB 的垂直平分线上,可确定P 的横坐标为4;设点P 的坐标为(4,y ),如图作PE ⊥OB 于E ,PF ⊥OC 于F ,运用勾股定理求得y 即可. 【解析】解:∵⊙P 经过点A 、B 、C , ∴点P 在线段AB 的垂直平分线上, ∴点P 的横坐标为4, 设点P 的坐标为(4,y ), 作PE ⊥OB 于E ,PF ⊥OC 于F , 22224(4)1y y +-+ 解得,y 318=, 故选:C .10.如图,ABC 为锐角三角形,6BC =,45A ∠=︒,点O 为ABC 的重心,D 为BC 中点,若固定边BC ,使顶点A 在ABC 所在平面内进行运动,在运动过程中,保持A ∠的大小不变,设BC 的中点为D ,则线段OD 的长度的取值范围为( )A 521OD ≤B 531OD ≤C .131OD ≤< D .121OD <≤【答案】D【分析】如图,作ABC 的外接圆,点E 为圆心,AD BC ⊥,由题意知1OD AD 3=且90BEC ∠=︒,3BD DE ==,由勾股定理知2232BE BD DE =+=,332AD DE AE =+=+当AD BC⊥时,AD 最长,可求此时OD 最大值;由于3AD BD >=,可得此时OD 最小值,进而可得OD 的取值范围. 【解析】解:如图,作ABC 的外接圆,点E 为圆心,AD BC ⊥由题意知1OD AD 3=∵45A ∠=︒ ∴90BEC ∠=︒ ∴45EBD BED ∠=∠=︒∴3BD DE ==,由勾股定理知2232BE BD DE =+= ∴332AD DE AE =+=+∵AD BC ⊥时,AD 最长, ∴OD 最大值为12∵3AD BD >= ∴1OD > ∴112OD <≤故选D . 二、填空题11.如图,点O 是△ABC 的外心,连接OB ,若∠OBA =17°,则∠C 的度数为_________°.【答案】73【分析】连接OA ,OC ,根据三角形的内角和和等腰三角形的性质即可得到结论. 【解析】解:连接OA ,OC ,点O 是ABC ∆的外心,OA OB OC ∴==,OBA OAB ∴∠=∠,OAC OCA ∠=∠,OBC OCB ∠=∠, 17OBA ∠=︒, 17OAB ∴∠=︒,1801801717146OBC OCB OCA ACO OBA OAB ∠+∠+∠+∠=-∠-∠=︒-︒-︒=︒即146OBC OCB OCA ACO ∠+∠+∠+∠=︒,22146OCB ACO ∴∠+∠=︒, 73OCB ACO ∴∠+∠=︒, 73BCA ∴∠=︒.故答案为:73.12.三角形两边的长是3和4,第三边的长是方程2-12+35=0x x 的根,则该三角形外接圆的半径为______. 【答案】52【分析】先解一元二次方程,根据构成三角形的条件取舍,勾股定理的逆定理判定三角形为直角三角形,进而根据90度角所对的弦为直径,进而求得三角形外接圆的半径. 【解析】解:2-12+35=0x x ,()()570x x --=,解得215,7x x ==,当7x =时,347+=不能构成三角形; 当5x =时,22234255+==,∴这个三角形是斜边为5的直角三角形, ∴该三角形外接圆的半径为52, 故答案为:52. 13.如图,已知AB =AC =BE =CD ,AD =AE ,点F 为△ADE 的外心,若∠DAE =40°,则∠BFC =______°.【答案】140【分析】由等腰三角形的性质得出∠BEA =∠BAE = 70°,求出∠ABE = 40°,连接AE ,EF ,DF ,由三角形外心的性质求出∠EBF =∠FCB =20°,由三角形内角和定理可得出答案. 【解析】解:∵∠DAE =40°,AD =AE , ∴∠ADE =∠AED ,∴∠AED =12(180°﹣40°)=70°, ∵AB =BE ,∴∠BEA =∠BAE =70°, ∴∠ABE =40°, 连接AE ,EF ,∵点F 为△ADE 的外心, ∴AF =EF ,AF =DF , ∴点F 在AE 的垂直平分线上, 同理点B 在AE 的垂直平分线上, ∴∠ABF =∠EBF , ∴∠EBF =12∠ABE =20°,同理∠FCB =20°,∴∠BFC =180°﹣∠FBC ﹣∠FCB =180°﹣20°﹣20°=140°. 故答案为:14014.有一种化学实验中用的圆形过滤纸片,如果需要找它的圆心,请你简要说明你找圆心的方法是__________________【答案】在圆形纸片的边缘上任取三点,,,A B C 则线段,AB AC 的垂直平分线的交点O 是圆形纸片的圆心. 【分析】如图,在圆形纸片的边缘上任取三点,,,A B C 连接,,AB AC 再作,AB AC 的垂直平分线得到两条垂直平分线的交点即可.【解析】解:如图,在圆形纸片的边缘上任取三点,,,A B C连接,,AB AC 则,AB AC 的垂直平分线的交点O 是圆形纸片的圆心.故答案为:在圆形纸片的边缘上任取三点,,,A B C 则线段,AB AC 的垂直平分线的交点O 是圆形纸片的圆心. 15.如图,在57⨯网格中,各小正方形边长均为1,点O ,A ,B ,C ,D ,E 均在格点上,点O 是ABC 的外心,在不添加其他字母的情况下,则除ABC 外把你认为外心也是O 的三角形都写出来__________________________.【答案】△ADC 、△BDC 、△ABD【分析】先求出△ABC 的外接圆半径r ,再找到距离O 点的长度同为r 的点,即可求解. 【解析】由网格图可知O 点到A 、B 、C 22125+ 则外接圆半径5r =图中D 点到O 22125r +=, 图中E 点到O 221310+=则可知除△ABC 外把你认为外心也是O 的三角形有:△ADC 、△ADB 、△BDC , 故答案为:△ADC 、△ADB 、△BDC .16.已知ABC 的三边a ,b ,c 满足|c ﹣4|+b +a 2﹣10a =1b +30,则ABC 的外接圆半径的长为___. 【答案】2.5【分析】先根据|c ﹣4|+b +a 2﹣10a =1b +30变形可得22|4|(12)(5)0c b a -+++-=,再根据绝对值和完全平方公式的非负性即可求得a 、b 、c 的值,进而根据勾股定理的逆定理可得ABC 为直角三角形,由此可得ABC 外接圆半径的长为斜边的一半. 【解析】解:∵|c ﹣4|+b +a 2﹣10a =1b +30,2|4|(1414)(1025)0c b b a a ∴-++-++-+=, 22|4|(12)(5)0c b a ∴-+++-=,又∵22|4|0,(12)0,(5)0c b a -≥+≥-≥, ∴40c -=120b +=,50a -=,解得:4c =,3b =,5a =, ∴22225c b a +==,∴ABC 为直角三角形,且斜边长为5, ∴ABC 的外接圆的半径r =5×12=2.5,故答案为:2.5. 三、解答题17.为了美化校园,某小区要在如图所示的三角形空地(ABC )上作一个半圆形花坛并使之满足以下要求;①圆心在边BC 上,②该半圆面积最大.请你帮忙设计这一花坛.【答案】见解析【分析】作∠A 的角平分线AD 交BC 于点O ,以点O 为圆心,点O 到AC 的距离OD 为半径画半圆,此时半圆和AC ,AB 都相切,则该半圆面积最大. 【解析】如图所示:该半圆即为所求.18.如图,学校某处空地上有A 、B 、C 三棵树,现准备建一个圆形景观鱼池,要求A 、B 、C 三棵树恰在圆周上,请你帮助设计鱼池,在图中作出它的鱼池轮廓,保留作图痕迹并将圆心标记为点O .【答案】见解析【分析】连接,AB BC ,分别作,AB BC 的垂直平分线,交于点O ,以OA 的长度为半径,O 为圆心作圆即可. 【解析】如图所示.连接,AB BC ,分别作,AB BC 的垂直平分线,交于点O ,以OA 的长度为半径,O 为圆心作圆,则O 即为所求,19.有趣的倍圆问题:校园里有个圆形花坛,春季改造,负责该片花园维护的某班同学经过协商,想把该花坛的面积扩大一倍.他们在图纸上设计了以下施工方案:①在⊙O 中作直径AB ,分别以A 、B 为圆心,大于12AB 长为半径画弧,两弧在直径AB 上方交于点C ,作射线OC 交⊙O 于点D ;②连接BD ,以O 为圆心BD 长为半径画圆; ③大⊙O 即为所求作.(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成如下证明:证明:连接CA 、CB在△ABC 中,∵CA =CB ,O 是AB 的中点,∴CO ⊥AB ( )(填推理的依据)设小O 半径长为r∵OB =OD ,∠DOB =90°∴BD 2∴S 大⊙O =π2)2= S 小⊙O .【答案】(1)见解析;(2)见解析【分析】(1)按照题意作图即可;(2)先根据三线合一定理得到CO ⊥AB ,然后证明BD 2r 即可得到S 大⊙O =π2r )2=2S 小⊙O .【解析】(1)解:如图所示,即为所求;(2)证明:连接CA 、CB在△ABC 中,∵CA =CB ,O 是AB 的中点,∴CO ⊥AB (三线合一定理)(填推理的依据)设小O 半径长为r∵OB =OD ,∠DOB =90°∴BD 2∴S 大⊙O =π2)2=2S 小⊙O .20.如图,ABC 是直角三角形,90ACB ∠=︒.(1)利用尺规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法).①作ABC 的外接圆O ;②以线段AC 为一边,在AC 的右侧作等边三角形ACD ;③连接BD ,交O 于点E ,连接AE ;(2)在(1)中所作的图中,若4AB =,2BC =,则线段AE 的长为______.【答案】(1)作图见解析;4217【分析】(1)利用直角三角形的外心是直角三角形斜边的中点,先做AB 的垂直平分线,找出圆心O ,以O 为圆心,OA 为半径画圆即可,再分别以A ,B 为圆心,AB 为半径画弧交于点D ,连接AD ,CD ,即可做出等边三角形ACD ;(2)证明∠BAD =90°,利用勾股定理求出2227BD AB AD =+=AE 的长.【解析】(1)解:作图如下:(2)解:∵AB =4,BC =2,△ACD 是等边三角形,∴∠BAD =∠BAC +∠CAD =30°+60°=90°, ∴323===AD AC AB ∴2227BD AB AD =+= ∴14221172=AB AD AE BD 故线段AE 的长为4217。
【最新版】九年级数学上册课件:24.2.1 点和圆的位置关系

知识点 4 反证法
思考:经过同一条直线上的三个点能作出一个圆吗?
P l1
A
B
如图,假设过同一条直线l上三点A、B、C可以作
一个圆,设这个圆的圆心为P.
那么点P既在线段AB的垂直平分线l1上,又在线段
l2
BC的垂直平分线l2上,即点P为l1与l2的交点.
而l1⊥l,l2⊥l这与我们以前学过的“过一点有且 C 只有一条直线与已知直线垂直”相矛盾.
2. 连接AC,作线段AC的垂直平分 B E O M C 线EF,交MN于点O;
3. 以O为圆心,OB为半径作圆.
所以⊙O就是所求作的圆.
探究新知
24.2 点和圆、直线和圆的位置关系/
问题4:现在你知道怎样将一个如图所示的破损的圆盘复原
了吗?
方法: 1. 在圆弧上任取三点A、B、C;
A B
2. 作线段AB、BC的垂直平分线,
3.⊙O的半径r为5cm,O为原点,点P的坐标为(3,4),
则点P与⊙O的位置关系为 (B )
A.在⊙O内
B.在⊙O上
C.在⊙O外 外
D.在⊙O上或⊙O
课堂检测
24.2 点和圆、直线和圆的位置关系/
4.已知:在Rt△ABC中,∠C=90°,AC=6,BC=8,则它
的外接圆半径= 5 .
5.如图,△ABC内接于⊙O,若∠OAB=20°,则∠C的度 数是___7_0_°___.
B
C
A
课堂小结
24.2 点和圆、直线和圆的位置关系/
点与圆的 位置关系
作 圆
点在圆外 点在圆上 点在圆内
d>r d=r d<r
P
r R
过一点可以作无数个圆
著名机构初中数学培优讲义圆的概念.第06讲(B级).学生版

