计量经济学时间序列计量经济模型

合集下载

计量经济学:时间序列模型习题与解析

计量经济学:时间序列模型习题与解析

计量经济学:时间序列模型习题与解析第九章时间序列计量经济学模型的理论与⽅法练习题1、请描述平稳时间序列的条件。

2、单整变量的单位根检验为什么从DF检验发展到ADF检验?23、设X t cost si n t,0 t 1,其中,是相互独⽴的正态分布N(0, )随机变量,是实数。

试证:{x t,0 t 1}为平稳过程。

LB5、利⽤4中数据,⽤ADF法对居民消费总额时间序列进⾏平稳性检验。

6、利⽤4中数据,对居民消费总额时间序列进⾏单整性分析。

7、根据6中的结论,对居民消费总额的差分平稳时间序列进⾏模型识别。

8、⽤Yule Walker法和最⼩⼆乘法对7中的居民消费总额的差分平稳时间序列进⾏时间序列模型估计,并⽐较估计结果。

9、有如下AR(2)随机过程:X t 0.1X t1 0.06X t 2 t该过程是否是平稳过程?10、求MA(3)模型y t 1 u t 0.8u t 1 0.5u t 2 0.3u t 3的⾃协⽅差和⾃相关函数。

11、设动态数据x10.8,x20.7, x3 0.9, x4 0.74, x5 0.82,x6 0.92, x7 0.78,X8 0.86, X9 0.72, X10 0.84,求样本均值x,样本⽅差?。

,样本⾃协⽅差?、?2和样本⾃相关函数?1、?2。

12、判断如下ARMA过程是否是平稳过程:x t 0.7x t 1 0.1x t 2 t 0.14 t 113、以Q t表⽰粮⾷产量,A t表⽰播种⾯积,C t表⽰化肥施⽤量,经检验,他们取对数后都是I (1)变量且相互之间存在CI( 1,1)关系。

同时经过检验并剔除了不显著的变量(包括滞后变量),得到如下粮⾷⽣产模型:In Q o In Q [ 21n A t 31n C t 4In C t 1 t推导误差修正模型的表达式,并指出误差修正模型中每个待估参数的经济意义。

14、固定资产存量模型K t 0 1K t 1 2I t 3I t 1 t中,经检验,K t ~ I (2), 11 ~ I (1),试写出由该ADL模型导出的误差修正模型的表达式。

初计量经济学之时间序列分析

初计量经济学之时间序列分析

初计量经济学之时间序列分析1. 引言时间序列分析是计量经济学中的一个重要领域,研究的是时间序列数据的性质、模式和预测方法。

时间序列数据是按照时间顺序排列的一系列观测值,包括经济指标、股票价格、气象数据等。

时间序列分析可以帮助我们理解和预测经济现象的发展趋势,为政府和企业决策提供科学依据。

本文将介绍时间序列分析的基本概念、方法和应用。

首先,我们将介绍时间序列分析的基本步骤和基本假设。

然后,我们将介绍时间序列模型的常用类型,包括自回归模型(AR)、滑动平均模型(MA)和自回归滑动平均模型(ARMA)。

最后,我们将介绍时间序列的应用领域,包括经济预测、金融风险管理和气象预测。

2. 时间序列分析的基本步骤时间序列分析的基本步骤包括数据的收集和准备、数据的探索性分析、模型的选择和估计、模型的诊断和预测。

下面将对每个步骤进行详细介绍。

2.1 数据的收集和准备数据的收集和准备是时间序列分析的第一步。

我们需要收集时间序列数据,并进行数据清洗和预处理。

数据清洗包括删除缺失值、处理异常值和去除趋势。

数据预处理包括对数据进行平滑处理、差分和变换。

2.2 数据的探索性分析数据的探索性分析是时间序列分析的第二步。

我们需要对时间序列数据进行可视化和统计分析,以了解数据的基本性质和模式。

可视化方法包括绘制时间序列图、自相关图和偏自相关图。

统计分析方法包括计算统计指标、分析趋势、季节性和周期性。

2.3 模型的选择和估计模型的选择和估计是时间序列分析的第三步。

我们需要选择合适的时间序列模型,并进行参数估计。

常用的时间序列模型包括自回归模型(AR)、滑动平均模型(MA)、自回归滑动平均模型(ARMA)和季节性模型。

2.4 模型的诊断和预测模型的诊断和预测是时间序列分析的最后一步。

我们需要对模型进行诊断,检验模型的拟合程度和残差的平稳性、独立性和正态性。

然后,我们可以使用模型进行未来值的预测。

3. 时间序列模型时间序列模型是描述和预测时间序列数据的数学模型。

计量经济学试题时间序列模型与ARIMA模型

计量经济学试题时间序列模型与ARIMA模型

计量经济学试题时间序列模型与ARIMA模型时间序列是指按照时间顺序排列的一组数据。

在计量经济学中,时间序列分析是一种重要的研究方法,它可以帮助我们理解和预测经济现象的发展趋势。

本文将介绍时间序列模型以及其中的一种常用模型——自回归滑动平均移动平均自回归(ARIMA)模型。

一、时间序列模型的基本概念时间序列模型是根据时间序列数据的特点建立的数学模型。

它假设时间序列的变动是由多个因素引起的,这些因素可以是趋势、季节性、周期性等。

时间序列模型可以帮助我们从数据中分离出这些因素,以便更好地理解和预测未来的变动。

二、自回归滑动平均移动平均自回归(ARIMA)模型ARIMA模型是一种广泛应用于时间序列分析的模型,它结合了自回归(AR)模型、滑动平均(MA)模型和差分运算的方法。

