绵阳数学全等三角形单元培优测试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绵阳数学全等三角形单元培优测试卷 一、八年级数学轴对称三角形填空题(难) 1.在直角坐标系中,O 为坐标原点,已知点 A (1,2),点 P 是 y 轴正半轴上的一点,且△AOP 为等腰三角形,则点 P 的坐标为_____________.
【答案】5(0,5),(0,4),0,
4⎛⎫ ⎪⎝⎭
【解析】
【分析】
有三种情况:①以O 为圆心,以OA 为半径画弧交y 轴于D ,求出OA 即可;②以A 为圆心,以OA 为半径画弧交y 轴于P ,求出OP 即可;③作OA 的垂直平分线交y 轴于C ,则AC =OC ,根据勾股定理求出OC 即可.
【详解】
有三种情况:①以O 为圆心,以OA 为半径画弧交y 轴于D ,则OA =OD =22125+=;
∴D (0,5);
②以A 为圆心,以OA 为半径画弧交y 轴于P ,OP =2×y A =4,
∴P (0,4);
③作OA 的垂直平分线交y 轴于C ,则AC =OC ,
由勾股定理得:OC =AC =()2212OC +-,
∴OC =54
, ∴C (0,54
); 故答案为:5(0,5),(0,4),0,
4⎛
⎫ ⎪⎝⎭.
【点睛】
本题主要考查对线段的垂直平分线,等腰三角形的性质和判定,勾股定理,坐标与图形性质等知识点的理解和掌握,能求出符合条件的所有情况是解此题的关键.
2.如图,在△ABC和△DBC中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD,以点D为顶点作∠MDN=70°,两边分别交AB,AC于点M,N,连接MN,则△AMN的周长为
___________.
【答案】4
【解析】
【分析】
延长AC至E,使CE=BM,连接DE.证明△BDM≌△CDE(SAS),得出MD=ED,
∠MDB=∠EDC,证明△MDN≌△EDN(SAS),得出MN=EN=CN+CE,进而得出答案.
【详解】
延长AC至E,使CE=BM,连接DE.
∵BD=CD,且∠BDC=140°,
∴∠DBC=∠DCB=20°,
∵∠A=40°,AB=AC=2,
∴∠ABC=∠ACB=70°,
∴∠MBD=∠ABC+∠DBC=90°,
同理可得∠NCD=90°,
∴∠ECD=∠NCD=∠MBD=90°,
在△BDM和△CDE中,
BM CE MBD ECD BD CD ⎧⎪∠∠⎨⎪⎩==,
=
∴△BDM ≌△CDE (SAS ),
∴MD=ED ,∠MDB=∠EDC ,
∴∠MDE=∠BDC=140°,
∵∠MDN=70°,
∴∠EDN=70°=∠MDN ,
在△MDN 和△EDN 中,MD ED MDN EDN DN DN ⎧⎪∠∠⎨⎪⎩
==,=
∴△MDN ≌△EDN (SAS ),
∴MN=EN=CN+CE ,
∴△AMN 的周长=AM+MN+AN=AM+CN+CE+AN=AM+AN+CN+BM=AB+AC=4;
故答案为:4.
【点睛】
本题考查了全等三角形的判定与性质、等腰三角形的性质等知识;证明三角形全等是解题的关键.
3.已知A 、B 两点的坐标分别为 (0,3),(2,0),以线段AB 为直角边,在第一象限内作等腰直角三角形ABC ,使∠BAC =90°,如果在第二象限内有一点P (a ,
12),且△ABP 和△ABC 的面积相等,则a =_____.
【答案】-83.
【解析】
【分析】
先根据AB 两点的坐标求出OA 、OB 的值,再由勾股定理求出AB 的长度,根据三角形的面积公式即可得出△ABC 的面积;连接OP ,过点P 作PE ⊥x 轴,由△ABP 的面积与△ABC 的面积相等,可知S △ABP =S △POA +S △AOB ﹣S △BOP =
132
,故可得出a 的值. 【详解】
∵A 、B 两点的坐标分别为 (0,3),(2,0),
∴OA =3,OB =2,
∴AB
∵△ABC 是等腰直角三角形,∠BAC =90°,
∴
1113
•1313
222 ABC
S AB AC⨯⨯
===,
作PE⊥x轴于E,连接OP,
此时BE=2﹣a,
∵△ABP的面积与△ABC的面积相等,
∴
111
•••
222 ABP POA AOB BOP
S S S S OA OE OB OA OB PE ++
=﹣=﹣,
111113
3322
22222
a
⨯⨯+⨯⨯⨯⨯
=(﹣)﹣=,
解得a=﹣8
3
.
故答案为﹣8
3
.
【点睛】
本题考查等腰直角三角形的性质,坐标与图象性质,三角形的面积公式,解题的关键是根据S△ABP=S△POA+S△AOB-S△BOP列出关于a的方程.
4.如图,已知△ABC和△ADE都是正三角形,连接CE、BD、AF,BF=4,CF=7,求AF的长
_________ .
【答案】3
【解析】
【分析】
过点A作AF⊥CE交于I,AG⊥BD交于J,证明CAE≅BAD,再证明
CAI≅BAJ,求出°
7830
∠=∠=,然后求出
1
2
IF FJ AF
==,,通过设FJ x
=求
出x,即可求出AF的长.【详解】