内容基本要求略高要求较高要求圆的有关概念理解圆及其有关概念会过不在同一直线上的三点作圆;能利用圆的有关概念解决简单问题圆的性质知道圆的对称性,了解弧、弦、圆心角的关系能用弧、弦、圆心角的关系解决简单问题能运用圆的性质解决有关问题垂径定理 会在相应的图形中确定垂径定理的条件和结论能用垂径定理解决有关问题1.理解圆及相关概念,了解弧、弦、圆心角的关系; 2.探索圆的性质,了解圆周角与圆心角的关系; 3.能够利用垂径定理解决相关问题.祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人.他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家.祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反中考要求重难点课前预习圆的基本性质复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率,外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率".祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元.祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:"幂势既同,则积不容异."意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等.这一原理,在西文被称为卡瓦列利原理,但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理".例题精讲模版一圆的概念与性质一、圆的相关概念1.圆的定义(1)描述性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,其中固定端点O叫做圆心,OA叫做半径.(2)集合性定义:平面内到定点的距离等于定长的点的集合叫做圆,顶点叫做圆心,定长叫做半径.(3)圆的表示方法:通常用符号⊙表示圆,定义中以O为圆心,OA为半径的圆记作”O⊙“,读作”圆O“.(4)同圆、同心圆、等圆:圆心相同且半径相等的圆叫同圆;圆心相同,半径不相等的两个圆叫做同心圆;能够重合的两个圆叫做等圆.注意:注意:同圆或等圆的半径相等.2.弦和弧(1)弦:连结圆上任意两点的线段叫做弦.(2)直径:经过圆心的弦叫做圆的直径,直径等于半径的2倍.(3)弦心距:从圆心到弦的距离叫做弦心距.、为端点的圆弧记作»AB,读作弧AB.(4)弧:圆上任意两点间的部分叫做圆弧,简称弧.以A B(5)等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.(6)半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆.(7)优弧、劣弧:大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.(8) 弓形:由弦及其所对的弧组成的图形叫做弓形. 3. 圆心角和圆周角(1) 圆心角:顶点在圆心的角叫做圆心角.将整个圆分为360等份,每一份的弧对应1︒的圆心角,我们也称这样的弧为1︒的弧.圆心角的度数和它所对的弧的度数相等. (2) 圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角.二、圆的对称性1. 旋转对称性(1) 圆是中心对称图形,对称中心是圆心;圆是旋转对称图形,无论绕圆心旋转多少度角,总能与自身重合.(2) 圆的旋转对称性⇒圆心角、弧、弦、弦心距之间的关系. 2. 轴对称性(1) 圆是轴对称图形,经过圆心的任一条直线是它的对称轴. (2) 圆的轴对称性⇒垂径定理.三、圆的性质定理1. 垂径定理D(1) 定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. (2) 推论1:①平分弦(非直径)的直径,垂直于弦,并且平分弦所对的两条弧. ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧.③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧. (3) 推论2:圆的两条平行线所夹的弧相等.注意:若“过圆心的直线”、“垂直于弦”、“平分弦(非直径)”、“平分弦所对的优弧”、“平分弦所对的劣弧”中的任意两个成立,则另外三个都成立.注意:应用垂径定理与推论进行计算时,往往要构造如右图所示的直角三角形,根据垂径定理与勾股定理有:222()2ar d =+,根据此公式,在a ,r ,d 三个量中知道任何两个量就可以求出第三个量.【例1】 如图,点A B 、是O e 上两点,AB =10,点P 是O e 上的动点(P 与A B 、不重合),连接AP BP 、,过点O 分别做OE AP ⊥于E ,OF PB ⊥于F ,则EF = .PFE O BA【例2】 如图,AB 是O e 的直径,CD 是弦,若10AB =,8CD =,那么A B 、两点到直线CD 的距离之和为 .【巩固】如图,AB 是O e 的直径,CD 是弦,AE CD ⊥于E ,BF CD ⊥于F ,BF 交O e 于G ,下面的结论成立:①EC DF =;②AE BF AB +=;③AE GF =;④FG FB EC ED ⋅=⋅.其中正确的结论有 .【例3】 如图,一量角器放置在AOB ∠上,角的一边OA 与量角器交于点C 、D ,且点C 处的度数是20︒,点D 处的度数为110°,则AOB ∠的度数是( )A 、20°B 、25°C 、45°D 、55°【巩固】如图,弦CD 垂直于O e 的直径AB,垂足为H ,且CD=BD =则AB 的长为 .D【巩固】如图,半径为5的P e 与y 轴交于点M (0,-4),N (0,-10),函数ky x=()0x <的图像上过点P ,则k = .【例4】(1)如图,多边形ABDEC是由边长为2的等边三角形和正方形BDEC组成,Oe过A、D、E 三点,则Oe的半径等于.A【巩固】如图,正方形ABCD内接于Oe,E为DC的中点,直线BE交Oe于点F,如果Oe则点O到BE的距离为OM=.【例5】如图,把正三角形ABC的外接圆对折,使点A落在»BC的中点A'上,若5BC=,则折痕在ABC△内的部分DE长为.A'C【巩固】如图,点P为弦AB上的一点,连接OP,过点P作PC OP⊥,PC交Oe于C.若8AP=,2PB=,则PC的长为.C【例6】如图甲,Oe的直径为AB,过半径OA的中点G作弦CE AB⊥,在»BC上取一点D,分别做直径CD ED、,交直线AB于点F M,.(1)求COA∠和FDM∠的度数;(2)求证:FDM COM△∽△.A【例7】已知AD是Oe的直径,AB AC、是弦,且AB AC=.(1)如图1,求证:直径AD平分BAC∠;(2)如图2,若弦BC经过半径OA的中点E,F是»CD的中点,G是»FB的中点,Oe的半径为1,求弦长FG的长(3)如图3,在(2)中若弦BC经过半径OA的中点E,P为劣弧»AF上一动点,连结PA PB PD PF、、、,求证:PA PFPB PD++为定值.ADA【巩固】如图,在平面直角坐标系中,点M在x轴的正半轴上,Me交x轴于A B、两点,交y轴于C D、两点,E是Me上一点,»»AC CE=,AE交y轴于G点.已知点A的坐标为()20,,8AE=.(1)求点C的坐标;(2)连结MG BC∥,,求证:MG BC模版二圆中角1.圆周角定理(1)定理:一条弧所对的圆周角等于它所对的圆心角的一半.(2)推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等.推论2:半圆(或直径)所对的圆周角是直角,90 的圆周角所对的弦是直径.推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.2.圆心角、弧、弦、弦心距之间的关系(1)定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.A(2)推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量分别相等.注意:①前提条件是在同圆或等圆中;②在由等弦推出等弧时应注意:优弧与优弧相等;劣弧与劣弧相等.【例8】 如图,AB 为O e 的直径,AC 交O e 于E 点,BC 交O e 于D 点,CD BD =,70C ∠=︒.现给出以下四个结论:①45A ∠=︒;②AC AB =;③»»AE BE=;④22CE AB BD ⋅=其中正确的结论的序号是 .AR【巩固】如图AB 是半圆O 的直径,点C D 、在弧AB 上,且AD 平分CAB ∠,已知106AB AC ==,,则AD的长为 .【例9】 如图,BC 为半圆O 的直径,A D、为半圆O 上两点,AB =,2BC =,则D ∠的度数为 .【巩固】如图,PQR △是O e 的内接正三角形,四边形ABCD 是O e 的内接正方形,BC QR ∥,则AOQ ∠的度数为 .【例10】 已知:如图,面积为2的四边形ABCD 内接于O ⊙,对角线AC 经过圆心,若45BAD ∠=︒,CD 则AB 的长等于 .【巩固】如图,已知四边形ABCD 内接于直径为3的圆O ,对角线AC 是直径,对角线AC 和BD 的交点P ,AB BD =,且0.6PC =,则四边形ABCD 的周长为 .CC【例11】 在同圆中,»CD的度数小于180︒,且»»2AB CD =,那么弦AB 和弦CD 的大小关系为( ) A .AB CD > B .AB CD = C .AB CD < D .无法确定(C)A (C)(C)【巩固】如图所示在O ⊙中,2AB CD =,那么( )»»A.2AB CD > »»B.2AB CD< »»C.2AB CD = »D.AB 与»2CD的大小关系不能确定【例12】 如图,已知:在O ⊙中,直径4AB =,点E 是OA 上任意一点,过E 作弦CD AB ⊥,点F 是»BC上一点,连接AF 交CE 于H ,连接AC CF BD OD 、、、. (1) 求证:ACH AFC ∆∆∽;(2)猜想:AH AF ⋅与AE AB ⋅的数量关系,并说明你的猜想; (3)探究:当点E 位于何处时,:1:4AEC BOD S S ∆∆=?并加以说明.【巩固】如图,AB ,AC ,AD 是圆中的三条弦,点E 在AD 上,且AB AC AE ==.请你说明以下各式成立的理由:(1)2CAD DBE ∠=∠;(2)22AD AB BD DC -=⋅.E DC BAG654321A BCDE模版三 点与圆的位置关系 一、点与圆的位置关系4. 确定圆的条件(5) 圆心(定点),确定圆的位置; (6) 半径(定长),确定圆的大小.注意:只有当圆心和半径都确定时,圆才能确定. 5. 点与圆的位置关系(7) 点与圆的位置关系有:点在圆上、点在圆内、点在圆外三种,这三种关系由这个点到圆心的距离与半径的大小关系决定.(8) 设O ⊙的半径为r ,点P 到圆心O 的距离为d ,则有:点在圆外⇔d r >;点在圆上⇔d r =;点在圆内⇔d r <.如下表所示:二、过已知点的圆1.过已知点的圆(1)经过点A的圆:以点A以外的任意一点O为圆心,以OA的长为半径,即可作出过点A的圆,这样的圆有无数个.(2)经过两点A B、的圆:以线段AB中垂线上任意一点O作为圆心,以OA的长为半径,即可作出过点A B、的圆,这样的圆也有无数个.(3)过三点的圆:若这三点A B C、、三点不共线时,圆心、、共线时,过三点的圆不存在;若A B C是线段AB与BC的中垂线的交点,而这个交点O是唯一存在的,这样的圆有唯一一个.(4)过n()4n≥个点的圆:只可以作0个或1个,当只可作一个时,其圆心是其中不共线三点确定的圆的圆心.2.定理:不在同一直线上的三点确定一个圆(1)“不在同一直线上”这个条件不可忽视,换句话说,在同一直线上的三点不能作圆;(2)“确定”一词的含义是”有且只有”,即”唯一存在”.三、三角形的外接圆及外心1.三角形的外接圆(1)经过三角形三个顶点的圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,这个三角形叫做这个圆的内接三角形.(2)锐角三角形外接圆的圆心在它的内部;直角三角形外接圆的圆心在斜边中点处(即直角三角形外接圆半径等于斜边的一半);钝角三角形外接圆的圆心在它的外部.2.三角形外心的性质(1)三角形的外心是指外接圆的圆心,它是三角形三边垂直平分线的交点,它到三角形各顶点的距离相等;(2)三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合.【例1】已知圆内一点到圆周上的点的最大距离是7,最小距离是5,则该圆的半径是( ) A.2 B.6 C.12 D.7【巩固】一个已知点到圆周上的点的最大距离为5cm ,最小距离为1cm ,则此圆的半径为______.【巩固】定义:定点A 与O ⊙上的任意一点之间的距离的最小值称为点A 与O ⊙之间的距离.现有一矩形ABCD 如图,14cm 12cm AB BC ==,,K ⊙与矩形的边AB BC CD 、、分别相切于点E F G 、、,则点A 与K ⊙的距离为______________.GF EK DCB A1.如图,ABC ∆内接于O ⊙,120AB BC ABC =∠=︒,,AD 为O ⊙的直径,6AD =,那么BD =_________.ODCA2.已知,如图:AB 为O ⊙的直径,AB AC =,BC 交O ⊙于点D ,AC 交O ⊙于点E ,45BAC ∠=︒.给出以下五个结论:①22.5EBC ∠=︒,;②BD DC =;③2AE EC =;④劣弧»AE 是劣弧»DE 的2倍;⑤AE BC =.其中正确结论的序号是 .OECBA1.通过本堂课你学会了 .课堂检测总结复习2.掌握的不太好的部分 . 3.老师点评:① .② .③ .1.如图,AB 是O ⊙的直径,点C D 、在O ⊙上,110BOC ∠=︒,AD OC ∥,则AOD ∠=___________.OD CBA2.如图,已知ACB ∠是O e 的圆周角,50ACB ∠=︒,则圆心角AOB ∠是( ) A .40︒ B .50︒ C .80︒ D .100︒OCBA3.如图,四边形ABCD 是O ⊙的内接正方形,点P 是劣弧»CD 上不同于点C 的任意一点,则BPC ∠的度数是( )A.45︒ B .60︒ C.75︒ D.90︒PO D C BA4.如图,已知AB 为⊙O 的直径,20E ∠=︒,50DBC ∠=︒,则CBE ∠=______.OEDCBA5.如图,半圆的直径10AB =,点C 在半圆上,6BC =. (1)求弦AC 的长;(2)若P 为AB 的中点,PE AB ⊥交AC 于点E ,求PE 的长.课后作业PEC B A。
《过不共线三点作圆》导学案

学习目标
1.了解不共线三点确定一个圆的方法,三角形的外接圆及外心等概念;
2.经历不共线三个点确定一个圆的探索过程,培养学生的探索能力.
重点难点
重点:掌握过不共线三点作圆的方法,了解三角形的外接圆及外心等概念.
难点:怎么样去确定过不在同一条直线上的三点的圆的圆心.
学习过程:
一、课前抽测: A B
A·
B· ·C
2.求边长为a的等边三角形的外接圆的半径.(用含有a的式子表示)
五、达标)⊙O是△ABC的圆.
2. 判断:
(1)经过三个点一定可以作圆;( )
(2)任意一个三角形一定有一个外接圆,并且只有一个外接圆;( )
(3)任意一个圆一定有一个内接三角形,并且只有一个内接三角形;( )
1.(1)经过一个已知点A画圆; ·A
想一想:经过已知点A可以画多少个圆?
(2)经过两个已知点C、B画圆.
想一想:①经过两个已知点可以画多少个圆?
C· · B
②圆心在哪儿?半径怎么确定?
2.设三点A,B,C不在同一直线上.
⑴过三点A,B,C的圆的圆心在哪儿?怎么确定?
A· ·B
C·
⑵过不在同一直线上的三点A,B,C如何作圆?
强调:(1)过同一直线上三点不行; (2)“确定”一词应理解成“有且只有”.
3.三角形的外接圆:.
圆的内接三角形:.
外心:.
三、合作探究:
例1:作出下列三角形的外接圆(只要作图痕迹,不要求作法)
归纳:锐角三角形的外心在三角形的
直角三角形的外心是三角形
钝角三角形的外心在三角形的
四、展示质疑:
1.如图,A、B、C表示三个工厂,要建一个供水站,使它到这三个工厂的距离相等,求供水站的位置(用点P表示,保留作图痕迹)。
点与圆、直线与圆位置关系

一、点与圆的位置关系1.确定圆的条件(1)圆心(定点),确定圆的位置;(2)半径(定长),确定圆的大小.注意:只有当圆心和半径都确定时,圆才能确定.2.点与圆的位置关系(3)点与圆的位置关系有:点在圆上、点在圆内、点在圆外三种,这三种关系由这个点到圆心的距离与半径的大小关系决定.(4)设O=;⊙的半径为r,点P到圆心O的距离为d,则有:点在圆外⇔d r>;点在圆上⇔d r 点在圆内⇔d r<.如下表所示:二、过已知点的圆1.过已知点的圆(1)经过点A的圆:以点A以外的任意一点O为圆心,以OA的长为半径,即可作出过点A的圆,这样的圆有无数个.(2)经过两点A B、的圆:以线段AB中垂线上任意一点O作为圆心,以OA的长为半径,即可作出过点A B、的圆,这样的圆也有无数个.(3)过三点的圆:若这三点A B C、、三点不共线时,圆心、、共线时,过三点的圆不存在;若A B C是线段AB与BC的中垂线的交点,而这个交点O是唯一存在的,这样的圆有唯一一个.n≥个点的圆:只可以作0个或1个,当只可作一个时,其圆心是其中不共线三点确定的(4)过n()4圆的圆心.2.定理:不在同一直线上的三点确定一个圆(1)“不在同一直线上”这个条件不可忽视,换句话说,在同一直线上的三点不能作圆;(2)“确定”一词的含义是”有且只有”,即”唯一存在”.三、三角形的外接圆及外心1.三角形的外接圆(1)经过三角形三个顶点的圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,这个三角形叫做这个圆的内接三角形.(2)锐角三角形外接圆的圆心在它的内部;直角三角形外接圆的圆心在斜边中点处(即直角三角形外接圆半径等于斜边的一半);钝角三角形外接圆的圆心在它的外部.2. 三角形外心的性质(1) 三角形的外心是指外接圆的圆心,它是三角形三边垂直平分线的交点,它到三角形各顶点的距离相等; (2) 三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合.一、点与圆的位置关系【例1】 已知圆内一点到圆周上的点的最大距离是7,最小距离是5,则该圆的半径是( )A .2B .6C .12D .7【巩固】1、一个已知点到圆周上的点的最大距离为5cm ,最小距离为1cm ,则此圆的半径为______.2、若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b (a>b ),则此圆的半径为( )DA .2b a + B .2ba - C .22b a b a -+或D .b a b a -+或3、定义:定点A 与O ⊙上的任意一点之间的距离的最小值称为点A 与O ⊙之间的距离.现有一矩形ABCD如图,14cm 12cm AB BC ==,,K ⊙与矩形的边AB BC CD 、、分别相切于点E F G 、、,则点A 与K ⊙的距离为______________.【例2】 已知ABC ∆中,90C ∠=︒,2AC =,3BC =,AB 的中点为M ,⑴以C 为圆心,2为半径作C ⊙,则点A ,B ,M 与C ⊙的位置关系如何? ⑵若以C 为圆心作C ⊙,使A ,B ,M 三点至少有一点在C ⊙内,且至少有一点在C ⊙外,求C ⊙半径r 的取值范围.M CBA【巩固】1、Rt ABC ∆的两条直角边3BC =,4AC =,斜边AB 上的高为CD ,若以C 为圆心,分别以12r =,2 2.4r =,33r =为半径作圆,试判断D 点与这三个圆的位置关系.DCBA2、在ABC ∆中,90C ∠=︒,4AC =,5AB =,以点C 为圆心,以r 为半径作圆,请回答下列问题,并说明理由.⑴当r 取何值时,点A 在C ⊙上,且点B 在C ⊙内部?⑵当r 在什么范围内取值时,点A 在C ⊙外部,且点B 在C ⊙的内部? ⑶是否存在这样的实数r ,使得点B 在C ⊙上,且点A 在C ⊙内部?CBA二、过三点的圆【例3】 如图,四边形ABCD 中,AB AC AD ==,若7613CAD BDC ∠=︒∠=︒,,则CBD ∠=_________,BAC ∠=__________.DCBA【例4】 如图,在平面直角坐标系中,O '与两坐标轴分别交于A B C D ,,,四点,已知:()60A ,,()03B -,,()20C -,,则点D 的坐标是( ) A .()02,B .()03,C .()04,D .()05,三、三角形的外接圆及外心【例5】 如图,ABC ∆内接于O ⊙,120BAC ∠=︒,AB AC =,BD 为O ⊙的直径,6AD =,则BC =.【巩固】等边三角形的外接圆的半径等于边长的( )倍.ABCD .12【例6】 设Rt ABC ∆的两条直角边长分别为3,4,则此直角三角形的内切圆半径为 ,外接圆半径为 .【巩固】1、如图,直角坐标系中一条圆弧经过网格点A B C ,,,其中B 点的坐标为()44,,则该圆弧所在圆的圆心的坐标为 .2、ABC ∆中,10AB AC ==,12BC =,求其外接圆的半径.【例7】 在等腰ABC ∆中,AB BC =,BH 是高,点M 是边AB 的中点,而经过点B ,M 于C 的圆同BH的交点是K ,求证32BK R =,其中R 是ABC ∆的外接圆半径.【巩固】1、已知∆ABC 中,=AB AC ,D 是∆ABC 外接圆劣弧AC 上的点(不与点A C ,重合),延长BD 至E .⑴求证:AD的延长线平分∠CDE;⑵若30∠=︒BAC,∆ABC中BC边上的高为2∆ABC外接圆的面积.AB CD E2、已知如图,ACD∆的外角平分线CB交其外接圆于B,连接BA、BD,求证:BA BD=.一、直线与圆的位置关系设O⊙的半径为r,圆心O到直线l的距离为d,则直线和圆的位置关系如下表:切线的性质定理:圆的切线垂直于过切点的半径.推论1:经过圆心且垂直于切线的直线必经过切点.推论2:经过切点且垂直于切线的直线必经过圆心.注意:这个定理共有三个条件,即一条直线满足:①垂直于切线②过切点③过圆心①过圆心,过切点⇒垂直于切线.AB过圆心,AB过切点M,则AB l⊥.②过圆心,垂直于切线⇒过切点.AB过圆心,AB l⊥,则AB过切点M.③过切点,垂直于切线⇒过圆心.AB l⊥,AB过切点M,则AB过圆心.l 3.切线的判定(1)定义法:和圆只有一个公共点的直线是圆的切线;(2)距离法:和圆心距离等于半径的直线是圆的切线;(3)定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.注意:定理的题设是①“经过半径外端”,②“垂直于半径”,两个条件缺一不可;定理的结论是“直线是圆的切线”.因此,证明一条直线是圆的切线有两个思路:①连接半径,证直线与此半径垂直;②作垂直,证垂直在圆上.l4.切线长和切线长定理(1)切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长.(2)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.三、三角形的内切圆1.三角形的内切圆:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.2. 多边形的内切圆:和多边形的各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形.3. 直角三角形内切圆的半径与三边的关系cb acbaO F ED CBACBAC B A设a 、b 、c 分别为ABC △中A ∠、B ∠、C ∠的对边,面积为S ,则内切圆半径为sr p=,其中()12p a b c =++.若90C ∠=︒,则()12r a b c =+-. 一、直线与圆位置关系的确定【例1】 如图,已知⊙O 是以数轴的原点O 为圆心,半径为1的圆,45AOB ∠=︒,点P 在数轴上运动,若过点P 且与OA 平行的直线与⊙O 有公共点,设OP x =,则x 的取值范围是A .0≤x B.x C .-1≤x ≤1D .x【例2】 Rt ABC ∆中,90C ∠=︒,3cm AC =,4cm BC =,给出下列三个结论: ①以点C 为圆心,3 cm长为半径的圆与AB 相离;②以点C 为圆心,4cm 长为半径的圆与AB 相切;③以点C 为圆心,5cm 长为半径的圆与AB 相交.上述结论中正确的个数是( ) A .0个 B .l 个 C .2个 D .3个【巩固】在Rt ABC ∆中,90C ∠=︒,12cm AC =,16cm BC =,以点C 为圆心,r 为半径的圆和AB 有怎样的位置关系?为什么?⑴ 9cm r =;⑵10cm r =;⑶9.6cm r =.DCBA【例3】 如下左图,在直角梯形ABCD 中,AD BC ∥,90C =︒∠,且AB AD BC >+,AB 是O 的直径,则直线CD 与O 的位置关系为( ) A .相离 B .相切 C .相交 D .无法确定【巩固】如图,BC是半圆O的直径,点D是半圆上的一点,过点D作O的切线AD,BA DA⊥,10BC=,4AD=,那么直线CE与以点O为圆心,52为半径的圆的位置关系是.二、切线的性质及判定【例4】已知:O为BAC∠平分线上一点,OD AB⊥于D,以O为圆心.以OD为半径作圆O.求证:O⊙与AC相切.【巩固】如图,ABC∆为等腰三角形,AB AC=,O是底边BC的中点,O⊙与腰AB相切于点D,求证AC与O⊙相切.【例5】已知:如图,ABC∆内接于O,AD是过A的一条射线,且B CAD∠=∠.求证:AD是O的切线.【巩固】已知:如图,AB 是O ⊙的直径,C 为O ⊙上一点,MN 过C 点,AD MN ⊥于D ,AC 平分DAB ∠.求证:MN 为O ⊙的切线.【例6】 如图,已知OA 是O ⊙的半径,B 是OA 中点,BC OA ⊥,P 是OA 延长线上一点,且PA AC =.求证:PC 是O ⊙的切线.【巩固】如图,AB 是O ⊙的直径,C 点在圆上,CD AB ⊥于D .P 在BA 延长线上,且PCA ACD ∠=∠.求证:PC 是O ⊙的切线.BP【例7】 如图,O ⊙是Rt ABC ∆的外接圆,90ABC ∠=︒,点P 是圆外一点,PA 切O ⊙于点A ,且PA PB =. (1)求证:PB 是O ⊙的切线.(2)已知1PA BC ==,求O ⊙的半径.【巩固】1、如图,AB 为O ⊙的直径,D 是BC 的中点,DE AC ⊥交AC 的延长线于E ,O ⊙的切线BF 交AD 的延长线于点F .求证:DE 是O ⊙的切线;FAB2、如图,已知O 是正方形ABCD 对角线上一点,以O 为圆心、OA 长为半径的O ⊙与BC 相切于M ,与AB 、AD 分别相交于E 、F . (1)求证:CD 与O ⊙相切.(2)若正方形ABCD 的边长为1,求O ⊙的半径.【例8】 如图,AB BC =,以AB 为直径的O ⊙交AC 于点D ,过D 作DE BC ⊥,垂足为E .(1)求证:DE 是O ⊙的切线;(2)作DG AB ⊥交O ⊙于G ,垂足为F ,若308A AB ∠=︒=,,求弦DG 的长.【巩固】如图,AC 为O ⊙的直径,B 是O ⊙外一点,AB 交O ⊙于E 点,过E 点作O ⊙的切线,交BC 于D 点,DE DC =,作EF AC ⊥于F 点,交AD 于M 点.求证:BC 是O ⊙的切线;D CB A【例9】 如图,AB 是O 的直径,30BAC ∠=︒,M 是OA 上一点,过M 作AB 的垂线交AC 于点N ,交BC 的延长线于点E ,直线CF 交EN 于点F ,且ECF E ∠=∠. (1)证明CF 是O 的切线;(2)设O 的半径为1,且AC CE =,求MO 的长.A1. 已知60ABC ∠=︒,点O 在ABC ∠的平分线上,5cm OB =,以O 为圆心3cm 为半径作圆,则O 与BC 的位置关系是________.2.如图,半径为3cm 的O ⊙切直线AC 于B ,3cm AB BC =,,则AOC ∠的度数是 .3.如图所示在Rt ABC ∆中,90B ∠=︒,A ∠的平分线交BC 于D ,E 为AB 上一点,DE DC =,以D 为圆心,以DB 的长为半径画圆.求证:(1)AC 是D ⊙的切线;(2)AB EB AC +=.E B4.如图,四边形ABCD 内接于O ,BD 是O 的直径,AE CD ⊥,垂足为E ,DA 平分BDE ∠.(1)求证:AE 是O 的切线;(2)若301cm DBC DE ∠==,,求BD 的长.5.如图,在以O 为圆心的两个同心圆中,AB 经过圆心O ,且与小圆相交于点A 、与大圆相交于点B .小圆的切线AC 与大圆相交于点D ,且CO 平分ACB ∠. ⑴ 试判断BC 所在直线与小圆的位置关系,并说明理由; ⑵ 试判断线段AC AD BC 、、之间的数量关系,并说明理由; ⑶ 若8cm 10cm AB BC ==,,求大圆与小圆围成的圆环的面积.。
2024年人教版九年级数学上册教案及教学反思全册第24章 圆(教案) 点和圆的位置关系教案