ARIMA模型可以描述时间序列的自相关性、滞后差分的影响以及移动平均误差的影响。

ARIMA模型可以从以下三个方面描述一个时间序列:1. 自回归(AR)部分:用于描述过去时间点的观测值对当前值的影响,通过延迟观测值来预测当前值。

2. 差分(I)部分:通过对时间序列进行差分运算,可以消除其非平稳性,提高模型的拟合度和预测准确性。

3. 滑动平均(MA)部分:用于描述序列中随机波动的影响,通过滞后误差预测当前值。

ARIMA模型的表示方式为ARIMA(p, d, q),其中p表示自回归阶数,d表示差分阶数,q表示滑动平均阶数。

通过对历史数据的拟合,我们可以得到模型的参数估计,从而进行未来值的预测。

三、ARIMA模型的应用ARIMA模型在经济领域有广泛的应用,其中包括销售预测、股票价格预测、宏观经济指标预测等。

它通过分析历史数据中的规律性和趋势性,将其应用于未来的预测中。

ARIMA模型的建立和应用过程可以分为以下几个步骤:1. 数据收集和准备:收集相关的时间序列数据,并对其进行清洗和格式化,以便于后续的分析和建模。

2. 模型选择和拟合:通过计算模型选择准则(AIC、BIC等)来确定模型的阶数,并使用最小二乘法或极大似然法对模型进行参数估计。

时间序列计量经济学模型概述

时间序列计量经济学模型概述

时间序列计量经济学模型概述时间序列计量经济学模型是在经济学研究中广泛使用的一种方法,用于分析经济变量随时间的变化。

该模型基于时间序列数据,即经济变量在一段时间内的观测值。

时间序列计量经济学模型的核心是建立经济变量之间的关系,以解释和预测经济现象的变化。

其中最常用的模型是自回归移动平均模型(ARMA)、自回归条件异方差模型(ARCH)和季节性时间序列模型。

自回归移动平均模型(ARMA)是一个包含自回归项和移动平均项的线性模型。

该模型以过去的观测值和随机项为输入,预测当前观测值。

ARMA模型基于假设,即经济变量的行为受到历史观测值的影响。

自回归条件异方差模型(ARCH)是一种考虑了随时间变化方差的模型。

该模型通过引入一个条件异方差项,模拟经济变量中的波动性。

ARCH模型的应用范围广泛,特别是在金融市场波动性分析中。

季节性时间序列模型用于分析具有明显季节性特征的经济变量,如销售额、就业人数等。

这些模型通常基于季节、趋势和随机成分的组合,以预测未来观测值。

在建立时间序列计量经济学模型时,常常需要进行模型识别、参数估计和模型诊断等步骤。

识别模型的目标是确定适当的模型结构,参数估计则是利用历史数据估计模型的参数值。

模型诊断用于检验模型的拟合程度和误差分布是否符合模型假设。

时间序列计量经济学模型在经济研究中有广泛的应用,例如预测未来经济指标、分析经济周期和波动性、评估政策效果等。

它提供了一种量化的方法,使经济学家可以更好地理解和解释经济变量的演变。

时间序列计量经济学模型是经济学研究中一种重要的统计工具,广泛应用于宏观经济、金融市场和企业经营等领域。

它可以帮助我们理解和解释经济变量随时间的变化规律,进行预测和政策分析。

本文将进一步探讨时间序列计量经济学模型的相关概念和应用。

在构建时间序列计量经济学模型之前,首先需要了解时间序列数据的特点。

时间序列数据是按照时间顺序排列的一系列观测值,通常具有趋势性、季节性、周期性和随机性等特征。

计量经济学时间序列

计量经济学时间序列

计量经济学中的时间序列是指按照时间顺序排列的一系列数据,这些数据可以是同一指标在不同时间点的观测值,也可以是多个指标在不同时间点的观测值组合。

时间序列数据的分析主要涉及两个方面:一是数据平稳性检验,二是数据建模与分析。

数据平稳性检验是时间序列分析中非常重要的一个步骤。

平稳性是指时间序列数据的统计特性不随时间推移而发生变化。

如果数据不满足平稳性条件,那么传统的回归分析方法可能会出现问题。

因此,在利用回归分析方法讨论经济变量有意义的经济关系之前,必须对经济变量时间序列的平稳性与非平稳性进行判断。

如果数据是非平稳的,可能需要采用适当的处理方法,如差分、对数转换等,使其满足平稳性条件。

在数据平稳性检验通过后,接下来需要进行数据建模与分析。

在计量经济学中,自回归模型(AR模型)是一种常用的时间序列模型。

自回归模型是统计上一种处理时间序列的方法,它用同一变数例如x 的之前各期,亦即x 1至x t-1来预测本期x t的表现,并假设它们为一线性关系。

除了自回归模型外,还有其他的模型可用于时间序列分析,如移动平均模型(MA模型)、自回归移动平均模型(ARMA模型)等。

这些模型的参数估计与假设检验方法也是计量经济学中研究的重点内容之一。

总之,计量经济学中的时间序列分析是一个相对独立且完整的领域,它为经济学、金融学等领域的研究提供了重要的方法论支持和实践指导。

时间序列计量经济学建模简介

时间序列计量经济学建模简介

第八章 时间序列计量经济学建模简介第一节 时间序列计量经济学模型的基本概念 一、时间序列计量经济学的发展趋势1、上个世纪70年代中期世界复杂的经济格局对计量经济学方法的挑战。

