八年级数学全等三角形单元培优测试卷

合集下载

苏科版数学八年级上册 全等三角形单元培优测试卷

苏科版数学八年级上册 全等三角形单元培优测试卷

一、八年级数学全等三角形解答题压轴题(难)1.在平面直角坐标系中,直线AB分别交x轴,y轴于A(a,0),B(0,b),且满足a2+b2+4a﹣8b+20=0.(1)求a,b的值;(2)点P在直线AB的右侧;且∠APB=45°,①若点P在x轴上(图1),则点P的坐标为;②若△ABP为直角三角形,求P点的坐标.【答案】(1)a=﹣2,b=4;(2)①(4,0);②P点坐标为(4,2),(2,﹣2).【解析】【分析】(1)利用非负数的性质解决问题即可.(2)①根据等腰直角三角形的性质即可解决问题.②分两种情形:如图2中,若∠ABP=90°,过点P作PC⊥OB,垂足为C.如图3中,若∠BAP=90°,过点P作PD⊥OA,垂足为D.分别利用全等三角形的性质解决问题即可.【详解】(1)∵a2+4a+4+b2﹣8b+16=0∴(a+2)2+(b﹣4)2=0∴a=﹣2,b=4.(2)①如图1中,∵∠APB=45°,∠POB=90°,∴OP=OB=4,∴P(4,0).故答案为(4,0).②∵a=﹣2,b=4∴OA=2OB=4又∵△ABP为直角三角形,∠APB=45°∴只有两种情况,∠ABP=90°或∠BAP=90°①如图2中,若∠ABP=90°,过点P作PC⊥OB,垂足为C.∴∠PCB=∠BOA=90°,又∵∠APB=45°,∴∠BAP=∠APB=45°,∴BA=BP,又∵∠ABO+∠OBP=∠OBP+∠BPC=90°,∴∠ABO=∠BPC,∴△ABO≌△BPC(AAS),∴PC=OB=4,BC=OA=2,∴OC=OB﹣BC=4﹣2=2,∴P(4,2).②如图3中,若∠BAP=90°,过点P作PD⊥OA,垂足为D.∴∠PDA=∠AOB=90°,又∵∠APB=45°,∴∠ABP=∠APB=45°,∴AP=AB,又∵∠BAD+∠DAP=90°,∠DPA+∠DAP=90°,∴∠BAD=∠DPA,∴△BAO≌△APP(AAS),∴PD=OA=2,AD=OB=4,∴OD=AD﹣0A=4﹣2=2,∴P(2,﹣2).综上述,P点坐标为(4,2),(2,﹣2).【点睛】本题属于三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题.2.(1)已知△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A等于60°(如图①).求证:EB=AD;(2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其他条件不变(如图②),(1)的结论是否成立,并说明理由.【答案】(1)证明见解析(2)证明见解析【解析】试题分析:(1)作DF∥BC交AC于F,由平行线的性质得出∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,证明△ABC是等边三角形,得出∠ABC=∠ACB=60°,证出△ADF是等边三角形,∠DFC=120°,得出AD=DF,由已知条件得出∠FDC=∠DEC,ED=CD,由AAS证明△DBE≌△CFD,得出EB=DF,即可得出结论;(2)作DF∥BC交AC的延长线于F,同(1)证出△DBE≌△CFD,得出EB=DF,即可得出结论.试题解析:(1)证明:如图,作DF∥BC交AC于F,则△ADF为等边三角形∴AD=DF,又∵∠DEC=∠DCB,∠DEC+∠EDB=60°,∠DCB+∠DCF=60°,∴∠EDB=∠DCA ,DE=CD,在△DEB和△CDF中,120EBD DFCEDB DCFDE CD,,∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△DEB≌△CDF,∴BD=DF,∴BE=AD .(2). EB=AD 成立;理由如下:作DF ∥BC 交AC 的延长线于F ,如图所示:同(1)得:AD=DF ,∠FDC=∠ECD ,∠FDC=∠DEC ,ED=CD ,又∵∠DBE=∠DFC=60°,∴△DBE ≌△CFD (AAS ),∴EB=DF ,∴EB=AD.点睛:此题主要考查了三角形的综合,考查等边三角形的判定与性质,全等三角形的判定与性质,等腰三角形的判定与性质,等腰直角三角形的判定与性质,平行线的性质等知识,综合性强,有一定的难度,证明三角形全等是解决问题的关键.3.(1)如图1,在Rt △ABC 中,AB AC =,D 、E 是斜边BC 上两动点,且∠DAE=45°,将△ABE 绕点A 逆时针旋转90后,得到△AFC ,连接DF .(1)试说明:△AED ≌△AFD ;(2)当BE=3,CE=9时,求∠BCF 的度数和DE 的长;(3)如图2,△ABC 和△ADE 都是等腰直角三角形,∠BAC=∠DAE=90°,D 是斜边BC 所在直线上一点,BD=3,BC=8,求DE 2的长.【答案】(1)略(2)∠BCF=90° DE=5 (3)34或130【解析】试题分析:()1由ABE AFC ≌, 得到AE AF =,BAE CAF ∠=∠,45,EAD ∠=45,BAE CAD ∴∠+∠=45,CAF CAD ∴∠+∠=即45.DAF ∠=EAD DAF ∠=∠,从而得到.AED AFD ≌ ()2 由△AED AFD ≌得到ED FD =,再证明90DCF ∠=︒,利用勾股定理即可得出结论. ()3过点A 作AH BC ⊥于H ,根据等腰三角形三线合一得,1 4.2AH BH BC === 1DH BH BD =-=或7,DH BH BD =+=求出AD 的长,即可求得2DE .试题解析:()1ABE AFC ≌,AE AF =,BAE CAF ∠=∠,45,EAD ∠=90,BAC ∠=45,BAE CAD ∴∠+∠=45,CAF CAD ∴∠+∠=即45.DAF ∠=在AED 和AFD 中,{AF AEEAF DAE AD AD ,=∠=∠=.AED AFD ∴≌()2AED AFD ≌,ED FD ∴=,,90.AB AC BAC =∠=︒45B ACB ∴∠=∠=︒,45ACF ,∠=︒ 90.BCF ∴∠=︒设.DE x =,9.DF DE x CD x ===- 3.FC BE ==222,FC DC DF +=()22239.x x ∴+-=解得: 5.x =故 5.DE = ()3过点A 作AH BC ⊥于H ,根据等腰三角形三线合一得,1 4.2AH BH BC === 1DH BH BD =-=或7,DH BH BD =+= 22217AD AH DH =+=或65.22234DE AD ==或130.点睛:D 是斜边BC 所在直线上一点,注意分类讨论.4.(1)如图(1),已知:在△ABC 中,∠BAC =90°,AB=AC ,直线m 经过点A ,BD ⊥直线m, CE ⊥直线m,垂足分别为点D 、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC 中,AB=AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE,若∠BDA=∠AEC=∠BAC ,试判断△DEF 的形状.【答案】(1)见解析(2)成立(3)△DEF 为等边三角形【解析】解:(1)证明:∵BD ⊥直线m ,CE ⊥直线m ,∴∠BDA =∠CEA=900.∵∠BAC =900,∴∠BAD+∠CAE=900.∵∠BAD+∠ABD=900,∴∠CAE=∠ABD .又AB="AC" ,∴△ADB ≌△CEA (AAS ).∴AE=BD ,AD=CE .∴DE="AE+AD=" BD+CE .(2)成立.证明如下:∵∠BDA =∠BAC=α,∴∠DBA+∠BAD=∠BAD +∠CAE=1800—α.∴∠DBA=∠CAE .∵∠BDA=∠AEC= ,AB=AC,∴△ADB≌△CEA(AAS).∴AE=BD,AD=CE.∴DE=AE+AD=BD+CE.(3)△DEF为等边三角形.理由如下:由(2)知,△ADB≌△CEA,BD=AE,∠DBA =∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=600.∴∠DBA+∠ABF=∠CAE+∠CAF.∴∠DBF=∠FAE.∵BF=AF,∴△DBF≌△EAF(AAS).∴DF=EF,∠BFD=∠AFE.∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=600.∴△DEF为等边三角形.(1)因为DE=DA+AE,故由AAS证△ADB≌△CEA,得出DA=EC,AE=BD,从而证得DE=BD+CE.(2)成立,仍然通过证明△ADB≌△CEA,得出BD=AE,AD=CE,所以DE=DA+AE=EC+BD.(3)由△ADB≌△CEA得BD=AE,∠DBA =∠CAE,由△ABF和△ACF均等边三角形,得∠ABF=∠CAF=600,FB=FA,所以∠DBA+∠ABF=∠CAE+∠CAF,即∠DBF=∠FAE,所以△DBF≌△EAF,所以FD=FE,∠BFD=∠AFE,再根据∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=600得到△DEF是等边三角形.5.如图,AB=12cm,AC⊥AB,BD⊥AB ,AC=BD=9cm,点P在线段AB上以3 cm/s的速度,由A向B运动,同时点Q在线段BD上由B向D运动.(1)若点Q的运动速度与点P的运动速度相等,当运动时间t=1(s),△ACP与△BPQ 是否全等?说明理由,并直接判断此时线段PC和线段PQ的位置关系;(2)将“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,其他条件不变.若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能使△ACP与△BPQ全等.(3)在图2的基础上延长AC,BD交于点E,使C,D分别是AE,BE中点,若点Q以(2)中的运动速度从点B出发,点P以原来速度从点A同时出发,都逆时针沿△ABE三边运动,求出经过多长时间点P与点Q第一次相遇.【答案】(1)△ACP≌△BPQ,理由见解析;线段PC与线段PQ垂直(2)1或32(3)9s【解析】【分析】(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.(3)因为V Q <V P ,只能是点P 追上点Q ,即点P 比点Q 多走PB+BQ 的路程,据此列出方程,解这个方程即可求得.【详解】(1)当t=1时,AP=BQ=3,BP=AC=9,又∵∠A=∠B=90°,在△ACP 与△BPQ 中,AP BQ A B AC BP =⎧⎪∠=∠⎨⎪=⎩,∴△ACP ≌△BPQ (SAS ),∴∠ACP=∠BPQ ,∴∠APC+∠BPQ=∠APC+∠ACP=90°,∠CPQ=90°,则线段PC 与线段PQ 垂直.(2)设点Q 的运动速度x,①若△ACP ≌△BPQ ,则AC=BP ,AP=BQ ,912t t xt =-⎧⎨=⎩, 解得31t x =⎧⎨=⎩, ②若△ACP ≌△BPQ ,则AC=BQ ,AP=BP ,912xt t t =⎧⎨=-⎩解得632t x =⎧⎪⎨=⎪⎩, 综上所述,存在31t x =⎧⎨=⎩或632t x =⎧⎪⎨=⎪⎩使得△ACP 与△BPQ 全等. (3)因为V Q <V P ,只能是点P 追上点Q ,即点P 比点Q 多走PB+BQ 的路程, 设经过x 秒后P 与Q 第一次相遇,∵AC=BD=9cm ,C ,D 分别是AE ,BD 的中点;∴EB=EA=18cm.当V Q =1时,依题意得3x=x+2×9,解得x=9;当V Q =32时,依题意得3x=32x+2×9,解得x=12.故经过9秒或12秒时P与Q第一次相遇.【点睛】本题考查了一元一次方程的应用,解题的关键是熟练的掌握一元一次方程的性质与运算. 6.已知:平面直角坐标系中,点A(a,b)的坐标满足|a﹣b|+b2﹣8b+16=0.(1)如图1,求证:OA是第一象限的角平分线;(2)如图2,过A作OA的垂线,交x轴正半轴于点B,点M、N分别从O、A两点同时出发,在线段OA上以相同的速度相向运动(不包括点O和点A),过A作AE⊥BM交x轴于点E,连BM、NE,猜想∠ONE与∠NEA之间有何确定的数量关系,并证明你的猜想;(3)如图3,F是y轴正半轴上一个动点,连接FA,过点A作AE⊥AF交x轴正半轴于点E,连接EF,过点F点作∠OFE的角平分线交OA于点H,过点H作HK⊥x轴于点K,求2HK+EF的值.【答案】(1)证明见解析(2)答案见解析(3)8【解析】【分析】(1)过点A分别作x轴,y轴的垂线,垂足分别为M、N,则AN=AM,根据非负数的性质求出a、b的值即可得结论;(2)如图2,过A作AH平分∠OAB,交BM于点H,则△AOE≌△BAH,可得AH=OE,由已知条件可知ON=AM,∠MOE=∠MAH,可得△ONE≌△AMH,∠ABH=∠OAE,设BM 与NE交于K,则∠MKN=180°﹣2∠ONE=90°﹣∠NEA,即2∠ONE﹣∠NEA=90°;(3)如图3,过H作HM⊥OF,HN⊥EF于M、N,可证△FMH≌△FNH,则FM=FN,同理:NE=EK,先得出OE+OF﹣EF=2HK,再由△APF≌△AQE得PF=EQ,即可得OE+OF=2OP=8,等量代换即可得2HK+EF的值.【详解】解:(1)∵|a﹣b|+b2﹣8b+16=0∴|a﹣b|+(b﹣4)2=0∵|a﹣b|≥0,(b﹣4)2≥0∴|a﹣b|=0,(b﹣4)2=0∴a =b =4过点A 分别作x 轴,y 轴的垂线,垂足分别为M 、N ,则AN =AM ∴OA 平分∠MON即OA 是第一象限的角平分线(2)过A 作AH 平分∠OAB ,交BM 于点H∴∠OAH =∠HAB =45°∵BM ⊥AE∴∠ABH =∠OAE 在△AOE 与△BAH 中OAE ABH OA ABAOE BAH ==∠∠⎧⎪=⎨⎪∠∠⎩, ∴△AOE ≌△BAH (ASA )∴AH =OE在△ONE 和△AMH 中OE AH NOE MAH ON AM =⎧⎪∠∠⎨⎪=⎩=, ∴△ONE ≌△AMH (SAS )∴∠AMH =∠ONE设BM 与NE 交于K∴∠MKN =180°﹣2∠ONE =90°﹣∠NEA∴2∠ONE ﹣∠NEA =90°(3)过H 作HM ⊥OF ,HN ⊥EF 于M 、N 可证:△FMH ≌△FNH (SAS )∴FM =FN同理:NE =EK∴OE+OF ﹣EF =2HK过A 作AP ⊥y 轴于P ,AQ ⊥x 轴于Q可证:△APF ≌△AQE (SAS )∴PF =EQ∴OE+OF =2OP =8∴2HK+EF =OE+OF =8【点睛】本题考查非负数的性质,平面直角坐标系中点的坐标,等腰直角三角形,全等三角形的判定和性质.7.在ABC 中,AB AC =,点D 在BC 边上,且60,ADB E ∠=︒是射线DA 上一动点(不与点D 重合,且DA DB ≠),在射线DB 上截取DF DE =,连接EF .()1当点E 在线段AD 上时,①若点E 与点A 重合时,请说明线段BF DC =;②如图2,若点E 不与点A 重合,请说明BF DC AE =+;()2当点E 在线段DA 的延长线上()DE DB >时,用等式表示线段,,AE BF CD 之间的数量关系(直接写出结果,不需要证明).【答案】(1)①证明见解析;②证明见解析;(2)BF =AE-CD【解析】【分析】(1)①根据等边对等角,求到B C ∠=∠,再由含有60°角的等腰三角形是等边三角形得到ADF ∆是等边三角形,之后根据等边三角形的性质以及邻补角的性质得到120AFB ADC ∠=∠=︒,推出ABF ACD ∆∆≌,根据全等三角形的性质即可得出结论;②过点A 做AG ∥EF 交BC 于点G ,由△DEF 为等边三角形得到DA =DG ,再推出AE =GF ,根据线段的和差即可整理出结论;(2)根据题意画出图形,作出AG ,由(1)可知,AE=GF ,DC=BG ,再由线段的和差和等量代换即可得到结论.【详解】(1)①证明:AB AC =B C ∴∠=∠,60DF DE ADB =∠=︒,且E 与A 重合,ADF ∴∆是等边三角形60ADF AFD∴∠=∠=︒120AFB ADC∴∠=∠=︒在ABF∆和ACD∆中AFB ADCB CAB AC∠=∠⎧⎪∠=∠⎨⎪=⎩ABF ACD∴∆∆≌BF DC∴=②如图2,过点A做AG∥EF交BC于点G,∵∠ADB=60°DE=DF∴△DEF为等边三角形∵AG∥EF∴∠DAG=∠DEF=60°,∠AGD=∠EFD=60°∴∠DAG=∠AGD∴DA=DG∴DA-DE=DG-DF,即AE=GF由①易证△AGB≌△ADC∴BG=CD∴BF=BG+GF=CD+AE(2)如图3,和(1)中②相同,过点A做AG∥EF交BC于点G,由(1)可知,AE=GF,DC=BG,BF CD BF BG GF AE∴+=+==故BF AE CD=-.【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.8.探究与发现:如图(1)所示的图形,像我们常见的学习用品一圆规,我们,不妨把这样图形叫做“规形图(1)观察“规形图(1)”,试探究∠BDC与∠A、∠B、∠C之间的数量关系,并说明理由;(2)请你直接利用以上结论,解决以下问题:①如图(2),把一块三角尺XYZ放置在△ABC上使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=40°,则∠ABX+∠ACX=°.②如图(3),DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE 的度数.【答案】(1)∠BDC=∠BAC+∠B+∠C,理由见解析;(2)①50;②∠DCE=85°.【解析】【分析】(1)首先连接AD并延长至点F,然后根据外角的性质,即可判断出∠BDC=∠BAC+∠B+∠C;(2)①由(1)可得∠A+∠ABX+∠ACX=∠X,然后根据∠A=40°,∠X=90°,即可求解;(3)②由∠A=40°,∠DBE=130°,求出∠ADE+∠AEB的值,然后根据∠DCE=∠A+∠ADC+∠AEC,求出∠DCE的度数即可.【详解】(1)如图,∠BDC=∠BAC+∠B+∠C,理由是:过点A、D作射线AF,∵∠FDC=∠DAC+∠C,∠BDF=∠B+∠BAD,∴∠FDC+∠BDF=∠DAC+∠BAD+∠C+∠B,即∠BDC=∠BAC+∠B+∠C;(2)①如图(2),∵∠X=90°,由(1)知:∠A+∠ABX+∠ACX=∠X=90°,∵∠A=40°,∴∠ABX+∠ACX=50°,故答案为:50;②如图(3),∵∠A=40°,∠DBE=130°,∴∠ADE+∠AEB=130°﹣40°=90°,∵DC平分∠ADB,EC平分∠AEB,∴∠ADC=12∠ADB,∠AEC=12∠AEB,∴∠ADC+∠AEC=1(ADB AEB)2∠+∠=45°,∴∠DCE=∠A+∠ADC+∠AEC=40°+45°=85°.【点睛】本题主要考查了三角形外角性质以及角平分线的定义的运用,熟知三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.9.操作发现:如图,已知△ABC和△ADE均为等腰三角形,AB=AC,AD=AE,将这两个三角形放置在一起,使点B,D,E在同一直线上,连接CE.(1)如图1,若∠ABC=∠ACB=∠ADE=∠AED=55°,求证:△BAD≌△CAE;(2)在(1)的条件下,求∠BEC的度数;拓广探索:(3)如图2,若∠CAB=∠EAD=120°,BD=4,CF为△BCE中BE边上的高,请直接写出EF的长度.【答案】(1)见解析;(2)70°;(3)2【解析】【分析】(1)根据SAS证明△BAD≌△CAE即可.(2)利用全等三角形的性质解决问题即可.(3)同法可证△BAD≌△CAE,推出EC=BD=4,由∠BEC=∠BAC=120°,推出∠FCE=30°即可解决问题.【详解】(1)证明:如图1中,∵∠ABC=∠ACB=∠ADE=∠AED,∴∠EAD=∠CAB,∴∠EAC=∠DAB,∵AE=AD,AC=AB,∴△BAD≌△CAE(SAS).(2)解:如图1中,设AC交BE于O.∵∠ABC=∠ACB=55°,∴∠BAC=180°﹣110°=70°,∵△BAD≌△CAE,∴∠ABO=∠ECO,∵∠EOC=∠AOB,∴∠CEO=∠BAO=70°,即∠BEC=70°.(3)解:如图2中,∵∠CAB=∠EAD=120°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴∠BAD=∠ACE,BD=EC=4,同理可证∠BEC=∠BAC=120°,∴∠FEC=60°,∵CF⊥EF,∴∠F=90°,∴∠FCE=30°,∴EF=12EC=2.【点睛】本题属于三角形综合题,考查了全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.10.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,求证:△DEF是等边三角形.【答案】(1)见解析;(2)成立,理由见解析;(3)见解析【解析】【分析】(1)因为DE=DA+AE ,故通过证BDA AEC ≅△△,得出DA=EC ,AE=BD ,从而证得DE=BD+CE.(2)成立,仍然通过证明BDA AEC ≅△△,得出BD=AE ,AD=CE ,所以DE=DA+AE=EC+BD.(3)由BDA AEC ≅△△得BD=AE ,=BDA AEC ∠∠,ABF 与ACF 均等边三角形,得==60BA AC ︒∠F ∠F ,FB=FA ,所以=BA BA AC AC ∠F +∠D ∠F +∠E ,即FBD FAB ≅∠∠,所以BDF AEF ≅△△,所以FD=FE ,BFD AFE ≅∠∠,再根据=60BFD FA BFA =︒∠+∠D ∠,得=60AF FA =︒∠E +∠D ,即=60FE =︒∠D ,故DFE △是等边三角形.【详解】证明:(1)∵BD ⊥直线m ,CE ⊥直线m∴∠BDA =∠CEA=90°,∵∠BAC =90°∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°∴∠CAE=∠ABD ,又AB=AC ,∴△ADB ≌△CEA∴AE=BD ,AD=CE ,∴DE=AE+AD= BD+CE(2)∵∠BDA =∠BAC=α,∴∠DBA+∠BAD=∠BAD +∠CAE=180°—α∴∠DBA=∠CAE ,∵∠BDA=∠AEC=α,AB=AC∴△ADB ≌△CEA ,∴AE=BD ,AD=CE∴DE=AE+AD=BD+CE(3)由(2)知,△ADB ≌△CEA , BD=AE ,∠DBA =∠CAE∵△ABF 和△ACF 均为等边三角形,∴∠ABF=∠CAF=60°∴∠DBA+∠ABF=∠CAE+∠CAF ,∴∠DBF=∠FAE∵BF=AF ,∴△DBF ≌△EAF∴DF=EF,∠BFD=∠AFE∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°∴△DEF为等边三角形.【点睛】利用全等三角形的性质证线段相等是证两条线段相等的重要方法.。