24.2 点和圆、直线和圆的位置关系24.2.1 点和圆的位置关系一、教学目标【知识与技能】1.掌握点与圆的三种位置关系及数量间的关系.2.探求过点画圆的过程,掌握过不在同一直线上三点画圆的方法.3.了解运用“反证法”证明命题的思想方法.【过程与方法】通过生活中的实例探求点和圆的三种位置关系,并提炼出数量关系,从而渗透数形结合,分类讨论等数学思想.【情感态度与价值观】形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神.二、课型新授课三、课时1课时。
四、教学重难点【教学重点】(1)点与圆的三种位置关系.(2)过三点作圆.【教学难点】点与圆的三种位置关系及其数量关系反证法五、课前准备课件、图片、圆规、直尺等.六、教学过程(一)导入新课我国射击运动员在奥运会上获金牌,为我国赢得荣誉.如图是射击靶的示意图,它是由许多同心圆(圆心相同,半径不相同)构成的,你知道击中靶上不同位置的成绩是如何计算的吗?(出示课件2)解决这个问题要研究点和圆的位置关系.(板书课题)(二)探索新知探究一点和圆的位置关系教师问:观察下图中点和圆的位置关系有哪几种?(出示课件4)学生交流,回答问题.教师点评:点与圆的位置关系有三种:点在圆内,点在圆上,点在圆外.教师问:设点到圆心的距离为d,圆的半径为r,量一量在点和圆三种不同位置关系时,d与r有怎样的数量关系?(出示课件5)学生答:教师问:反过来,由d与r的数量关系,怎样判定点与圆的位置关系呢?学生观察思考交流后,师生共同得到结论:(出示课件6)点与圆的三种位置关系及其数量间的关系:边结论.读作“等价于”.⑵要明确“d”表示的意义,是点P到圆心O的距离.出示课件7,8:例如图,已知矩形ABCD的边AB=3,AD=4.(1)以A为圆心,4为半径作⊙A,则点B、C、D与⊙A的位置关系如何?(2)若以A点为圆心作⊙A,使B、C、D三点中至少有一点在圆内,且至少有一点在圆外,求⊙A的半径r的取值范围?(直接写出答案)学生独立思考后,师生共同解答.解:⑴AD=4=r,故D点在⊙A上;AB=3<r,故B点在⊙A内;AC=5>r,故C点在⊙A外.⑵3≤r≤5.巩固练习:(出示课件9)1.⊙O的半径为10cm,A、B、C三点到圆心的距离分别为8cm、10cm、12cm,则点A、B、C与⊙O的位置关系是:点A在_______;点B在_______;点C在_______.2.圆心为O的两个同心圆,半径分别为1和2,若,则点P在()A.大圆内B.小圆内C.小圆外D.大圆内,小圆外学生独立思考后口答:1.圆内;圆上;圆外 2.D探究二过不共线三点作圆教师问:如何过一个点A作一个圆?过点A可以作多少个圆?(出示课件10)学生动手探究,作图,交流,得出结论,教师点评并总结.以不与A点重合的任意一点为圆心,以这个点到A点的距离为半径画圆即可;可作无数个圆.教师问:如何过两点A、B作一个圆?过两点可以作多少个圆?(出示课件11)学生动手探究,作图,交流,得出结论,教师点评并总结.作线段AB的垂直平分线,以其上任意一点为圆心,以这点和点A或B的距离为半径画圆即可;可作无数个圆.教师问:过不在同一直线上的三点能不能确定一个圆?(出示课件12)学生思考后师生共同解答:经过A,B两点的圆的圆心在线段AB的垂直平分线上.经过B,C两点的圆的圆心在线段BC的垂直平分线上.经过A,B,C三点的圆的圆心应该在这两条垂直平分线的交点O的位置.教师归纳:不在同一直线上的三点确定一个圆.(出示课件13)出示课件14:例已知:不在同一直线上的三点A、B、C.求作:⊙O,使它经过点A、B、C.学生动手探究,作图,交流后,师生共同解答.作法:1.连接AB,作线段AB的垂直平分线MN;2.连接AC,作线段AC的垂直平分线EF,交MN于点O;3.以O为圆心,OB为半径作圆.所以⊙O就是所求作的圆.教师问:现在你知道怎样将一个如图所示的破损的圆盘复原了吗?(出示课件15)学生动手探究,交流,在教师指导下作图.作法:1.在圆弧上任取三点A、B、C;2.作线段AB、BC的垂直平分线,其交点O即为圆心;3.以点O为圆心,OC长为半径作圆.⊙O即为所求.巩固练习:(出示课件16)如图,CD所在的直线垂直平分线段AB,怎样用这样的工具找到圆形工件的圆心.学生独立思考后口答:∵A、B两点在圆上,所以圆心必与A、B两点的距离相等,又∵和一条线段的两个端点距离相等的点在这条线段的垂直平分线上,∴圆心在CD所在的直线上,因此可以做任意两条直径,它们的交点为圆心.探究三三角形的外接圆及外心已知△ABC,用直尺与圆规作出过A、B、C三点的圆.(出示课件17)学生复述作法.教师对照图形进行归纳:(出示课件18)1.外接圆:经过三角形三个顶点可以作一个圆,这个圆叫做三角形的外接圆.⊙O叫做△ABC的外接圆,△ABC叫做⊙O的内接三角形.2.三角形的外心定义:外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.作图:三角形三边中垂线的交点.性质:到三角形三个顶点的距离相等.练一练:判断下列说法是否正确.(出示课件19)(1)任意的一个三角形一定有一个外接圆.( )(2)任意一个圆有且只有一个内接三角形.( )(3)经过三点一定可以确定一个圆. ( )(4)三角形的外心到三角形各顶点的距离相等.( )学生口答:⑴√⑵×⑶×⑷√画一画:分别画一个锐角三角形、直角三角形和钝角三角形,再画出它们的外接圆,观察并叙述各三角形与它的外心的位置关系.(出示课件20)学生动手探究,作图,交流后,教师总结.锐角三角形的外心位于三角形内,直角三角形的外心位于直角三角形斜边的中点,钝角三角形的外心位于三角形外.出示课件21,22:例1 如图,将△AOB置于平面直角坐标系中,O为原点,∠ABO=60°,若△AOB的外接圆与y轴交于点D(0,3).(1)求∠DAO的度数;(2)求点A的坐标和△AOB外接圆的面积.学生独立思考后师生共同解答.解:(1)∵∠ADO=∠ABO=60°,∠DOA=90°,∴∠DAO=30°;⑵∵点D的坐标是(0,3),∴OD=3.在Rt△AOD中,∵∠DOA=90°,∴AD为直径.又∵∠DAO=30°,∴AD=2OD=6,OA=因此圆的半径为3.点A的坐标(0),∴△AOB外接圆的面积是9π.教师强调:解题妙招:图形中求三角形外接圆的面积时,关键是确定外接圆的直径(或半径)长度.巩固练习:(出示课件23)如图,已知直角坐标系中,A(0,4),B(4,4),C(6,2).(1)写出经过A,B,C三点的圆弧所在圆的圆心M的坐标.(2)判断点D(5,-2)和圆M的位置关系.学生独立解答.解:(1)在方格纸中,线段AB和BC的垂直平分线相交于点(2,0),所以圆心M的坐标为(2,0).(2)圆的半径AM==线段DM所以点D在圆M内.出示课件24:例2 如图,在△ABC中,O是它的外心,BC=24cm,O到BC的距离是5cm,求△ABC的外接圆的半径.学生独立思考后师生共同解答.解:连接OB ,过点O 作OD ⊥BC.则OD =5cm ,112cm 2BD BC ==在Rt △OBD 中,13cm OB ==,即△ABC 的外接圆的半径为13cm.巩固练习:(出示课件25)在Rt △ABC 中,∠C=90°,AC=6 cm,BC=8cm,则它的外心与顶点C 的距离为( )A.5cmB.6cmC.7cmD.8cm学生思考后口答:A探究四 反证法教师问:经过同一条直线上的三个点能作出一个圆吗?(出示课件26)学生动手探究,作图,交流后,师生共同解答.如图,假设过同一条直线l 上三点A 、B 、C 可以作一个圆,设这个圆的圆心为P.那么点P 既在线段AB 的垂直平分线l 1上,又在线段BC 的垂直平分线l 2上,即点P 为l 1与l 2的交点.而l 1⊥l ,l 2⊥l 这与我们以前学过的“过一点有且只有一条直线与已知直线垂直”相矛盾.所以过同一条直线上的三点不能作圆.教师归纳:(出示课件27)1.反证法的定义先假设命题的结论不成立,然后由此经过推理得出矛盾(常与公理、定理、定义或已知条件相矛盾),由矛盾判定假设不正确,从而得到原命题成立,这种方法叫做反证法.2.反证法的一般步骤⑴假设命题的结论不成立(提出与结论相反的假设);⑵从这个假设出发,经过推理,得出矛盾;⑶由矛盾判定假设不正确,从而肯定命题的结论正确.出示课件28:例求证:在一个三角形中,至少有一个内角小于或等于60°.师生共同解答.已知:△ABC.求证:△ABC中至少有一个内角小于或等于60°.证明:假设△ABC中没有一个内角小于或等于60°,则∠A>60°,∠B>60°,∠C>60°.因此∠A+∠B+∠C>180°.这与三角形的内角和为180度矛盾.假设不成立.因此△ABC中至少有一个内角小于或等于60°.巩固练习:(出示课件29)利用反证法证明“在直角三角形中,至少有一个锐角不大于45°”时,应先假设()A.有一个锐角小于45°B.每一个锐角都小于45°C.有一个锐角大于45°D.每一锐角都大于45°学生口答:D(三)课堂练习(出示课件30-36)1.已知△ABC的三边a,b,c,满足a+b2+|c﹣,则△ABC的外接圆半径=______.2.如图,⊙O是△ABC的外接圆,∠A=45°,BC=4,则⊙O的直径为______.3.如图,请找出图中圆的圆心,并写出你找圆心的方法?4.正方形ABCD的边长为2cm,以A为圆心2cm为半径作⊙A,则点B在⊙A______;点C在⊙A______;点D在⊙A______.5.⊙O的半径r为5cm,O为原点,点P的坐标为(3,4),则点P与⊙O的位置关系为()A.在⊙O内B.在⊙O上C.在⊙O外D.在⊙O上或⊙O外6.已知:在Rt△ABC中,∠C=90°,AC=6,BC=8,则它的外接圆半径=______.7.如图,△ABC内接于⊙O,若∠OAB=20°,则∠C的度数是________.8.如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是()A.点P B.点Q C.点R D.点M9.画出由所有到已知点的距离大于或等于2cm并且小于或等于3cm的点组成的图形.10.某地出土一明代残破圆形瓷盘,如图所示.为复制该瓷盘要确定其圆心和半径,请在图中用直尺和圆规画出瓷盘的圆心.参考答案:1.2582.3.解:如图所示.4.上;外;上5.B6.57.70°8.B9.解:如图所示.10.解:(1)在圆形瓷盘的边缘选A、B、C三点;(2)连接AB、BC;(3)分别作出AB、BC的垂直平分线;(4)两垂直平分线的交点就是瓷盘的圆心.(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流.(五)课前预习预习下节课(24.2.2第1课时)的相关内容.七、课后作业1.教材95页练习2.2.配套练习册内容八、板书设计:九、教学反思:本节课通过学生操作,总结出了点与圆的三种位置关系,其中渗透着分类讨论的思想,经过探讨过一点、两点、三点作圆,得出了不在同一直线上三点确定一个圆,从而自然引出三角形外接圆、外心及圆内接三角形的定义,此外还学习了用反证法证明命题的方法和步骤.这些定理都是从学生实践中得出的,培养了学生动手的能力.。
九年级数学下册《过不共线三点作圆》优秀教学案例