计量经济学模型的主要应用之一就是经济预测,而且早年计量经济学就是通过利用模型的短期预测发展起来的。

在上个世纪50——60年代西方国家经济预测中不乏成功的实例。

但是,进入20世纪70年代以后,人们对计量经济学模型提出了质疑,表现在1973年和1979年,各种计量经济学模型都无法预测到“石油危机”对经济会造成什么影响(尽管当时能够对石油危机提出预报)。

2、传统计量经济学方法存在的主要问题。

传统计量经济学模型是以模拟历史、从已经发生的经济活动中找出变化规律的主要技术手段。

而对于非稳定发展的经济过程和缺乏规范行为理论的经济活动,传统计量经济学模型就显得无能为力。

同时,现实经济活动愈来愈复杂多变,对于社会经济的发展、体制的变迁、技术的创新,要用具有一定的计量经济学或动态多元非线性方程组对其加以描述并非易事。

因此,人们认为传统计量经济学的弱点是过分依赖先验理论,这种弱点一方面表现为缺乏动态的信息反馈;另一方面是所获得的理论与样本数据间满意的吻合结果往往要凭借建模者的艺术。

3、80年代初提出了与传统计量经济学完全不同的建模方法。

最初由萨甘(Sargan ,1964)提出,后经亨德里-安德森(Hendry-Anderson ,1977)和戴维森(Davidson ,1977)进一步完善的误差修正模型,以及由格兰杰(C.W.J.Granger ,1981)提出的协整理论,最终产生了Hendry 的“由一般到特殊”的建模方法。

时间序列的类型: (1)按时间是否连续分为一是离散型的随机过程或时间序列;二是连续型的随机过程或时间序列。

本章主要研究离散时间序列,并用t Y 或t X 表示。

对于连续时间序列,可通过等间隔采样使之转化为离散时间序列后加以研究。

9时间序列计量经济学模型大学计量经济学教案

9时间序列计量经济学模型大学计量经济学教案
(2) (Xi X)2/n 依概率收敛:P li(m (X iX )2/n )Q n
第(1)条是OLS估计的需要 第(2)条是为了满足统计推断中大样本下的
“一致性”特性:
Plim(ˆ) n
注意:在双变量模型中:
ˆ
xxiu i2i
xiui /n xi2/n
因此:
P li m ˆP li m xiui/n0
• 可以看出:k>0时,rk的值确实落在了该区间内, 因此可以接受 k(k>0)为0的假设。
• 同样地,从QLB统计量的计算值看,滞后17期 的计算值为26.38,未超过5%显著性水平的临 界值27.58,因此,可以接受所有的自相关系数 k(k>0)都为0的假设。
• 因此,该随机过程是一个平稳过程。
1.000 0.480 0.018 -0.069 0.028 -0.016 -0.219 -0.063 0.126 0.024 -0.249 -0.404 -0.284 -0.088 -0.066 0.037 0.105 0.093
5.116 5.123 5.241 5.261 5.269 6.745 6.876 7.454 7.477 10.229 18.389 22.994 23.514 23.866 24.004 25.483 27.198
在现实经济生活中,实际的时间序列数据 往往是非平稳的,而且主要的经济变量如消费、 收入、价格往往表现为一致的上升或下降。这 样,仍然通过经典的因果关系模型进行分析, 一般不会得到有意义的结果。
时间序列分析模型方法就是在这样的情况 下,以通过揭示时间序列自身的变化规律为主 线而发展起来的全新的计量经济学方法论。
Q LB
rk (k=0,1,… 17)

计量经济学GMM模型

计量经济学GMM模型

计量经济学GMM模型GMM(Generalized Method of Moments)模型是一种常用的计量经济学研究方法,它可用于宏观和微观评估。

它可以有效地应用于估计模型参数,以及对时间序列数据和静态数据进行调查。

一、GMM模型的概述GMM模型一般用来拟合静止的观测数据,它从经济学的角度分析模型的稳定性和鲁棒性,以及估计模型参数的准确性。

它原本可以用于估计一组未知参数,例如通过给定实证拟合模型,或者提供模型和控制参数之间的最优拟合程度或优化。

二、GMM模型的方法GMM模型主要分为三个部分:模型假设、观测式和估计模型。

1)模型假设:使用GMM模型估计数据参数时,需要规定一定的模型假设,例如宏观和微观的假设,变量的变化趋势假设,以及假设误差的连续性和独立性等。

2)观测式:根据给定的模型假设,确定观测式,以估计模型中变量之间的关系,形成一套数学表达式,以及协变量和残差之间的相关关系等。

此外,还会考虑模型假设的健康性(例如时间序列的平稳性)。

3)估计模型:使用迭代方法对模型参数进行估计,通过调整参数得到模型中变量的参数估计量以及估计误差,以及观测的绝对误差估计,最后将以上结果装入优化算法,以获得最小残差平方和模型的优化参数。