八上数学《第12章.全等三角形》状元培优单元测试题(人教版版附答案)

八上数学《第12章.全等三角形》状元培优单元测试题(人教版版附答案)

2019-2020学年八上数学《12.全等三角形》状元培优单元测试题(人教版版附答案)一、选择题1、如图所示,△ABC与△DEF是全等三角形,即△ABC≌△DEF,那么图中相等的线段有( ).A.1组 B.2组 C.3组 D.4组2、如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下哪个条件仍不能判定△ABE ≌△ACD( )A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD3、如图,OC平分∠MON,P为OC上一点,PA⊥OM,PB⊥ON,垂足分别为A、B,连接AB,得到以下结论:(1)PA=PB;(2)OA=OB;(3)OP与AB互相垂直平分;(4)OP平分∠APB,正确的个数是()A.1 B.2 C.3 D.44、如图所示,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,下列不正确的等式是().A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE5、下列说法正确的是()A.全等三角形是指形状相同大小相等的三角形 B.全等三角形是指面积相等的三角形C.周长相等的三角形是全等三角形 D.所有的等边三角形都是全等三角形6、如图,已知,,与交于点,于点,于点,那么图中全等的三角形有()A.5对B.6对C.7对D.8对7、如图,在下列条件中,不能判断△ABD≌△BAC的条件是()A.∠BAD=∠ABC,∠ABD=∠BAC B.AD=BC,BD=ACC.BD=AC,∠BAD=∠ABC D.∠D=∠C,∠BAD=∠ABC8、小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角的两边的距离相等的点在角的平分线上 B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等 D.以上均不正确9、如图是两个全等三角形,则∠1=()A.62° B.72° C.76° D.66°10、如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠OAC等于( )A.65° B.95° C.45° D.100°11、数学课上,小明进行了如下的尺规作图(如图所示):(1)在△AOB(OA<OB)边OA、OB上分别截取OD、OE,使得OD=OE;(2)分别以点D、E为圆心,以大于DE为半径作弧,两弧交于△AOB内的一点C;(3)作射线OC交AB边于点P.那么小明所求作的线段OP是△AOB的()A.一条中线 B.一条高 C.一条角平分线D.不确定12、已知:如图,AB=AD,∠1=∠2,以下条件中,不能推出△ABC≌△ADE的是()A.AE=AC B.∠B=∠D C.BC=DE D.∠C=∠E二、填空题13、如图,在等腰△ABC中,∠ABC=90°,D为底边AC中点,过D点作DE⊥DF,交AB于E,交BC于F.若AE=12,FC=5,EF长为.14、如图,已知,,,则.15、如图,点P为△ABC三条角平分线的交点,PD⊥AB,PE⊥BC,PF⊥AC,则PD____________PF.16、如图,∠C=90°,∠1=∠2,若BC=10,BD=6,则点D到AB的距离为________ .17、如图所示,在平行四边形ABCD中,分别以AB.AD为边作等边△ABE和等边△ADF,分别连接CE.CF和EF,则下列结论中一定成立的是________ (把所有正确结论的序号都填在横线上).①△CDF≌△EBC;②△CEF是等边三角形;③∠CDF=∠EAF;④EF⊥CD.三、简答题18、如图,在△ADF和△BCE中,AF=BE,AC=BD,∠A=∠B,∠B=32°,∠F=28°,BC=5cm,CD=1cm.求:(1)∠1的度数;(2)AC的长.19、如图,在平面直角坐标系中A.B坐标分别为(2,0),(-1,3),若△OAC与△OAB全等,(1)试尽可能多的写出点C的坐标;(2)在⑴的结果中请找出与(1,0)成中心对称的两个点。

部编数学八年级上册第十二章全等三角形单元培优训练(解析版)含答案

部编数学八年级上册第十二章全等三角形单元培优训练(解析版)含答案

2022-2023学年八年级数学上册章节同步实验班培优题型变式训练(人教版)第十二章 全等三角形单元培优训练班级___________ 姓名___________ 学号____________ 分数____________考试范围:第12章 全等三角形,共23题; 考试时间:120分钟; 总分:120分一、选择题(本大题共6小题,每小题3分,共18分)1.(2022·全国·八年级单元测试)已知图中的两个三角形全等,则∠a 等于( )A .72oB .60oC .58oD .50o 【答案】D 【分析】根据全等三角形的性质:全等三角形对应角相等,即可得到结论.【详解】Q 图中的两个三角形全等,a Ð 为a 和c 的夹角又Q 第一个三角形中a 和c 的夹角为50°\ 50a Ð=°故选:D .【点睛】本题考查了全等三角形的性质,准确找到对应角是解题的关键.2.(2022·江苏·八年级单元测试)如图,14AB =,6AC =,AC AB ^,BD AB ^,垂足分别为A 、B .点P 从点A 出发,以每秒2个单位的速度沿AB 向点B 运动;点Q 从点B 出发,以每秒a 个单位的速度沿射线BD 方向运动.点P 、点Q 同时出发,当以P 、B 、Q 为顶点的三角形与CAP V 全等时,a 的值为( )A .2B .3C .2或3D .2或127【答案】D3.(2022·江苏·八年级专题练习)如图,AOB ADC △≌△,点B 和点C 是对应顶点,90O D Ð=Ð=°,记,,OAD ABO ABC ACB a b Ð=Ð=Ð=Ð,当//BC OA 时,a 与b 之间的数量关系为( )A .a b=B .2a b =C .90a b +=°D .2180a b +=°【答案】B 【分析】根据全等三角形对应边相等可得AB =AC ,全等三角形对应角相等可得∠BAO =∠CAD ,然后求出∠BAC =α,再根据等腰三角形两底角相等求出∠ABC ,然后根据两直线平行,同旁内角互补表示出∠OBC ,整理即可.【详解】∵AOB ADC △≌△,∴BAO CAD Ð=Ð,4.(2022·全国·八年级单元测试)如图,△ABC≌△ADE,如果AB=5cm,BC=7cm,AC=6cm,那么DE 的长是( )A.6cm B.5cm C.7cm D.无法确定【答案】C【分析】根据全等三角形的性质计算即可;【详解】∵△ABC≌△ADE,=,∴BC DE∵BC=7cm,∴7=;DE cm故答案选C.【点睛】本题主要考查了全等三角形的性质,掌握全等三角形的对应边相等是解题的关键.∥,5.(2022·全国·八年级专题练习)如图,把△ABC沿线段DE折叠,使点B落在点F处;若AC DE∠A=70°,AB=AC,则∠CEF的度数为()A .55°B .60°C .65°D .70°【答案】D 【分析】由于折叠,可得三角形全等,运用三角形全等得出55B C Ð=Ð=°,利用平行线的性质可得出55DEB C Ð=Ð=°,则CEF Ð即可求.【详解】解:ABC Q V 沿线段DE 折叠,使点B 落在点F 处,BDE FDE \@V V ,DEB DEF \Ð=Ð,70A AB AC Ð=°=,Q ,12180705)5(B C \Ð=Ð=´°-°=°,AC DE ∥Q ,55DEB C DEF \Ð=Ð=°=Ð,18070FEC DEB DEF \Ð=°-Ð-Ð=°,故选:D .【点睛】本题考查了全等三角形的性质及三角形内角和定理、平行线的性质;解题的关键是理解折叠就是得到全等的三角形,根据全等三角形的对应角相等就可以解决.6.(2022·全国·八年级专题练习)如图,已知△ABC ≌△DEF ,CD 平分∠BCA ,若∠A =30°,∠CGF =88°,则∠E 的度数是( )A .50°B .44°C .34°D .30°【答案】C二、填空题(本大题共6小题,每小题3分,共18分)7.(2022·江苏·八年级专题练习)如图,图中由实线围成的图形与①是全等形的有______.(填番号)【答案】②③【分析】根据全等图形的定义,两个图形必须能够完全重合才行.【详解】观察图形,发现②③图形可以和①图形完全重合故答案为:②③.【点睛】本题考查全等的概念,任何一组图形,要想全等,则这组图形必须能够完全重合.8.(2022·江苏·八年级专题练习)如图,△ABC 中,∠A :∠ABC :∠ACB =3:5:10,又△A ′B ′C ≌△ABC ,则∠BCA ′:∠BCB ′的值为_____.9.(2022·江苏·八年级专题练习)如图,,125,25,ABC ADE EAB CAD BAC Ð=°Ð=°ÐV V ≌的度数为___________.【答案】75°【分析】根据全等三角形的性质求出∠EAD =∠CAB ,求出∠DAB =∠EAC =50°,即可得到∠BAC 的度数.【详解】解:∵V ABC ≌V ADE ,10.(2022·全国·八年级专题练习)如图所示的网格是正方形网格,图形的各个顶点均为格点,则∠P +∠Q =__________度.【答案】45【分析】如图,直接利用网格得出对应角P AQC ÐÐ=,进而得出答案.【详解】如图,易知ABP ACQ V V ≌,∴P AQC ÐÐ=,∵BQ 是正方形的对角线,∴45BQC BQA AQC P Q ÐÐ+Ð=Ð+Ð=°=,故答案为:45.【点睛】本题考查了全等三角形,正确借助网格分析是解题关键.11.(2022·全国·八年级课时练习)如图,已知△ABC ≌△ADE ,若AB=7,AC=3,则BE 的值为_________.【答案】4【分析】根据△ABC ≌△ADE ,得到AE=AC ,由AB=7,AC=3,根据BE=AB-AE 即可解答.【详解】解:∵△ABC ≌△ADE ,∴AE=AC ,∵AB=7,AC=3,∴BE=AB-AE=AB-AC=7-3=4.故答案为:4.【点睛】本题考查全等三角形的性质,解决本题的关键是熟记全等三角形的对应边相等.12.(2022·江西上饶·八年级期末)如图,在△ABC 中,90ACB Ð=°,AC =8cm ,BC =10cm .点C 在直线l 上,动点P 从A 点出发沿A →C 的路径向终点C 运动;动点Q 从B 点出发沿B →C →A 路径向终点A 运动.点P 和点Q 分别以每秒1cm 和2cm 的运动速度同时开始运动,其中一点到达终点时另一点也停止运动,分别过点P 和Q 作PM ⊥直线l 于M ,QN ⊥直线l 于N .则点P 运动时间为____秒时,△PMC 与△QNC 全等.【答案】2或6##6或2【分析】设点P 运动时间为t 秒,根据题意化成两种情况,由全等三角形的性质得出CP CQ =,列出关于t 的方程,求解即可.【详解】解:设运动时间为t 秒时,△PMC ≌△CNQ ,∴斜边CP CQ =,分两种情况:①如图1,点P 在AC 上,点Q 在BC 上,图1∵AP t =,2BQ t =,∴8CP AC AP t =-=-,102CQ BC BQ t =-=-,∵CP CQ =,∴8102t t -=-,∴2t =;②如图2,点P 、Q 都在AC 上,此时点P 、Q 重合,图2∵8CP AC AP t =-=-,210CQ t =-,∴8210t t -=-,∴6t =;综上所述,点P 运动时间为2或6秒时,△PMC 与△QNC 全等,故答案为:2或6.【点睛】本题考查了全等三角形的性质和判定的应用,根据题意判断两三角形全等的条件是解题关键,同时要注意分情况讨论,解题时避免遗漏答案.三、(本大题共5小题,每小题6分,共30分)13.(2022·全国·八年级课时练习)如图,△ABD ≌△ACE ,写出对应边和对应角,并证明∠1=∠2.【答案】见解析,证明见解析Ð=Ð,根据等角的补角相等即可求【分析】根据全等三角形的性质写出对角与对应边,根据ADB AEC解.【详解】解:∵△ABD≌△ACE,\===,AB AC AD AE BD CE,,A ABC ADB AECÐ=ÐÐ=ÐÐ=Ð;,,Ð=Ð,证明:∵ADB AEC\°-Ð=°-Ð,ADB AEC180180即12Ð=Ð.【点睛】本题考查了全等三角形的性质,等角的补角相等,掌握全等三角形的性质是解题的关键.14.(2022·全国·八年级专题练习)如图所示,A,C,E三点在同一直线上,且△ABC≌△DAE.(1)求证:BC=DE+CE;∥?(2)当△ABC满足什么条件时,BC DE【答案】(1)见解析∥(2)当∠ACB为直角时,BC DE【分析】(1)根据全等三角形的性质得出AE=BC,AC=DE,据此即可证得;(2)根据平行线的性质得出∠BCE=∠E,根据全等三角形的性质得出∠ACB=∠E,求出∠ACB=∠BCE,再求出答案即可.(1)证明:∵△ABC ≌△DAE ,∴AE =BC ,AC =DE ,又∵AE =AC +CE ,∴BC =DE +CE ;(2)解:∵BC DE ∥,∴∠BCE =∠E ,又∵△ABC ≌△DAE ,∴∠ACB =∠E ,∴∠ACB =∠BCE ,又∵∠ACB +∠BCE =180°,∴∠ACB =90°,即当△ABC 满足∠ACB 为直角时,BC DE ∥.【点睛】本题考查了全等三角形的性质和平行线的性质,能灵活运用定理进行推理是解此题的关键,注意:全等三角形的对应边相等,对应角相等.15.(2022·全国·八年级专题练习)如图,点A ,B ,C 在同一直线上,点E 在BD 上,且ABD EBC V V ≌,2cm AB =,3cm BC =.(1)求DE 的长;(2)判断AC 与BD 的位置关系,并说明理由.(3)判断直线AD 与直线CE 的位置关系,并说明理由.【答案】(1)1cm DE =;(2)AC BD ^.理由见解析;(3)直线AD 与直线CE 垂直.理由见解析【分析】(1)由题意根据全等三角形的对应边相等得到BD=BC=5cm ,BE=AB=2cm ,计算即可;(2)由题意直接根据全等三角形的对应角相等和平角的定义解答;(3)由题意延长CE 交AD 于F ,进而根据全等三角形的对应角相等和三角形内角和定理进行分析解答即可.【详解】解:(1)ABD EBC Q △≌△,3cm BD BC \==,2cm BE AB ==,1cm DE BD BE \=-=.(2)AC BD ^.理由:ABD EBC Q △≌△,ABD EBC Ð=Ð\.又A Q ,B ,C 在同一直线上,90EBC \=а.AC BD \^.(3)直线AD 与直线CE 垂直.理由:如图,延长CE 交AD 于F .ABD EBC Q △≌△,D C \Ð=Ð.Q 在Rt ABD △中,90A D Ð+Ð=°,90A C +Ð=\а,90AFC \Ð=°,即直线AD 与直线CE 垂直.【点睛】本题考查的是全等三角形的性质,熟练掌握全等三角形的对应边相等以及全等三角形的对应角相等是解题的关键.16.(2022·全国·八年级专题练习)如图,A ,E ,C 三点在同一直线上,且△ABC ≌△DAE .(1)线段DE ,CE ,BC 有怎样的数量关系?请说明理由.(2)请你猜想△ADE 满足什么条件时,DE ∥BC ,并证明.【答案】(1)DE =CE +BC ,理由见解析(2)当△ADE满足∠AED=90°时,DE//BC.证明见详解【分析】(1)根据全等三角形的性质得出AE=BC,DE=AC,再求出答案即可;(2)根据全等三角形的性质得出∠AED=∠C,根据两直线平行,内错角相等,得出∠C=∠DEC,再根据邻补角互补得出∠AED+∠DEC=180°,再求出∠AED=90°即可.(1)解:DE=CE+BC.理由:∵△ABC≌△DAE,∴AE=BC,DE=AC.∵A,E,C三点在同一直线上,∴AC=AE+CE,∴DE=CE+BC.(2)猜想:当△ADE满足∠AED=90°时,DE//BC.证明:∵△ABC≌△DAE,∴∠AED=∠C,又∵DE∥BC,∴∠C=∠DEC,∴∠AED=∠DEC.又∵∠AED+∠DEC=180°,∴∠AED=∠DEC=90°,∴当△ADE满足∠AED=90°时,DE∥BC.【点睛】本题考查了全等三角形的性质、等量代换、平行线的性质、邻补角互补,解本题的关键在熟练掌握相关性质.17.(2022·全国·八年级专题练习)如图,已知△ABC≌△DEB,点E在AB上,AC与BD交于点F,AB=6,BC=3,∠C=55°,∠D=25°.(1)求AE的长度;(2)求∠AED的度数.【答案】(1)3AE =;(2)80AED Ð=°.【分析】(1)先根据全等三角形的性质可得3BE BC ==,再根据线段的和差即可得;(2)先根据全等三角形的性质可得55DBE C Ð=Ð=°,再根据三角形的外角性质即可得.【详解】解:(1)∵,3ABC DEB BC @=V V ,∴3BE BC ==,∵6AB =,∴633AE AB BE =-=-=;(2)∵ABC DEB @△△,∴55DBE C Ð=Ð=°,∵25D Ð=°,∴552580AED DBE D Ð=Ð+Ð=°+°=°.【点睛】本题考查全等三角形的性质等知识点,熟练掌握全等三角形的对应角和对应边相等是解题关键.四、(本大题共3小题,每小题8分,共24分)18.(2021·全国·八年级专题练习)如图,ABC DEB V V ≌,点E 在AB 上,DE 与AC 相交于点F ,若7DE =,4BC =,35D Ð=°,60C Ð=°.(1)求线段AE 的长;(2)求DFA Ð的度数.【答案】(1)3AE =;(2)130DFA Ð=°【分析】(1)根据全等三角形的性质解答即可;(2)根据全等三角形的性质以及三角形的外角性质解答即可.【详解】(1)∵ABC DEB V V ≌,∴7AB DE ==,4BC BE ==,∵点E 在AB 上,∴AE BE AB +=,∴743AE AB BE =-=-=;(2)∵ABC DEB V V ≌,∴∠A=∠D=35°,60C DBE °Ð=Ð=,95AEF DBE D Ð=Ð+Ð=°,130DFA AEF A °Ð=Ð+Ð=.【点睛】本题考查了全等三角形的性质,三角形的外角性质,关键是根据全等三角形的对应角和对应边相等分析.19.(2022·全国·八年级专题练习)如图,,ABF CDE B ÐV V ≌和D Ð是对应角,AF 和CE 是对应边.(1)写出ABF V 和CDE △的其他对应角和对应边;(2)若30,40B DCF Ð=°Ð=°,求EFC Ð的度数;(3)若10,2BD EF ==,求BF 的长.【答案】(1)其他对应角为BAF Ð和DCE Ð,AFB Ð和CED Ð;其他对应边为AB 和,CD BF 和DE ;(2)70EFC Ð=°;(3)6BF =.【分析】(1)根据全等三角形的性质,对应角相等,对应边相等,解答即可;(2)根据全等三角形的性质可得30D B Ð=Ð=°,运用三角形外角的性质即可解答;(3)根据全等三角形的性质可得BF DE =,进一步证明DF BE =,然后可得426BF BE EF =+=+=.【详解】(1)其他对应角为:BAF Ð和DCE Ð,AFB Ð和CED Ð;其他对应边为:AB 和,CD BF 和DE ;(2)∵,30ABF CDE B Ð=°V V ≌,20.(2022·浙江·八年级专题练习)如图,ABC V ≌ADE V ,AC 和AE ,AB 和AD 是对应边,点E 在边BC 上,AB 与DE 交于点F .(1)求证:CAE BAD Ð=Ð;(2)若35BAD Ð=°,求BED Ð的度数.【答案】(1)见解析;(2)35°【分析】(1)根据ABC V ≌ADE V ,可得∠BAC =∠DAE ,即可求证;(2)由(1)可得∠CAE =35°,再由ABC V ≌ADE V ,可得∠C =∠AED ,然后根据三角形外角的性质,可得∠BED =∠CAE ,即可求解.【详解】(1)证明:∵ABC V ≌ADE V ,∴∠BAC =∠DAE ,即∠CAE +∠BAE =∠BAD +∠BAE ,(2)∵35BAD Ð=°,CAE BAD Ð=Ð,∴∠CAE =35°,∵ABC V ≌ADE V ,∴∠C =∠AED ,∵∠AEB =∠C +∠CAE ,∠AEB =∠AED +∠BED ,∴∠BED =∠CAE =35°.【点睛】本题主要考查了全等三角形的性质,熟练掌握全等三角形的对应角相等,对应边相等是解题的关键.五、(本大题共2小题,每小题9分,共18分)21.(2022·全国·八年级课时练习)如图,已知△ABC ≌△DEF ,点B ,E ,C ,F 在同一直线上.(1)若∠BED =130°,∠D =70°,求∠ACB 的度数;(2)若2BE =EC ,EC =6,求BF 的长.【答案】(1)60°(2)12【分析】(1)根据三角形的外角的性质求出∠F ,再根据全等三角形的对应角相等解答;(2)根据题意求出BE 、BC ,再根据全等三角形的性质解答.(1)解:∵∠BED =130°,∠D =70°,∴∠F =∠BED -∠D =60°,∵V ABC ≌V DEF ,∴∠ACB =∠F =60°;(2)∵2BE =EC ,EC =6,∴BE =3,∴BC =BE +EC =9,∵V ABC ≌V DEF ,∴EF =BC =9,∴BF =EF +BE =12.【点睛】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.22.(2021·全国·八年级单元测试)如图△ADF ≌△BCE ,∠B =40°,∠F =22°,BC =2cm ,CD =1cm .求:(1)∠1的度数;(2)AC 的长.【答案】(1)62°;(2)3cm【分析】(1)根据全等三角形的性质可得22E F Ð=Ð=°,由三角形外角的性质可得1B E Ð=Ð+Ð,即可求解;(2)由全等三角形的性质可得AD BC =,即可求解.【详解】解:(1)∵ADF BCEV V ≌∴22E F Ð=Ð=°由三角形外角的性质可得:162B E Ð=Ð+Ð=°∠1的度数为62°(2)∵ADF BCEV V ≌∴2AD BC cm==∴3AC AD CD cm=+=即AC 的长为3cm【点睛】此题考查了全等三角形的性质,涉及了三角形外角的性质,掌握全等三角形的有关性质是解题的关键.六、(本大题共12分)23.(2022·全国·八年级课时练习)如图,在ABC V 中,4cm,,4cm BC AE BC AE ==∥,点N 从点C 出发,沿线段CB 以2cm/s 的速度连续做往返运动,点M 从点A 出发沿线段AE 以1cm/s 的速度运动至点E .M 、N 两点同时出发,连结,MN MN 与AC 交于点D ,当点M 到达点E 时,M 、N 两点同时停止运动,设点M 的运动时间为(s)t .(1)当3t =时,线段AM 的长度=___________cm ,线段BN 的长度=___________cm .(2)当BN AM =时,求t 的值.(3)连接AN ,当ABN V 的面积等于ABC V 面积的一半时,直接写出所有满足条件的t 值.(4)当ADM CDN △≌△时,直接写出所有满足条件的t 值.。