在本章节的教学过程中,教师应关注学生的全面发展,将知识与技能、过程与方法、情感态度与价值观有机地结合起来,使学生在掌握基本几何知识的同时,提高自身的综合素质,为未来的学习和发展奠定坚实的基础。
三、教学策略
(一)情景创设
1.创设生活化的教学情境,以学生熟悉的事物或场景作为引入,如校园里的圆形花坛、篮球场的圆形边界等,让学生感受到圆就在我们的身边,激发他们的学习兴趣。
4.通过对几何性质的学习和证明,使学生掌握几何学的基本研究方法和思维方式,提高学生的几何素养。
(三)情感态度与价值观
1.激发学生对数学几何学科的兴趣,培养他们主动探究、勇于创新的科学精神。
2.培养学生严谨、细心的学习态度,使他们认识到几何学习的严密性和逻辑性,从而提高学习的自觉性和自律性。
3.引导学生关注数学与生活的联系,体会数学在现实生活中的广泛应用,增强数学学习的实用性和价值感。
3.教师巡回指导,关注每个小组的讨论情况,给予适当的提示和引导,确保讨论的有效性。
(四)总结归纳
1.邀请各小组代表汇报讨论成果,让学生在倾听他人观点的过程中,加深对知识点的理解。
2.教师针对学生的讨论成果进行点评,总结“过不共线三点作圆”的基本原理、尺规作图方法以及几何证明过程。
3.强调本节课的重点和难点,指导学生掌握几何学习的思维方法和技巧。
4.能够运用所学的知识,解决一些与圆相关的实际问题,如测量圆形场地、设计圆形图案等。
(二)过程与方法
1.通过小组合作和自主探究,培养学生的团队合作意识和解决问题的能力,让学生在实践中学会如何观察、分析和解决问题。
2.引导学生运用尺规作图、直观演示等方法,提高学生的动手操作能力和空间想象能力。
数学中考复习 圆的相关知识点及习题

圆专题一、圆的相关概念1.圆的定义(1)描述性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,其中固定端点O叫做圆心,OA叫做半径.(2)集合性定义:平面内到定点的距离等于定长的点的集合叫做圆,顶点叫做圆心,定长叫做半径.(3)圆的表示方法:通常用符号⊙表示圆,定义中以O为圆心,OA为半径的圆记作”O⊙“,读作”圆O“.(4)同圆、同心圆、等圆:圆心相同且半径相等的圆叫同圆;圆心相同,半径不相等的两个圆叫做同心圆;能够重合的两个圆叫做等圆.注意:注意:同圆或等圆的半径相等.2.弦和弧(1)弦:连结圆上任意两点的线段叫做弦.(2)直径:经过圆心的弦叫做圆的直径,直径等于半径的2倍.(3)弦心距:从圆心到弦的距离叫做弦心距.、为端点的圆弧记作AB,读作弧AB.(4)弧:圆上任意两点间的部分叫做圆弧,简称弧.以A B(5)等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.(6)半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆.(7)优弧、劣弧:大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.(8)弓形:由弦及其所对的弧组成的图形叫做弓形.3.圆心角和圆周角(1)圆心角:顶点在圆心的角叫做圆心角.将整个圆分为360等份,每一份的弧对应1︒的圆心角,我们也称这样的弧为1︒的弧.圆心角的度数和它所对的弧的度数相等.(2)圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角.二、圆的对称性1.旋转对称性(1)圆是中心对称图形,对称中心是圆心;圆是旋转对称图形,无论绕圆心旋转多少度角,总能与自身重合.(2)圆的旋转对称性⇒圆心角、弧、弦、弦心距之间的关系.2.轴对称性(1)圆是轴对称图形,经过圆心的任一条直线是它的对称轴.(2)圆的轴对称性⇒垂径定理.三、圆的性质定理1.圆周角定理(1) 定理:一条弧所对的圆周角等于它所对的圆心角的一半. (2) 推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等. 推论2:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.2. 圆心角、弧、弦、弦心距之间的关系(1) 定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.(2) 推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量分别相等.注意:①前提条件是在同圆或等圆中;②在由等弦推出等弧时应注意:优弧与优弧相等;劣弧与劣弧相等.3. 垂径定理(1) 定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. (2) 推论1:①平分弦(非直径)的直径,垂直于弦,并且平分弦所对的两条弧.②弦的垂直平分线经过圆心,并且平分弦所对的两条弧.③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧. (3) 推论2:圆的两条平行线所夹的弧相等.注意:若“过圆心的直线”、“垂直于弦”、“平分弦(非直径)”、“平分弦所对的优弧”、“平分弦所对的劣弧”中的任意两个成立,则另外三个都成立.注意:应用垂径定理与推论进行计算时,往往要构造如右图所示的直角三角形,根据垂径定理与勾股定理有:222()2ar d =+,根据此公式,在a ,r ,d 三个量中知道任何两个量就可以求出第三个量.F EBA CDOr a 2d O CBA所对的两圆心角相等所对的两条弦相等 所对的两条弧相等所对的两条弦的弦心距相等EO D B A【例1】 如图,点A D G M 、、、在半圆O 上,四边形ABOC DEOF HMNO 、、均为矩形,设BC a =,EF b =,NH c =则下列格式中正确的是( )A .a b c >>B .a b c ==C .c a b >>D .b c a >>【例2】 如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为216cm ,则该半圆的半径为______.二、圆的性质定理1. 圆周角定理【例3】 如图,量角器外沿上有A B 、两点,它们的度数分别是7040︒︒、,则1∠的度数为_________.【例4】 如图,量角器外缘边上有A P Q ,,三点,它们所表示的读数分别是180︒,70︒,30︒,则PAQ ∠的大小为( )A .10︒B .20︒C .30︒D .40︒【例5】 如图,O ⊙是ABC ∆的外接圆,已知60B ∠=︒,则CAO ∠的度数是( )A .15︒B .30︒C .45︒D .60︒【例6】 如图,已知O 的弦AB CD ,相交于点E ,AC 的度数为60︒,BD 的度数为100︒,则AEC ∠等于ON MHG FE DC BA( ) A .60°B .100°C .80°D .130°【例7】 如图所示的半圆中,AD 是直径,且32AD AC ==,,则sin B 的值是________.【例8】 如图,已知AB 为⊙O 的直径,20E ∠=︒,50DBC ∠=︒,则CBE ∠=______.【例9】 如图,在O ⊙中,AOB ∠的度数为m ,C 是ACB 上一点,D E 、是AB 上不同的两点(不与A B 、两点重合),则D E ∠+∠的度数为____________.【例10】 如图,AB 是O 的直径,点C ,D ,E 都在O 上,若C D E ==∠∠∠,求A B +∠∠.DCA BBA【例11】 如图,有一圆形展厅,在其圆形边缘上的点A 处安装了一台监视器,它的监控角度是65︒.为了监控整个展厅,最少需在圆形边缘上共安装...这样的监视器 台.【例12】 如图所示,在ABC ∆中,45C ∠=︒,4AB =,则O ⊙的半径为( )B.4D.5【例13】 如图AB 是半圆O 的直径,点C D 、在弧AB 上,且AD 平分CAB ∠,已知106AB AC ==,,求AD的长.【例14】 如图,半圆的直径10AB =,点C 在半圆上,6BC =.(1)求弦AC 的长;(2)若P 为AB 的中点,PE AB ⊥交AC 于点E ,求PE 的长.2. 圆内接四边形【例15】 如图,O ⊙外接于正方形ABCD ,P 为弧AD 上一点,且1AP =,PB =PC 的长.【例16】 如图,已知四边形ABCD 内接于直径为3的圆O ,对角线AC 是直径,对角线AC 和BD 的交点P ,BAPEC BAP DCBAAB BD =,且0.6PC =,求四边形ABCD 的周长.【例17】 如图,AB CD ,是O ⊙的两条弦,它们相交于点P ,连结AD BD 、,已知4AD BD ==,6PC =,求CD 的长.一、点与圆的位置关系4. 确定圆的条件(5) 圆心(定点),确定圆的位置; (6)半径(定长),确定圆的大小.注意:只有当圆心和半径都确定时,圆才能确定. 5. 点与圆的位置关系(7) 点与圆的位置关系有:点在圆上、点在圆内、点在圆外三种,这三种关系由这个点到圆心的距离与半径的大小关系决定. (8) 设O ⊙的半径为r ,点P 到圆心O 的距离为d ,则有:点在圆外⇔d r >;点在圆上⇔d r =;点在圆内⇔d r <.如下表所示:C二、过已知点的圆1. 过已知点的圆(1) 经过点A 的圆:以点A 以外的任意一点O 为圆心,以OA 的长为半径,即可作出过点A 的圆,这样的圆有无数个. (2) 经过两点A B 、的圆:以线段AB 中垂线上任意一点O 作为圆心,以OA 的长为半径,即可作出过点A B 、的圆,这样的圆也有无数个. (3) 过三点的圆:若这三点A B C 、、共线时,过三点的圆不存在;若A B C 、、三点不共线时,圆心是线段AB 与BC 的中垂线的交点,而这个交点O 是唯一存在的,这样的圆有唯一一个. (4) 过n ()4n ≥个点的圆:只可以作0个或1个,当只可作一个时,其圆心是其中不共线三点确定的圆的圆心.2. 定理:不在同一直线上的三点确定一个圆(1) “不在同一直线上”这个条件不可忽视,换句话说,在同一直线上的三点不能作圆; (2) “确定”一词的含义是”有且只有”,即”唯一存在”.三、三角形的外接圆及外心1. 三角形的外接圆(1) 经过三角形三个顶点的圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,这个三角形叫做这个圆的内接三角形. (2) 锐角三角形外接圆的圆心在它的内部;直角三角形外接圆的圆心在斜边中点处(即直角三角形外接圆半径等于斜边的一半);钝角三角形外接圆的圆心在它的外部. 2. 三角形外心的性质(1) 三角形的外心是指外接圆的圆心,它是三角形三边垂直平分线的交点,它到三角形各顶点的距离相等; (2) 三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合.一、点与圆的位置关系【例18】 已知圆内一点到圆周上的点的最大距离是7,最小距离是5,则该圆的半径是( )A .2B .6C .12D .7二、过三点的圆【例19】 如图,四边形ABCD 中,AB AC AD ==,若7613CAD BDC ∠=︒∠=︒,,则CBD ∠=_________,BAC ∠=__________.DCBA【例20】 如图,直角坐标系中一条圆弧经过网格点A B C ,,,其中B 点的坐标为()44,,则该圆弧所在圆的圆心的坐标为 .三、三角形的外接圆及外心【例21】 如图,ABC ∆内接于O ⊙,120BAC ∠=︒,AB AC =,BD 为O ⊙的直径,6AD =,则BC = .【例22】 等边三角形的外接圆的半径等于边长的( )倍. ABCD .12【例23】 ABC ∆中,10AB AC ==,12BC =,求其外接圆的半径.【例24】 已知如图,ACD ∆的外角平分线CB 交其外接圆于B ,连接BA 、BD ,求证:BA BD =.N【例25】 已知∆ABC 中,=AB AC ,D 是∆ABC 外接圆劣弧AC 上的点(不与点A C ,重合),延长BD 至E . ⑴ 求证:AD 的延长线平分∠CDE ;⑴ 若30∠=︒BAC ,∆ABC 中BC边上的高为2+∆ABC 外接圆的面积.直线与圆的位置关系设O ⊙的半径为r ,圆心O 到直线l 的距离为d ,则直线和圆的位置关系如下表:6. 切线的性质(9) 定理:圆的切线垂直于过切点的半径.推论1:经过圆心且垂直于切线的直线必经过切点. 推论2:经过切点且垂直于切线的直线必经过圆心.(10) 注意:这个定理共有三个条件,即一条直线满足:①垂直于切线②过切点③过圆心①过圆心,过切点⇒垂直于切线.AB 过圆心,AB 过切点M ,则AB l ⊥. ②过圆心,垂直于切线⇒过切点.AB 过圆心,AB l ⊥,则AB 过切点M . ③过切点,垂直于切线⇒过圆心.AB l ⊥,AB 过切点M ,则AB 过圆心.7. 切线的判定(1) 定义法:和圆只有一个公共点的直线是圆的切线; (2) 距离法:和圆心距离等于半径的直线是圆的切线; (3) 定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.注意:定理的题设是①“经过半径外端”,②“垂直于半径”,两个条件缺一不可;定理的结论是“直线是圆的切线”.因此,证明一条直线是圆的切线有两个思路:①连接半径,证直线与此半径垂直;②作垂直,证垂直在圆上.AB CD El8. 切线长和切线长定理(1) 切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长. (2) 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.三、三角形的内切圆1. 三角形的内切圆:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.2. 多边形的内切圆:和多边形的各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形.3. 直角三角形内切圆的半径与三边的关系设a 、b 、c 分别为ABC △中A ∠、B ∠、C ∠的对边,面积为S ,则内切圆半径为sr p=,其中()12p a b c =++.若90C ∠=︒,则()12r a b c =+-.二、切线的性质及判定【例1】 如图,ABC ∆为等腰三角形,AB AC =,O 是底边BC 的中点,O ⊙与腰AB 相切于点D ,求证AC 与O ⊙相切.lcb acbaO F ED CACBAB A【例2】 已知:如图,ABC ∆内接于O ,AD 是过A 的一条射线,且B CAD ∠=∠.求证:AD 是O 的切线.【例3】 已知:如图,AB 是O ⊙的直径,C 为O ⊙上一点,MN 过C 点,AD MN ⊥于D ,AC 平分DAB ∠.求证:MN 为O ⊙的切线.【例4】 如图,已知OA 是O ⊙的半径,B 是OA 中点,BC OA ⊥,P 是OA 延长线上一点,且PA AC =.求证:PC 是O ⊙的切线.【例5】 已知:如图,C 为O ⊙上一点,DA 交O ⊙于B ,连结AC BC 、,且DCB CAB ∠=∠DC 为O ⊙的切线;(2)2CD AD BD =⋅.【例6】 如图,以等腰ABC ∆中的腰AB 为直径作O ,交BC 于点D .过点D 作DE AC ⊥,垂足为E .(1)求证:DE 为O 的切线;(2)若O 的半径为5,60BAC ∠=︒,求DE 的长.C【例7】 如图,已知AB 为⑴O 的弦,C 为⑴O 上一点,⑴C =⑴BAD ,且BD ⑴AB 于B .(1)求证:AD 是⑴O 的切线.(2)若⑴O 的半径为3,AB =4,求AD 的长.【例8】 如图,Rt ABC ∆中,90ABC ∠=︒,以AB 为直径作O ⊙交AC 边于点D ,E 是边BC 的中点,连接DE .(1)求证:直线DE 是O ⊙的切线;(2)连接OC 交DE 于点F ,若OF CF =,求tan ACO ∠的值.【例9】 如图,AB 是O ⊙的的直径,BC AB ⊥于点B ,连接OC 交O ⊙于点E ,弦AD OC ∥,弦DF AB⊥于点G .(1)求证:点E 是BD 的中点; (2)求证:CD 是O ⊙的切线;(3)若4sin 5BAD ∠=,O ⊙的半径为5,求DF 的长.【例10】 如图,等腰三角形ABC 中,10AC BC ==,12AB =.以BC 为直径作O ⊙交AB 于点D ,交AC于点G ,DF AC ⊥,垂足为F ,交CB 的延长线于点E . (1)求证:直线EF 是O ⊙的切线; (2)求sin E ∠的值.一、切线长定理1.如图,PA PB ,分别是O 的切线,A B ,为切点,AC 是O 的直径,已知35BAC ∠=︒,P ∠的度数为( ) A .35︒ B .45︒ C .60︒ D .70︒2.如图,PA PB 、分别切O ⊙于A B ,两点,PC 满足AB PB AC PC AB PC AC PB ⋅-⋅=⋅-⋅,且AP PC ⊥,2PAB BPC ∠=∠,求ACB ∠的度数.3.如图,从圆O 外一点P 引圆O 的两条切线PA PB ,,切点分别为A B ,.如果60APB ∠=,8PA =,那么弦AB 的长是( )A .4B .8C.D.P则OP =( )A .50cm B.cm Ccm D.cm5.如图,已知以直角梯形ABCD 的腰CD 为直径的半圆O 与梯形上底AD 、下底BC 以及腰AB 均相切,切点分别是D C E ,,.若半圆O 的半径为2,梯形的腰AB 为5,则该梯形的周长是( )A .9B .10C .12D .146.等腰梯形ABCD 外切于圆,且中位线MN 的长为10,那么这个等腰梯形的周长是________.7.如图,PA PB DE 、、分别切O ⊙于A B C 、、,若10PO =,PDE ∆周长为16,求O ⊙的半径.8.如图,PA PB ,切O 于AB ,,MN 切O 于C ,交PA PB ,于M N ,两点,已知8PA =,求PMN ∆的周长.PB P于G,交AB AC、于MN,则BMN∆的周长为______________.10.如图,已知AB是O⊙的直径,BC是和O⊙相切于点B的切线,O⊙的弦AD平行于OC,若2OA=,且6AD OC+=,求CD的长.补充讲义两圆的公切线(选讲自己了解)9.两圆的外公切线(11)求两圆外公切线长:构造外公切线、圆心距、大圆与小圆半径的差为边的特征直角三角形.如图,设大圆的半径为R,小圆的半径为r,两圆的圆心距为d,两外公切线的夹角为α,则两圆的外公切线长为:l=,sin2R rdα-=(12)求两圆内公切线长:构造外公切线、圆心距、大圆与小圆半径的和为边的特征直角三角形.10.两圆的内公切线如图,设大圆的半径为R,小圆的半径为r,两圆的圆心距为d,两外公切线的夹角为α,则两圆的内公切线长l=,sin2R r dα+ =CB AP圆与相似三角形经典证明题1.如图,A、B、C、D依次为一直线上4个点,BC=2,△BCE为等边三角形,⊙O过A、D、E3 点,且∠AOD=120°.设AB=x,CD=y,则y与x的函数关系为.2.如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F.(1)求证:AE为⊙O的切线.(2)当BC=8,AC=12时,求⊙O的半径.(3)在(2)的条件下,求线段BG的长.3.如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.(1)求证:直线DF与⊙O相切;(2)若AE=7,BC=6,求AC的长.4..Rt.ABC...ACB=90°.D.AB.......BD.....O.AC..E...DE.....BC.......F..BD=BF..1....AC..O....2..BC=6.AB=12...O....5....AB..O......A..O..........C...OC..O..D.BD.....AC.E...AD..1.....CDE..CAD..2..AB=2.AC=2..AE...6. 已知在△ABC中,∠B=90°,以AB上的一点O为圆心,以OA为半径的圆交AC于点D,交AB 于点E..1....AC•AD=AB•AE..2...BD.⊙O....D....E.OB.....BC=2...AC...7.如图所示,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.8. 如图,已知在△ABC中,AD是BC边上的中线,以AB为直径的⊙O交BC于点D,过D作MN⊥AC于点M,交AB的延长线于点N,过点B作BG⊥MN于G.(1)求证:△BGD∽△DMA;(2)求证:直线MN是⊙O的切线.9. 如图的⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,过点D、A分别作⊙O的切线交于点G,并与AB延长线交于点E.(1)求证:∠1=∠2.(2)已知:OF:OB=1:3,⊙O的半径为3,求AG的长.10......O..AB....OC.AB..CD.OB...F..AB.......E..EF=ED..1....DE..O.....2..OF.OB=1.3..O...R=3.....11....AB .⊙O .....D ......∠BDE =∠CBE .BD .AE ...F .(1)求证:BC 是⊙O 的切线;(2)若BD 平分∠ABE ,求证:DE 2=DF •DB ;(3)在(2)的条件下,延长ED ,BA 交于点P ,若PA =AO ,DE =2,求PD 的长和⊙O 的半径.12.如图,AB 是⊙O 的直径,点C 为⊙O 上一点,AE 和过点C 的切线互相垂直,垂足为E ,AE 交⊙O 于点D ,直线EC 交AB 的延长线于点P ,连接AC ,BC ,PB :PC =1:2. (1)求证:AC 平分∠BAD ;(2)探究线段PB ,AB 之间的数量关系,并说明理由; (3)若AD =3,求△ABC 的面积.13.已知,如图,AB 是⊙O 的直径,点C 为⊙O 上一点,OF ⊥BC 于点F ,交⊙O 于点E ,AE 与BC 交于点H ,点D 为OE 的延长线上一点,且∠ODB =∠AEC . (1)求证:BD 是⊙O 的切线; (2)求证:2CE EH EA =⋅; (3)若⊙O 的半径为5,3sin 5A =,求BH 的长.第13题图FH EOC B A。
湘教版数学九年级下册《2.4 过不共线三点作圆》教学设计2