三、GMM模型的应用(1)GMM模型在宏观计量经济学中可以用于计算长期均衡,估计投资、政府支出、净出口和 GDP 核算等变量,以及进行宏观估计;(2)时间序列模型,例如经济周期性模型和机会模型;(3)微观计量经济学中可用于计算企业间的差异,例如产品的可替代性,员工行为问题的解决。

四、GMM模型的优缺点(1)GMM模型的优点:GMM模型对于时间序列和静态数据都有较好的应用,而且可以用来估计模型参数,均衡拟合度以及评估模型的可行性等。

(2)GMM模型的缺点:GMM模型的计算复杂度较大,容易受到外部激励因素的干扰,估计偏差较大,而且模型假设不当也会导致研究失误。

中级计量经济学-考察时间序列自相关性的ARMA模型

中级计量经济学-考察时间序列自相关性的ARMA模型

rˆh l E rhl rh , rh1,
E c0 ahl 1ahl1 c0
eh l rhl rˆh l ahl 1ahl1
vareh l
1 12
2 a
总 结 : 对 于 MA(1) 模 型,超过1步的点预测 为rt的无条件均值,预 测误差的方差为rt的无 条件方差
,当l
1
0,当l 1
1,当l 0
1
1 12
,当l
1
MA2:l
0
1 12
2 2
0,02 当1l2122
2 2
,当l
2
总结:MA(q)的ACF会在滞后q期之后截尾,有限记 忆,利用此性质来确定MA模型的order
22
实际MA模型的应用
模型的选择 模型的估计 模型的检验 模型的预测 模型应用举例
6
AR(2)模型的性质(续)
ACF特征:l 1l1 2l2 l c1 x1l c2 x2l
如果 12 42 0 ,x1, x2 为实数,ACF为两个指数衰减的混合 如果 12 42 0 ,x1, x2 为虚数,ACF为逐渐衰弱的正弦余弦波
,表明商业周期的存在
7
AR(p)模型
23
MA模型的应用——模型选择
ACF与PACF
若ACF表现为一个衰减拖尾的形状(非截尾),基本 可以选择AR模型,再以截尾的PACF来确定order
若ACF在滞后期为q处截尾,即 q 0,但对于 l q则有l 0
则rt服从一个MA(q)模型
Information Criteria
24
表达式:
rt 0 1 rt1 p rt p at
11B pBp rt 0 at
特征方程

计量经济学--时间序列部分

计量经济学--时间序列部分

1. 已知MA(2)模型:120.70.4t t t t X εεε--=-+,2.(1)计算自相关系数(1)k k ρ≥;(2)计算偏相关系数(1,2,3)kk k ϕ=;解:(1)1212[0.70.4)(0.70.4)]t t k t t t t k t k t k EX X E εεεεεε--------=-+-+(所以:2220120,(1)k εγθθσ==++,211121,(),k εγθθθσ==-+2122,k εγθσ==-,3,0k k γ≥=,所以:112122120.591θθθρθθ-+==-++2222120.241θρθθ-==++0,3k k ρ=≥(2)1110ρϕρ=即111ϕρ=,所以110.59ϕ≈-当2k =时,产生偏相关系数的相关序列为2122{,}ϕϕ,相应Yule-Wolker 方程为:0121110222ρρϕρρρϕρ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 所以220.166ϕ≈-当3k =时,产生偏相关系数的相关序列为313233{,,}ϕϕϕ,相应Yule-Wolker 方程为:123111132221333111ρρϕρρρϕρρρϕρ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦所以330.047ϕ≈2.题:考虑MA (2)模型yt=εt –θ1εt-1 –θ2εt-2(1) 求出yt 序列的均值与方差(2) 推导出以下理论自相关函数 ρ1=(1+θ12++θ22)−1(θ1θ2-θ1)ρ2=-θ2(1+θ12++θ22)−1ρj = 0 , j > 2(3) 在什么条件下该模型为平稳时间序列模型?该模型可逆的条件是什么?答案:(1)μ=E (yt )=E (εt –θ1εt-1 –θ2εt-2)= 0 σy 2= E (yt−μ)2= E(εt –θ1εt-1 –θ2εt-2)(εt –θ1εt-1 –θ2εt-2) =(1+θ12+θ22) E (εt 2) =(1+θ12+θ22)σε2(2)γ0=E(ytyt )= E(εt –θ1εt-1 –θ2εt-2)(εt –θ1εt-1 –θ2εt-2) =(1+θ12+θ22)σε2γ1=E(ytyt −1) = E(εt –θ1εt-1 –θ2εt-2)(εt-1–θ1εt-2 –θ2εt-3) =(θ1θ2-θ1)σε2γ2=E(ytyt −2) = E(εt –θ1εt-1 –θ2εt-2)(εt-1–θ1εt-23–θ2εt-4) =-θ2σε2所以,ρ1=γ1/γ0=(1+θ12++θ22)−1(θ1θ2-θ1) ρ2=γ2/γ0=-θ2(1+θ12++θ22)−1(3)该模型在任何情况下都是平稳的,因为其右边是一系列的白噪音过程的叠加。