2020年人教版八年级数学上册《全等三角形》单元培优(含答案)

2020年人教版八年级数学上册《全等三角形》单元培优(含答案)

2020年人教版八年级数学上册《全等三角形》单元培优一、选择题1.如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA2.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形个数是()A.1B.2C.3D.43.如图,已知OQ平分∠AOB,点P为OQ上任意一点,点N为OA上一点,点M为OB上一点,若∠PNO+∠PMO=180°,则PM和PN的大小关系是()A.PM>PNB.PM<PNC.PM=PND.不能确定4.在△ABC中,AB=8,AC=6,则BC边上的中线AD的取值范围是()。

A.6<AD<8 B.2<AD<14 C.1<AD<7 D.无法确定5.如图,点P是△ABC外的一点,PD⊥AB于点D,PE⊥AC于点E,PF⊥BC于点F,连接PB,PC.若PD=PE=PF,∠BAC=70°,则∠BPC的度数为()A.25° B.30° C.35° D.40°6.如图,在△ABC中,∠C=900,AD平分∠BAC,DE⊥AB于E,则下列结论:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④BE+AC=AB.其中正确的有( )A.1个B.2个C.3个D.4个7.如图,已知在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中结论正确的个数是()A.1B.2C.3D.48.如图,在正方形ABCD中,AB=2,延长BC到点E,使CE=1,连接DE,动点P从点A出发以每秒1个单位的速度沿AB﹣BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当△ABP和△DCE全等时,t的值为()A.3B.5C.7D.3或7二、填空题9.如图EB交AC于M,交FC于D,AB交FC于N,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论有(填序号).10.如图,如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是.11.如图,AC=BC,DC=EC,∠ACB=∠ECD=90°,且∠EBD=38°,则∠AEB= .12.在平面直角坐标系中,点A(2,0),B(0,4),作△BOC,使△BOC与△ABO全等,则点C坐标为 .13.在△ABC中,AB=8,AC=10,则BC边上的中线AD的取值范围是.14.如图,△ABC的三条角平分线交于O点,已知△ABC的周长为20,OD⊥AB,OD=5,则△ABC 的面积= .15.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确结论的序号是(请将所有正确结论的序号都填上).三、解答题16.如图,已知AB=AC,AD=AE,BD=CE,求证:∠3=∠1+∠2.17.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF.18.如图,△ABC中,∠BAC=90°,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE.19.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC=40°,求∠CAB 和∠CAP的度数.20.如图,△ABC中,AD是∠CAB的平分线,且AB=AC+CD,求证:∠C=2∠B.21.如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC.求证:∠A+∠C=180°.22.如图,已知在△ABC中,∠BAC的平分线与线段BC的垂直平分线PQ相交于点P,过点P分别作PN垂直于AB于点N,PM垂直于AC于点M,BN和CM有什么数量关系?请说明理由.参考答案1.D2.C3.C4.C5.C6.C.7.D.8.D9.答案为:①②③.10.答案为:相等或互补.11.答案为:128°.12.答案为:(-2,0),(-2,4),(2,4);13.答案为:1<AD <9.14.答案为:50.15.答案为:①②④.16.证明:在△ABD 和△ACE 中,⎩⎪⎨⎪⎧AB =AC ,AD =AE ,BD =CE ,∴△ABD ≌△ACE(SSS).∴∠BAD=∠1,∠ABD=∠2.∵∠3=∠BAD +∠ABD ,∴∠3=∠1+∠2.17.证明:(1)∵AE ⊥AB ,AF ⊥AC ,∴∠BAE=∠CAF=90°,∴∠BAE+∠BAC=∠CAF+∠BAC ,即∠EAC=∠BAF ,在△ABF 和△AEC 中,∵,∴△ABF ≌△AEC (SAS ),∴EC=BF ;(2)如图,根据(1),△ABF ≌△AEC ,∴∠AEC=∠ABF ,∵AE ⊥AB ,∴∠BAE=90°,∴∠AEC+∠ADE=90°,∵∠ADE=∠BDM (对顶角相等),∴∠ABF+∠BDM=90°,在△BDM中,∠BMD=180°﹣∠ABF﹣∠BDM=180°﹣90°=90°,所以EC⊥BF.18.证明:因为∠CEB=∠CAB=90°所以:ABCE四点共元又因为:∠ABE=∠CBE所以:AE=CE所以:∠ECA=∠EAC取线段BD的中点G,连接AG,则:AG=BG=DG所以:∠GAB=∠ABG而:∠ECA=∠GBA所以:∠ECA=∠EAC=∠GBA=∠GAB而:AC=AB所以:△AEC≌△AGB所以:EC=BG=DG所以:BD=2CE19.答案为:80°,50°;20.证明:延长AC至E,使CE=CD,连接ED∵AB=AC+CD∴AE=AB∵AD平分∠CAB∴∠EAD=∠BAD∴AE=AB,∠EAD=∠BAD,AD=AD∴△ADE≌△ADB∴∠E=∠B且∠ACD=∠E+∠CDE,CE=CD∴∠ACD=∠E+∠CDE=2∠E=2∠B即∠C=2∠B21.证明:过点D作DE⊥BC于E,过点D作DF⊥AB交BA的延长线于F,∵BD平分∠ABC,∴DE=DF,∠DEC=∠F=90°,在RtCDE和Rt△ADF中,,∴Rt△CDE≌Rt△ADF(HL),∴∠FAD=∠C,∴∠BAD+∠C=∠BAD+∠FAD=180°.22.证明:如图,连接PB,PC,∵AP是∠BAC的平分线,PN⊥AB,PM⊥AC,∴PM=PN,∠PMC=∠PNB=90°,∵P在BC的垂直平分线上,∴PC=PB,在Rt△PMC和Rt△PNB中,,∴Rt△PMC≌Rt△PNB(HL),∴BN=CM.。

八年级全等三角形单元培优测试卷

八年级全等三角形单元培优测试卷

八年级全等三角形单元培优测试卷一、八年级数学轴对称三角形填空题(难)1.如图,在锐角△ABC中,AB=5,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD,AB上的动点,则BM+MN的最小值是______.【答案】5【解析】【分析】作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN为所求的最小值,再根据AD是∠BAC的平分线可知MH=MN,再由等腰直角三角形的性质即可得出结论.【详解】如图,作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN 为所求的最小值.∵AD是∠BAC的平分线,∴MH=MN,∴BH是点B到直线AC的最短距离(垂线段最短).∵AB=5,∠BAC=45°,∴BH==5.∵BM+MN的最小值是BM+MN=BM+MH=BH=5.故答案为5.【点睛】本题考查了轴对称﹣最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.2.已知A、B两点的坐标分别为(0,3),(2,0),以线段AB为直角边,在第一象限内作等腰直角三角形ABC,使∠BAC=90°,如果在第二象限内有一点P(a,12),且△ABP和△ABC的面积相等,则a=_____.【答案】-83.【解析】【分析】先根据AB两点的坐标求出OA、OB的值,再由勾股定理求出AB的长度,根据三角形的面积公式即可得出△ABC的面积;连接OP,过点P作PE⊥x轴,由△ABP的面积与△ABC的面积相等,可知S△ABP=S△POA+S△AOB﹣S△BOP=132,故可得出a的值.【详解】∵A、B两点的坐标分别为(0,3),(2,0),∴OA=3,OB=2,∴223+213AB==,∵△ABC是等腰直角三角形,∠BAC=90°,∴1113•1313222 ABCS AB AC⨯⨯===,作PE⊥x轴于E,连接OP,此时BE=2﹣a,∵△ABP的面积与△ABC的面积相等,∴111•••222 ABP POA AOB BOPS S S S OA OE OB OA OB PE ++=﹣=﹣,111113332222222a⨯⨯+⨯⨯⨯⨯=(﹣)﹣=,解得a=﹣83.故答案为﹣83.【点睛】本题考查等腰直角三角形的性质,坐标与图象性质,三角形的面积公式,解题的关键是根据S△ABP=S△POA+S△AOB-S△BOP列出关于a的方程.3.如图,ABC 中,ABC=45∠︒,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E ,与CD 相交于点F ,H 是BC 边的中点,连接DH 与BE 相交于点G ,下列结论:BF=AC ①;A=67.5∠︒②;DG=DF ③;ADGE GHCE S S =四边形四边形④,其中正确的有__________(填序号).【答案】①②③【解析】【分析】只要证明△BDF ≌△CDA ,△BAC 是等腰三角形,∠DGF=∠DFG=67.5°,即可判断①②③正确,作GM ⊥BD 于M ,只要证明GH <DG 即可判断④错误.【详解】解:∵CD ⊥AB ,BE ⊥AC ,∴∠BDC=∠ADC=∠AEB=90°,∴∠A +∠ABE=90°,∠ABE +∠DFB=90°,∴∠A=∠DFB ,∵∠ABC=45°,∠BDC=90°,∴∠DCB=90°−45°=45°=∠DBC ,∴BD=DC ,在△BDF 和△CDA 中,∠BDF=∠CDA ,∠A=∠DFB ,BD=CD ,∴△BDF ≌△CDA (AAS ),∴BF=AC ,故①正确.∵∠ABE=∠EBC=22.5°,BE ⊥AC ,∴∠A=∠BCA=67.5°,故②正确,∵BE 平分∠ABC ,∠ABC=45°,∴∠ABE=∠CBE=22.5°,∵∠BDF=∠BHG=90°,∴∠BGH=∠BFD=67.5°,∴∠DGF=∠DFG=67.5°,∴DG=DF ,故③正确.作GM ⊥AB 于M .如图所示:∵∠GBM=∠GBH ,GH ⊥BC ,∴GH=GM <DG ,∴S △DGB >S △GHB ,∵S△ABE=S△BCE,∴S四边形ADGE<S四边形GHCE.故④错误,故答案为:①②③.【点睛】此题是三角形综合题,考查了等腰三角形的性质,直角三角形的性质,全等三角形的性质和判定,三角形的面积等知识点的综合运用,第五个问题难度比较大,添加辅助线是解题关键,属于中考选择题中的压轴题.4.如图,点P是∠AOB内任意一点,OP=5,M,N分别是射线OA和OB上的动点,若△PMN周长的最小值为5,则∠AOB的度数为_____.【答案】30°.【解析】【分析】如图:分别作点P关于OB、AO的对称点P'、P'',分别连OP'、O P''、P' P''交OB、OA于M、N,则可证明此时△PMN周长的最小,由轴对称性,可证明△P'O P''为等边三角形,∠AOB=12∠P'O P''=30°.【详解】解:如图:分别作点P关于OB、AO的对称点P'、P'',分别连OP'、O 、P' 交OB、OA于M、N,由轴对称△PMN周长等于PN+NM+MP=P'N+NM+MP"=P'P"∴由两点之间线段最短可知,此时△PMN周长的最小∴P'P"=5由对称OP=OP'=OP"=5∴△P'OP"为等边三角形∴∠P'OP"=60∵∠P'OB=∠POB,∠P"OA=∠POA∴∠AOB=12∠P'O P''=30°.故答案为30°.【点睛】本题是动点问题的几何探究题,考查最短路径问题,应用了轴对称图形性质和等边三角形性质.5.如图,△ABC中,AB=AC,∠A=30°,点D在边AB上,∠ACD=15°,则ADBC____.【答案】22.【解析】【分析】根据题意作CE⊥AB于E,作DF⊥AC于F,在CF上截取一点H,使得CH=DH,连接DH,并设AD=2x,解直角三角形求出BC(用x表示)即可解决问题.【详解】解:作CE⊥AB于E,作DF⊥AC于F,在CF上截取一点H,使得CH=DH,连接DH.设AD=2x,∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,DF 12=AD=x ,AF 3=x , ∵∠ACD=15°,HD=HC ,∴∠HDC=∠HCD=15°, ∴∠FHD=∠HDC+∠HCD=30°,∴DH=HC=2x ,FH 3=x ,∴AB=AC=2x+23x ,在Rt △ACE 中,EC 12=AC=x 3+x ,AE 3=EC 3=x+3x , ∴BE=AB ﹣AE 3=x ﹣x ,在Rt △BCE 中,BC 22BE EC =+=22x , ∴2222AD BC x ==. 故答案为:22. 【点睛】本题考查的等腰三角形的性质和解直角三角形以及直角三角形30度角的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.6.如图,∠MON =30°,点A 1、A 2、A 3…在射线ON 上,点B 1、B 2,B 3…在射线OM 上,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4…均为等边三角形,从左起第1个等边三角形的边长记a 1,第2个等边三角形的边长记为a 2,以此类推,若OA 1=3,则a 2=_______,a 2019=_______.【答案】6; 3×22018.【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A 1B 1∥A 2B 2∥A 3B 3,以及a 2=2a 1=6,得出a 3=4a 1,a 4=8a 1,a 5=16a 1…进而得出答案.【详解】解: 如图,∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=3,∴A2B1=3,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴a2=2a1=6,a3=4a1,a4=8a1,a5=16a1,以此类推:a2019=22018a1=3×22018故答案是:6;3×22018.【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出a2=2a1=6,a3=4a1,a4=8a1,a5=16a1…进而发现规律是解题关键.7.如图,△ABC中,AB=8,AC=6,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC,分别交AB、AC于点D、E,则△ADE的周长为_____.【答案】14.【解析】【分析】先根据角平分线的定义及平行线的性质得BD=DF,CE=EF,则△ADE的周长=AB+AC=14.【详解】∵BF平分∠ABC,∴∠DBF=∠CBF,∵DE∥BC,∴∠CBF=∠DFB,∴∠DBF=∠DFB,∴BD=DF,同理FE=EC,∴△AED的周长=AD+AE+ED=AB+AC=8+6=14.故答案为:14.【点睛】此题考查角平分线的性质,平行线的性质,等腰三角形的等角对等边的性质.8.如图,点A,B,C在同一直线上,△ABD和△BCE都是等边三角形,AE,CD分别与BD,BE交于点F,G,连接FG,有如下结论:①AE=CD ②∠BFG= 60°;③EF=CG;④AD⊥CD⑤FG ∥AC 其中,正确的结论有__________________. (填序号)【答案】①②③⑤【解析】【分析】易证△ABE≌△DBC,则有∠BAE=∠BDC,AE=CD,从而可证到△ABF≌△DBG,则有AF=DG,BF=BG,由∠FBG=60°可得△BFG是等边三角形,证得∠BFG=∠DBA=60°,则有FG∥AC,由∠CDB≠30°,可判断AD与CD的位置关系.【详解】∵△ABD和△BCE都是等边三角形,∴BD=BA=AD,BE=BC=EC,∠ABD=∠CBE=60°.∵点A、B、C在同一直线上,∴∠DBE=180°﹣60°﹣60°=60°,∴∠ABE=∠DBC=120°.在△ABE和△DBC中,∵BD BAABE DBCBE BC∠∠=⎧⎪=⎨⎪=⎩,∴△ABE≌△DBC,∴∠BAE=∠BDC,∴AE=CD,∴①正确;在△ABF和△DBG中,60BAF BDGAB DBABF DBG∠∠∠∠=⎧⎪=⎨⎪==︒⎩,∴△ABF≌△DBG,∴AF=DG,BF=BG.∵∠FBG=180°﹣60°﹣60°=60°,∴△BFG是等边三角形,∴∠BFG=60°,∴②正确;∵AE=CD,AF=DG,∴EF=CG;∴③正确;∵∠ADB=60°,而∠CDB=∠EAB≠30°,∴AD与CD不一定垂直,∴④错误.∵△BFG是等边三角形,∴∠BFG=60°,∴∠GFB=∠DBA=60°,∴FG∥AB,∴⑤正确.故答案为①②③⑤.【点睛】本题考查了等边三角形的判定与性质、全等三角形的判定与性质、三角形外角的性质、平行线的判定和性质,证得△ABE≌△DBC是解题的关键.9.如图,BD是ABC的角平分线,AE BD⊥,垂足为F,且交线段BC于点E,连结DE,若50C∠=︒,设ABC x CDE y∠=︒∠=︒,,则y关于x的函数表达式为_____________.【答案】80y x=-【解析】【分析】根据题意,由等腰三角形的性质可得BD是AE的垂直平分线,进而得到AD=ED,求出BED∠的度数即可得到y关于x的函数表达式.【详解】∵BD是ABC∆的角平分线,AE BD⊥∴1122ABD EBD ABC x∠=∠=∠=︒,90AFB EFB∠=∠=︒∴1902BAF BEF x∠=∠=︒-︒∴AB BE =∴AF EF =∴AD ED =∴DAF DEF ∠=∠∵180BAC ABC C ∠=︒-∠-∠,50C ∠=︒∴130BAC x ∠=︒-︒∴130BED BAD x ∠=∠=︒-︒∵CDE BED C ∠=∠-∠∴1305080y x x ︒=-︒-︒=︒-︒∴80y x =-,故答案为:80y x =-.【点睛】本题主要考查了等腰三角形的性质及判定,三角形的内角和定理,三角形外角定理,角的和差倍分等相关知识,熟练运用角的计算是解决本题的关键.10.如图,在ABC ∆和DBC ∆中,40A ∠=,2AB AC ==,140BDC ∠=,BD CD =,以点D 为顶点作70MDN ∠=,两边分别交,AB AC 于点,M N ,连接MN ,则AMN ∆的周长为_______.【答案】4【解析】【分析】延长AB 至F ,使BF =CN ,连接DF ,通过证明△BDF ≌△CDN ,及△DMN ≌△DMF ,从而得出MN =MF ,△AMN 的周长等于AB +AC 的长.【详解】延长AB 至F ,使BF =CN ,连接DF .∵BD =CD ,且∠BDC =140°,∴∠BCD =∠DBC =20°.∵∠A=40°,AB=AC=2,∴∠ABC=∠ACB=70°,∴∠DBA=∠DCA=90°.在Rt△BDF和Rt△CND中,∵BF=CN,∠DBA=∠DCA,DB=DC,∴△BDF≌△CDN,∴∠BDF=∠CDN,DF=DN.∵∠MDN=70°,∴∠BDM+∠CDN=70°,∴∠BDM+∠BDF=70°,∴∠FDM=70°=∠MDN.∵DF=DN,∠FDM=∠MDN,DM=DM,∴△DMN≌△DMF,∴MN=MF,∴△AMN的周长是:AM+AN+MN=AM+MB+BF+AN=AB+AC=4.故答案为:4.【点睛】本题主要利用等腰三角形的性质来证明三角形全等,构造全等三角形是解答本题的关键.二、八年级数学轴对称三角形选择题(难)11.在平面直角坐标系中,等腰△ABC的顶点A、B的坐标分别为(0,0)、(2,2),若顶点C落在坐标轴上,则符合条件的点C有()个.A.5 B.6 C.7 D.8【答案】D【解析】【分析】要使△ABC是等腰三角形,可分三种情况(①若AC=AB,②若BC=BA,③若CA=CB)讨论,通过画图就可解决问题.【详解】①若AC=AB,则以点A为圆心,AB为半径画圆,与坐标轴有4个交点;②若BC=BA,则以点B为圆心,BA为半径画圆,与坐标轴有2个交点(A点除外);③若CA=CB,则点C在AB的垂直平分线上.∵A(0,0),B(2,2),∴AB的垂直平分线与坐标轴有2个交点.综上所述:符合条件的点C的个数有8个.故选D.【点睛】本题考查了等腰三角形的判定、垂直平分线的性质的逆定理等知识,还考查了动手操作的能力,运用分类讨论的思想是解决本题的关键.12.等边△ABC,在平面内找一点P,使△PBC、△PAB、△PAC均为等腰三角形,具备这样条件的P点有多少个?()A.1个B.4个C.7个D.10个【答案】D【解析】试题分析:根据点P在等边△ABC内,而且△PBC、△PAB、△PAC均为等腰三角形,可知P点为等边△ABC的垂心;由此可得分别以三角形各顶点为圆心,边长为半径,交垂直平分线的交点就是满足要求的.解:由点P在等边△ABC内,而且△PBC、△PAB、△PAC均为等腰三角形,可知P点为等边△ABC的垂心;因为△ABC是等边三角形,所以分别以三角形各顶点为圆心,边长为半径画弧,交垂直平分线的交点就是满足要求的,每条垂直平分线上得3个交点,再加三角形的垂心,一共10个.故选D.点评:此题主要考查等腰三角形的性质和等边三角形的性质,有一定的拔高难度,属于中档题.13.如图,在锐角△ABC中,AC=10,S△ABC=25,∠BAC的平分线交BC于点D,点M,N分别是AD和AB上的动点,则BM+MN的最小值是()A.4 B.245C.5 D.6【答案】C【解析】试题解析:如图,∵AD是∠BAC的平分线,∴点B关于AD的对称点B′在AC上,过点B′作B′N⊥AB于N交AD于M,由轴对称确定最短路线问题,点M即为使BM+MN最小的点,B′N=BM+MN,过点B作BE⊥AC于E,∵AC=10,S△ABC=25,∴12×10•BE=25,解得BE=5,∵AD是∠BAC的平分线,B′与B关于AD对称,∴AB=AB′,∴△ABB′是等腰三角形,∴B′N=BE=5,即BM+MN的最小值是5.故选C.14.如图,一张长方形纸沿AB对折,以AB中点O为顶点将平角五等分,并沿五等分的折线折叠,再沿CD剪开,使展开后为正五角星(正五边形对角线所构成的图形).则∠OCD 等于()A.108°B.114°C.126°D.129°【答案】C【解析】【分析】按照如图所示的方法折叠,剪开,把相关字母标上,易得∠ODC和∠DOC的度数,利用三角形的内角和定理可得∠OCD的度数.【详解】解:展开如图,五角星的每个角的度数是,180=36°.5∵∠COD=360°÷10=36°,∠ODC=36°÷2=18°,∴∠OCD=180°-36°-18°=126°,故选C.【点睛】本题主要考查轴对称性质,解决本题的关键是能够理解所求的角是五角星的哪个角,解题时可以结合正五边形的性质解决.15.如图,P为∠AOB内一定点,M、N分别是射线OA、OB上一点,当△PMN周长最小时,∠MPN=110°,则∠AOB=()A.35°B.40°C.45°D.50°【答案】A【解析】【分析】作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,根据对称的性质可以证得:∠OP1M=∠OPM=50°,OP1=OP2=OP,根据等腰三角形的性质求解.【详解】作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,连接P1O、P2O,∵PP1关于OA对称,∠MPN=110°∴∠P1OP=2∠MOP,OP1=OP,P1M=PM,∠OP1M=∠OPM,同理可得:∠P2OP=2∠NOP,OP=OP2,∴∠P1OP2=∠P1OP+∠P2OP=2(∠MOP+∠NOP)=2∠AOB,OP1=OP2=OP,∴△P1OP2是等腰三角形.∴∠OP2N=∠OP1M,∴∠P1OP2=180°-110°=70°,∴∠AOB=35°,故选A.【点睛】考查了对称的性质,解题关键是正确作出图形和证明△P1OP2是等腰三角形是.16.如图,已知△ABC与△CDE均是等边三角形,点B、C、E在同一条直线上,AE与BD 交于点O,AE与CD交于点G,AC与BD交于点F,连接OC、FG,则下列结论:①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC.其中正确结论的个数为( )A.1 B.2 C.3 D.4【答案】D【解析】【分析】根据题意,结合图形,对选项一一求证,即可得出正确选项.【详解】(1)△ABC和△DCE均是等边三角形,点B,C,E在同一条直线上,∴AC=BC,EC=DC,∠ACB=∠DCE=60°,∴∠ACE=∠BCD=120°.在△BCD和△ACE中,∵AC BCBCD ACECD CE=⎧⎪∠=∠⎨⎪=⎩,∴△BCD≌△ACE,∴AE=BD,故结论①正确;(2)∵△BCD≌△ECA,∴∠GAC=∠FBC.又∵∠ACG=∠BCF=60°,AC=BC,∴△ACG≌△BCF,∴AG=BF,故结论②正确;(3)∵△ACG≌△BCF,∴CG=CF.∵∠ACB=∠DCE=60°,∴∠ACD=60°,∴△FCG为等边三角形,∴∠FGC=60°,∴∠FGC=∠DCE,∴FG∥BE,故结论③正确;(4)过C作CN⊥AE于N,CZ⊥BD于Z,则∠CNE=∠CZD=90°.∵△ACE≌△BCD,∴∠CDZ=∠CEN.在△CDZ和△CEN中,CZD CNECDZ CENCD CE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CDZ≌△CEN,∴CZ=CN.∵CN⊥AE,CZ⊥BD,∴∠BOC=∠EOC,故结论④正确.综上所述:四个结论均正确.故选D.【点睛】本题综合考查了等边三角形的判定与性质,全等三角形的判定与性质,角平分线的判定定理等重要几何知识点,有一定难度,需要学生将相关知识点融会贯通,综合运用.17.如图,O是正三角形ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′=6+33;⑤S△AOC+S△AOB=6+934.其中正确的结论是()A.①②③⑤B.①③④C.②③④⑤D.①②⑤【答案】A【解析】试题解析:由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,又∵OB=O′B,AB=BC,∴△BO′A≌△BOC,又∵∠OBO′=60°,∴△BO′A可以由△BOC绕点B逆时针旋转60°得到,故结论①正确;如图①,连接OO′,∵OB=O′B,且∠OBO′=60°,∴△OBO′是等边三角形,∴OO′=OB=4.故结论②正确;∵△BO′A≌△BOC,∴O′A=5.在△AOO′中,三边长为3,4,5,这是一组勾股数,∴△AOO′是直角三角形,∠AOO′=90°,∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,故结论③正确;S四边形AOBO′=S△AOO′+S△OBO′=12×3×4+3×42=6+43,故结论④错误;如图②所示,将△AOB绕点A逆时针旋转60°,使得AB与AC重合,点O旋转至O″点.易知△AOO″是边长为3的等边三角形,△COO″是边长为3、4、5的直角三角形,则S△AOC+S△AOB=S四边形AOCO″=S△COO″+S△AOO″=12×3×4+34×32=6+34,故结论⑤正确.综上所述,正确的结论为:①②③⑤.故选A.18.如图,已知长方形ABCD,AB=1,BC=2,点M为矩形内一点,点E为BC边上任意一点,则MA+MD+ME的最小值为( )A.1 B.1+3C.2+3D.3【答案】B【解析】【分析】将△AMD绕点A逆时针旋转60°得到△AM’D’,MD=M’D’,易得到△ADD’和△AMM’均为等边三角形,推出AM=MM’可得MA+MD+ME=D’M+MM’+ME,共线时最短;由于点E 也为动点,可得当D’E⊥BC时最短,此时易求得D’E=DG+GE的值.【详解】将△AMD绕点A逆时针旋转60°得到△AM’D’,MD=M’D’,易得到△ADD’和△AMM’均为等边三角形,∴AM=MM’,∴MA+MD+ME=D’M+MM’+ME,∴D′M、MM′、ME共线时最短,由于点E也为动点,∴当D’E⊥BC时最短,此时易求得D’E=DG+GE=4+33,∴MA+MD+ME的最小值为4+33.故选B.【点睛】本题考查轴对称、旋转变换、矩形的性质等知识,解题的关键是学会添加常用辅助线,构造等边三角形解决问题,学会用转化的思想思考问题.19.如图,已知AD为△ABC的高线,AD=BC,以AB为底边作等腰Rt△ABE,连接ED,EC,延长CE交AD于F点,下列结论:①△ADE≌△BCE;②CE⊥DE;③BD=AF;④S△BDE=S△ACE,其中正确的有()A.①③B.①②④C.①②③④D.①③④【答案】C【解析】【分析】①易证∠CBE=∠DAE,即可求证:△ADE≌△BCE;②根据①结论可得∠AEC=∠DEB,即可求得∠AED=∠BEG,即可解题;③证明△AEF≌△BED即可;④易证△FDC是等腰直角三角形,则CE=EF,S△AEF=S△ACE,由△AEF≌△BED,可知S△BDE=S△ACE,所以S△BDE=S△ACE.【详解】①∵AD为△ABC的高线,∴∠CBE+∠ABE+∠BAD=90°.∵Rt△ABE是等腰直角三角形,∴∠ABE=∠BAE=∠BAD+∠DAE=45°,AE=BE,∴∠CBE+∠BAD=45°,∴∠DAE=∠CBE.在△DAE和△CBE中,∵AE BEDAE CBEAD BC=⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△BCE(SAS);故①正确;②∵△ADE≌△BCE,∴∠EDA=∠ECB.∵∠ADE+∠EDC=90°,∴∠EDC+∠ECB=90°,∴∠DEC=90°,∴CE⊥DE;故②正确;③∵∠BDE=∠ADB+∠ADE,∠AFE=∠ADC+∠ECD,∴∠BDE=∠AFE.∵∠BED+∠BEF=∠AEF+∠BEF=90°,∴∠BED=∠AEF.在△AEF和△BED中,∵BDE AFEBED AEFAE BE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEF≌△BED(AAS),∴BD=AF;故③正确;④∵AD=BC,BD=AF,∴CD=DF.∵AD⊥BC,∴△FDC是等腰直角三角形.∵DE⊥CE,∴EF=CE,∴S△AEF=S△ACE.∵△AEF≌△BED,∴S△AEF=S△BED,∴S△BDE=S△ACE.故④正确.故选C.【点睛】本题考查了全等三角形的判定与性质,本题中求证△BFE ≌△CDE 是解题的关键.20.如图,在平面直角坐标系中,A(1,2),B(3,2),连接AB ,点P 是x 轴上的一个动点,连接AP 、BP ,当△ABP 的周长最小时,对应的点P 的坐标和△ABP 的最小周长分别为( )A .(1,0),224+B .(3,0),224+C .(2,0), 25D .(2,0),252+【答案】D【解析】 作A 关于x 轴的对称点N (1,-2),连接BN 与x 轴的交点即为点P 的位置,此时△ABP 的周长最小.设直线BN 的解析式为y kx b =+,∵N (1,-2),B (3,2),∴232k b k b +=-⎧⎨+=⎩, 解得24k b =⎧⎨=-⎩, ∴24y x =-,当0y =时,240x -=,解得,2x =,∴点P 的坐标为(2,0);∵A (1,2),B (3,2),∴AB //x 轴,∵AN ⊥x 轴,∴AB ⊥x 轴,在Rt △ABC 中,AB =2,AN =4,由勾股定理得,BN==∵AP =NP , ∴△ABP 的周长最小值为:AB +BP +AP =AB +BP +PN =AB +BN故选D.点睛:本题考查最短路径问题.利用轴对称作出点P 的位置是解题的关键.。