湘教版数学九年级下册《2.4 过不共线三点作圆》教学设计2一. 教材分析《2.4 过不共线三点作圆》是湘教版数学九年级下册的一节内容。
本节课主要让学生掌握过不共线三点作圆的方法,理解圆的性质,并能够运用这些知识解决一些实际问题。
教材通过实例引入,让学生观察、思考、探索,从而得出圆的定义和性质。
教材还提供了丰富的练习题,帮助学生巩固所学知识。
二. 学情分析学生在学习本节课之前,已经掌握了圆的基本概念和性质,如圆的周长、面积等。
但学生对于过不共线三点作圆的方法可能还比较陌生,需要通过实例和练习来逐步理解和掌握。
此外,学生可能对圆的性质的理解还不够深入,需要在教学中进行引导和拓展。
三. 教学目标1.知识与技能目标:让学生掌握过不共线三点作圆的方法,理解圆的性质。
2.过程与方法目标:通过观察、思考、探索,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.重点:过不共线三点作圆的方法,圆的性质。
2.难点:对圆的性质的理解和运用。
五. 教学方法1.情境教学法:通过实例引入,让学生观察、思考、探索,从而得出圆的定义和性质。
2.问题驱动法:提出问题,引导学生思考,激发学生的学习兴趣。
3.合作学习法:分组讨论,培养学生的团队合作意识和自主学习能力。
六. 教学准备1.准备相关的实例和练习题,用于引导学生观察、思考、探索。
2.准备多媒体教学设备,如投影仪、电脑等,用于展示实例和讲解。
七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,如地图上的圆形区域,引起学生的兴趣。
提出问题:如何通过这三个点作圆呢?引导学生思考。
2.呈现(10分钟)通过实例展示过不共线三点作圆的方法,引导学生观察、思考。
讲解圆的定义和性质,如圆的半径、直径等。
3.操练(10分钟)让学生分组讨论,每组选择三个不共线的点,尝试用所学的方法作圆。
教师巡回指导,解答学生的问题。
新湘教版九年级下册第二章圆教案

一、情境导入,初步认识若∠OAB=50°,圆心角定理是圆中证弧等、弦等、弦心距等、圆心角等的常用方法.1.教材P56第1、2题一、情境导入,初步认识阅读教材上,并且两边都与圆_________的角叫做圆周角.,_____或_______所对的圆周角相等,都等于这条弧所对的第2题图第3题图1.教材P56第3~5题.一、情境导入,初步认识则凹面是半圆形状,与该圆⊥AB于E,BD1.教材P57第7~9题.一、情境导入,初步认识能发现图中有哪些等量关系?与垂径定理有关的证明.于1.教材P60第1、2题一、情境导入,初步认识学生就读的学校离家太远,给让三个村到学校的).试求小明家圆形花坛的面积.一条边上的是()1.教材P63第1、2题一、情境导入,初步认识O的位置关系是1.教材P65第1题.一、情境导入,初步认识有怎样的位置关系?为什么?来得到切线的判定.到直线的距离的大小关系,让学生用自己的以三角形的一边长为直径的圆切三角形的另一边,则该三角形为()BE=CF,试本堂课主要学习了切线的判定定理及切线的画法,通过1.教材P75第2~3题.如图,两个圆心图,大圆的半径为5,小圆的半径为3,若大圆的弦为直径,以O为圆心的半圆为△ABC的角平分线,且一、情境导入,初步认识、PB为⊙O的两条切BPO.BAC的度数是_____.第1题图第2题图外一点P引⊙O的两条切线PA、PB,切点分别为第3题图第4题图,AD,DC,BC都与⊙O相切则∠DOC=______.是⊙O的直径,AM和是它的两条切线,DE切⊙1.教材P75第5题,P一、情境导入,初步认识教师引导学生,作与三角形三边相切的圆,圆心到三角形的三条边的距离相等的度数.第2题图第3题图中,∠C=90°,AC=5,⊙O与Rt△ABC的三边r=2,则△ABC的周长为______.第4题图5题图1.教材P75第6、7题,一、情境导入,初步认识二、思考探究,获取新知在同圆或等圆中,如果圆心角相等那么它们所对的弧长_______.度的圆心角所对的弧长,则这个扇形的半径为()第4题图第5题图一块等边三角形的木板,边长为1,现将木板沿水平线无滑动翻滚1.教材P81页第1题.一、情境导入,初步认识你能求出做这把扇子用了多少纸吗,完成下列各题:求阴影部分的面积.为半径1.教材P81第2、3题动手画一画.段弧,依次连接各分点得六边形ABCDEF,该六边形与正方形、正五边形、正六边形进行探若是轴对称图形,请画出所有对湖北恩施中考)下列图形中,有且只有两条对称轴的中心对称图形是()求1.教材P86第1、2题一、知识框图,整体把握二、释疑解惑,加深理解1.垂径定理及推论的应用垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧D.PO=PD 第1题图第2题图分别为1.布置作业:从教材“复习题。
《点和圆、直线和圆的位置关系》PPT课件 人教版九年级数学

24.2 点和圆、直线和圆的 位置关系
24.2.1 点和圆的位置关系
导入新知
我国射击运动员在奥运会 上获金牌,为我国赢得荣誉. 如图是射击靶的示意图,它是 由许多同心圆(圆心相同,半 径不相同)构成的,你知道击 中靶上不同位置的成绩是如何 计算的吗?
解决这个问题 要研究点和圆的
A N
作法:1. 连接AB,作线段AB的垂 F 直平分线MN;
2. 连接AC,作线段AC的垂直平分 B E O M C 线EF,交MN于点O;
3. 以O为圆心,OB为半径作圆.
所以⊙O就是所求作的圆.
探究新知
问题4:现在你知道怎样将一个如图所示的破损的圆盘复原
了吗?
方法: 1. 在圆弧上任取三点A、B、C;
线段DM 5 22 2 02 13 2 5,所以点D在圆M内.
探究新知
素养考点 2 考查三角形的外接圆的有关知识
例2 如图,在△ABC中,O是它的外心,BC=24cm,O到 BC的距离是5cm,求△ABC的外接圆的半径.
解:连接OB,过点O作OD⊥BC. 则OD=5cm,BD 1 BC 12cm.
素养目标
2. 会从公共点的个数或d和r的数量关系判定 直线和圆的位置关系.
1. 知道直线和圆的位置关系及有关概念.
探究新知 知识点 1 用公共点个数判断直线与圆的位置关系
问题1 如果我们把太阳看成一个圆,地平线看成 一条直线,那你能根据直线和圆的公共点个数想象 一下,直线和圆有几种位置关系吗?
探究新知
●
●
●
l
探究新知
探究新知
填一填
直线与圆的 位置关系
相离
相切
相交
九年级数学下册第3章圆3.1圆3.1.3过不在同一直线上的三点作圆课件湘教版

1.探索平面内确定一个圆的条件.(重点) 2.理解“不在同一直线上的三个点确定一个圆”,并能经过不 在同一直线上的三个点作圆.(重点) 3.了解三角形的外接圆及外心.(难点)
确定圆的条件 (1)确定一个圆需要确定_圆__心__和__半__径__. (2)经过一点A可以作_无__数__个圆. (3)经过两点A,B可以作_无__数__个圆,这些圆的圆心都在线段AB 的_垂__直__平__分__线__上.
所以∠BDA=30°,因为BD为直径,所以∠BAD=90°,
所以∠ABD=60°,所以∠DBC=30°. 在Rt△ABD中, BD AD 6 4 3,
cos 30 3 2
在Rt△BCD中,DC=BD·sin 30°=4 3 1 2 3.
2
答案: 2 3
5.⊙O是△ABC的外接圆,∠BAC=120°,AB=AC=3,BD是⊙O的直径, 连结AD.求AD的长. 【解析】∵BD是直径, ∴∠BAD=90°. 又∵AB=AC,∠BAC=120°, ∴∠C=30°, ∴∠D=30°,而AB=3, ∴BD=2AB=6,
(1)作出残片所在的圆(不写作法,保留作图痕迹) (2)求残片所在圆的半径.
【思路点拨】圆心到圆上各点的距离相等,所以连结BC,作BC的 垂直平分线,它与CD所在的直线的交点即为圆心.连结OB,则在 Rt△OBD中,若OB=x,则OD=x-4,BD=8,根据勾股定理可得(x4)2+82=x2.
【自主解答】(1)如图.
【思考】已知三点A,B,C,要经过这三点作圆,这样的圆你 能作出吗? ①三个点A,B,C在同一直线上,能否作圆?
提示:当三个点A,B,C在同一直线上时,AB,BC的垂直平 分线平行,无交点,∴不能作圆.
24.2.1点和圆的位置关系(教案)