经济学中的计量方法

经济学中的计量方法

经济学中的计量方法计量方法在经济学中扮演着至关重要的角色,它帮助经济学家们在研究经济现象时进行数据分析和量化评估。

本文将介绍几种常见的经济学计量方法,并探讨它们在经济学研究中的应用。

一、回归分析回归分析是一种常见的计量方法,它用于研究两个或更多相关变量之间的关系。

经济学家通过回归分析来确定自变量对因变量的影响程度,并预测因变量的变化。

回归分析最常见的形式是线性回归模型,其中自变量和因变量之间的关系通过线性函数表示。

经济学家可以利用回归分析来解释经济现象、预测未来趋势、评估政策效果等。

二、时间序列分析时间序列分析是一种用于研究一系列时间上观测数据的计量方法。

它通过分析数据的趋势、季节性和周期性等特征,来揭示时间序列数据中的规律和关联性。

时间序列分析常用于经济学中对经济增长、通货膨胀、利率等变量的研究。

经济学家可以利用时间序列分析来预测未来的经济变化,为政策制定者提供可靠的建议。

三、实证分析实证分析是一种以实证数据为基础的经验性分析方法。

它通过收集和分析实际数据,来验证或反驳经济理论和假设。

实证分析通常包括数据搜集、数据处理、统计分析和结果解释等步骤。

该方法在经济学研究中广泛应用,帮助经济学家评估现实经济政策、解释经济现象,并为经济决策提供支持。

四、实验设计实验设计是一种通过控制变量来研究因果关系的计量方法。

经济学家通过在实验环境中人为进行调整和控制,来研究特定变量对经济现象的影响。

实验设计通常需要建立实验组和对照组,并进行比较分析。

该方法能够帮助经济学家确定因果关系,解决研究中的内生性问题,并对政策制定提供重要依据。

五、数据面板分析数据面板分析是一种结合时间序列数据和截面数据的计量方法。

它通过利用多个观测单位(如个人、家庭、企业等)在一段时间内的数据,来研究个体之间的异质性和变化。

数据面板分析常用于经济学中的微观经济研究,例如对劳动力市场、企业绩效等的分析。

经济学家可以通过数据面板分析来揭示个体对变量的反应差异,评估政策效果等。

计量经济学4种常用模型

计量经济学4种常用模型

计量经济学4种常用模型计量经济学是经济学的一个重要分支,主要研究经济现象的数量关系及其解释。

在计量经济学中,常用的模型有四种,分别是线性回归模型、时间序列模型、面板数据模型和离散选择模型。

下面将对这四种模型进行详细介绍。

第一种模型是线性回归模型,也是计量经济学中最常用的模型之一。

线性回归模型是通过建立自变量与因变量之间的线性关系来解释经济现象的模型。

在线性回归模型中,自变量通常包括经济学理论认为与因变量相关的变量,通过最小二乘法估计模型参数,得到经济现象的解释。

线性回归模型的优点是简单易懂,计算方便,但其前提是自变量与因变量之间存在线性关系。

第二种模型是时间序列模型,它主要用于分析时间序列数据的模型。

时间序列模型假设经济现象的变化是随时间演变的,通过分析时间序列的趋势、周期性和随机性,可以对经济现象进行预测和解释。

时间序列模型的常用方法包括自回归移动平均模型(ARMA)、自回归条件异方差模型(ARCH)等。

时间序列模型的优点是能够捕捉到时间的动态变化,但其局限性是对数据的要求较高,需要足够的时间序列观测样本。

第三种模型是面板数据模型,也称为横截面时间序列数据模型。

面板数据模型是将横截面数据和时间序列数据结合起来进行分析的模型。

面板数据模型可以同时考虑个体间的差异和时间的变化,因此能够更全面地解释经济现象。

面板数据模型的常用方法包括固定效应模型、随机效应模型等。

面板数据模型的优点是能够控制个体间的异质性,但其需要对个体间的相关性进行假设。

第四种模型是离散选择模型,它主要用于分析离散选择行为的模型。

离散选择模型假设个体在面临多种选择时,会根据一定的规则进行选择,通过建立选择概率与个体特征之间的关系,可以预测和解释个体的选择行为。

离散选择模型的常用方法包括二项Logit模型、多项Logit模型等。

离散选择模型的优点是能够分析个体的选择行为,但其局限性是对选择行为的假设较强。

综上所述,计量经济学中常用的模型有线性回归模型、时间序列模型、面板数据模型和离散选择模型。

计量经济模型确定供需关系大类商品预测方法

计量经济模型确定供需关系大类商品预测方法

计量经济模型确定供需关系大类商品预测方法在市场经济中,准确预测供需关系对于企业决策和市场调控至关重要。

大类商品的供需关系预测可以帮助市场参与者更好地进行生产安排、销售策略制定和价格调整。

计量经济模型是一种常用的工具,可以帮助预测大类商品的供需关系,并为决策者提供有效的参考。

计量经济模型是一种建立在经济理论基础上的统计模型,通过对历史数据进行分析和拟合,以确定各种经济因素对供需关系的影响程度。

以下将介绍一些常见的计量经济模型,用于预测大类商品的供需关系。

1. 多元线性回归模型多元线性回归模型是一种简单而常用的计量经济模型,可以用于研究不同因素对供需关系的影响。

该模型基于一个或多个自变量与一个因变量之间的线性关系进行建模。

在预测大类商品的供需关系时,可以选择合适的自变量,如价格、收入水平、人口数量等,来解释大类商品的需求和供给变化。