人教版 八年级数学 第12章 全等三角形 培优训练 (含答案)

人教版 八年级数学 第12章 全等三角形 培优训练 (含答案)

人教版八年级数学第12章全等三角形培优训练一、选择题1. 下列各组的两个图形属于全等图形的是()2. 如图,点E,F在线段BC上,△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,AF与DE相交于点M,则∠DCE等于()A.∠B B.∠A C.∠EMF D.∠AFB3. 如图所示,P是∠BAC内一点,且点P到AB,AC的距离PE,PF相等,则△PEA≌△PF A的依据是()A.HL B.ASA C.SSS D.SAS4. 根据下列条件,能画出唯一的△ABC的是()A.AB=3,BC=4,AC=8 B.AB=4,BC=3,∠A=30°C.AB=5,AC=6,∠A=50°D.∠A=30°,∠B=70°,∠C=80°5. 如图,点A在点O的北偏西30°的方向上,AB⊥OA,垂足为A.根据已知条件和图上尺规作图的痕迹判断,下列说法正确的是()A.点O在点A的南偏东60°方向上B.点B在点A的北偏东30°方向上C.点B在点O的北偏东60°方向上D.点B在点O的北偏东30°方向上6. 如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是()7. 现已知线段a,b(a<b),∠MON=90°,求作Rt△ABO,使得∠O=90°,OA=a,AB=b.小惠和小雷的作法分别如下:小惠:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点A为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.小雷:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点O为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.则下列说法中正确的是()A.小惠的作法正确,小雷的作法错误B.小雷的作法正确,小惠的作法错误C.两人的作法都正确D.两人的作法都错误8. 如图,点G在AB的延长线上,∠GBC,∠BAC的平分线相交于点F,BE⊥CF 于点H.若∠AFB=40°,则∠BCF的度数为()A.40°B.50°C.55°D.60°二、填空题9. 如图,在Rt△ABC中,∠C=90°,∠B=20°,以点A为圆心,小于AC的长为半径画弧与AB,AC分别交于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧相交于点P,连接AP并延长交BC于点D,则∠ADB=°.10. 如图,在△ABC中,AD⊥BC于点D,要使△ABD≌△ACD,若根据“HL”判定,还需要添加条件:____________.11. 如图,若AB=AC,BD=CD,∠A=80°,∠BDC=120°,则∠B=________°.12. 在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD 的面积之比是________.13. (2019•南通)如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF,若∠BAE=25°,则∠ACF=__________度.14. 如图所示,已知AD∥BC,则∠1=∠2,理由是________________;又知AD =CB,AC为公共边,则△ADC≌△CBA,理由是______,则∠DCA=∠BAC,理由是__________________,则AB∥DC,理由是________________________________.15. 如图,在△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB,垂足为E.若△DBE的周长为20,则AB=________.16. 如图,△ABC的两条外角平分线BP,CP相交于点P,PE⊥AC交AC的延长线于点E.若△ABC的周长为11,PE=2,S△BPC =2,则S△ABC=.三、解答题17. 育新中学校园内有一块直角三角形(Rt△ABC)空地,如图所示,园艺师傅以角平分线AD为界,在其两侧分别种上了不同的花草,在△ABD区域内种植了一串红,在△ACD区域内种植了鸡冠花,并量得两直角边AB=20 m,AC=10 m,分别求一串红与鸡冠花两种花草的种植面积.18. 如图,已知△ACF≌△DBE,且点A,B,C,D在同一条直线上.若AD=16,BC=10,求AB的长.19. 我们把两组邻边分别相等的四边形叫做“筝形”.如图,四边形ABCD是筝形,其中AB=AD,CB=CD,P是对角线AC上除A,C外的任意一点.求证:∠ABP =∠ADP.20. 如图,已知AP∥BC,∠P AB的平分线与∠CBA的平分线相交于点E,过点E 的直线分别交AP,BC于点D,C.求证:AD+BC=AB.21. (1)如图①,在△ABC中,∠BAC=90°,AB=CA,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为D,E.求证:DE=BD+CE.(2)如图②,将(1)中的条件改为:在△ABC中,AB=CA,D,A,E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角,则结论DE=BD+CE是否成立?若成立,请你给出证明;若不成立,请说明理由.人教版八年级数学第12章全等三角形培优训练-答案一、选择题1. 【答案】A2. 【答案】A[解析] ∵△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,∴∠DCE=∠B.故选A.3. 【答案】A4. 【答案】C[解析] 对于选项A来说,AB+BC<AC,不能画出△ABC;对于选项B来说,可画出△ABC为锐角三角形或者钝角三角形;对于选项C来说,已知两边及其夹角,△ABC是唯一的;对于选项D来说,△ABC的形状可确定,但大小不确定.5. 【答案】D[解析] 如图,由题意知∠AOD=30°,∠COD=90°,∴∠AOC=120°.由作图可知,OB平分∠AOC,∴∠AOB=∠AOC=60°.∴∠DOB=30°.∴点B在点O的北偏东30°方向上.6. 【答案】C[解析] 选项A中由全等三角形的判定定理“SAS”证得图中两个小三角形全等.选项B中由全等三角形的判定定理“SAS”证得图中两个小三角形全等.选项C中,如图①,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE.∴∠FEC=∠BDE.这两个角所对的边是BE和CF,而已知条件给的是BD=CF=3,故不能判定两个小三角形全等.选项D中,如图②,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE.∴∠FEC=∠BDE.又∵BD=CE=2,∠B=∠C,∴△BDE≌△CEF.故能判定两个小三角形全等.7. 【答案】A[解析] AB=b,AB是斜边,小惠作的斜边长是b符合条件,而小雷作的是一条直角边长是b.故小惠的作法正确,小雷的作法错误.8. 【答案】B[解析] 如图,过点F分别作FZ⊥AE于点Z,FY⊥CB于点Y,FW⊥AB于点W.∵AF平分∠BAC,FZ⊥AE,FW⊥AB,∴FZ=FW.同理FW=FY.∴FZ=FY.又∵FZ⊥AE,FY⊥CB,∴∠FCZ=∠FCY.由∠AFB=40°,易得∠ACB=80°.∴∠ZCY=100°.∴∠BCF=50°.二、填空题9. 【答案】125[解析] 由题意可得AD平分∠CAB.∵∠C=90°,∠B=20°,∴∠CAB=70°.∴∠CAD=∠BAD=35°.∴∠ADB=180°-20°-35°=125°.10. 【答案】AB =AC11. 【答案】20[解析] 如图,过点D 作射线AF.在△BAD 和△CAD 中,⎩⎨⎧AB =AC ,AD =AD ,BD =CD ,∴△BAD ≌△CAD(SSS). ∴∠BAD =∠CAD ,∠B =∠C.∵∠BDF =∠B +∠BAD ,∠CDF =∠C +∠CAD , ∴∠BDF +∠CDF =∠B +∠BAD +∠C +∠CAD , 即∠BDC =∠B +∠C +∠BAC. ∵∠BAC =80°,∠BDC =120°, ∴∠B =∠C =20°.12. 【答案】4∶3【解析】如解图,过D 作DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,∵AD 是∠BAC 的平分线,∴DE =DF(角平分线上的点到角两边的距离相等),设DE=DF=h,则S△ABDS△ACD =12AB·h12AC·h=43.13. 【答案】70【解析】∵∠ABC=90°,AB=AC,∴∠CBF=180°–∠ABC=90°,∠ACB=45°,在Rt△ABE和Rt△CBF中,AB CBAE CF=⎧⎨=⎩,∴Rt△ABE≌Rt△CBF,∴∠BCF=∠BAE=25°,∴∠ACF=∠ACB+∠BCF=45°+25°=70°,故答案为:70.14. 【答案】两直线平行,内错角相等SAS全等三角形的对应角相等内错角相等,两直线平行15. 【答案】20[解析] 由角平分线的性质可得CD=DE.易证Rt△ACD≌Rt△AED,则AC=AE,DE+DB=CD+DB=BC=AC=AE,故DE+DB+EB =AE+EB=AB.16. 【答案】7[解析] 过点P作PF⊥BC于点F,PG⊥AB于点G ,连接AP.∵△ABC的两条外角平分线BP,CP相交于点P,∴PF=PG=PE=2.∵S△BPC=2,∴BC·2=2,解得BC=2.∵△ABC的周长为11,∴AC+AB=11-2=9.∴S △ABC =S △ACP +S △ABP -S △BPC =AC ·PE+AB ·PG-S △BPC =×9×2-2=7.三、解答题17. 【答案】解:如图,过点D 作DE ⊥AB 于点E ,DF ⊥AC 于点F. ∵AD 是∠BAC 的平分线,∴DE =DF. ∵AB =20 m ,AC =10 m ,∴S △ABC =12×20×10=12×20·DE +12×10·DF ,解得DE =203(m).∴△ACD 的面积=12×10×203=1003(m 2),△ABD 的面积=12×20×203=2003(m 2).故一串红的种植面积为2003 m 2,鸡冠花的种植面积为1003 m 2.18. 【答案】解:∵△ACF ≌△DBE ,∴AC=DB.∴AC-BC=DB-BC ,即AB=CD.∵AD=16,BC=10,∴AB=CD=(AD-BC )=3.19. 【答案】证明:在△ABC 和△ADC 中,⎩⎨⎧AB =AD ,AC =AC ,CB =CD , ∴△ABC ≌△ADC.∴∠BAP =∠DAP.在△BAP 和△DAP 中,⎩⎨⎧AB =AD ,∠BAP =∠DAP ,AP =AP , ∴△BAP ≌△DAP.∴∠ABP =∠ADP.20. 【答案】证明:如图,在AB 上截取AF =AD ,连接EF.∵AE 平分∠PAB ,∴∠DAE =∠FAE.在△DAE 和△FAE 中,⎩⎨⎧AD =AF ,∠DAE =∠FAE ,AE =AE ,∴△DAE ≌△FAE(SAS).∴∠AFE =∠ADE.∵AD ∥BC ,∴∠ADE +∠C =180°.又∵∠AFE +∠EFB =180°,∴∠EFB =∠C.∵BE 平分∠ABC ,∴∠EBF =∠EBC.在△BEF 和△BEC 中,⎩⎨⎧∠EFB =∠C ,∠EBF =∠EBC ,BE =BE ,∴△BEF ≌△BEC(AAS).∴BF =BC.∴AD +BC =AF +BF =AB.21. 【答案】解:(1)证明:∵BD ⊥直线m ,CE ⊥直线m , ∴∠BDA =∠AEC =90°.∴∠BAD +∠ABD =90°.∵∠BAC =90°,∴∠BAD +∠CAE =90°. ∴∠CAE =∠ABD.在△ADB 和△CEA 中,⎩⎨⎧∠ABD =∠CAE ,∠BDA =∠AEC ,AB =CA ,∴△ADB ≌△CEA(AAS).∴BD =AE ,AD =CE.∴DE =AE +AD =BD +CE.(2)成立.证明:∵∠BDA =∠BAC =α,∴∠DBA +∠BAD =∠BAD +∠EAC =180°-α. ∴∠DBA =∠EAC.在△ADB 和△CEA 中,⎩⎨⎧∠DBA =∠EAC ,∠BDA =∠AEC ,AB =CA ,∴△ADB ≌△CEA(AAS).∴BD =AE ,AD =CE.∴DE =AE +AD =BD +CE.。