24.2点和圆、直线和圆的位置关系24.2.1点和圆的位置关系【知识与技能】1•掌握点与圆的三种位置关系及数量间的关系.2.探求过点画圆的过程,掌握过不在同一直线上三点画圆的方法.3.了解运用“反证法〃证明命题的思想方法.【过程与方法】通过生活中的实例探求点和圆的三种位置关系,并提炼出数量关系,从而渗透数形结合,分类讨论等数学思想.【情感态度】形成解决问题的一些根本策略,体验解决问题策略的多样性,开展实践能力与创新精神.【教学重点】〔1〕点与圆的三种位置关系.〔2〕过三点作圆.【教学难点】点与圆的三种位置关系及其数量关系反证法一、情境导入,初步认识射击是奥运会的一个正式体育工程,我国运发动在奥运会上屡获金牌,为我国赢得了荣誉,如下图是射击靶的示意图,它是由假设干个同心圆组成的,射击成绩是由击中靶子不同位置所决定的•图中是一位运发动射击10发子弹在靶上留下的痕迹.你知道如何计算运发动的成绩吗?点在圆外.解*.*OB=4cm, 从数学的角度来看,这是平面上的点与圆的位置关系,我们今天这节课就来研究这一问题,引出课题.【教学说明】随着现在经济科技的开展,奥运会越来越被人们所重视.本节通过学生熟悉的射击比赛成绩的算法,使学生在开拓知识视野的同时,感知点与圆的几种位置关系,体会数学在生活中应用.二、思考探究,获取新知1•点与圆的位置关系我们取刚刚射击靶上的一局部图形来研究点与圆存在的几种位置关系. 议一议如下列图,O O 的半径为4cm,0A=2cm,0B=4cm,0C=5cm ,那么,点A 、B 、C 与©O 有怎样的位置关系?°・°OA=2cm V 4cm ,・°・点A 在©O 内.•・・OC=5cm >4cm ,・・・点C 在©O 夕卜.【教学说明】由前面所学的“圆上的点到圆心的距离都等于半径〃,反之“到圆心的距离都等于半径的点都在圆上〃可知点B 一定在©O 上.然后引导学生看图形,初步体会并认识到点与圆的位置关系可以转化为数量关系•为下面得出结论作铺垫.点在圆【归纳结论】点与圆的三种位置关系及其数量间的关系:设©0的半径为r,点P到圆心0的距离为d.则有:点P在©0外d>r点P在©0上d=r点P在©0内d V r注:①“〃表示可以由左边推出右边的结论,也可由右边推出左边结论.读作“等价于〃.②要明确“d〃表示的意义,是点P到圆心0的距离.2•圆确实定探究〔1〕如图〔1〕,作经过点的圆,这样的圆你能作出多少个?〔2〕如图〔2〕,作经过点A、B的圆,这样的圆能作多少个?它们的圆心分布有什么特点?学生动手探究,作图,交流,得出结论,教师点评并总结.解:〔1〕过点A画圆,可作无数个圆.这些圆的圆心分布于平面的任意一点,半径是任意长的线段〔仅过点A,既不能确定圆心,也不能确定半径.〕〔2〕过的两点A、B也可作无数个圆.这些圆的圆心分布在线段AB的垂直平分线上•因为线段垂直平分线上的点到线段两端点的距离相等.〔注:仅过点A、B,同样不能确定圆心,也不能确定半径.〕思考在平面上有不共线的三点A、B、C,过这三个点能画多少个圆?圆心在哪里?解:经过A、B两点的圆,圆心在线段AB的垂直平分线上.经过A、C两点的圆,圆心在线段AC的垂直平分线上,那么这两条垂直平分线一定相交,设交点为0,则OA=OB=OC,于是以O为圆心,以OA为半径的圆,必过B、C两点,所以过不在同一直线上的A、B、C三点有且仅有一个圆.【归纳结论】不在同一直线上的三点确定一个圆.由此结论要延伸到:经过三角形三个顶点可以作一个圆,并且只能作一个,这个圆叫做三角形的外接圆.三角形的外接圆的圆心叫做这个三角形的外心.这个三角形叫做这个圆的内接三角形.三角形的外心一一三角形三边垂直平分线的交点.它到三角形三个顶点的距离相等.【教学说明】这段中心问题是过点作圆,在帮助学生分析这一问题时,紧紧抓住圆心和半径来研究.在三点共圆的问题上,一定要强调“不共线的三点〃.这里学生实际动手作图的内容很多,可以充分调动学生学习的主动性和积极性,通过学生的动手操作和动脑思考,增强学生对知识的理解和领悟.议一议如果A、B、C三点在同一直线上,能画出经过这三点的圆吗?为什么?f\1 1.4B(:解:如图,假设过同一直线l上的三点A、B、C能作一个圆,圆心为P,则点P既在线段AB的垂直平分线11上,又在线段BC的垂直平分线12上,即点P 是直线11与直线12的交点,由此可得:过直线l外一点P作直线l的垂线有两条1]和12,这与以前学的“过一点有且仅有一条直线与直线垂直〃相矛盾,•:过同一直线上的三点不能作圆.【教学说明】所有学生都会看出这问题一定不能作圆,但如何证明呢这是一个事实,直接证明有些困难,于是引入了反证法.反证法是间接证明问题的一种方法.它不是直接从命题的得出结论,而是假设命题的结论不成立,由此经过推理得出矛盾,从矛盾断定所作的假设不成立,从而得出原命题成立,这种方法叫做反证法•阶段接触的较为简单.三、典例精析,掌握新知例1©0的半径为10cm,根据点P到圆心的距离:⑴8cm,⑵10cm,⑶13cm,判断点P与©O的位置关系?并说明理由.解:由题意可知:r=10cm.(1)d=8cm V10cm,d V r点P在©O内;(2)d=10cm,d=r点P在©O上;(3)d=13cm>10cm,d>r点P在©O夕卜.例2如图,在A地往北90m处的B处,有一栋民房,东120m的C处有一变电设施,在BC的中点D处有一古建筑.因施工需要必须在A处进行一次爆破,为使民房,变电设施,古建筑都不遭破坏,问爆破影响的半径应控制在什么范围之内?解:由题设可知:AB=90m,AC=120m,Z BAC=90°,由勾股定理可得:BC=JAB2+AC2^.'902+1202=150〔m〕.又T D是BC的中点,・・・AD=1/2BC=75〔m〕.・•・民房B,变电设施C,古建筑D到爆破中心的距离分别为:AB=90m,AC=120m,AD=75m.要使B、C、D三点不受到破坏,即B、C、D三点都在©A 外,•:©A的半径要小于75m.即:爆破影响的半径控制在小于75m的范围,民房、变电设施,古建筑才能不遭破坏.【教学说明】例1可让学生独立思考,尝试写出过程;教师点评,并标准书写格式•例2是对本节知识的实际应用,教师引导学生分析问题,使学生学会将实际问题转化为数学问题,从而认识到问题的本质,也让学生体会到数学是与实际生活紧密相连的.四、运用新知,深化理解1.如图,在Rt A ABC中,Z C=90°,AC=4,BC=3,D、E分别为AB、AC的中点,现以点B为圆心,BC的长为半径作©B,试问A、C、D、E四点分别与©B的位置关系?2.如图,①0是厶ABC的外接圆,且AB=AC=13,BC=24,求©0的半径.3.如图,有一个三角形鱼塘,在它的3个顶点A、B、C三处均有一棵大白杨树,现设想把三角形鱼塘扩建成圆形养鱼场,但必须保持白杨树不动,请问能否实现这一设想?假设能,请设计画出示意图;假设不能,说明理由.【教学说明】上述三道题,教师可先给出提示,再让学生自主探究,或分组讨论,最后加以评析.题1是有关点和圆的位置关系,意在帮助学生加深理解新知,题2是外接圆的知识,题3是确定圆的知识的实际应用.【答案】1.解:连接EB.VZ C=90°,AC=4,BC=3,A AB=5.V E>D分别为AC、AB的中点,・・・DB=1/2AB=2.5,EC=1/2AC=2,EB=.EC2+BC2•・・AB=5>3,・・・点A在©B夕卜;•・・CB=3,・・・点C在©B上;V DB=2.5<3,・••点D在©B内;・.・EB=33>3,・・・点E在©B夕卜.2.解:・.・AB=AC,・•・AB二AC,即A是BC的中点.故连接OB,0A,则0A丄BC,设垂足为D.在Rt A ABD中,AD=\;'AB2-BD2=032-122=5.设©O的半径为r,则在Rt^OBD中,r2=(r-5)2+122,解得r=16.9.3.只要作厶ABC的外接圆即可.五、师生互动,课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流•【教学说明】学生自主发言,教师进行点评和补充,要向学生强调反证法和数形结合的数学思想.1.布置作业:从教材“习题24.2〃中选取.2.完成练习册中本课时练习的“课后作业〃局部.本节课通过复习圆的定义入手,通过学生操作,总结出了点与圆的三种位置关系,其中渗透着分类讨论的思想,经过探讨过一点、两点、三点作圆,得出了不在同一直线上三点确定一个圆,从而自然引出三角形外接圆、外心及圆内接三角形的定义,此外还学习了用反证法证明命题的方法和步骤•这些定理都是从学生实践中得出的,培养了学生动手的能力.。
过不共线三点作圆优秀教案

过不共线三点作圆【教学目标】(一)知识与技能:1.理解确定圆的条件及外接圆和外心的定义。
2.掌握三角形外接圆的画法。
(二)过程与方法:经过不在同一直线上的三点确定一个圆的探索过程,让我们学会用尺规作不在同一直线上的三点的圆。
(三)情感态度:在探究过不在同一直线上的三点确定一个圆的过程中,进一步培养探究能力和动手能力,提高学习数学的兴趣。
【教学重点】确定圆的条件及外接圆和外心的定义。
【教学难点】任意三角形的外接圆的作法。
【教学过程】一、情境导入,初步认识:如图所示,点A,B,C表示因支援三峡工程建设而移民的某县新建的三个移民新村。
这三个新村地理位置优越,空气清新,环境幽雅。
花园式的建筑住宅让人心旷神怡,但安居后发现一个极大的现实问题:学生就读的学校离家太远,给学生上学和家长接送学生带来了很大的麻烦。
根据上面的实际情况,政府决定为这三个新村就近新建一所学校,让三个村到学校的距离相等,你能帮助他们为学校选址吗?二、思考探究,获取新知:(一)确定圆的条件:活动1:如何过一点A作一个圆?过点A可以作多少个圆?活动2:如何过两点A、B作一个圆?过两点可以作多少个圆?以上两个问题要求学生独立动手完成,让学生初步体会,已知一点和已知两点都不能确定一个圆,并帮助学生得出如下结论。
1.过平面内一个点A的圆,是以点A以外的任意一点为圆心,以这点到A的距离为半径的圆,这样的圆有无数个。
2.经过平面内两个点A,B的圆,是以线段AB垂直平分线上的任意一点为圆心,以这一点到A或B的距离为半径的圆。
这样的圆有无数个。
活动3:如图,已知平面上不共线三点A,B,C,能否作一个圆,使它刚好都经过A,B,C三点。
假设经过A、B、C三点的圆存在,圆心为O,则点O到A、B、C三点的距离相等,即OA=OB=OC,则点O位置如何确定?是否唯一确定?教师提示到此,让学生动手画圆,最后教师归纳出。
3.经过不在同一直线上的三个点A、B、C的圆,是以AB、BC、CA的垂直平分线的交点为圆心,以这一点到点A,点B或点C的距离为半径的圆,这样的圆只有一个。
初中数学《圆周角定理及点圆关系》讲义及练习