模型建立后,可以使用历史数据对模型进行估计,然后应用估计得出的模型参数进行预测。

2. 时间序列模型时间序列模型是一种专门用于预测时间序列数据的计量经济模型。

在预测大类商品的供需关系时,可以将历史数据按照时间顺序排列,利用时间序列模型进行分析和预测。

常见的时间序列模型包括移动平均模型、指数平滑模型和自回归移动平均模型(ARIMA)。

这些模型可以帮助我们捕捉到大类商品供需关系中的季节性、趋势性和周期性变化,从而更准确地预测供需关系。

3. 面板数据模型面板数据模型是一种将时间序列数据和截面数据结合起来的计量经济模型。

在预测大类商品的供需关系时,可以将多个年份或多个地区的数据汇总,并使用面板数据模型进行分析和预测。

面板数据模型可以帮助我们探索不同因素对供需关系的影响,并考虑到时间和空间的变化。

常见的面板数据模型包括固定效应模型和随机效应模型,它们可以提供更准确的预测结果,并帮助决策者更好地理解供需关系。

上述三种计量经济模型是预测大类商品供需关系常用的方法,但在实际应用中,需要根据具体情况选择合适的模型。

常用计量经济学模型

常用计量经济学模型

Box和Pierce的Q统计量
Q T
2 2 ˆ ( k ) ~ (K ) k 1
K
如果检验通过,则随机过程是白噪声。
自相关函数还可被用于检验一个序列是否平稳。
平稳时间序列的自相关函数随着滞后期k的增加而快速下降为0
(k )
(k )
k
k
平稳序列
非平稳序列
齐次非平稳过程
yt非平稳,但yt – yt-1平稳,称yt为一阶齐次非平稳过程 [例] 随机游走过程是一阶齐次非平稳过程
对于季度资料
~ 此时可大致认为 yt 已无季节和不规则波动,可看作 L C 的估计
1 ~ yt (0.5 yt 2 yt 1 yt yt 1 0.5 yt 2 ) 4
第二步 估计S×I

yt zt ~ yt
L S C I ( S I) LC
zt即为S×I的估计
第三步 消除不规则变动,得到S的估计
对S×I中同一季节的数据进行平均,从而消除掉I。
例如,对于月度数据,假定 y1是1月份的数据,
y2是1月份的数据,
y3是1月份的数据, 则 y4是1月份的数据,总共4年数据。
1 z1 ( z1 z13 z 25 z37 ) 4 1 z 2 ( z 2 z14 z 26 z38 ) 4
五、混合自回归-移动平均(ARMA)模型
ARMA (p , q):
yt 1 yt 1 p yt p t 1 t 1 q t q
ARMA(1 , 1):
yt 1 yt 1 t 1 t 1

美国商业部:1986年1月至1995年12月百货公司 的月零售额(亿元)

常用计量经济模型

常用计量经济模型

常用计量经济模型引言计量经济学是经济学中的一个重要分支,研究经济现象的数理模型和定量分析方法。

在实际经济研究中,常用计量经济模型能够帮助经济学家和研究者更好地理解和解释经济现象。

本文将介绍一些常用的计量经济模型,并对其原理及应用进行解析。

一、线性回归模型线性回归模型是计量经济学中最基本、最常用的模型之一。

其基本形式为:\[ y = \beta_0 + \beta_1x_1 + \beta_2x_2 + … + \beta_kx_k +\varepsilon \]其中,y表示被解释变量,x1,x2,...,x k表示解释变量,$\\varepsilon$表示误差项。

线性回归模型假设被解释变量和解释变量之间存在线性关系,并通过最小二乘法来估计模型参数。

线性回归模型的应用非常广泛,例如在市场营销中,可以使用线性回归模型来分析广告投放对销售额的影响;在金融学中,线性回归模型可以用于股票价格预测等。

二、时间序列模型时间序列模型用于分析时间序列数据,这种数据通常表示某个指标随时间的变化情况。

常见的时间序列模型包括AR(自回归模型)、MA(移动平均模型)、ARMA(自回归移动平均模型)和ARIMA(差分自回归移动平均模型)等。

时间序列模型的应用非常广泛,例如经济学中的季节性调整和趋势预测、气象学中的天气预测等。

三、面板数据模型面板数据模型,也被称为固定效应模型或混合效应模型,主要用于分析具有面板数据结构的经济问题。

面板数据包括横截面数据和时间序列数据,通过对面板数据进行分析可以得到更加准确和丰富的经济结论。

面板数据模型的应用非常广泛,例如在国际贸易中,可以利用面板数据模型来研究贸易对GDP的影响;在劳动经济学中,可以使用面板数据模型来研究教育对收入的影响。

四、计量经济模型的评价指标在使用计量经济模型进行分析时,我们需要对模型的拟合程度和统计显著性进行评价。

常见的评价指标包括确定系数(R^2)、均方根误差(RMSE)和F统计量等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计量经济学引子:是真回归还是伪回归?问题:●如果直接将非平稳时间序列当作平稳时间序列来进行分析,会造成什么不良后果;●如何判断一个时间序列是否为平稳序列;●当我们在计量经济分析中涉及到非平稳时间序列时,应作如何处理?第一节时间序列基本概念本节基本内容: ●伪回归问题●随机过程的概念●时间序列的平稳性一、伪回归问题传统计量经济学模型的假定条件:序列的平稳性、正态性。