【精选】八年级数学全等三角形单元培优测试卷

【精选】八年级数学全等三角形单元培优测试卷

一、八年级数学全等三角形解答题压轴题(难)1.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.【答案】(1)见解析(2)成立(3)△DEF为等边三角形【解析】解:(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=900.∵∠BAC=900,∴∠BAD+∠CAE=900.∵∠BAD+∠ABD=900,∴∠CAE=∠ABD.又AB="AC" ,∴△ADB≌△CEA(AAS).∴AE=BD,AD=CE.∴DE="AE+AD=" BD+CE.(2)成立.证明如下:∵∠BDA =∠BAC=α,∴∠DBA+∠BAD=∠BAD +∠CAE=1800—α.∴∠DBA=∠CAE.∵∠BDA=∠AEC=α,AB=AC,∴△ADB≌△CEA(AAS).∴AE=BD,AD=CE.∴DE=AE+AD=BD+CE.(3)△DEF为等边三角形.理由如下:由(2)知,△ADB≌△CEA,BD=AE,∠DBA =∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=600.∴∠DBA+∠ABF=∠CAE+∠CAF.∴∠DBF=∠FAE.∵BF=AF,∴△DBF≌△EAF(AAS).∴DF=EF,∠BFD=∠AFE.∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=600.∴△DEF为等边三角形.(1)因为DE=DA+AE,故由AAS证△ADB≌△CEA,得出DA=EC,AE=BD,从而证得DE=BD+CE.(2)成立,仍然通过证明△ADB≌△CEA,得出BD=AE,AD=CE,所以DE=DA+AE=EC+BD.(3)由△ADB≌△CEA得BD=AE,∠DBA =∠CAE,由△ABF和△ACF均等边三角形,得∠ABF=∠CAF=600,FB=FA,所以∠DBA+∠ABF=∠CAE+∠CAF,即∠DBF=∠FAE,所以△DBF≌△EAF,所以FD=FE,∠BFD=∠AFE,再根据∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=600得到△DEF是等边三角形.2.如图,在△ABC中,∠ABC为锐角,点D为直线BC上一动点,以AD为直角边且在AD 的右侧作等腰直角三角形ADE,∠DAE=90°,AD=AE.(1)如果AB=AC,∠BAC=90°.①当点D在线段BC上时,如图1,线段CE、BD的位置关系为___________,数量关系为___________②当点D在线段BC的延长线上时,如图2,①中的结论是否仍然成立,请说明理由.(2)如图3,如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.探究:当∠ACB多少度时,CE⊥BC?请说明理由.【答案】(1)①垂直,相等.②都成立,理由见解析;(2)45°,理由见解析【解析】【分析】(1)①根据∠BAD=∠CAE,BA=CA,AD=AE,运用“SAS”证明△ABD≌△ACE,根据全等三角形性质得出对应边相等,对应角相等,即可得到线段CE、BD之间的关系;②先根据“SAS”证明△ABD≌△ACE,再根据全等三角形性质得出对应边相等,对应角相等,即可得到①中的结论仍然成立;(2)先过点A作AG⊥AC交BC于点G,画出符合要求的图形,再结合图形判定△GAD≌△CAE,得出对应角相等,即可得出结论.【详解】(1):(1)CE与BD位置关系是CE⊥BD,数量关系是CE=BD.理由:如图1,∵∠BAD=90°-∠DAC,∠CAE=90°-∠DAC,∴∠BAD=∠CAE.又 BA=CA,AD=AE,∴△ABD≌△ACE (SAS)∴∠ACE=∠B=45°且 CE=BD.∵∠ACB=∠B=45°,∴∠ECB=45°+45°=90°,即 CE⊥BD.故答案为垂直,相等;②都成立,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,∴∠BAD=∠CAE,在△DAB与△EAC中,AD AEBAD CAEAB AC⎧⎪∠∠⎨⎪⎩===∴△DAB≌△EAC,∴CE=BD,∠B=∠ACE,∴∠ACB+∠ACE=90°,即CE⊥BD;(2)当∠ACB=45°时,CE⊥BD(如图).理由:过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,∵∠ACB=45°,∠AGC=90°﹣∠ACB,∴∠AGC=90°﹣45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG,在△GAD与△CAE中,AC AGDAG EACAD AE⎧⎪∠∠⎨⎪⎩===∴△GAD≌△CAE,∴∠ACE=∠AGC=45°,∠BCE=∠ACB+∠ACE=45°+45°=90°,即CE⊥B C.3.如图,在ABC∆中,90C∠=︒,4cmAC BC==,点D是斜边AB的中点.点E 从点B出发以1cm/s的速度向点C运动,点F同时从点C出发以一定的速度沿射线CA 方向运动,规定当点E到终点C时停止运动.设运动的时间为x秒,连接DE、DF.(1)填空:ABC S ∆=______2cm ;(2)当1x =且点F 运动的速度也是1cm/s 时,求证:DE DF =;(3)若动点F 以3cm /s 的速度沿射线CA 方向运动,在点E 、点F 运动过程中,如果存在某个时间x ,使得ADF ∆的面积是BDE ∆面积的两倍,请你求出时间x 的值.【答案】(1)8;(2)见解析;(3)45或4. 【解析】【分析】(1)直接可求△ABC 的面积;(2)连接CD ,根据等腰直角三角形的性质可求:∠A=∠B=∠ACD=∠DCB=45°,即BD=CD ,且BE=CF ,即可证△CDF ≌△BDE ,可得DE=DF ;(3)分△ADF 的面积是△BDE 的面积的两倍和△BDE 与△ADF 的面积的2倍两种情况讨论,根据题意列出方程可求x 的值.【详解】解:(1)∵S △ABC =12⨯AC×BC ∴S △ABC =12×4×4=8(cm 2) 故答案为:8(2)如图:连接CD∵AC=BC ,D 是AB 中点∴CD 平分∠ACB又∵∠ACB=90°∴∠A=∠B=∠ACD=∠DCB=45°∴CD=BD依题意得:BE=CF∴在△CDF与△BDE中BE CFB DCABD CD=⎧⎪∠=∠⎨⎪=⎩∴△CDF≌△BDE(SAS)∴DE=DF(3)如图:过点D作DM⊥BC于点M,DN⊥AC于点N,∵AD=BD,∠A=∠B=45°,∠AND=∠DMB=90°∴△ADN≌△BDM(AAS)∴DN=DM当S△ADF=2S△BDE.∴12×AF×DN=2×12×BE×DM∴|4-3x|=2x∴x1=4,x2=45综上所述:x=45或4【点睛】本题考查了动点问题的函数图象,全等三角形的性质和判定,利用分类思想解决问题是本题的关键.4.已知△ABC中,AB=AC,点P是AB上一动点,点Q是AC的延长线上一动点,且点P从B运动向A、点Q从C运动向Q移动的时间和速度相同,PQ与BC相交于点D,若AB=82BC=16.(1)如图1,当点P为AB的中点时,求CD的长;(2)如图②,过点P作直线BC的垂线,垂足为E,当点P、Q在移动的过程中,设BE+CD=λ,λ是否为常数?若是请求出λ的值,若不是请说明理由.【答案】(1)4;(2)8【解析】【分析】(1)过P点作PF∥AC交BC于F,由点P和点Q同时出发,且速度相同,得出BP=CQ,根据PF∥AQ,可知∠PFB=∠ACB,∠DPF=∠CQD,则可得出∠B=∠PFB,证出BP=PF,得出PF=CQ,由AAS证明△PFD≌△QCD,得出,再证出F是BC的中点,即可得出结果;(2)过点P作PF∥AC交BC于F,易知△PBF为等腰三角形,可得BE=12BF,由(1)证明方法可得△PFD≌△QCD 则有CD=12CF,即可得出BE+CD=8.【详解】解:(1)如图①,过P点作PF∥AC交BC于F,∵点P和点Q同时出发,且速度相同,∴BP=CQ,∵PF∥AQ,∴∠PFB=∠ACB,∠DPF=∠CQD,又∵AB=AC,∴∠B=∠ACB,∴∠B=∠PFB,∴BP=PF,∴PF=CQ,又∠PDF=∠QDC,∴△PFD≌△QCD,∴DF=CD=12CF,又因P 是AB 的中点,PF ∥AQ ,∴F 是BC 的中点,即FC=12BC=8, ∴CD=12CF=4; (2)8BE CD λ+==为定值.如图②,点P 在线段AB 上,过点P 作PF ∥AC 交BC 于F ,易知△PBF 为等腰三角形,∵PE ⊥BF∴BE=12BF ∵易得△PFD ≌△QCD∴CD=12CF ∴()111182222BE CD BF CF BF CF BC λ+==+=+== 【点睛】 此题考查了等腰三角形的性质,全等三角形的判断与性质,熟悉相关性质定理是解题的关键.5.如图,Rt △ABC ≌Rt △CED (∠ACB =∠CDE =90°),点D 在BC 上,AB 与CE 相交于点F(1) 如图1,直接写出AB 与CE 的位置关系(2) 如图2,连接AD 交CE 于点G ,在BC 的延长线上截取CH =DB ,射线HG 交AB 于K ,求证:HK =BK【答案】(1)AB ⊥CE ;(2)见解析.【解析】【分析】(1)由全等可得∠ECD=∠A ,再由∠B+∠A=90°,可得∠B+ECD=90°,则AB ⊥CE. (2)延长HK 于DE 交于H ,易得△ACD 为等腰直角三角形,∠ADC=45°,易得DH=DE ,然后证明△DGH ≌△DGE ,所以∠H=∠E ,则∠H=∠B ,可得HK=BK.【详解】解:(1)∵Rt △ABC ≌Rt △CED ,∴∠ECD=∠A ,∠B=∠E ,BC=DE ,AC=CD∵∠B+∠A=90°∴∠B+ECD=90°∴∠BFC=90°,∴AB ⊥CE(2)在Rt △ACD 中,AC=CD ,∴∠ADC=45°,又∵∠CDE=90°,∴∠HDG=∠CDG=45°∵CH =DB ,∴CH+CD=DB+CD ,即HD=BC ,∴DH=DE ,在△DGH 和△DGE 中,DH=DE HDG=EDG=45DG=DG ⎧⎪∠∠⎨⎪⎩∴△DGH ≌△DGE (SAS )∴∠H=∠E又∵∠B=∠E∴∠H=∠B ,∴HK=BK【点睛】本题考查全等三角形的判定与性质,利用全等找出角相等,再利用等角对等边判定线段相等是本题的关键.6.综合实践如图①,90,,,ACB AC BC AD CE BE CE ∠=︒=⊥⊥,垂足分别为点D E 、,2.5, 1.7AD cm DE cm==.(1)求BE的长;(2)将CE所在直线旋转到ABC∆的外部,如图②,猜想AD DE BE、、之间的数量关系,直接写出结论,不需证明;(3)如图③,将图①中的条件改为:在ABC∆中,,AC BC D C E=、、三点在同一直线上,并且BEC ADC BCAα∠=∠=∠=,其中α为任意钝角.猜想AD DE BE、、之间的数量关系,并证明你的结论.【答案】(1)0.8cm;(2)DE=AD+BE;(3)DE=AD+BE,证明见解析.【解析】【分析】(1)本小题只要先证明ACD CBE≅,得到AD CE=,CD BE=,再根据2.5, 1.7AD cm DE cm==,CD CE DE=-,易求出BE的值;(2)先证明ACD CBE≅,得到AD CE=,CD BE=,由图②ED=EC+CD,等量代换易得到AD DE BE、、之间的关系;(3)本题先证明EBC DCA∠=∠,然后运用“AAS”定理判定BEC CDA≅,从而得到,BE CD EC AD==,再结合图③中线段ED的特点易找到AD DE BE、、之间的数量关系.【详解】解:(1)∵,AD CD BE CE⊥⊥∴90ADC E︒∠=∠=∴90ACD DAC︒∠+∠=∵90ACB︒∠=∴90ACD BCE︒∠+∠=∴ACD BCE∠=∠在ACD与CBE△中,90ADC EACD BCEAC BC︒⎧∠=∠=⎪∠=∠⎨⎪=⎩∴ACD CBE≅∴,AD CE CD BE==又∵ 2.5, 1.7AD cm DE cm ==, 2.5 1.70.8()CD CE DE AD DE cm =-=-=-= ∴0.8BE cm =(2)∵,AD CD BE CE ⊥⊥∴90ADC E ︒∠=∠=∴90ACD DAC ︒∠+∠=∴90ACB ︒∠=∴90ACD BCE ︒∠+∠=∴ACD BCE ∠=∠在ACD 与CBE △中,90ADC E ACD BCE AC BC ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩∴ACD CBE ≅∴,AD CE CD BE ==又∵ED EC CD =+∴ED AD BE =+(3)∵BEC ADC BCA α∠=∠=∠=∴180BCE ACD a ︒∠+∠=-180BCE BCE a ︒∠+∠=-∴ACD BCE ∠=∠在ACD 与CBE △中, ADC E a ACD BCE AC BC ∠=∠=⎧⎪∠=∠⎨⎪=⎩∴ACD CBE ≅∴,AD CE CD BE ==又∵ED EC CD =+∴ED AD BE =+【点睛】本题考查的知识点是全等三角形的判定,确定一种判定定理,根据已知条件找到判定全等所需要的边相等或角相等的条件是解决这类题的关键.7.如图1,Rt △ABC 中,∠A =90°,AB =AC ,点D 是BC 边的中点连接AD ,则易证AD =BD =CD ,即AD =12BC ;如图2,若将题中AB =AC 这个条件删去,此时AD 仍然等于12BC . 理由如下:延长AD 到H ,使得AH =2AD ,连接CH ,先证得△ABD ≌△CHD ,此时若能证得△ABC≌△CHA,即可证得AH=BC,此时AD=12BC,由此可见倍长过中点的线段是我们三角形证明中常用的方法.(1)请你先证明△ABC≌△CHA,并用一句话总结题中的结论;(2)现将图1中△ABC折叠(如图3),点A与点D重合,折痕为EF,此时不难看出△BDE和△CDF都是等腰直角三角形.BE=DE,CF=DF.由勾股定理可知DE2+DF2=EF2,因此BE2+CF2=EF2,若图2中△ABC也进行这样的折叠(如图4),此时线段BE、CF、EF还有这样的关系式吗?若有,请证明;若没有,请举反例.(3)在(2)的条件下,将图3中的△DEF绕着点D旋转(如图5),射线DE、DF分别交AB、AC于点E、F,此时(2)中结论还成立吗?请说明理由.图4中的△DEF也这样旋转(如图6),直接写出上面的关系式是否成立.【答案】(1)详见解析;(2)有这样分关系式;(3)EF2=BE2+CF2.【解析】【分析】(1)想办法证明AB∥CH,推出∠BAC=∠ACH,再利用SAS证明△ABC≌△CHA即可.(2)有这样分关系式.如图4中,延长ED到H山顶DH=DE.证明△EDB≌△HD (SAS),推出∠B=∠HCD,BE=CH,∠FCH=90°,利用勾股定理,线段的垂直平分线的性质即可解决问题.(3)图5,图6中,上面的关系式仍然成立.【详解】(1)证明:如图2中,∵BD=DC,∠ADB=∠HDC,AD=HD,∴△ADB≌△HDC(SAS),∴∠B=∠HCD,AB=CH,∴AB∥CH,∴∠BAC+∠ACH=180°,∵∠BAC=90°,∴∠ACH=∠BAC=90°,∵AC=CA,∴△BAC≌△HCA(SAS),∴AH=BC,∴AD=DH=BD=DC,∴AD=12 BC.结论:直角三角形斜边上的中线等于斜边的一半.(2)解:有这样分关系式.理由:如图4中,延长ED到H山顶DH=DE.∵ED=DH,∠EDB=∠HDC,DB=DC,∴△EDB≌△HDC(SAS),∴∠B=∠HCD,BE=CH,∵∠B+∠ACB=90°,∴∠ACB+∠HCD=90°,∴∠FCH=90°,∴FH2=CF2+CH2,∵DF⊥EH,ED=DH,∴EF=FH,∴EF2=BE2+CF2.(3)图5,图6中,上面的关系式仍然成立.结论:EF2=BE2+CF2.证明方法类似(2).【点睛】本题属于几何变换综合题,考查了旋转变换,翻折变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.8.(1)在等边三角形ABC中,①如图①,D ,E 分别是边AC ,AB 上的点,且AE CD =,BD 与EC 交于点F ,则BFE ∠的度数是___________度;②如图②,D ,E 分别是边AC ,BA 延长线上的点,且AE CD =,BD 与EC 的延长线交于点F ,此时BFE ∠的度数是____________度;(2)如图③,在ABC ∆中,AC BC =,ACB ∠是锐角,点O 是AC 边的垂直平分线与BC 的交点,点D ,E 分别在AC ,OA 的延长线上,且AE CD =,BD 与EC 的延长线交于点F ,若ACB α∠=,求BFE ∠的大小(用含法α的代数式表示).【答案】(1)60;(2)60;(3)BFE α∠=【解析】【分析】(1)①只要证明△ACE ≌△CBD ,可得∠ACE=∠CBD ,推出∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°;②只要证明△ACE ≌△CBD ,可得∠ACE=∠CBD=∠DCF ,即可推出∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°;(2)只要证明△AEC ≌△CDB ,可得∠E=∠D ,即可推出∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【详解】解:(1)①如图①中,∵△ABC 是等边三角形,∴AC=CB ,∠A=∠BCD=60°,∵AE=CD ,∴△ACE ≌△CBD ,∴∠ACE=∠CBD ,∴∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°.故答案为60;②如图②,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∴∠CAE=∠BCD=′120°∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD=∠DCF,∴∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°.故答案为60;(2)如图③中,图③点O是AC边的垂直平分线与BC的交点,∴=,OC OA∴∠=∠=OAC ACOα=-,∴∠=∠︒180EAC DCBα=,AE CDAC BC=,∴∆≅∆,AEC CDB∴∠=∠,E D∴∠=∠+∠=∠+∠=∠=.BFE D DCF E ECA OACα【点睛】本题考查全等三角形的判定和性质和等腰三角形的性质和判定以及等边三角形的性质、线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题.9.在平面直角坐标系中,点A(0,5),B(12,0),在y轴负半轴上取点E,使OA=EO,作∠CEF=∠AEB,直线CO交BA的延长线于点D.(1)根据题意,可求得OE=;(2)求证:△ADO≌△ECO;(3)动点P从E出发沿E﹣O﹣B路线运动速度为每秒1个单位,到B点处停止运动;动点Q从B出发沿B﹣O﹣E运动速度为每秒3个单位,到E点处停止运动.二者同时开始运动,都要到达相应的终点才能停止.在某时刻,作PM⊥CD于点M,QN⊥CD于点N.问两动点运动多长时间△OPM与△OQN全等?【答案】(1)5;(2)见解析;(3)当两动点运动时间为72、174、10秒时,△OPM与△OQN全等【解析】【分析】(1)根据OA=OE即可解决问题.(2)根据ASA证明三角形全等即可解决问题.(2)设运动的时间为t秒,分三种情况讨论:当点P、Q分别在y轴、x轴上时;当点P、Q都在y轴上时;当点P在x轴上,Q在y轴时若二者都没有提前停止,当点Q提前停止时;列方程即可得到结论.【详解】(1)∵A(0,5),∴OE=OA=5,故答案为5.(2)如图1中,∵OE =OA ,OB ⊥AE ,∴BA =BE ,∴∠BAO =∠BEO ,∵∠CEF =∠AEB ,∴∠CEF =∠BAO ,∴∠CEO =∠DAO ,在△ADO 与△ECO 中,CE0DA0OA 0ECOE AOD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADO ≌△ECO (ASA ).(2)设运动的时间为t 秒,当PO =QO 时,易证△OPM ≌△OQN .分三种情况讨论:①当点P 、Q 分别在y 轴、x 轴上时PO =QO 得:5﹣t =12﹣3t ,解得t =72(秒), ②当点P 、Q 都在y 轴上时PO =QO 得:5﹣t =3t ﹣12,解得t =174(秒), ③当点P 在x 轴上,Q 在y 轴上时,若二者都没有提前停止,则PO =QO 得:t ﹣5=3t ﹣12,解得t =72(秒)不合题意; 当点Q 运动到点E 提前停止时,有t ﹣5=5,解得t =10(秒),综上所述:当两动点运动时间为72、174、10秒时,△OPM 与△OQN 全等. 【点睛】本题属于三角形综合题,考查了全等三角形的判定,坐标与图形的性质等知识,解题的关键是正确寻找全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考常考题型.10.综合与实践:我们知道“两边及其中一边的对角分别对应相等的两个三角形不一定全等”.但是,乐乐发现:当这两个三角形都是锐角三角形时,它们会全等.(1)请你用所学知识判断乐乐说法的正确性.如图,已知ABC ∆、111A B C ∆均为锐角三角形,且11AB A B =,11BC B C =,1C C ∠=∠. 求证:111ABC A B C ∆∆≌.(2)除乐乐的发现之外,当这两个三角形都是______时,它们也会全等.【答案】(1)见解析;(2)钝角三角形或直角三角形.【解析】【分析】(1)过B 作BD ⊥AC 于D ,过B 1作B 1D 1⊥B 1C 1于D 1,得出∠BDA=∠B 1D 1A 1=∠BDC=∠B 1D 1C 1=90°,根据SAS 证△BDC ≌△B 1D 1C 1,推出BD=B 1D 1,根据HL 证Rt △BDA ≌Rt △B 1D 1A 1,推出∠A=∠A 1,根据AAS 推出△ABC ≌△A 1B 1C 1即可.(2)当这两个三角形都是直角三角形时,直接利用HL 即可证明;当这两个三角形都是钝角三角形时,与(1)同理可证.【详解】(1)证明:过点B 作BD AC ⊥于D ,过1B 作1111B D A C ⊥于1D ,则11111190BDA B D A BDC B D C ∠=∠=∠=∠=︒.在BDC ∆和111B D C ∆中,1C C ∠=∠,111BDC B D C ∠=∠,11BC B C =,∴111BDC B D C ∆∆≌,∴11BD B D =.在Rt BDA ∆和111Rt B D A ∆中,11AB A B =,11BD B D =,∴111Rt Rt (HL)BDA B D A ∆∆≌,∴1A A ∠=∠.在ABC ∆和111A B C ∆中,1C C ∠=∠,1A A ∠=∠,11AB A B =,∴111(AAS)ABC A B C ∆∆≌.(2)如图,当这两个三角形都是直角三角形时,∵11AB A B =,11BC B C =,190C C ∠==∠︒.∴Rt ABC ∆≌111Rt A B C ∆(HL );∴当这两个三角形都是直角三角形时,它们也会全等;如图,当这两个三角形都是钝角三角形时,作BD ⊥AC ,1111B D A C ⊥,与(1)同理,利用AAS 先证明111BDC B D C ∆∆≌,得到11BD B D =,再利用HL 证明111Rt Rt BDA B D A ∆∆≌,得到1A A ∠=∠,再利用AAS 证明111ABC A B C ∆∆≌;∴当这两个三角形都是钝角三角形时,它们也会全等;故答案为:钝角三角形或直角三角形.【点睛】本题考查了全等三角形的性质和判定的应用,主要考查学生的推理能力.解题的关键是熟练掌握证明三角形全等的方法.。