内容基本要求略高要求较高要求圆的有关概念 理解圆及其有关概念 会过不在同一直线上的三点作圆;能利用圆的有关概念解决简单问题圆的性质 知道圆的对称性,了解弧、弦、圆心角的关系能用弧、弦、圆心角的关系解决简单问题能运用圆的性质解决有关问题圆周角 了解圆周角与圆心角的关系;了解直径所对的圆周角是直角会求圆周角的度数,能用圆周角的知识解决与角有关的简单问题能综合运用几何知识解决与圆周角有关的问题一、圆周角定理圆心角和圆周角1. 圆心角:顶点在圆心的角叫做圆心角.将整个圆分为360等份,每一份的弧对应1︒的圆心角,我们也称这样的弧为1︒的弧.圆心角的度数和它所对的弧的度数相等. 2. 圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角. 3. 圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等. 推论2:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.4. 圆心角、弧、弦、弦心距之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量分别相等.圆是平面几何中的一个重要内容.由于圆与直线型图形可组合成一些复杂的几何问题,所以它经常出现在数学竞赛中. 圆的基本性质有:⑴ 直径所对的圆周角是直角. ⑵ 同弧所对的圆周角相等.⑶ 经过圆心及一弦中点的直线垂直平分该弦.二、圆心角、弧、弦、弦心距之间的关系在同圆或等圆中,两个圆心角、两条弧、两条弦、两条弦的弦心距中有一组量相等,其它各组量都相等。
三、点与圆的位置关系点与圆的位置关系知识点睛中考要求第十讲圆周角定理及点与圆关系点与圆的位置关系有:点在圆上、点在圆内、点在圆外三种,这三种关系由这个点到圆心的距离与半径的大小关系决定.设O⊙的半径为r,点P到圆心O的距离为d,则有:点在圆外⇔d r>;点在圆上⇔d r<.=;点在圆内⇔d r确定圆的条件1. 圆的确定确定一个圆有两个基本条件:①圆心(定点),确定圆的位置;②半径(定长),确定圆的大小.只有当圆心和半径都确定时,圆才能确定.2. 过已知点作圆⑴经过点A的圆:以点A以外的任意一点O为圆心,以OA的长为半径,即可作出过点A的圆,这样的圆有无数个.⑵经过两点A B、、的圆:以线段AB中垂线上任意一点O作为圆心,以OA的长为半径,即可作出过点A B 的圆,这样的圆也有无数个.⑶过三点的圆:若这三点A B C、、三点不共线时,圆心是线段AB、、共线时,过三点的圆不存在;若A B C与BC的中垂线的交点,而这个交点O是唯一存在的,这样的圆有唯一一个.n≥个点的圆:只可以作0个或1个,当只可作一个时,其圆心是其中不共线三点确定的圆的圆⑷过n()4心.3. 定理:不在同一直线上的三点确定一个圆.注意:⑴”不在同一直线上”这个条件不可忽视,换句话说,在同一直线上的三点不能作圆;⑵”确定”一词的含义是”有且只有”,即”唯一存在”.4. 三角形的外接圆⑴经过三角形三个顶点的圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,这个三角形叫做这个圆的内接三角形.⑵三角形外心的性质:①三角形的外心是指外接圆的圆心,它是三角形三边垂直平分线的交点,它到三角形各顶点的距离相等;②三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合.⑶锐角三角形外接圆的圆心在它的内部;直角三角形外接圆的圆心在斜边中点处(即直角三角形外接圆半径等于斜边的一半);钝角三角形外接圆的圆心在它的外部.四、相交弦定理(选讲)相交弦定理:圆内的两条相交弦被交点分成的两条线段长的乘积相等.如图,弦AB和CD交于O⋅=⋅.⊙内一点P,则PA PB PC PDP ODC BA相交弦定理的推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项.教学重点:圆周角的概念和圆周角定理教学难点:圆周角定理的证明中由“一般到特殊”的数学思想方法和完全归纳法的数学思想.一、圆周角定理【例1】 (08山西太原)如图,AB 是⊙O 的直径,CD 是⊙O 的弦,连接AC AD ,,若35CAB ∠=,则ADC ∠的度数为 .【解析】 直径所对圆周角是90°且同弧所对圆周角相等. 所以得55°. 【巩固】⑴(08龙岩)如图,量角器外沿上有A B 、两点,它们的度数分别是7040︒︒、,则1∠的度数为_________.⑵ 如图,ABC △的三个顶点都在O ⊙上,302cm C AB ∠==,,则O ⊙的半径为______cm .O1BAOCBAOCBA【解析】 ⑴ ()117040152∠=︒-︒=︒. ⑵ 连接OA ,OB∵30C ∠=︒,∴260O C ∠=∠=︒,又∵OA OB =,∴OAB ∆为等边三角形, ∴2OA AB ==,即O 的半径为2.【巩固】⑴ 已知O ⊙的弦AB 长等于圆的半径,求该弦所对的圆周角.⑵ (06年安徽课改)如图所示,在ABC ∆中,45C ∠=︒,4AB =,则O ⊙的半径为( )A.22B.4C.23D.5CBD OA重、难点例题精讲BABA【解析】 ⑴ 连接OA 、OB ,设弦AB 所对的圆周角为ACB ∠.∵AB OA OB ==∴AOB ∆是等边三角形 ∴60AOB ∠=︒∴当点C 在AB 上时(劣弧上),1(360)2ACB AOB ∠=︒-∠1(36060)1502=⨯︒-︒=︒.当点C 在AmB 上时(优弧上),1302ACB AOB ∠=∠=︒故该弦所对的圆周角为30︒或150︒. ⑵ 如右图所示连接OA 、OB ,因为45C ∠=︒,290AOB C ∠=∠=︒4AB=,所以半径为OA OB ==.【例2】 (07年威海中考题)如图,AB 是O 的直径,点C ,D ,E 都在O 上,若C D E ==∠∠∠,求A B +∠∠.B ABA【解析】 连接AC 、BC∵AB 是O 的直径,∴90ACB ∠=︒,∴90CAB CBA ∠+∠=︒, 又∵D CBA ∠=∠,E CAB ∠=∠,∴90D E ∠+∠=︒, 又∵DCE D E ∠=∠=∠,∴45DCE D E ∠=∠=∠=︒,∴9045135DAB EBA DCB ECA ACB DCE ∠+∠=∠+∠=∠+∠=︒+︒=︒, 即135A B +=︒∠∠【巩固】(08年济宁改编)如图,四边形ABCD 中,AB AC AD ==,若7613CAD BDC ∠=︒∠=︒,,则CBD ∠=_________,BAC ∠=__________.DCBA【解析】 以A 为圆心,AB 为半径作辅助圆则C D 、均在A ⊙上,∴1382CBD CAD ∠=∠=︒,226BAC BDC ∠=∠=︒.【例3】 如图,AB 为O ⊙的直径,CD 是O ⊙的弦,AB CD 、的延长线交于点E ,若218AB DE E =∠=︒,,求AOC ∠的度数.EE【解析】 连结OD∵AB 是直径,2AB DE =,∴12DE AB OD ==∴18DOE E ∠=∠=︒,∴36ODC DOE E ∠=∠+∠=︒∵OC OD =,∴36OCD ODC ∠=∠=︒, ∴54AOC OCD E ∠=∠+∠=︒.【巩固】如图所示CD 是O ⊙的直径,87EOD ∠=︒,AE 交O ⊙于B ,且AB OC =,求A ∠ 的度数.DD【解析】 连结OB∵AB OC =,OB OC =,∴OB AB = 设A x ∠=,则BOA x ∠=. ∴2OBE BOA A x ∠=∠+∠=. ∵OE OB =,∴2OEA OBE x ∠=∠=.∴387EOD E A x ∠=∠+∠==︒ ∴29x =︒,即29A ∠=︒.【巩固】如图,已知AB 为⊙O 的直径,20E ∠=︒,50DBC ∠=︒,则CBE ∠=______.B【解析】 连结AC .设∠DCA =x°,则∠DBA =x°,所以∠CAB =x°+20°.因为AB 为直径,所以∠BCA=90°,则∠CBA +∠CAB =90°.又 ∠DBC =50°,∴ 50+x +(x +20)=90. ∴ x =10.∴∠CBE =60°.所以答案是60°.【例4】 (07重庆)已知,如图:AB 为O ⊙的直径,AB AC =,BC 交O ⊙于点D ,AC 交O ⊙于点E ,45BAC ∠=︒.给出以下五个结论:①22.5EBC ∠=︒,;②BD DC =;③2AE EC =;④劣弧AE 是劣弧DE 的2倍;⑤AE BC =.其中正确结论的序号是 .【解析】 由题意可知122.52EBC BAC ∠=∠=︒,故①正确,连接AD 可得90ADB ∠=︒,由等腰三角形三线合一的性质可知BD DC =,故②正确;2ABE EBD ∠=∠,由弧的度数和它所对的圆心角是相等的,可知2AE DE =,故④正确, ∴正确结论的序号是:①②④.【例5】 如图AB 是半圆O 的直径,点C D 、在弧AB 上,且AD 平分CAB ∠,已知106AB AC ==,,求AD的长.【解析】 延长AC 交BD 的延长线于E ,∵AB 是半圆的直径,AD 平分CAB ∠, 则可得10AE AB ==,BD ED =, ∴4CE AE AC =-=,∵90ACB ∠=︒,∴8BC =,在RtBCE ∆中,BE =,∴BD DE ==∴AD =【例6】 (08乌鲁木齐)如图所示的半圆中,AD 是直径,且32AD AC ==,,则sin B 的值是________.DCA B【例7】 ⑴(09河北)如下左图,四个边长为1的小正方形拼成一个大正方形,A B O 、、是小正方形顶点,O ⊙的半径为1,P 是O ⊙上的点,且位于右上方的小正方形内,则APB ∠等于__________.PO BAB⑵(09四川成都)如上右图,ABC ∆内接于O ⊙,120AB BC ABC =∠=︒,,AD 为O ⊙的直径,6AD =,那么BD =_________.⑶(09山东泰安)O ⊙的半径为1,AB 是O ⊙的一条弦,且AB =AB 所对圆周角的度数为_____________.【解析】 ⑴45︒;⑵60︒或120︒.【例 1】 (07年枣庄中考题)如图,ABC ∆内接于O ⊙,120BAC ∠=︒,AB AC =,BD 为O ⊙的直径,6AD =,则BC = .A【解析】 连接CD .证明ABD CDB ∆∆≌,∴6BC AD ==.【例8】 如图,过O ⊙的直径AB 上两点M N ,,分别作弦CD EF ,,若CD EF AC BF =,∥.求证:⑴BEC ADF =;⑵ AM BN =.【解析】 ⑴ ∵AC BF =,∴AC BF =, ∵AB 是直径,∴AEB ADB =,∴AEB AC ADB BF -=-,即BEC ADF =. ⑵ 由⑴可知CAM FBN ∠=∠,∵CD EF ∥,∴CMA DMB FNB ∠=∠=∠,又AC BF =,∴ACM BFN ∆∆≌,∴AM BN =.【例9】 如图,点A B C 、、是O ⊙上的三点,AB OC ∥.⑴ 求证:AC 平分OAB ∠;⑵ 过点O 作OE AB ⊥于点E ,交AC 于点P .若230AB AOE =∠=︒,,求PE 的长.【解析】 ⑴ ∵AB OC ∥,∴BAC C ∠=∠,∵OA OC =,∴OAC C ∠=∠,∴BAC OAC ∠=∠,∴AC 平分OAB ∠.⑵ ∵OE AB ⊥,∴112AE AB ==,在Rt AOE ∆中,9030OEA AOE ∠=︒∠=︒,,∴22AO AE OE ==,以下可以用两种不同方法解答:解法一:∵AB OC ∥,∴12AE PE OC OP ==∴13PE OE =解法二:由⑴得AC 平分OAB ∠,∴2OA OPAE PE==,∴13PE OE =【例10】 ⑴如图,AB 是O ⊙的直径,CD AB ⊥,设COD α∠=,则2sin 2AB AD α⋅=_____________.O PFEDC B A⑵ 如图,AB 是O ⊙的直径,弦PC 交OA 于点D ,弦PE 交OB 于点F ,且OC DC OF EF ==,.若C E ∠=∠,则CPE ∠=___________.⑶ 已知:如图,MN 是O ⊙的直径,点A 是半圆上一个三等分点,点B 是AN 的中点,P 是MN 上一动点,O ⊙的半径为1,则PA PB +的最小值是_____________.【解析】 ⑴1;⑵40︒;⑶作B 点关于MN 的对称点B ′,连结AB ′与MN 交于点P , 易证得,此时PA PB +取得最小值.根据圆的对称性,B ′点在O ⊙上,且B N BN =′, ∵A 是半圆的三等分点,∴13AN MAN =,∴60AON ∠=︒,∵B 是AN 的中点,∴1302BON AON ∠=∠=︒,∴30B ON ∠=︒′,∴90AOB AON B ON ∠=∠+∠=︒′′, ∵O ⊙半径为1,∴1OA OB ==′,∴AB ′,∴PA PB +【巩固】(09浙江衢州)如图,AD 是O ⊙的直径.⑴ 如图1,垂直于AD 的两条弦11B C ,22B C 把圆周4等分,则1B ∠的度数是___________,2B ∠的度数是____________;⑵ 如图2,垂直于AD 的三条弦112233B C B C B C 、、把圆周6等分,分别求123B B B ∠∠∠,,的度数;⑶ 如图3,垂直于AD 的n 条弦112233n n B C B C B C B C ,,,…,把圆周2n 等分,请你用含n 的代数式表示n B ∠的度数(只需直接写出答案).图3图2图1-1n -2B n 3B B 2【解析】 ⑴ 22.567.5︒︒,;⑵ ∵圆周被6等分,∴111223360660B C C C C C ===÷=︒.∵直径11AD B C ⊥,∴1111302AC B C ==︒,∴()()12311153060453060607522B B B ∠=︒∠=⨯︒+︒=︒∠=⨯︒+︒+︒=︒,,.⑶ ()()90451136036012222n n B n n n n -︒︒︒⎡⎤∠=⨯+-⋅=⎢⎥⎣⎦(或3604590908nB n n ︒︒∠=︒-=︒-)【例11】 已知如图,ACD ∆的外角平分线CB 交其外接圆于B ,连接BA 、BD ,求证:BA BD =.N【解析】 ∵ACB BCN ∠=∠,又∵ACB ADB ∠=∠;BCN BAD ∠=∠, ∴BAD BDA ∠=∠, ∴BA BD =.【巩固】已知如图,ACD ∆的外角平分线CB 交其外接圆于B ,连接BA 、BD ,过B 作BM AC ⊥于M ,BN CD ⊥于N ,则下列结论中一定正确的有 .①CM CN =;②MBN ABD ∠=∠;③AM DN =;④BN 为⊙O 的切线.【解析】 可证得BCM ∆≌BCN ∆.∴CM CN =,故①正确;四边形BMCN 的内角和为360︒可知,180MBN MCN ∠+∠=︒, 又∵180MCN ACD ∠+∠=︒, ∴MBN ACD ∠=∠, ∵ACD ABD ∠=∠,∴MBN ABD ∠=∠,故②正确;利用外角平分线易证AB BD =,又∵BM BN =,AMB DNB ∠=∠, ∴ABM DBN ∆∆≌,∴AM DN =,故③正确;若BN 为⊙O 的切线,则NBC BAC ∠=∠, ∵90NBC BCN ∠+∠=︒,而BCN ACB ∠=∠, ∴90BAC ACB ∠+∠=︒, ∴AC 为O ⊙直径.而AC 不一定为O ⊙直径,故④不正确.【巩固】(09辽宁)已知∆ABC 中,=AB AC ,D 是∆ABC 外接圆劣弧AC 上的点(不与点A C ,重合),延长BD 至E .⑴ 求证:AD 的延长线平分∠CDE ;⑵ 若30∠=︒BAC ,∆ABC 中BC边上的高为2∆ABC 外接圆的面积.AB CD【解析】 ⑴ 如图,设F 为AD 延长线上一点∵D 在∆ABC 外接圆上(A B C D 、、、四点共圆) ∴∠=∠CDF ABC又=AB AC ,∴∠=∠ABC ACB , 且∠=∠ADB ACB ,∴∠=∠ADB CDF对顶角∠=∠EDF ADB ,故∠=∠EDF CDF , 即AD 的延长线平分∠CDE .⑵ 设O 为外接圆圆心,连接AO 交BC 于H ,则⊥AH BC . 连接OC ,由题意15∠=∠=︒OAC OCA ,75∠=︒ACB , ∴60∠=︒OCH .设圆半径为r,则2+=r 2=r ,外接圆的面积为4π.二、圆心角、弧、弦、弦心距之间的关系【例12】 如图所示在O ⊙中,2AB CD =,那么( )A.2AB CD >B.2AB CD <C.2AB CD =D.AB 与2CD的大小关系不能确定【解析】 如图所示,作DE CD =,则2CE CD =,∵在CDE ∆中CD DE CE +>,∴2CD CE >, ∵2AB CD =,∴AB CE >,∴AB CE >,即2AB CD >. 故选A .【例13】 已知AB AC 、是O ⊙的弦,AD 平分BAC ∠交O ⊙于D ,弦DE AB ∥交AC 于P ,求证:OP 平分APD ∠.【解析】 过O 点分别作OF AC OG DE ⊥⊥,,垂足分别为F G 、.∵DE AB ∥,∴BAD D ∠=∠,∵AD 平分BAC ∠,∴BAD CAD ∠=∠,∴CAD D ∠=∠, ∴AE CD =,∴AE EC CD EC +=+,即AC DE = ∴AC DE =, ∵OF AC OG DE ⊥⊥,,∴OF OG =,∴点O 在APD ∠的平分线上,即OP 平分APD ∠.【巩固】已知,如图M N ,为O 中劣弧AB 的三等分点,E F ,为弦AB 的三等分点,连接ME 并延长,交直线MF 于点P ,连接AP BP ,交O 于C D ,两点,求证:3AOB APB ∠=∠.PNMOFEDCBAQPNMOFEDCBA【解析】 连接CN AN ,,ON OM ,,连接MN 并延长,交PA 的延长线于Q .∵M N ,三等分AB ,∴AM BN =,故MN AB ∥,由AE EF =,可证得QM MN =, 由AM MN =得AM MN =, ∴MA MQ MN ==, ∴QAN ∠为直角,∴90CAN ∠=︒,故CN 为O 直径, 故O 在CN 上∴22AON ACN MON ∠=∠=∠∴MON ACN ∠=∠,故OM AP ∥, 同理可证:ON AB ∥于是可证得:MON APB ∠=∠,∵3AOB MON ∠=∠,∴3AOB APB ∠=∠.【例14】 (2008年广州市数学中考试题)如图,射线AM 交一圆于点B C ,,射线AN 交该圆于点D 、E ,且BC DE =.⑴ 求证:AC AE =⑵ 分别作线段CE 的垂直平分线与MCE ∠的平分线,两线交于点F .求证:EF 平分CEN ∠.NME【解析】 ⑴ 作OP AM ⊥,OQ AN ⊥,由BC DE =,得OP OQ =,证APO AQO ∆∆≌,可得AP AQ =, 由BC CD =,得CP EQ = ∴AC AE =. ⑵ ∵AC AE =,∴ACE AEC ∠=∠,∴MCE NEC ∠=∠, ∵F 在线段CE 的中垂线上, ∴FC FE =,∴FCE FEC ∠=∠,∵12FCE MEC ∠=∠,∴12FEC NEC ∠=∠,即EF 平分CEN ∠.三、点与圆的位置关系【例15】 一个已知点到圆周上的点的最大距离为5cm ,最小距离为1cm ,则此圆的半径为______.【解析】 ⑴ 当点在圆外时,512cm 2r -==,⑵ 当点在圆内时,513cm 2r +==.【例16】 已知:四边形ABCD 中,AB CD ∥,AD BC =,135BAD ∠=︒,20AB =,40CD =,以A 为圆心,AB 长为半径作圆.求证:在A ⊙上,在A ⊙内,A ⊙外都有线段DC 上的点.C【解析】 如图所示,作AE CD ⊥于E∵ABCD 是等腰梯,AE CD ⊥,135BAD ∠=︒,20AB =,40CD =∴20AD =<,20AC = ∴D 点在A ⊙内,C 点在A ⊙外,圆内一点与圆外一点的连线,必与圆有一交点, 所以A ⊙上,A ⊙内, A ⊙外都有线段DC 上的点.【例17】 在平面直角坐标系内,以原点O 为圆心,5为半径作O ⊙,已知A ,B ,C 三点的坐标分别为()34A ,,()33B --,,(4C ,,试判断A ,B ,C 三点与O ⊙的位置关系.【解析】∵5OA =5OB =5OC >∴点A 在O ⊙上,点B 在O ⊙内,点C 在O ⊙外.【点评】要判定点与圆的位置关系,就是要比较点到圆心的距离与半径的大小关系.【例18】 在ABC ∆ 中,90C ∠=︒,4AC =,5AB =,以点C 为圆心,以r 为半径作圆,请回答下列问题,并说明理由.⑴ 当r 取何值时,点A 在C ⊙上,且点B 在C ⊙内部?⑵ 当r 在什么范围内取值时,点A 在C ⊙外部,且点B 在C ⊙的内部? ⑶ 是否存在这样的实数r ,使得点B 在C ⊙上,且点A 在C ⊙内部?CBA【解析】 如右图所示在Rt ABC ∆中,90C ∠=︒,4AC =,5AB =,根据勾股定理得:3BC ==⑴ 当4r =时,点A 在C ⊙上,且点B 在C ⊙内.因为4AC r ==,所以点A 在C ⊙上,34BC r =<=,所以B 在C ⊙内; ⑵ 当34r <<时,点A 在C ⊙的外部,且点B 在C ⊙的内部.由于3BC =,要使点B 在C ⊙的内部,必须C ⊙的半径3r >;又由于4AC =,要使点A 在C ⊙的外部,必须C ⊙的半径4r <. 综合上述两方面可知,34r <<.⑶ 不存在这样的实数r ,使得点B 在C ⊙上,且点A 在C ⊙内部.因为3BC =,要使点B 在C ⊙上,必须3r =,此时,由于4AC r =>,所以点A 在C ⊙的外部,点A 不在C ⊙的内部,所以这样的实数r 不存在.【例19】 已知ABC ∆中,90C ∠=︒,2AC =,3BC =,AB 的中点为M ,⑴ 以C 为圆心,2为半径作C ⊙,则点A ,B ,M 与C ⊙的位置关系如何? ⑵ 若以C 为圆心作C ⊙,使A ,B ,M 三点至少有一点在C ⊙内,且至少有一点在C ⊙外,求C ⊙半径r 的取值范围.M CBA【解析】 如右图所示⑴ ∵2AC =,且C ⊙的半径也为2,即AC r =∴点A 在C ⊙上.又∵3BC =,2R =,BC r > ∴点B 在C ⊙外.在ABC ∆中,AB = ∵M 为AB 的中点∴122MC AB ==<∴点M 在C ⊙内; ⑵ ∵2AC =,3BC =,MC ∴BC AC MC >>∴要使A ,B ,M 三点中至少有一点在C ⊙内,且至少有一点在C ⊙外,则C ⊙的半径r 的3r <<.【点评】⑴ 要判定点A ,B ,M 与C ⊙的位置关系,只要比较AC ,BC ,MC 的长度与C ⊙的半径的大小关系即可;⑵ 由⑴求得AC ,BC ,MC 的长度即可确定C ⊙的半径r 的取值范围.【例20】 ABC ∆中,10AB AC ==,12BC =,求其外接圆的半径.【解析】 作高AD ,设点O 是ABC ∆OB∵AB AC =,AD BC ⊥,∴16BD BC ==在Rt ABD ∆中,8AD 设O ⊙的半径为R ,则OB AO R ==,8OD R =-. 在Rt OBD ∆中, 222OB BD OD =+∴2226(8)R R =+-,解得254R =.∴外接圆的半径为254.【点评】运用外心到三角形的三个顶点的距离相等这一性质,注意,三角形的外心在等腰三角形底边的中垂线上.四、相交弦定理(选讲)相交弦定理:圆内的两条相交弦被交点分成的两条线段长的乘积相等.如图,弦AB 和CD 交于O ⊙内一点P ,则PA PB PCPD ⋅=⋅.相交弦定理的推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项. 【例21】 ⑴ 如下左图,在O ⊙中,弦AB 与CD 相交于点P ,已知3cm 4cm 2cm PA PB PC ===,,,那么PD = cm .⑵ 如下中图,在O ⊙中,弦AB 与半径OC 相交于点M ,且OM MC =,若 1.54AM BM ==,,则OC 的长为( )A. BC. D .⑶ 如下右图,在O ⊙中,P 为弦AB 上一点,PO PC ⊥,PC 交O ⊙于C ,那么( )A .2OP PA PB =⋅ B .2PC PA PB =⋅C .2PA PB PC =⋅D .2PB PA PC =⋅【解析】 ⑴6;⑵D ;⑶B .【例22】如图,圆的半径是A C 、两点在圆上,点B 在圆内,6AB =,2BC =,90ABC ∠=︒求点B到圆心的距离.【解析】 连结OB ,则线段OB 的长就是所求点B 到圆心的距离.连结OA ,延长AB 交O ⊙于D ,过O 点作OE AD ⊥于E ,延长CB 交O ⊙于F . 设BD x =,由相交弦定理可得AB BD BC BF ⋅=⋅,则3AB BDBF x BC⋅==,∵OE AD ⊥,∴()()11166222AE AD x BE x ==+=-,,()()11132232222OE CF BC x x =-=+-=-,在Rt AOE ∆中,90AEO ∠=︒,∴222OE AE OA +=,即()()22113265044x x -++=,解得4x =,∴()()1134256412OE BE=⨯-==-=,,OB =【例23】 如图,正方形ABCD 内接于O ⊙,点P 在劣弧AB 上,连结DP 交AC 于点Q .若QP QO =,则QCQA的值为___________.【解析】 连结DO ,设O ⊙半径为r ,QO m =,则QP m QC r m QA r m ==+=-,,.在O ⊙中,根据相交弦定理得QA QC QP QD ⋅=⋅,即()()r m r m mQD -+=,∴22r m QD m-=,由勾股定理得222QD DO QO =+,即22222r m r m m ⎛⎫-=+ ⎪⎝⎭,解得33m r =. ∴313231QC r m QA r m ++===+--.【习题1】 (2007浙江温州)如图,已知ACB ∠是O 的圆周角,50ACB ∠=︒,则圆心角AOB ∠是( )A .40︒B . 50︒C . 80︒D . 100︒【解析】 考察同弧所对圆心角圆周角关系.答案选:D .【习题2】 如图,将圆沿AB 折叠后,圆弧恰好经过圆心,则AmB 等于 .A . 60°B . 90°C . 120°D . 150°mBAO【解析】 答案选C .【习题3】 (09四川凉山)如图,O ⊙是ABC ∆的外接圆,已知50ABO ∠=︒,则ACB ∠的大小为__________.OCBA【解析】 40︒.【习题4】 (09四川南充)如图,AB 是O ⊙的直径,点C D 、在O ⊙上,110BOC ∠=︒,AD OC ∥,则AOD ∠=___________.OD CBA家庭作业【解析】 40︒.【习题5】 如果两条弦相等,那么( )A .这两条弦所对的弧相等B .这两条弦所对的圆心角相等C .这两条弦的弦心距相等D .以上答案都不对【解析】 考察圆心角定理,关键是这些条件成立的前提是在同圆或等圆中.所以选D .【习题6】 如图,AB 为⊙O 的直径,AC 交⊙O 于E 点,BC 交⊙O 于D 点,CD =BD ,∠C =70°. 现给出以下四个结论:①∠A =45°; ②AC =AB ; ③AE BE =; ④22CE AB BD ⋅=. 其中正确结论的序号是A .①②B .②③C .②④D .③④ED C BAO【解析】 考察利用圆中角可推出等弧,等弦,相似.答案选 C .【习题7】 如图,量角器外缘边上有A P Q ,,三点,它们所表示的读数分别是180,70,30,则PAQ ∠的大小为( )A .10B .20C .30D .40【解析】 考察同弧所对圆心角是圆周角的2倍.答选 B .【习题8】 (首师大附中2008-2009初三月考)定义:定点A 与O ⊙上的任意一点之间的距离的最小值称为点A 与O ⊙之间的距离.现有一矩形ABCD 如图,14cm 12cm AB BC ==,,K ⊙与矩形的边AB BC CD 、、分别相切于点E F G 、、,则点A 与K ⊙的距离为______________.GEK DB A【解析】 连结KE AK 、,由题意可知K ⊙的半径为6cm ,6cm EK AB BE ⊥=,,∴8cm AE =,∴2210cm AK AE EK =+=, ∴点A 与K ⊙的距离为1064cm -=.【备选1】 如图,CD 为O ⊙的直径,过点D 的弦DE 平行于半径OA ,若D ∠的度数是50︒,则C ∠的度数是 A .25︒ B .40︒ C .30︒ D .50︒O EDCA【解析】 A .【备选2】 (08泰安)如图,在O ⊙中,AOB ∠的度数为m ,C 是ACB 上一点,D E 、是AB 上不同的两点(不与A B 、两点重合),则D E ∠+∠的度数为____________.OEDCBA【解析】 ()136018022mD E m ∠+∠=︒-=︒-.【备选3】 如图,已知⊙O 的弦AB 、CD 相交于点E ,AC 的度数为60°,BD 的度数为100°,则AEC∠等于( )A . 60°B . 100°C . 80°D . 130°EDC BO A【解析】 连结BC ,则∠AEC =∠B +∠C =21×60°+21×100°=80°.所以答案是C .【备选4】 设Rt ABC ∆的两条直角边长分别为3,4则此直角三角形的内切圆半径为 ,外接圆半径为【解析】 内切圆半径为1()12r a b c =+-=;外接圆半径为 2.52cR ==.【备选5】 等边三角形的外接圆的半径等于边长的( )倍.月测备选A .23B .33C .3D .21【解析】 考察等边三角形与外接圆半径的关系,所以选B【备选6】 (08山东滨州)如图所示,AB 是⊙O 的直径,AD=DE ,AE 与BD 交于点C ,则图中与∠BCE相等的角有( )BAA . 2个B . 3个C . 4个D . 5个【解析】 考察同弧,等弧所对圆周角相等,所以选B .【备选7】 (宜宾)已知:如图,四边形ABCD 是O ⊙的内接正方形,点P 是劣弧CD 上不同于点C 的任意一点,则BPC ∠的度数是( )A.45︒ B .60︒ C.75︒ D.90︒P【解析】 连接BO ,CO ,可得90BOC ∠=︒,∴1452BPC BOC ∠=∠=︒,故选A .【备选8】 (09浙江温州)如图,80AOB ∠=︒,则弧AB 所对圆周角ACB ∠的度数是A .40︒B .45︒C .50︒D .80︒【解析】 A .【备选9】 Rt ABC ∆的两条直角边3BC =,4AC =,斜边AB 上的高为CD ,若以C 为圆心,分别以12r =,2 2.4r =,33r =为半径作圆,试判断D 点与这三个圆的位置关系.DCBA【解析】 在Rt ABC ∆中,90ACB ∠=︒,4AC =,3BC =,∴5AB =由面积相等得,AC BC AB CD ⋅=⋅.∴122.45AC BC CD AB ⋅===∴ 2.4d CD ==∴1d r >, 2d r =, 3d r <∴点D 与三个圆的位置关系分别是:在圆外,在圆上,在圆内.【点评】要判定点与圆的位置关系,就是要比较点到圆心的距离与半径的大小关系.。
点与圆的位置关系