所谓“伪回归”,是指变量间本来不存在相依关系,但回归结果却得出存在相依关系的错误结论。

20世纪70年代,Grange、Newbold 研究发现,造成“伪回归”的根本原因在于时序序列变量的非平稳性三、时间序列的平稳性所谓时间序列的平稳性,是指时间序列的统计规律不会随着时间的推移而发生变化。

直观上,一个平稳的时间序列可以看作一条围绕其均值上下波动的曲线。

从理论上,有两种意义的平稳性,一是严格平稳,另一种是弱平稳。

时间序列的非平稳性是指时间序列的统计规律随着时间的位移而发生变化,即生成变量时间序列数据的随机过程的特征随时间而变化。

在实际中遇到的时间序列数据很可能是非平稳序列,而平稳性在计量经济建模中又具有重要地位,因此有必要对观测值的时间序列数据进行平稳性检验。

第二节时间序列平稳性的单位根检验本节基本内容: ●单位根检验● Dickey-Fuller检验● Augmented Dickey-Fuller检验一、单位根过程单位根过程结论: 随机游动过程是非平稳的。

因此,检验序列的非平稳性就变为检验特征方程是否有单位根,这就是单位根检验方法的由来。

二、Dickey-Fuller检验(DF检验)大多数经济变量呈现出强烈的趋势特征。

这些具有趋势特征的经济变量,当发生经济振荡或冲击后,一般会出现两种情形: ●受到振荡或冲击后,经济变量逐渐又回它们的长期趋势轨迹;●这些经济变量没有回到原有轨迹,而呈现出随机游走的状态。

若我们研究的经济变量遵从一个非平稳过程,一个变量对其他变量的回归可能会导致伪回归结果。

这是研究单位根检验的重要意义所在。

2 提出假设检验用统计量为常规t统计量, 3 计算在原假设成立的条件下t统计量值,查DF检验临界值表得临界值,然后将t统计量值与DF检验临界值比较:若t统计量值小于DF检验临界值,则拒绝原假设,说明序列不存在单位根;若t统计量值大于或等于DF检验临界值,则接受原假设,说明序列存在单位根。

Dickey、Fuller研究发现,DF检验的临界值同序列的数据生成过程以及回归模型的类型有关,因此他们针对如下三种方程编制了临界值表,后来Mackinnon把临界值表加以扩充,形成了目前使用广泛的临界值表,在EViews软件中使用的是Mackinnon临界值表。

DF检验存在的问题是,在检验所设定的模型时,假设随机扰动项不存在自相关。

但大多数的经济数据序列是不能满足此项假设的,当随机扰动项存在自相关时,直接使用DF检验法会出现偏误,为了保证单位根检验的有效性,人们对DF检验进行拓展,从而形成了扩展的DF检验Augmented Dickey-Fuller Test ,简称为ADF检验。

根据《中国统计年鉴2004》,得到我国1978―2003年的GDP序列如表10.1 ,检验其是否为平稳序列。

表10.1 中国1978―2003年度GDP序列由GDP时序图可以看出,该序列可能存在趋势项,因此选择ADF检验的第三种模型进行检验。

估计结果如下:在原假设下,单位根的t检验统计量的值为在1%、5%、10%三个显著性水平下,单位根检验的Mackinnon临界值分别为-4.4167、-3.6219、-3.2474,显然,上述t检验统计量值大于相应临界值,从而不能拒绝,表明我国1978――2003年度GDP序列存在单位根,是非平稳序列。

第三节协整本节基本内容: ●协整的概念●协整检验●误差修正模型一、协整的概念问题:估计出来的货币需求函数是否揭示了货币需求的长期均衡关系?(1)如果上述货币需求函数是适当的,那么货币需求对长期均衡关系的偏离将是暂时的,扰动项序列是平稳序列,估计出来的货币需求函数就揭示了货币需求的长期均衡关系。

(2)相反,如果扰动项序列有随机趋势而呈现非平稳现象,那么模型中的误差会逐步积聚,使得货币需求对长期均衡关系的偏离在长时期内不会消失。

上述货币需求模型是否具有实际价值,关键在于扰动项序列是否平稳。

货币供给量、实际收入、价格水平以及利率可能是I 1 序列。

一般情况下,多个非平稳序列的线性组合也是非平稳序列。

如果货币供给量、实际收入、价格水平以及利率的任何线性组合都是非平稳的,那么上述货币需求模型的扰动项序列就不可能是平稳的,从而模型并没有揭示出货币需求的长期稳定关系。

反过来说,如果上述货币需求模型描述了货币需求的长期均衡关系,那么扰动项序列必定是平稳序列,也就是说,非平稳的货币供给量、实际收入、价格水平以及利率四变量之间存在平稳的线性组合。