全等三角形单元培优测试卷

全等三角形单元培优测试卷
故此题正确的是①②③④.
【点睛】
此题考查等边三角形的判定方法,熟记方法才能熟练运用.
10.已知,∠MON=30°,点A1、A2、A3在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=a,则△A7B7A8的边长为______.
【答案】64a
【详解】
在△ 中,AB=A1B,∠A=70°
可得:∠ =∠ =70°
在△ 中,A1B1=A1A2
可得:∠ =∠
根据外角和定理可得:∠ =∠ +∠
∴∠ =∠ =
同理可得:∠ =
∠ =
…….
以此类推:∠An=
故答案为: .
【点睛】
本题主要考查等腰三角形、三角形的基本概念以及规律的探索,准确识图,熟练掌握和灵活运用相关知识是解题的关键..
∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°.
又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°.
∵∠MON=∠1=30°,∴OA1=A1B1=a,∴A2B1=a.
∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°.
∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4a,A4B4=8B1A2=8a,A5B5=16B1A2=16a,以此类推:A7B7=64B1A2=64a.
∵点A、B、C在同一直线上,∴∠DBE=180°﹣60°﹣60°=60°,∴∠ABE=∠DBC=120°.
在△ABE和△DBC中,∵ ,∴△ABE≌△DBC,∴∠BAE=∠BDC,∴AE=CD,∴①正确;

八年级数学上册全等三角形单元提优测试卷(含解析)

八年级数学上册全等三角形单元提优测试卷(含解析)

八年级数学上册全等三角形单元提优测试卷考试时间:100分钟试卷满分:120分姓名:___________班级:___________学号:___________成绩:____________一.选择题(共10小题,满分30分,每小题3分)1.(3分)两个三角形有两个角对应相等,正确说法是()A.两个三角形全等B.两个三角形一定不全等C.如果还有一角相等,两三角形就全等D.如果一对等角的角平分线相等,两三角形全等2.(3分)如图,△ACB≌△A′CB′,∠A′CB′=65°,∠A′CB=35°,则∠ACA′的度数()A.20°B.30°C.35°D.40°3.(3分)如图,AB=AC,AD=AE,∠BAC=60°,∠C=25°,则∠BMD的度数为()A.50°B.65°C.70°D.85°4.(3分)根据下列已知条件,能画出唯一△ABC的是()A.AB=3,BC=4,AC=7 B.AB=4,BC=3,∠C=30°C.∠A=30°,AB=3,∠B=45°D.∠C=90°,AB=45.(3分)如图,AC与BD相交于点E,BE=ED,AE=EC,则△ABE≌△CDE的理由是()A.ASA B.SAS C.AAS D.SSS6.(3分)如图,用∠B=∠D,∠1=∠2直接判定△ABC≌△ADC的理由是()A.AAS B.SSS C.ASA D.SAS7.(3分)若△ABC≌△DEF,△ABC的周长为15,且AB=6,BC=4,则DF的长为()A.4 B.5 C.6 D.78.(3分)如图,已知△ABC中,DF=EF,BD=CE,AF⊥BC于F,则此图中全等三角形共有()A.5对B.4对C.3对D.2对9.(3分)如图,AD=AC,BD=BC,DC与AB相交于点E,则下列结论错误的是()A.△ABD≌△ABC B.△ADE≌△ACE C.△BDE≌△BCE D.△ACD≌△BCD10.(3分)下列说法中:①角平分线的点到角的两边的距离相等;②一条射线上的点到角的两边的距离相等,则这条射线是角的平分线;③有一直角边和一锐角相等两个直角三角形全等;④有两边和一角对应相等的两个三角形全等;⑤对应角相等的两个三角形是全等的;⑥面积相等两个三角形全等.其中不正确的说法有()A.2个B.3个C.4个D.5个二.填空题(共6小题,满分24分,每小题4分)11.(4分)已知:如图,AB=AC,BD⊥AC于D,CE⊥AB于E.欲证明BD=CE,需证明△≌△,理由为.12.(4分)如果△ABC≌△DEF,若AB=DE,∠B=50°,∠C=70°,则∠D=.13.(4分)如图,已知:∠A=∠D,∠1=∠2,下列条件中能使△ABC≌△DEF的有.①∠E=∠B;②ED=BC;③AB=EF;④AF=CD.14.(4分)如图1,已知△ABC的六个元素,则图2中甲、乙、丙三个三角形中和△ABC全等的有.15.(4分)如图所示,△ABC≌△AB′C′,∠CAC′=20°,∠BAB′=度.16.(4分)如图,OC是∠AOB的平分线,点P在OC上,PD⊥OA于D点,PD=6,则P 到OB的距离为cm.三.解答题(共8小题,满分66分)17.(7分)找出下列图形中的全等图形.18.(8分)如图,已知AC,BD交于O点,AD⊥BD,BC⊥AC,且AD=BC,求证:∠OAB =∠OBA.19.(8分)如图,△ABC中,已知AB=AC,D、E分别是CB、BC延长线上的点.且DB =CE.求证:∠D=∠E.20.(8分)已知AD平分∠CAB,且DC⊥AC,DB⊥AB,那么AB和AC相等吗?请说明理由.21.(8分)已知:如图,OD⊥AD,OH⊥AE,DE交GH于O.(1)若∠1=∠2,求证:OG=OE.(2)若OG=OE,求证:∠1=∠2.22.(9分)如图,∠BAC=∠BAD,点E在AB上.(1)添加一个条件,使△ACE≌△ADE,你添加的条件是;(2)根据(1)中你添加的条件,请再写出另外一对全等三角形,并证明.23.(9分)已知:如图,PM=PN,∠M=∠N.求证:AM=BN.分析:∵PM=PN,∴要证AM=BN,只要证P A=,只要证≌.证明:在△与△中,∠=∠()=()∠=∠()∴△≌△().∴P A=().∵PM=PN(),∴PM﹣=PN﹣,即AM=.24.(9分)如图在△CDE中,∠DCE=90°,DC=CE,DA⊥AB于A,EB⊥AB于B,试判断AB与AD,BE之间的数量关系,并证明.参考答案一.选择题(共10小题,满分30分,每小题3分)1.(3分)两个三角形有两个角对应相等,正确说法是()A.两个三角形全等B.两个三角形一定不全等C.如果还有一角相等,两三角形就全等D.如果一对等角的角平分线相等,两三角形全等【分析】此题是一道开放性题,实则还是考查学生对三角形全等的判定方法的掌握情况.此处可以运用排除法进行分析.【解答】解:两个三角形有两个角对应相等,那么第三个角也相等,这两个三角形的关系是全等或相似.所以排除A、B、C;D、如果一对等角的角平分线相等,两三角形全等,符合AAS,可证三角形全等.故选:D.2.(3分)如图,△ACB≌△A′CB′,∠A′CB′=65°,∠A′CB=35°,则∠ACA′的度数()A.20°B.30°C.35°D.40°【分析】根据全等三角形的性质得出∠A′CB′=∠ACB,求出∠B′CB=∠ACA′,代入=∠BCB′=∠A′CB′﹣∠A′CB求出即可.【解答】解:∵△ACB≌△A′CB′,∴∠A′CB′=∠ACB,∴∠A′CB′﹣∠A′CB=∠ACB﹣∠A′CB,∴∠B′CB=∠ACA′,∵∠A′CB′=65°,∠A′CB=35°,∴∠ACA′=∠BCB′=∠A′CB′﹣∠A′CB=65°﹣35°=30°,故选:B.3.(3分)如图,AB=AC,AD=AE,∠BAC=60°,∠C=25°,则∠BMD的度数为()A.50°B.65°C.70°D.85°【分析】首先根据三角形外角的性质可得∠BDC=25°+60°=85°,然后再证明△AEB≌△ADC,根据全等三角形的性质可得∠B=∠C=25°,再利用三角形内角和定理计算出∠BMD的度数.【解答】证明:∵∠BAC=60°,∠C=25°,∴∠BDC=25°+60°=85°,在△AEB和△ADC中,,∴△AEB≌△ADC(SAS),∴∠B=∠C=25°,∴∠DNB=180°﹣25°﹣85°=70°,故选:C.4.(3分)根据下列已知条件,能画出唯一△ABC的是()A.AB=3,BC=4,AC=7 B.AB=4,BC=3,∠C=30°C.∠A=30°,AB=3,∠B=45°D.∠C=90°,AB=4【分析】利用全等三角形的判定方法以及三角形三边关系分别判断得出即可.【解答】解:A、3+4=7,不符合三角形三边关系定理,即不能画出三角形,故本选项错误;B、根据AB=4,BC=3,∠A=30°不能画出唯一三角形,故本选项错误;C、∠A=30°,AB=3,∠B=45°,能画出唯一△ABC,故此选项正确;D、∠C=90°,AB=4,不能画出唯一三角形,故本选项错误;故选:C.5.(3分)如图,AC与BD相交于点E,BE=ED,AE=EC,则△ABE≌△CDE的理由是()A.ASA B.SAS C.AAS D.SSS【分析】由于BE=ED,AE=EC,再加上对顶角相等,则可根据“SAS”判断△ABE≌△CDE.【解答】解:在△ABE和△CDE中,,∴△ABE≌△CDE(SAS).故选:B.6.(3分)如图,用∠B=∠D,∠1=∠2直接判定△ABC≌△ADC的理由是()A.AAS B.SSS C.ASA D.SAS【分析】由于∠B=∠D,∠1=∠2,再加上公共边,则可根据“AAS”判断△ABC≌△ADC.【解答】解:在△ABC和△ADC中,,∴△ABC≌△ADC(AAS).故选:A.7.(3分)若△ABC≌△DEF,△ABC的周长为15,且AB=6,BC=4,则DF的长为()A.4 B.5 C.6 D.7【分析】先求出AC,根据全等三角形的性质得出DF=AC,即可得出选项.【解答】解:∵△ABC的周长为15,AB=6,BC=4,∴AC=15﹣6﹣4=5,∵△ABC≌△DEF,∴DF=AC=5,故选:B.8.(3分)如图,已知△ABC中,DF=EF,BD=CE,AF⊥BC于F,则此图中全等三角形共有()A.5对B.4对C.3对D.2对【分析】根据全等三角形的判定定理(SAS,ASA,AAS,SSS,HL)逐个判断即可.【解答】解:图中全等三角形有△BAD≌△CAE,△BAF≌△CAF,△DAF≌△EAF,△BAE≌△CAD,共4对,故选:B.9.(3分)如图,AD=AC,BD=BC,DC与AB相交于点E,则下列结论错误的是()A.△ABD≌△ABC B.△ADE≌△ACE C.△BDE≌△BCE D.△ACD≌△BCD 【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS.根据全等三角形的性质和判定推出即可.【解答】解:A、∵在△ABD和△ABC中∴△ABD≌△ABC(SSS),正确,故本选项错误;B、∵△ABD≌△ABC,∴∠DAE=∠CAE,在△ADE和△ACE中∴△ADE≌△ACE(SAS),正确,故本选项错误;C、∵△ABD≌△ABC,∴∠DBE=∠CBE,在△BDE和△BCE中∴△BDE≌△BCE(SAS),正确,故本选项错误;D、根据已知不能推出△ACD≌△BCD,错误,故本选项正确;故选:D.10.(3分)下列说法中:①角平分线的点到角的两边的距离相等;②一条射线上的点到角的两边的距离相等,则这条射线是角的平分线;③有一直角边和一锐角相等两个直角三角形全等;④有两边和一角对应相等的两个三角形全等;⑤对应角相等的两个三角形是全等的;⑥面积相等两个三角形全等.其中不正确的说法有()A.2个B.3个C.4个D.5个【分析】根据角的平分线性质和判定即可判断①②;全等三角形的判定定理有SAS,ASA,AAS,SSS,HL,根据判定定理判断③④⑤⑥即可.【解答】解:∵角平分线的点到角的两边的距离相等,∴①正确;∵在角的内部到角的两边的距离相等,则这条射线是角的平分线,∴②错误;如图:在Rt△ACB和Rt△DEF中,∠C=∠E=90°,∠A=∠D,AC=EF,则△ACB和△DEF就不全等,∴③错误;∵当符合SAS时两三角形全等,当符合SSA时,两三角形不全等,∴④错误;如图:DE∥BC,∴∠ADE=∠B,∠AED=∠C,符合两三角形的对应角相等,但是两三角形不全等,∴⑤错误;∵当一个三角形的底为2,高为1,而另一个三角形的底为1,高为2,两三角形的面积相等,但这两个三角形不全等,∴⑥错误;即不正确的有5个,故选:D.二.填空题(共6小题,满分24分,每小题4分)11.(4分)已知:如图,AB=AC,BD⊥AC于D,CE⊥AB于E.欲证明BD=CE,需证明△BDC≌△CEB,理由为∵BD⊥AC,CE⊥AB,∴∠BDC=∠BEC=90°,∵AB=AC,∴∠EBC=∠DCB,在△BDC与△CEB中,,∴△BDC≌△CEB(AAS),.【分析】根据AAS证明△BDC与△CEB全等即可.【解答】解:△BDC≌△CEB,理由如下:∵BD⊥AC,CE⊥AB,∴∠BDC=∠BEC=90°,∵AB=AC,∴∠EBC=∠DCB,在△BDC与△CEB中,,∴△BDC≌△CEB(AAS),故答案为:BDC;CEB;∵BD⊥AC,CE⊥AB,∴∠BDC=∠BEC=90°,∵AB=AC,∴∠EBC=∠DCB,在△BDC与△CEB中,,∴△BDC≌△CEB(AAS),12.(4分)如果△ABC≌△DEF,若AB=DE,∠B=50°,∠C=70°,则∠D=60°.【分析】根据全等三角形的对应角相等以及三角形的内角和是180°求解.【解答】解:∵△DEF≌△ABC,∠B=50°,∠C=70°,∴∠D=∠A=180°﹣∠B﹣∠C=60°.故答案为:60°13.(4分)如图,已知:∠A=∠D,∠1=∠2,下列条件中能使△ABC≌△DEF的有④.①∠E=∠B;②ED=BC;③AB=EF;④AF=CD.【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理和已知条件逐个判断即可.【解答】解:①∠E=∠B,不符合全等三角形的判定定理,不能推出△ABC≌△DEF,∴①错误;②ED=BC,不符合全等三角形的判定定理,不能推出△ABC≌△DEF,∴②错误;③AB=EF,不符合全等三角形的判定定理,不能推出△ABC≌△DEF,∴③错误;④∵AF=CD,∴AF+FC=CD+FC,∴AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴④正确;故答案为:④.14.(4分)如图1,已知△ABC的六个元素,则图2中甲、乙、丙三个三角形中和△ABC全等的有乙和丙.【分析】首先观察图形,然后根据三角形全等的判定方法(AAS与SAS),即可求得答案.【解答】解:如图:在△ABC和△MNK中,,∴△ABC≌△NKM(SAS);在△ABC和△HIG中,,∴△ABC≌△GHI(AAS).∴甲、乙、丙三个三角形中和△ABC全等的图形是:乙和丙.故答案为:乙和丙.15.(4分)如图所示,△ABC≌△AB′C′,∠CAC′=20°,∠BAB′=20度.【分析】要求∠BAB′的大小,要找它与已知角的关系,由三角形全等知∠CAB=∠C′AB′,从而得到∠CAC′=∠BAB′,可得答案.【解答】解:∵△ABC≌△AB′C′,∴∠CAB=∠C′AB′;∵∠CAC′+∠CAB=∠CAB,∠BAB′+∠CAB=∠C′AB′,∴∠CAC′+∠CAB=∠BAB′+∠CAB,∴∠CAC′=∠BAB′=20°.16.(4分)如图,OC是∠AOB的平分线,点P在OC上,PD⊥OA于D点,PD=6,则P 到OB的距离为6cm.【分析】可过点P作PE⊥OB,由角平分线的性质可得,PD=PE,进而可得出结论.【解答】解:如图,过点P作PE⊥OB,∵OC是∠AOB的平分线,点P在OC上,且PD⊥OA,PE⊥OB,∴PE=PD,又PD=6cm,∴PE=PD=6cm.故填6.三.解答题(共8小题,满分66分)17.(7分)找出下列图形中的全等图形.【分析】根据能够完全重合的两个图形是全等形即可判断出答案.【解答】解:由题意得:(1)和(10),(2)和(12),(4)和(8),(5)和(9)是全等图形.18.(8分)如图,已知AC,BD交于O点,AD⊥BD,BC⊥AC,且AD=BC,求证:∠OAB =∠OBA.【分析】利用HL判定全等,利用全等的性质可知∠OAB=∠OBA.【解答】证明:∵AD⊥BD,BC⊥AC,∴∠D=∠C=90°,∵AD=BC,AB=BA,∴Rt△ADB≌Rt△BCA(HL),∴∠OAB=∠OBA.19.(8分)如图,△ABC中,已知AB=AC,D、E分别是CB、BC延长线上的点.且DB =CE.求证:∠D=∠E.【分析】由已知条件,根据SAS判定△ABD≌△ACE,根据全等三角形的对应角相等,从而得到∠D=∠E.【解答】证明:∵AB=AC,∴∠ABC=∠ACB,∴∠ABD=∠ACE,∵AB=AC,DB=CE∴△ABD≌△ACE(SAS)∴∠D=∠E.20.(8分)已知AD平分∠CAB,且DC⊥AC,DB⊥AB,那么AB和AC相等吗?请说明理由.【分析】通过证明△ACD≌△ABD从而得出AB=AC.【解答】解:∵AD平分∠CAB,且DC⊥AC,DB⊥AB,∴∠CAD=∠BAD,∠ACD=∠ABD=90°.∵AD=AD,∴△ACD≌△ABD.∴AC=AB.21.(8分)已知:如图,OD⊥AD,OH⊥AE,DE交GH于O.(1)若∠1=∠2,求证:OG=OE.(2)若OG=OE,求证:∠1=∠2.【分析】(1)先根据角平分线的性质得:OD=OH,再证明△GDO≌△EHO,可得结论;(2)先证明△GDO≌△EHO,得OD=OH,根据角平分线的逆定理得:AO平分∠DAH,则∠1=∠2.【解答】证明:(1)∵∠1=∠2,OD⊥AD,OH⊥AE,∴OD=OH,∠ODG=∠OHE=90°,在△GDO和△EHO中,∵,∴△GDO≌△EHO(AAS),∴OG=OE;(2)∵OD⊥AD,OH⊥AE,∴∠ODG=∠OHE=90°,在△GDO和△EHO中,∵,∴△GDO≌△EHO(AAS),∴OD=OH,∴O在∠DAH的角平分线上,即AO平分∠DAH,∴∠1=∠2.22.(9分)如图,∠BAC=∠BAD,点E在AB上.(1)添加一个条件,使△ACE≌△ADE,你添加的条件是AC=AD;(2)根据(1)中你添加的条件,请再写出另外一对全等三角形,并证明.【分析】(1)由图形可知AE=AE,结合条件可再添加AC=AD,利用SAS可证明△ACE ≌△ADE;(2)利用SAS可证明△ACB≌△ADB.【解答】解:(1)∵在图形中有AE=AE,且∠BAC=∠BAD,∴可添加AC=AD,利用SAS判断△ACE≌△ADE,故答案为:AC=AD;(2)可证明△ACB≌△ADB,证明如下:在△ACB和△ADB中∴△ACB≌△ADB(SAS).23.(9分)已知:如图,PM=PN,∠M=∠N.求证:AM=BN.分析:∵PM=PN,∴要证AM=BN,只要证P A=PB,只要证△P AN≌△PBM.证明:在△P AN与△PBM中,∠P=∠P(公共角)PN=PM(已知)∠N=∠M(已知)∴△P AN≌△PBM(ASA).∴P A=PB(全等三角形的对应边相等).∵PM=PN(已知),∴PM﹣P A=PN﹣PB,即AM=BN.【分析】欲证明AM=AN,因为PM=PN,只要证明P A=PB即可,只要证明△P AN≌△PBM.【解答】解:分析:∵PM=PN,∴要证AM=BN,只要证P A=PB,只要证△P AN≌△PBM.证明:在△P AN和△PBM中,,∴△P AN≌△PBM(ASA)∴P A=PB(全等三角形对应边相等)∵PM=PN(已知)∴PM﹣P A=PN﹣PB,即AM=BN.故答案分别为:PB,△P AN,△PBM,P AN.PBM,P,P,公共角,PM,PN,已知,N,M,已知,P AN,PBM,ASA,PB,全等三角形对应边相等,已知,P A,PB,BN.24.(9分)如图在△CDE中,∠DCE=90°,DC=CE,DA⊥AB于A,EB⊥AB于B,试判断AB与AD,BE之间的数量关系,并证明.【分析】先证明△ACD≌△BEC,根据全等三角形的对应边相等得出其两边相等,再利用边与边之间的关系即可得出AB是BE与AD的和.【解答】解:结论:AB=AD+BE.证明:∵DA⊥AB于A,EB⊥AB于B.∴∠A=∠B;∵∠DCE=90°,∴∠ADC+∠ACD=90°,∠ACD+∠ECB=90°;∴∠ADC=∠ECB;又∵DC=CE,在△ACD和△BEC中,,∴△ACD≌△BEC;∴AD=BC,AC=BE;∴AB=AC+CB=BE+AD.。