点与圆的位置关系1. 确定圆的条件(1) 圆心(定点),确定圆的位置; (2) 半径(定长),确定圆的大小.注意:只有当圆心和半径都确定时,圆才能确定. 2. 点与圆的位置关系(3) 点与圆的位置关系有:点在圆上、点在圆内、点在圆外三种,这三种关系由这个点到圆心的距离与半径的大小关系决定. (4) 设O ⊙的半径为r ,点P 到圆心O 的距离为d ,则有:点在圆外⇔d r >;点在圆上⇔d r =;点在圆内⇔d r <二、过已知点的圆1. 过已知点的圆(1) 经过点A 的圆:以点A 以外的任意一点O 为圆心,以OA 的长为半径,即可作出过点A 的圆,这样的圆有无数个. (2) 经过两点A B 、的圆:以线段AB 中垂线上任意一点O 作为圆心,以OA 的长为半径,即可作出过点A B 、的圆,这样的圆也有无数个. (3) 过三点的圆:若这三点A B C 、、共线时,过三点的圆不存在;若A B C 、、三点不共线时,圆心是线段AB 与BC 的中垂线的交点,而这个交点O 是唯一存在的,这样的圆有唯一一个. (4) 过n ()4n ≥个点的圆:只可以作0个或1个,当只可作一个时,其圆心是其中不共线三点确定的圆的圆心.2. 定理:不在同一直线上的三点确定一个圆(1) “不在同一直线上”这个条件不可忽视,换句话说,在同一直线上的三点不能作圆; (2) “确定”一词的含义是”有且只有”,即”唯一存在”.三、三角形的外接圆及外心1. 三角形的外接圆(1) 经过三角形三个顶点的圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,这个三角形叫做这个圆的内接三角形. (2) 锐角三角形外接圆的圆心在它的内部;直角三角形外接圆的圆心在斜边中点处(即直角三角形外接圆半径等于斜边的一半);钝角三角形外接圆的圆心在它的外部. 2. 三角形外心的性质(1) 三角形的外心是指外接圆的圆心,它是三角形三边垂直平分线的交点,它到三角形各顶点的距离相等; (2) 三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合.例题精讲【例1】 已知圆内一点到圆周上的点的最大距离是7,最小距离是5,则该圆的半径是( )A .2B .6C .12D .7【例2】 一个已知点到圆周上的点的最大距离为5cm ,最小距离为1cm ,则此圆的半径为______.【例3】 定义:定点A 与O ⊙上的任意一点之间的距离的最小值称为点A 与O ⊙之间的距离.现有一矩形ABCD 如图,14cm 12cm AB BC ==,,K ⊙与矩形的边AB BC CD 、、分别相切于点E F G 、、,则点A 与K ⊙的距离为______________.【例4】 在平面直角坐标系内,以原点O 为圆心,5为半径作O ⊙,已知A ,B ,C 三点的坐标分别为()34A ,,()33B --,,(4C -,,试判断A ,B ,C 三点与O ⊙的位置关系. 【例5】 已知ABC ∆中,90C ∠=︒,2AC =,3BC =,AB 的中点为M ,⑴以C 为圆心,2为半径作C ⊙,则点A ,B ,M 与C ⊙的位置关系如何? ⑵若以C 为圆心作C ⊙,使A ,B ,M 三点至少有一点在C ⊙内,且至少有一点在C ⊙外,求C⊙半径r 的取值范围.M CBA【例6】 Rt ABC ∆的两条直角边3BC =,4AC =,斜边AB 上的高为CD ,若以C 为圆心,分别以12r =,2 2.4r =,33r =为半径作圆,试判断D 点与这三个圆的位置关系.DCBA【例7】 在ABC ∆中,90C ∠=︒,4AC =,5AB =,以点C 为圆心,以r 为半径作圆,请回答下列问题,并说明理由. ⑴当r 取何值时,点A 在C ⊙上,且点B 在C ⊙内部? ⑵当r 在什么范围内取值时,点A 在C ⊙外部,且点B 在C ⊙的内部? ⑶是否存在这样的实数r ,使得点B 在C ⊙上,且点A 在C ⊙内部?CBA【例8】 已知:四边形ABCD 中,AB CD ∥,AD BC =,135BAD ∠=︒,20AB =,40CD =,以A 为圆心,AB 长为半径作圆.求证:在A ⊙上,在A ⊙内,A ⊙外都有线段DC 上的点.C二、过三点的圆【例9】 如图,四边形ABCD 中,AB AC AD ==,若7613CAD BDC ∠=︒∠=︒,,则CBD ∠=_________,BAC ∠=__________.DCB【例10】 如图,在平面直角坐标系中,O ' 与两坐标轴分别交于A B C D ,,,四点,已知:()60A ,,()03B -,,()20C -,,则点D 的坐标是( )A .()02,B .()03,C .()04,D .()05,【例11】 如图,O 通过原点,并与坐标轴分别交于A D ,两点,已知30OBA ∠=︒,点D 的坐标为()02,,则点A C ,的坐标分别为A ;C .【例12】 如图,直角坐标系中一条圆弧经过网格点A B C ,,,其中B 点的坐标为()44,,则该圆弧所在圆的圆心的坐标为 .三、三角形的外接圆及外心【例13】 如图,ABC ∆内接于O ⊙,120BAC ∠=︒,AB AC =,BD 为O ⊙的直径,6AD =,则BC =.【例14】 等边三角形的外接圆的半径等于边长的( )倍.ABC D .12【例15】ABC ∆中,10AB AC ==,12BC =,求其外接圆的半径.【例16】设Rt ABC∆的两条直角边长分别为3,4,则此直角三角形的内切圆半径为,外接圆半径为.【例17】如图,不等边ABC∆内接于O⊙,I是其内心并且AI OI⊥.求证:2AB AC BC+=.【例18】已知如图,ACD∆的外角平分线CB交其外接圆于B,连接BA、BD,求证:BA BD=.N 【例19】已知如图,ACD∆的外角平分线CB交其外接圆于B,连接BA、BD,过B作BM AC⊥于M,BN CD⊥于N,则下列结论中一定正确的有.①CM CN=;②MBN ABD∠=∠;③AM DN=;④BN为⊙O的切线.【例20】已知∆ABC中,=AB AC,D是∆ABC外接圆劣弧 AC上的点(不与点A C,重合),延长BD至E.⑴求证:AD的延长线平分∠CDE;⑵若30∠=︒BAC,∆ABC中BC边上的高为2,求∆ABC外接圆的面积.AB CD E。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.4 过不共线三点作圆
【教学目标】
1.理解、确定圆的条件及外接圆和外心的定义;掌握三角形外接圆的画法.
2.经过不在同一直线上的三点确定一个圆的探索过程,让我们学会用尺规作不在同一直线上的三点的圆.
3、在探究过不在同一直线上的三点确定一个圆的过程中,进一步培养探究能力和动手能力,提高学习数学的兴趣.
【教学重点】确定圆的条件及外接圆和外心的定义.
【教学难点】任意三角形的外接圆的作法.
【教学过程】一、情境导入,初步认识
如图所示,点A,B,C表示因支援三峡工程建设而移民的某县新建的三个移民新村.这三个新村地理位置优越,空气清新,环境幽雅.花园式的建筑住宅让人心旷神怡,但安居后发现一个极大的现实问题:学生就读的学校离家太远,给学生上学和家长接送学生带来了很大的麻烦.根据上面的实际情况,政府决定为这三个新村就近新建一所学校,让三个村到学校的距离相等,你能帮助他们为学校选址吗?
二、思考探究,获取新知
1.确定圆的条件活动1如何过一点A作一个圆?过点A可以作多少个圆?
活动2如何过两点A、B作一个圆?过两点可以作多少个圆?
【教学说明】以上两个问题要求学生独立动手完成,让学生初步体会,已知一点和已知两点都不能确定一个圆,并帮助学生得出如下结论.
(1)过平面内一个点A的圆,是以点A以外的任意一点为圆心,以这点到A的距离为半径的圆,这样的圆有无数个.
(2)经过平面内两个点A,B的圆,是以线段AB垂直平分线上的任意一点为圆心,以这一点到A或B的距离为半径的圆.这样的圆有无数个.
活动3如图,已知平面上不共线三点A、B、C,能否作一个圆,使它刚好都经过A,B,C三点.
【教学说明】假设经过A、B、C三点的圆存在,圆心为O,则点O到A、B、C三点的距离相等,即OA=OB=OC,则点O位置如何确定?是否唯一确定?教师提示到此,让学生动手画圆,最后教师归纳出.
(3)经过不在同一直线上的三个点A,B,C的圆,是以AB,BC,CA的垂直平分线的交点为圆心,以这一点到点A,点B或点C的距离为半径的圆,这样的圆只有一个.
2.三角形的外接圆,三角形的外心.
活动4经过△ABC的三个顶点可以作一个圆吗?请动手画一画.
【教学说明】因为△ABC的三个顶点不在同一条直线上,所以过这三个顶点可以作一个圆,并且只可以作一个圆,并且得出如下结论.
1.三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆,它的圆心叫做三角形的外心,是三角形三边垂直平分线的交点.
2.三角形的外心到三角形三顶点的距离相等.强调:任意一个三角形都有唯一的一个外接圆,但对于一个圆来说,它却有无数个内接三角形.
教学延伸:经过不在同一直线上的任意四点能确定一个圆吗?什么样的特殊四边形能确定一个圆?
【教学说明】提示:不一定.对角互补的四边形一定可以确定一个圆.
例2小明家的房前有一块矩形的空地,空地上有三棵树A,B,C,小明想建一个圆形花坛,使三棵树都在花坛的边上.
(1)请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹).
(2)若在△ABC中,AB=8米,AC=6米,∠BAC=90°,试求小明家圆形花坛的面积.
解:(1)用尺规作出两边的垂直平分线,作出图.⊙O即为所求的花坛的位置.
(2)∵∠BAC=90°,AB=8米,AC=6米,∴BC=10米,∴△ABC外接圆的半径为5米.∴小明家圆形花坛的面积为25π平方米.
三、运用新知,深化理解
1.下列说法正确的是()
A.过一点A的圆的圆心可以是平面上任意点
B.过两点A、B的圆的圆心在一条直线上
C.过三点A、B、C的圆的圆心有且只有一点
D.过四点A、B、C、D的圆不存在
2.已知a、b、c是△ABC三边长,外接圆的圆心在△ABC一条边上的是()
A.a=15,b=12,c=11
B.a=5,b=12,c=12
C.a=5,b=12,c=13
D.a=5,b=12,c=14
3.下列说法正确的是()
A.过一点可以确定一个圆
B.过两点可以确定一个圆
C.过三点可以确定一个圆
D.三角形一定有外接圆
4.在一个圆中任意引两条平行直线,顺次连结它们的四个端点组成一个四边形,则这个四边形一定是()
A.菱形
B.等腰梯形
C.矩形
D.正方形
四、师生互动,课堂小结
1.师生共同回顾:过已知点作圆,条件一是确定圆心,二是确定半径,不在同一直线上的三个点确定一个圆.了解三角形的外接圆、外心等概念.
2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.
【课后作业】。