上述例子向我们揭示了这样一个事实:“包含非平稳变量的均衡系统,必然意味着这些非平稳变量的某种组合是平稳的”这正是协整理论的思想。

协整概念的提出对于用非平稳变量建立经济计量模型,以检验这些变量之间的长期均衡关系非常重要。

(1)如果多个非平稳变量具有协整性,则这些变量可以合成一个平稳序列。

这个平稳序列就可以用来描述原变量之间的均衡关系。

(2)当且仅当多个非平稳变量之间具有协整性时,由这些变量建立的回归模型才有意义。

所以协整性检验也是区别真实回归与伪回归的有效方法。

(3)具有协整关系的非平稳变量可以用来建立误差修正模型。

由于误差修正模型把长期关系和短期动态特征结合在一个模型中,因此既可以克服传统计量经济模型忽视伪回归的问题,又可以克服建立差分模型忽视水平变量信息的弱点。

二、协整检验协整性的检验有两种方法基于回归残差的协整检验,这种检验也称为单一方程的协整检验;基于回归系数的完全信息协整检验。

这里我们仅考虑单一方程的情形,而且主要介绍两变量协整关系的EG两步法检验。

Sargan和Bhargava最早编制了用于检验协整的DW临界值表。

表10.2是观察数为100时,该检验的临界值。

例如,当DW=0.71时,在1%的显著性水平上我们能拒绝,即拒绝非协整假设。

表10.2 检验DW 0的临界值误差修正模型 ECM,也称误差修正模型是一种具有特定形式的计量经济模型。

建立误差修正模型一般采用两步,分别建立区分数据长期特征和短期待征的计量经济学模型。

第一步,建立长期关系模型。

即通过水平变量和OLS法估计出时间序列变量间的关系。

若估计结果形成平稳的残差序列时,那么这些变量间就存在相互协整的关系.长期关系模型的变量选择是合理的,回归系数具有经济意义。

第二步,建立误差修正模型。

将长期关系模型各个变量以一阶差分形式重新构造,并将第一步中的残差引入。

在一个从一般到特殊的检验过程中,对短期动态关系进行逐项检验,剔除不显著项,直到得到最适当的模型形式。

注意,解释变量引入的短期关系模型的残差,代表着在取得长期均衡的过程中各时点上出现“偏误”的程度,使得第二步可以对这种偏误的短期调整或误差修正机制加以估计。

以建立我国货币需求函数为例,说明误差修正模型的建模过程。

货币需求函数通常在局部调整的结构下加以设定。

在这种模型中,当前实际货币需求余额是关于实际货币需求余额滞后值、实际国民收入通常用GDP表示和机会成本等变量的回归。

那么这种依据交易方程设定的模型可作为长期关系模型。

第四节案例分析中国城镇居民的生活费支出与可支配收入关系的研究在EViews中建立中作文档,录入人均可支配收入()和生活费支出()序列的数据。

双击人均可支配收入()序列,出现工作文件窗口,在其左上方点击EViews键出现下拉菜单,点击Unit Root Test,出现对话框(图10.2),选择带截距项(intercept),滞后差分项(Lagged differences)选2阶,点击OK,得到估计结果,见表10.4。

为了得到人均可支配收入()序列的单整阶数,在单位根检验(Unit Root Test)对话框(图10.3)中,指定对一阶差分序列作单位根检验,选择带截距项(intercept),滞后差分项(Lagged differences)选2阶,点击OK,得到估计结果,见表10.5。

从检验结果看,在1%、5%、10%三个显著性水平下,单位根检验的Mackinnon临界值分别为-3.5121、-2.8972、-2.5855,t检验统计量值为-8.374339,小于相应临界值,从而拒绝,表明人均可支配收入()的差分序列不存在单位根,是平稳序列。

即序列是一阶单整的,~I(1)。

为了分析可支配收入()和生活费支出()之间是否存在协整关系,我们先作两变量之间的回归,然后检验回归残差的平稳性。

以生活费支出()为被解释变量,可支配收入()为解释变量,用OLS 回归方法估计回归模型,结果见表10.6。

在5%的显著性水平下,t检验统计量值为 -7.430111,大于相应临界值,从而拒绝,表明残差序列不存在单位根,是平稳序列,说明可支配收入()和生活费支出()之间存在协整关系。

可支配收入()和生活费支出()之间存在协整,表明两者之间有长期均衡关系。

但从短期来看,可能会出现失衡,为了增强模型的精度,可以把协整回归(10.15)式中的误差项看作均衡误差,通过建立误差修正模型把生活费支出的短期行为与长期变化联系起来。

最终得到误差修正模型的估计结果:第十章小结 3.单位根过程是最常见的非平稳过程。

如果非平稳序列经过次差分后平稳,而次差分却不平稳,那么称为阶单整序列,称为整形阶数。

4.时间序列平稳性的检验方法主要有两类:自相关函数检验法和单位根检验法。

本书只介绍最常用的单位根检验法――DF检验法和ADF 检验法。

5.协整是指多个非平稳经济变量的某种线性组合是平稳的。

协整分析对于检验变量之间的长期均衡关系非常重要,而且也是区别真实回归与伪回归的有效方法。

6.任何一组相互协整的时间序列变量都存在误差修正机制。

误差修正模型把长期关系和短期动态特征结合在一个模型中,既可以克服传统计量经济模型忽视伪回归的问题,又可以克服建立差分模型忽视水平变量信息的弱点表10.3是我国城镇居民月人均可支配收入()和生活费支出()的调整序列。

现用EG两步法考察它们之间是否存在协整关系从检验结果看,在1%、5%、10%三个显著性水平下,单位根检验的Mackinnon临界值分别为 -3.5121、-2.8972、-2.5855, t检验统计量值 -0.862611大于相应临界值,从而不能拒绝,表明人均可支配收入()序列存在单位根,是非平稳序列。

为了检验回归残差的平稳性,在工作文档窗口中,点击Genr功能键,命令,将上述OLS回归得到的残差序列命名为新序列,然后双击序列,对序列进行单位根检验。

相关文档
最新文档