苏科版八年级数学上册《全等三角形》培优单元测试卷含答案

苏科版八年级数学上册《全等三角形》培优单元测试卷含答案

苏科版八年级数学上册《全等三角形》培优单元测试卷一、选择题(在每小题所给出的四个选项中恰有一项是符合题目要求的)1.下列条件中,不能判定△ABC≌△A′B′C′的是()A.AB=A′B′,∠A=∠A′,AC=A′C′B.AB=A′B′,∠A=∠A′,∠B=∠B′C.AB=A′B′,∠A=∠A′,∠C=∠C′D.∠A=∠A′,∠B=∠B′,∠C=∠C′2.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SAS B.ASA C.AAS D.SSS3.如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F4.如图,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则三个结论①AS=AR;②QP∥AR;③△BPR≌△QSP中()A.全部正确 B.仅①和②正确 C.仅①正确 D.仅①和③正确5.如图是一个风筝设计图,其主体部分(四边形ABCD)关于BD所在的直线对称,AC与BD相交于点O,且AB≠AD,则下列判断不正确的是()A.△ABD≌△CBD B.△ABC是等边三角形C.△AOB≌△COB D.△AOD≌△COD6.下列命题中,不正确的是()A.各有一个角为95°,且底边相等的两个等腰三角形全等B.各有一个角为40°,且底边相等的两个等腰三角形全等C.各有一个角为40°,且其所对的直角边相等的两个直角三角形全等D.各有一个角为40°,且有斜边相等的两个直角三角形全等二、填空题(不需写出解答过程,请把答案直接填写在相应位的置上)7.如图,在直角三角形ABC中,∠C=90°,AC=10cm,BC=5cm,一条线段PQ=AB,P、Q两点分别在AC和AC的垂线AX上移动,则当AP= 时,才能使△ABC和△APQ全等.8.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF,则下列结论:①DE=DF;②AD平分∠BAC;③AE=AD;④AB+AC=2AE中正确的是.9.如图,a∥b,点A在直线a上,点C在直线b上,∠BAC=90°,AB=AC,∠1=30°,则∠2的度数为.10.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确结论的序号是(请将所有正确结论的序号都填上).三、解答题(请在答题的指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)11.已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=BD.12.如图,△ABC为等边三角形,D为边BA延长线上一点,连接CD,以CD为一边作等边三角形CDE,连接AE.(1)求证:△CBD≌△CAE.(2)判断AE与BC的位置关系,并说明理由.13.如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于P.(1)求证:△ABE≌△CAD;(2)求∠PBQ的度数.14.如图,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB 的中点.如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动.当一个点停止运动时时,另一个点也随之停止运动.设运动时间为t.(1)用含有t的代数式表示CP.(2)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;(3)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?《第1章全等三角形》参考答案与试题解析一、选择题(在每小题所给出的四个选项中恰有一项是符合题目要求的)1.下列条件中,不能判定△ABC≌△A′B′C′的是()A.AB=A′B′,∠A=∠A′,AC=A′C′B.AB=A′B′,∠A=∠A′,∠B=∠B′C.AB=A′B′,∠A=∠A′,∠C=∠C′D.∠A=∠A′,∠B=∠B′,∠C=∠C′【考点】全等三角形的判定.【分析】根据三角形全等的判定方法,SSS、SAS、ASA、AAS,逐一检验.【解答】解:A、符合SAS判定定理,故本选项错误;B、符合ASA判定定理,故本选项错误;C、符合AAS判定定理,故本选项错误;D、没有AAA判定定理,故本选项正确.故选D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.2.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SAS B.ASA C.AAS D.SSS【考点】全等三角形的应用.【分析】在△ADC和△ABC中,由于AC为公共边,AB=AD,BC=DC,利用SSS定理可判定△ADC≌△ABC,进而得到∠DAC=∠BAC,即∠QAE=∠PAE.【解答】解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,即∠QAE=∠PAE.故选:D.【点评】本题考查了全等三角形的应用;这种设计,用SSS判断全等,再运用性质,是全等三角形判定及性质的综合运用,做题时要认真读题,充分理解题意.3.如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F【考点】全等三角形的判定.【分析】根据全等三角形的判定定理,即可得出答.【解答】解:∵AB=DE,∠B=∠DEF,∴添加AC∥DF,得出∠ACB=∠F,即可证明△ABC≌△DEF,故A、D都正确;当添加∠A=∠D时,根据ASA,也可证明△ABC≌△DEF,故B正确;但添加AC=DF时,没有SSA定理,不能证明△ABC≌△DEF,故C不正确;故选:C.【点评】本题考查了全等三角形的判定定理,证明三角形全等的方法有:SSS,SAS,ASA,AAS,还有直角三角形的HL定理.4.如图,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则三个结论①AS=AR;②QP∥AR;③△BPR≌△QSP中()A.全部正确 B.仅①和②正确 C.仅①正确 D.仅①和③正确【考点】角平分线的性质;全等三角形的判定与性质.【专题】压轴题.【分析】判定线段相等的方法可以由全等三角形对应边相等得出;判定两条直线平行,可以由“同位角相等,两直线平行”或“内错角相等,两直线平行”或“同旁内角互补,两直线平行”得出;判定全等三角形可以由SSS、SAS、ASA、AAS或HL得出.【解答】解:∵PR=PS,PR⊥AB于R,PS⊥AC于S,AP=AP∴△ARP≌△ASP(HL)∴AS=AR,∠RAP=∠SAP∵AQ=PQ∴∠QPA=∠SAP∴∠RAP=∠QPA∴QP∥AR而在△BPR和△QSP中,只满足∠BRP=∠QSP=90°和PR=PS,找不到第3个条件,所以无法得出△BPR ≌△QSP故本题仅①和②正确.故选B.【点评】本题涉及到全等三角形的判定和角平分线的判定,需要结合已知条件,求出全等三角形或角平分线,从而判定三个选项的正确与否.5.如图是一个风筝设计图,其主体部分(四边形ABCD)关于BD所在的直线对称,AC与BD相交于点O,且AB≠AD,则下列判断不正确的是()A.△ABD≌△CBD B.△ABC是等边三角形C.△AOB≌△COB D.△AOD≌△COD【考点】轴对称的性质;全等三角形的判定;等边三角形的判定.【分析】先根据轴对称的性质得出AB=BC,AD=CD,OA=OC,BD⊥AC,再根据全等三角形的判定定理即可得出结论.【解答】解:∵主体部分(四边形ABCD)关于BD所在的直线对称,AC与BD相交于点O,∴AB=BC,AD=CD,OA=OC,BD⊥AC,在△ABD与△CBD中,,∴△ABD≌△CBD,故A正确;在△AOB与△COB中,,∴△AOB≌△COB,故C正确;在△AOD与△COD中,,∴△AOD≌△COD,故D正确;△ABC是等腰三角形,故B错误.故选B.【点评】本题考查的是轴对称的性质,熟知如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线是解答此题的关键.6.下列命题中,不正确的是()A.各有一个角为95°,且底边相等的两个等腰三角形全等B.各有一个角为40°,且底边相等的两个等腰三角形全等C.各有一个角为40°,且其所对的直角边相等的两个直角三角形全等D.各有一个角为40°,且有斜边相等的两个直角三角形全等【考点】全等三角形的判定.【专题】证明题.【分析】根据全等三角形的判定定理:SAS,SSS,AAS,ASA对各个选项逐一分析即可【解答】解:A、∵各有一个角为95°,这个角只能是顶角,∴这两个等腰三角形全等,本选项正确;B、∵不知这个角是顶角还是底角,∴这两个等腰三角形不一定全等,故本选项错误;C、∵各有一个角为40°,∴此直角三角形各个角相等,再加上且其所对的直角边相等,∴两个直角三角形全等,本选项正确,D、∵各有一个角为40°,∴此直角三角形各个角相等,再加上有斜边相等,∴两个直角三角形全等,本选项正确,【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二、填空题(不需写出解答过程,请把答案直接填写在相应位的置上)7.如图,在直角三角形ABC中,∠C=90°,AC=10cm,BC=5cm,一条线段PQ=AB,P、Q两点分别在AC和AC的垂线AX上移动,则当AP= 5cm或10cm 时,才能使△ABC和△APQ全等.【考点】全等三角形的判定.【分析】本题要分情况讨论:①Rt△APQ≌Rt△CBA,此时AP=BC=5cm,可据此求出P点的位置;②Rt△QAP≌Rt△BCA,此时AP=AC,P、C重合.【解答】解:∵PQ=AB,∴根据三角形全等的判定方法HL可知,①当P运动到AP=BC时,△ABC≌△QPA,即AP=BC=5cm;②当P运动到与C点重合时,△QAP≌△BCA,即AP=AC=10cm.【点评】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、HL.由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.8.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF,则下列结论:①DE=DF;②AD平分∠BAC;③AE=AD;④AB+AC=2AE中正确的是①②④.【考点】全等三角形的判定与性质;角平分线的性质.【分析】由HL证明Rt△BDE≌Rt△CDF,得出对应边相等DE=DF,得出AD平分∠BAC,①②正确;由AE>AD,得出③不正确,由全等三角形的对应边相等得出BE=CF,AE=AF,得出④正确,即可得出结果.【解答】解:∵DE⊥AB于E,DF⊥AC于F,∴∠E=∠DFC=90°,在Rt△BDE和Rt△CDF中,,∴Rt△BDE≌Rt△CDF(HL),∴DE=DF,①正确,∴AD平分∠BAC,②正确,∵在Rt△ADE中,AE是斜边,∴AE>AD,③不正确,∵Rt△BDE≌Rt△CDF,∴BE=CF,AE=AF,∴AB+AC=AB+AF+CF=AB+AE+BE=2AE,④正确;正确的是①②④.故答案为:①②④.【点评】本题考查了全等三角形的判定与性质、角平分线的判定;证明三角形全等得出对应边相等是解决问题的关键9.如图,a∥b,点A在直线a上,点C在直线b上,∠BAC=90°,AB=AC,∠1=30°,则∠2的度数为75°.【考点】平行线的性质.【专题】计算题;线段、角、相交线与平行线.【分析】由等腰直角三角形的性质求出∠ACB的度数,进而求出∠1+∠ACB的度数,再利用两直线平行内错角相等即可求出∠2的度数.【解答】解:∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,∵∠1=30°,∴∠1+∠ACB=75°,∵a∥b,∴∠2=∠1+∠ACB=75°,故答案为:75°【点评】此题考查了平行线的性质,以及等腰直角三角形的性质,熟练掌握性质是解本题的关键.10.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确结论的序号是①②④(请将所有正确结论的序号都填上).【考点】全等三角形的判定与性质;线段垂直平分线的性质.【分析】根据角平分线性质即可推出①,根据勾股定理即可推出AR=AS,根据等腰三角形性质推出∠QAP=∠QPA,推出∠QPA=∠BAP,根据平行线判定推出QP∥AB即可;在Rt△BRP和Rt△QSP中,只有PR=PS.无法判断△BRP≌△QSP;连接RS,与AP交于点D,先证△ARD≌△ASD,则RD=SD,∠ADR=∠ADS=90°.【解答】解:①∵PR⊥AB,PS⊥AC,PR=PS,∴点P在∠A的平分线上,∠ARP=∠ASP=90°,∴∠SAP=∠RAP,在Rt△ARP和Rt△ASP中,由勾股定理得:AR2=AP2﹣PR2,AS2=AP2﹣PS2,∵AD=AD,PR=PS,∴AR=AS,∴①正确;②∵AQ=QP,∴∠QAP=∠QPA,∵∠QAP=∠BAP,∴∠QPA=∠BAP,∴QP∥AR,∴②正确;③在Rt△BRP和Rt△QSP中,只有PR=PS,不满足三角形全等的条件,故③错误;④如图,连接RS,与AP交于点D.在△ARD和△ASD中,,所以△ARD≌△ASD.∴RD=SD,∠ADR=∠ADS=90°.所以AP垂直平分RS,故④正确.故答案为:①②④.【点评】本题考查了等边三角形的性质和判定,全等三角形的性质和判定,平行线的性质和判定,角平分线性质的应用,熟练掌握全等三角形的判定和性质是解题的关键.三、解答题(请在答题的指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)11.(2015•无锡)已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=BD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)根据CE=DE得出∠ECD=∠EDC,再利用平行线的性质进行证明即可;(2)根据SAS证明△AEC与△BED全等,再利用全等三角形的性质证明即可.【解答】证明:(1)∵AB∥CD,∴∠AEC=∠ECD,∠BED=∠EDC,∵CE=DE,∴∠ECD=∠EDC,∴∠AEC=∠BED;(2)∵E是AB的中点,∴AE=BE,在△AEC和△BED中,,∴△AEC≌△BED(SAS),∴AC=BD.【点评】本题主要考查了全等三角形的判定以及全等三角形的性质,关键是根据SAS证明全等.12.(2014秋•马鞍山期末)如图,△ABC为等边三角形,D为边BA延长线上一点,连接CD,以CD 为一边作等边三角形CDE,连接AE.(1)求证:△CBD≌△CAE.(2)判断AE与BC的位置关系,并说明理由.【考点】全等三角形的判定与性质;平行线的判定;等边三角形的性质.【分析】(1)根据等边三角形各内角为60°和各边长相等的性质可证∠ECA=∠DCB,AC=BC,EC=DC,即可证明△ECA≌△DCB;(2)根据△ECA≌△DCB可得∠EAC=60°,根据内错角相等,平行线平行即可解题.【解答】证明:(1)∵△ABC、△DCE为等边三角形,∴AC=BC,EC=DC,∠ACB=∠ECD=∠DBC=60°,∵∠ACD+∠ACB=∠DCB,∠ECD+∠ACD=∠ECA,∴∠ECA=∠DCB,在△ECA和△DCB中,,∴△ECA≌△DCB(SAS);(2)∵△ECA≌△DCB,∴∠EAC=∠DBC=60°,又∵∠ACB=∠DBC=60°,∴∠EAC=∠ACB=60°,∴AE∥BC.【点评】本题考查了全等三角形的判定,考查了全等三角形对应角相等的性质,本题中求证△ECA≌△DCB是解题的关键.13.(2015秋•无锡校级月考)如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于P.(1)求证:△ABE≌△CAD;(2)求∠PBQ的度数.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)根据等边三角形的性质可得AB=AC,∠BAC=∠C=60°,然后利用“边角边”即可证明两三角形;(2)由SAS可得△ABE≌△CAD,进而得出对应角相等,再通过角之间的转化即可求解∠BPD的度数,进而求得结论.【解答】(1)证明:∵△ABC是等边三角形,∴AB=AC,∠BAC=∠C=60°,在△ABE与△CAD中,,∴△ABE≌△CAD(SAS);(2)由(1)知△ABE≌△CAD,∴∠ABE=∠CAD,∴∠BPQ=∠ABE+∠BAP=∠CAD+∠BAP=∠BAC=60°.∴∠PBQ=90°﹣∠BPQ=30°.【点评】本题考查了全等三角形的判定与性质,等边三角形的性质,熟练掌握这两个性质是解决问题的关键.14.(2013秋•仪征市期末)如图,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB 的中点.如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动.当一个点停止运动时时,另一个点也随之停止运动.设运动时间为t.(1)用含有t的代数式表示CP.(2)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;(3)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?【考点】全等三角形的判定;等腰三角形的性质.【专题】几何图形问题;动点型;分类讨论.【分析】(1)求出BP=3t,即可求出答案;(2)求出BP、CQ、CP,根据全等三角形的判定推出即可;(3)设当点Q的运动速度为x厘米/时,时间是t小时,能够使△BPD与△CQP全等,求出BD=5厘米,BP=3t厘米,CP=(8﹣3t)厘米,CQ=xt厘米,∠B=∠C,根据全等三角形的性质得出方程,求出方程的解即可.【解答】解:(1)∵点P在线段BC上以3厘米/秒的速度由B点向C点运动,∴BP=3t厘米,∵BC=8厘米,∴CP=(8﹣3t)厘米;(2)点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP全等,理由是:∵AB=AC=10厘米,点D为AB的中点,∴∠B=∠C,BD=5厘米,∵BP=CQ=3t厘米=3厘米,∴CP=8厘米﹣3厘米=5厘米=BD,在△DBP和△PCQ中,,∴△DBP≌△PCQ(SAS);(3)设当点Q的运动速度为x厘米/时,时间是t小时,能够使△BPD与△CQP全等,∵BD=5厘米,BP=3t厘米,CP=(8﹣3t)厘米,CQ=xt厘米,∠B=∠C,∴当BP=CQ,BD=CP或BP=CP,BD=CQ时,△BPD与△CQP全等,即①3t=xt,5=8﹣3t,解得:x=3(不合题意,舍去),②3t=8﹣3t,5=xt,解得:x=,即当点Q的运动速度为厘米/时时,能够使△BPD与△CQP全等.【点评】本题考查了全等三角形的判定和性质的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,用了分类讨论思想.。

八年级数学上册《全等三角形》单元测试卷(有答案)

八年级数学上册《全等三角形》单元测试卷(有答案)

八年级数学上册《全等三角形》单元测试卷(有答案)一.选择题1.下列各组图形中不是全等形的是()A.B.C.D.2.两个全等图形中可以不同的是()A.位置B.长度C.角度D.面积3.下列图形是全等图形的是()A.B.C.D.4.如图线段AB、DC相交于点O,已知OC=OB,添加一个条件使△OCA≌△OBD,下列添加条件中,不正确的是()A.AC=DB B.∠C=∠B C.OA=OD D.∠A=∠D5.如图所示,H是△ABC的高AD,BE的交点,且DH=DC,则下列结论:①BD=AD;②BC=AC;③BH=AC;④CE=CD中正确的有()A.1个B.2个C.3个D.4个6.在△ABC和△ADC中,有下列三个论断:(1)AB=AD,(2)∠BAC=∠DAC,(3)BC=DC.将两个论断作为条件,另一个论断作为结论构成三个命题:(1)若AB=AD,∠BAC=∠DAC,则BC=DC;(2)若AB=AD,BC=DC,则∠BAC=∠DAC;(3)若∠BAC=∠DAC,BC=DC,则AB=AD.其中,正确命题的个数为()A.1个B.2个C.3个D.0个7.△ABC中,AB=AC=12厘米,∠B=∠C,BC=9厘米,点D为AB的中点.如果点P在线段BC上以v厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q的运动速度为3厘米/秒,则当△BPD与△CQP全等时,v的值为()A.2.5 B.3 C.2.25或3 D.1或58.如图,AC与BD相交于点O,∠D=∠C.添加下列哪个条件后,仍不能使△ADO≌△BCO的是()A.AD=BC B.AC=BD C.OD=OC D.∠ABD=∠BAC9.一块三角形玻璃,被摔成如图所示的四块,小敏想去店里买一块形状、大小与原来一样的玻璃,借助“全等三角形”的相关知识,小敏只带了一块去,则这块玻璃的编号是()A.①B.②C.③D.④10.下列画图语句中,正确的是()A.画射线OP=3cm B.画出A、B两点的距离C.延长射线OA D.连接A、B两点二.填空题11.如图,已知∠CAE=∠DAB,AC=AD.给出下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件为.(注:把你认为正确的答案序号都填上)12.如图,在正方形网格中,∠1+∠2+∠3=.13.要测量河岸相对两点A,B的距离,已知AB垂直于河岸BF,先在BF上取两点C,D,使CD=CB,再过点D作BF的垂线段DE,使点A,C,E在一条直线上,如图,测出DE=20米,则AB的长是米.14.下列说法:其中正确的是.(填序号)①用圆规在已知直线上截取一条线段等于已知线段属于尺规作图;②射线AB与射线BA表示同一条射线;③若AC=BC,则点C是线段AB的中点;④钟表在8:30时,时针与分针的夹角是60°.15.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=.16.如图所示,尺规作图作∠AOB的平分线,方法如下:以O为圆心,任意长为半径画弧交OA,OB于C、D,再分别以点C、D为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP,由作法得到△OCP≌△ODP的根据是.17.如图,△ABC与△ADC中,∠B=∠D=90°,要使△ABC≌△ADC,还需添加的一个条件是(写一个即可).18.在△ABC中,AB=6,AC=2,AD是BC边上的中线,则AD的取值范围是.19.如图,图中由实线围成的图形与①是全等形的有.(填序号)20.如图,△ABC≌△DCB,若AC=7,BE=5,则DE的长为.三.解答题21.已知:如图,点A、E、F、C在同一条直线上,AD∥CB,∠1=∠2,AE=CF.求证:△ADF ≌△CBE.22.如图,AB=DE,AC=DF,BE=CF,求证:△ABC≌△DEF.23.如图,点E在AB上,△ABC≌△DEC,求证:CE平分∠BED.24.如图,△ABD≌△CBD,若∠A=80°,∠ABC=70°,求∠ADC的度数.25.我们知道能完全重合的图形叫做全等图形,因此,如果两个四边形能完全重合,那么这两个四边形全等,也就是说,当两个四边形的四个内角、四条边都分别对应相等时,这两个四边形全等.请借助三角形全等的知识,解决有关四边形全等的问题.如图,已知,四边形ABCD和四边形A′B′C′D′中,AB=A′B′,BC=B′C′,∠B=∠B′,∠C=∠C′,现在只需补充一个条件,就可得四边形ABCD≌四边形A′B′C′D′.下列四个条件:①∠A=∠A′;②∠D=∠D′;③AD=A′D′;④CD=C′D′(1)其中,符合要求的条件是.(直接写出编号)(2)选择(1)中的一个条件,证明四边形ABCD≌四边形A′B′C′D′.26.如图,AB=AC,∠BAC=90°,BD⊥AE于D,CE⊥AE于E,且BD>CE.求证:BD=EC+ED.参考答案与解析一.选择题1.解:观察发现,A、C、D选项的两个图形都可以完全重合,∴是全等图形,B选项中圆与椭圆不可能完全重合,∴不是全等形.故选:B.2.解:两个全等图形中对应边的长度,对应角的角度,图形的面积相等,可以不同的是位置.故选:A.3.解:A、两个图形相似,错误;B、两个图形全等,正确;C、两个图形相似,错误;D、两个图形不全等,错误;故选:B.4.解:根据题意,已知OC=OB,∠AOC=∠COB,∴只需添加对顶角的邻边,即OA=OD,或任意一组对应角,即∠C=∠B,∠A=∠D;所以,选项A错误;故选:A.5.解:①∵BE⊥AC,AD⊥BC∴∠AEH=∠ADB=90°∵∠HBD+∠BHD=90°,∠EAH+∠AHE=90°,∠BHD=∠AHE∴∠HBD=∠EAH∵DH=DC∴△BDH≌△ADC(AAS)∴BD=AD,BH=AC②:∵BC=AC∴∠BAC=∠ABC∵由①知,在Rt△ABD中,BD=AD∴∠ABC=45°∴∠BAC=45°∴∠ACB=90°∵∠ACB+∠DAC=90°,∠ACB<90°∴结论②为错误结论.③:由①证明知,△BDH≌△ADC∴BH=AC④:∵CE=CD∵∠ACB=∠ACB;∠ADC=∠BEC=90°∴△BEC≌△ADC由于缺乏条件,无法证得△BEC≌△ADC∴结论④为错误结论综上所述,结论①,③为正确结论,结论②,④为错误结论,根据题意故选B.故选:B.6.解:∵AB=AD,∠BAC=∠DAC,AC=AC,∴△ABC≌△ADC,∴BC=DC,故(1)正确;∵AB=AD,BC=DC,AC=AC,∴△ABC≌△ADC,∴∠BAC=∠DAC,故(2)正确;由CB=CD,∠BAC=∠DAC,AC=AC,不能证明△ABC≌△ADC,故(3)不正确.故选:B.7.解:∵△ABC中,AB=AC=12厘米,点D为AB的中点,∴BD=6厘米,若△BPD≌△CPQ,则需BD=CQ=6厘米,BP=CP=BC=×9=4.5(厘米),∵点Q的运动速度为3厘米/秒,∴点Q的运动时间为:6÷3=2(s),∴v=4.5÷2=2.25(厘米/秒);若△BPD≌△CQP,则需CP=BD=6厘米,BP=CQ,∴,解得:v=3;∴v的值为:2.25或3,故选:C.8.解:添加AD=CB,根据AAS判定△ADO≌△BCO,添加OD=OC,根据ASA判定△ADO≌△BCO,添加∠ABD=∠CAB得OA=OB,可根据AAS判定△ADO≌△BCO,故选:B.9.解:因为第③块中有完整的两个角以及他们的夹边,利用ASA易证三角形全等,故应带第3块.故选:C.10.解:A、射线OP无限长,所以A选项不符合题意;B、量出A、B点的距离,所以B选项不符合题意;C、射线OA不需要延长,只能反向延长射线OA,所以C选项不符合题意;D、用直尺可以连接A、B两点,所以D选项符合题意.故选:D.二.填空题11.解:∵∠CAE=∠DAB,∴∠CAE+∠EAB=∠DAB+∠EAB,即∠CAB=∠DAE;又AC=AD;所以要判定△ABC≌△AED,需添加的条件为:①AB=AE(SAS);③∠C=∠D(ASA);④∠B=∠E(AAS).故填①、③、④.12.解:∵在△ABC和△ADE中,∴△ABC≌△ADE(SAS),∴∠4=∠3,∵∠1+∠4=90°,∴∠3+∠1=90°,∵∠2=45°,∴∠1+∠2+∠3=135°,故答案为:135°.13.解:∵AB⊥BD,ED⊥AB,∴∠ABC=∠EDC=90°,在△ABC和△EDC中,,∴△ABC≌△EDC(ASA),∴AB=ED=20.故答案为:20.14.解:①用圆规在已知直线上截取一条线段等于已知线段属于尺规作图,所以本说法正确;②射线AB与射线BA表示同一条射线,射线有方向,所以本说法错误;③若AC=BC,则点C是线段AB的中点,A,B,C不一定在一条直线上,所以本说法错误;④钟表在8:30时,时针与分针的夹角是75°,所以本说法错误.故答案为:①.15.解:∵在△ABC和△DBE中,∴△ABC≌△DBE(SAS),∴∠3=∠ACB,∵∠ACB+∠1=90°,∴∠1+∠3=90°,∴∠1+∠2+∠3=90°+45°=135°,故答案为:135°.16.解:∵OC=OD,PC=PD(同圆或等圆的半径相等),OP=OP(公共边),∴△OCP≌△ODP(SSS).故填SSS.17.解:已知∠B=∠D,AC是公共边,故添加CB=CD、AB=AD、∠1=∠2、∠3=∠4后可分别根据HL,AAS,AAS能判定△ABC≌△ADC.18.解:延长AD至E,使DE=AD,连接CE.在△ABD和△ECD中,,∴△ABD≌△ECD(SAS),∴CE=AB.在△ACE中,CE﹣AC<AE<CE+AC,即4<2AD<8,2<AD<4.故答案为:2<AD<4.19.解:由图可知,图上由实线围成的图形与①是全等形的有②,③,故答案为:②③.20.解:∵△ABC≌△DCB,∴DB=AC=7,∴DE=BD﹣BE=7﹣5=2,故答案为:2.三.解答题21.证明:∵AD∥CB,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在△ADF和△CBE中,∴△ADF≌△CBE(ASA).22.解:∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC和△DEF中,∵,∴△ABC≌△DEF(SSS).23.证明:∵△ABC≌△DEC,∴∠B=∠DEC,BC=EC,∴∠B=∠BEC,∴∠BEC=∠DEC,∴CE平分∠BED.24.解:∵△ABD≌△CBD,∴∠C=∠A=80°,∴∠ADC=360°﹣∠A﹣∠ABC﹣∠C=360°﹣80°﹣80°﹣70°=130°.25.解:(1)符合要求的条件是①②④,故答案为:①②④;(2)选④,证明:连接AC、A′C′,在△ABC与△A′B′C′中,,∴△ABC≌△A′B′C′(SAS),∴AC=A′C′,∠ACB=∠A′C′B′,∵∠BCD=∠B′C′D′,∴∠BCD﹣∠ACB=∠B′C′D′﹣∠A′C′B′,∴∠ACD=∠A′C′D′,在△ACD和△A′C′D中,,∴△ACD≌△A′C′D′(SAS),∴∠D=∠D,∠DAC=∠D′A′C′,DA=D′A′,∴∠BAC+∠DAC=∠B′A′C′+∠D′A′C′,即∠BAD=∠B′A′D′,∴四边形ABCD和四边形A′B′C′D′中,AB=A′B′,BC=B′C′,AD=A′D′,DC=D′C′,∠B=∠B′,∠BCD=∠B′C′D′,∠D=∠D′,∠BAD=∠B′A′D′,∴四边形ABCD≌四边形A′B′C′D′.26.证明:∵∠BAC=90°,CE⊥AE,BD⊥AE,∴∠ABD+∠BAD=90°,∠BAD+∠DAC=90°,∠ADB=∠AEC=90°.∴∠ABD=∠DAC.∵在△ABD和△CAE中,∴△ABD≌△CAE(AAS).∴BD=AE,EC=AD.∵AE=AD+DE,∴BD=EC+ED.。

八年级数学全等三角形单元培优测试卷

八年级数学全等三角形单元培优测试卷

八年级数学全等三角形单元培优测试卷一、八年级数学轴对称三角形填空题(难)1.在等腰△ABC中,AD⊥BC交直线BC于点D,若AD=12BC,则△ABC的顶角的度数为_____.【答案】30°或150°或90°【解析】试题分析:分两种情况;①BC为腰,②BC为底,根据直角三角形30°角所对的直角边等于斜边的一半判断出∠ACD=30°,然后分AD在△ABC内部和外部两种情况求解即可.解:①BC为腰,∵AD⊥BC于点D,AD=12 BC,∴∠ACD=30°,如图1,AD在△ABC内部时,顶角∠C=30°,如图2,AD在△ABC外部时,顶角∠ACB=180°﹣30°=150°,②BC为底,如图3,∵AD⊥BC于点D,AD=12 BC,∴AD=BD=CD,∴∠B=∠BAD,∠C=∠CAD,∴∠BAD+∠CAD=12×180°=90°,∴顶角∠BAC=90°,综上所述,等腰三角形ABC的顶角度数为30°或150°或90°.故答案为30°或150°或90°.点睛:本题考查了含30°交点直角三角形的性质,等腰三角形的性质,分类讨论是解题的关键.2.在直角坐标系中,O 为坐标原点,已知点 A(1,2),点 P 是 y 轴正半轴上的一点,且△AOP 为等腰三角形,则点P 的坐标为_____________.【答案】5 4),0,4⎛⎫⎪⎝⎭【解析】【分析】有三种情况:①以O为圆心,以OA为半径画弧交y轴于D,求出OA即可;②以A为圆心,以OA为半径画弧交y轴于P,求出OP即可;③作OA的垂直平分线交y轴于C,则AC=OC,根据勾股定理求出OC即可.【详解】有三种情况:①以O为圆心,以OA为半径画弧交y轴于D,则OA=OD==∴D(0);②以A为圆心,以OA为半径画弧交y轴于P,OP=2×y A=4,∴P(0,4);③作OA的垂直平分线交y轴于C,则AC=OC,由勾股定理得:OC=AC,∴OC=54,∴C(0,54);故答案为:5 4),0,4⎛⎫⎪⎝⎭.【点睛】本题主要考查对线段的垂直平分线,等腰三角形的性质和判定,勾股定理,坐标与图形性质等知识点的理解和掌握,能求出符合条件的所有情况是解此题的关键.3.如图,在四边形ABCD 中,BC CD = ,对角线BD 平分ADC ∠,连接AC ,2ACB DBC ∠=∠,若4AB =,10BD =,则ABC S =_________________.【答案】10【解析】【分析】由等腰三角形的性质和角平分线的性质可推出AD ∥BC ,然后根据平行线的性质和已知条件可推出CA=CD ,可得CB=CA=CD ,过点C 作CE ⊥BD 于点E ,CF ⊥AB 于点F ,如图,根据等腰三角形的性质和已知条件可得DE 的长和BCF CDE ∠=∠,然后即可根据AAS 证明△BCF ≌△CDE ,可得CF=DE ,再根据三角形的面积公式计算即得结果.【详解】解:∵BC CD =,∴∠CBD =∠CDB ,∵BD 平分ADC ∠,∴∠ADB =∠CDB ,∴∠CBD =∠ADB ,∴AD ∥BC ,∴∠CAD =∠ACB ,∵2ACB DBC ∠=∠,2ADC BDC ∠=∠,∠CBD =∠CDB ,∴ACB ADC ∠=∠,∴CAD ADC ∠=∠,∴CA=CD ,∴CB=CA=CD ,过点C 作CE ⊥BD 于点E ,CF ⊥AB 于点F ,如图,则152DE BD ==,12BCF ACB ∠=∠, ∵12BDC ADC ∠=∠,ACB ADC ∠=∠,∴BCF CDE ∠=∠, 在△BCF 和△CDE 中,∵BCF CDE ∠=∠,∠BFC =∠CED =90°,CB=CD ,∴△BCF ≌△CDE (AAS ),∴CF=DE =5,∴11451022ABC S AB CF =⋅=⨯⨯=. 故答案为:10.【点睛】本题考查了等腰三角形的判定和性质、平行线的判定和性质、角平分线的定义以及全等三角形的判定和性质等知识,涉及的知识点多、综合性强、具有一定的难度,正确添加辅助线、熟练掌握上述知识是解题的关键.4.在平面直角坐标系中,点A 在x 轴的正半轴上,点B 在y 轴的正半轴上,36ABO ∠=︒,在x 轴或y 轴上取点C ,使得ABC ∆为等腰三角形,符合条件的C 点有__________个.【答案】8【解析】【分析】观察数轴,按照等腰三角形成立的条件分析可得答案.【详解】解:如下图所示,若以点A 为圆心,以AB 为半径画弧,与x 轴和y 轴各有两个交点, 但其中一个会与点B 重合,故此时符合条件的点有3个;若以点B 为圆心,以AB 为半径画弧,同样与x 轴和y 轴各有两个交点,但其中一个与点A重合,故此时符合条件的点有3个;线段AB的垂直平分线与x轴和y轴各有一个交点,此时符合条件的点有2个.∴符合条件的点总共有:3+3+2=8个.故答案为:8.【点睛】本题考查了等腰三角形的判定,可以观察图形,得出答案.∠内任意一点,OP=5 cm,点M和点N分别是射线OA和射线5.如图,点P是AOB++的最小值是5 cm,则AOBOB上的动点,PN PM MN∠的度数是__________.【答案】30°【解析】试题解析:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为D,关于OB的对称点为C,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN ,OP=OC ,∠COB=∠POB ,∴OC=OP=OD ,∠AOB=12∠COD , ∵PN+PM+MN 的最小值是5cm ,∴PM+PN+MN=5,∴DM+CN+MN=5,即CD=5=OP ,∴OC=OD=CD , 即△OCD 是等边三角形,∴∠COD=60°,∴∠AOB=30°.6.如图,己知30MON ∠=︒,点1A ,2A ,3A ,…在射线ON 上,点1B ,2B ,3B ,…在射线OM 上,112A B A ∆,223A B A ∆,334A B A ∆,…均为等边三角形,若12OA =,则556A B A ∆的边长为________.【答案】32【解析】【分析】根据底边三角形的性质求出130∠=︒以及平行线的性质得出112233////A B A B A B ,以及22122A B B A =,得出332212244A B A B B A ===,441288A B B A ==,551216A B B A =⋯进而得出答案.【详解】解:△112A B A 是等边三角形,1121A B A B ∴=,341260∠=∠=∠=︒,2120∴∠=︒,30MON ∠=︒,11801203030∴∠=︒-︒-︒=︒,又360∠=︒,5180603090∴∠=︒-︒-︒=︒,130MON ∠=∠=︒,1112OA A B ∴==,212A B ∴=,△223A B A 、△334A B A 是等边三角形,111060∴∠=∠=︒,1360∠=︒,41260∠=∠=︒,112233////A B A B A B ∴,1223//B A B A ,16730∴∠=∠=∠=︒,5890∠=∠=︒,22122242A B B A =∴==,33232B A B A =,33312428A B B A ∴===,同理可得:444128216A B B A ===,⋯∴△1n n n A B A +的边长为2n ,∴△556A B A 的边长为5232=.故答案为:32.【点睛】本题考查了等边三角形的性质以及30°直角三角形的性质,根据已知得出33124A B B A =,44128A B B A =,551216A B B A =进而发现规律是解题关键.7.如图,在ABC 中, 90,ACB ABD ︒∠=是ABC 的轴对称图形,点E 在AD 上,点F 在AC 的延长线上.若点B 恰好在EF 的垂直平分线上,并且5AE =,13AF =,则DE =______.【答案】4.【解析】【分析】连接BE ,BF ,根据轴对称的性质可得△ABD ≌△ACB ,进而可得DB=CB ,AD=AC ,∠D=∠BCA=90°,再利用线段垂直平分线的性质可得BE=BF ,然后证明Rt △DBE ≌Rt △CBF 可得DE=CF ,然后可得ED 长.【详解】解:连接BE ,BF ,∵△ABD 是△ABC 的轴对称图形,∴△ABD ≌△ACB ,∴DB=CB ,AD=AC ,∠D=∠BCA=90°,∴∠BCF=90°,∵点B 恰好在EF 的垂直平分线上,∴BE=BF ,在Rt △DBE 和Rt △CBF 中BD BC EB FB =⎧⎨=⎩,∴Rt △DBE ≌Rt △CBF (HL ),∴DE=CF,设DE=x,则CF=x,∵AE=5,AF=13,∴AC=AD=5+x,∴AF=5+2x,∴5+2x=13,∴x=4,∴DE=4,故答案为:4.【点睛】此题主要考查了轴对称和线段垂直平分线的性质,关键是掌握成轴对称的两个图形全等.8.在△ABC 中,∠ACB=90º,D、E 分别在 AC、AB 边上,把△ADE 沿 DE 翻折得到△FDE,点 F 恰好落在 BC 边上,若△CFD 与△BFE 都是等腰三角形,则∠BAC 的度数为_________.【答案】45°或60°【解析】【分析】根据题意画出图形,设∠BAC的度数为x,则∠B=90°-x,∠EFB =135°-x,∠BEF=2x-45°,当△BFE 都是等腰三角形,分三种情况讨论,即可求解.【详解】∵∠ACB=90º,△CFD是等腰三角形,∴∠CDF=∠CFD=45°,设∠BAC的度数为x,∴∠B=90°-x,∵△ADE 沿 DE 翻折得到△FDE,点 F 恰好落在 BC 边上,∴∠DFE=∠BAC=x,∴∠EFB=180°-45°-x=135°-x,∵∠ADE=∠FDE,∴∠ADE=(180°-45°)÷2=67.5°,∴∠AED=180°-∠ADE-∠BAC=180°-67.5° -x=112.5°-x,∴∠DEF=∠AED=112.5°-x,∴∠BEF=180°-∠AED-∠DEF=180°-(112.5°-x)-(112.5°-x)=2x-45°,∵△BFE 都是等腰三角形,分三种情况讨论:①当FE=FB时,如图1,则∠BEF=∠B,∴90-x=2x-45,解得:x=45;②当BF=BE时,则∠EFB=∠BEF,∴135-x=2x-45,解得:x=60,③当EB=EF时,如图2,则∠B=∠EFB,∴135-x=90-x,无解,∴这种情况不存在.综上所述:∠BAC 的度数为:45°或60°.故答案是:45°或60°.图1 图2【点睛】本题主要考查等腰三角形的性质定理,用代数式表示角度,并进行分类讨论,是解题的关键.9.如图,Rt△ABC 中,AB=AC,∠BAC=90°,AD 是 BC 边上的高,E 是 AD 上的一点。

人教版八年级数学上册 全等三角形单元培优测试卷

人教版八年级数学上册 全等三角形单元培优测试卷

人教版八年级数学上册 全等三角形单元培优测试卷一、八年级数学轴对称三角形填空题(难)1.如图,ABC ∆中,90BAC ∠=︒,AD BC ⊥,ABC ∠的平分线BE 交AD 于点F ,AG 平分DAC ∠.给出下列结论:①BAD C ∠=∠;②EBC C ∠=∠;③AE AF =;④//FG AC ;⑤EF FG =.其中正确的结论是______.【答案】①③④【解析】【分析】①根据等角的余角相等即可得到结果,故①正确;②如果∠EBC=∠C ,则∠C=12∠ABC ,由于∠BAC=90°,那么∠C=30°,但∠C 不一定等于30°,故②错误;③由BE 、AG 分别是∠ABC 、∠DAC 的平分线,得到∠ABF=∠EBD .由于∠AFE=∠BAD+∠FBA ,∠AEB=∠C+∠EBD ,得到∠AFE=∠AEB ,可得③正确;④连接EG ,先证明△ABN ≌△GBN ,得到AN=GN ,证出△ANE ≌△GNF ,得∠NAE=∠NGF ,进而得到GF ∥AE ,故④正确;⑤由AE=AF ,AE=FG ,而△AEF 不一定是等边三角形,得到EF 不一定等于AE ,于是EF 不一定等于FG ,故⑤错误.【详解】∵∠BAC=90°,AD ⊥BC ,∴∠C+∠ABC=90°,∠C+∠DAC=90°,∠ABC+∠BAD=90°,∴∠ABC=∠DAC ,∠BAD=∠C ,故①正确;若∠EBC=∠C ,则∠C=12∠ABC , ∵∠BAC=90°,那么∠C=30°,但∠C 不一定等于30°,故②错误;∵BE 、AG 分别是∠ABC 、∠DAC 的平分线,∴∠ABF=∠EBD ,∵∠AFE=∠BAD+∠ABF ,∠AEB=∠C+∠EBD ,又∵∠BAD=∠C ,∴∠AFE=∠AEF ,∴AF=AE ,故③正确;∵AG是∠DAC的平分线,AF=AE,∴AN⊥BE,FN=EN,在△ABN与△GBN中,∵90ABN GBNBN BNANB GNB∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴△ABN≌△GBN(ASA),∴AN=GN,又∵FN=EN,∠ANE=∠GNF,∴△ANE≌△GNF(SAS),∴∠NAE=∠NGF,∴GF∥AE,即GF∥AC,故④正确;∵AE=AF,AE=FG,而△AEF不一定是等边三角形,∴EF不一定等于AE,∴EF不一定等于FG,故⑤错误.故答案为:①③④.【点睛】本题主要考查等腰三角形的判定和性质定理,全等三角形的判定和性质定理,直角三角形的性质定理,掌握掌握上述定理,是解题的关键.2.如图,△ABC是等边三角形,高AD、BE相交于点H,BC=43,在BE上截取BG=2,以GE为边作等边三角形GEF,则△ABH与△GEF重叠(阴影)部分的面积为_____.53【解析】试题分析:如图所示,由△ABC是等边三角形,BC=43AD=BE=32BC=6,∠ABG=∠HBD=30°,由直角三角的性质,得∠BHD=90°﹣∠HBD=60°,由对顶角相等,得∠MHE=∠BHD=60°,由BG=2,得EG=BE﹣BG=6﹣2=4.由GE为边作等边三角形GEF,得FG=EG=4,∠EGF=∠GEF=60°,△MHE 是等边三角形;S △ABC =12A C•BE=12AC×EH×3EH=13BE=13×6=2.由三角形外角的性质,得∠BIF=∠FGE ﹣∠IBG=60°﹣30°=30°,由∠IBG=∠BIG=30°,得IG=BG=2,由线段的和差,得IF=FG ﹣IG=4﹣2=2,由对顶角相等,得∠FIN=∠BIG=30°,由∠FIN+∠F=90°,得∠FNI=90°,由锐角三角函数,得FN=1,IN=3.S 五边形NIGHM =S △EFG ﹣S △EMH ﹣S △FIN =223314231442⨯-⨯-⨯⨯=53,故答案为53.考点:1.等边三角形的判定与性质;2.三角形的重心;3.三角形中位线定理;4.综合题;5.压轴题.3.如图,点P 是∠AOB 内任意一点,OP =5,M ,N 分别是射线OA 和OB 上的动点,若△PMN 周长的最小值为5,则∠AOB 的度数为_____.【答案】30°.【解析】【分析】如图:分别作点P 关于OB 、AO 的对称点P'、P'',分别连OP'、O P''、P' P''交OB 、OA 于M 、N ,则可证明此时△PMN 周长的最小,由轴对称性,可证明△P'O P''为等边三角形,∠AOB=12∠P'O P''=30°. 【详解】解:如图:分别作点P关于OB、AO的对称点P'、P'',分别连OP'、O 、P' 交OB、OA于M、N,由轴对称△PMN周长等于PN+NM+MP=P'N+NM+MP"=P'P"∴由两点之间线段最短可知,此时△PMN周长的最小∴P'P"=5由对称OP=OP'=OP"=5∴△P'OP"为等边三角形∴∠P'OP"=60∵∠P'OB=∠POB,∠P"OA=∠POA∴∠AOB=12∠P'O P''=30°.故答案为30°.【点睛】本题是动点问题的几何探究题,考查最短路径问题,应用了轴对称图形性质和等边三角形性质.4.如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,给出下列四个结论:①AE=CF;②△EPF是等腰直角三角形;③EF=AB;④12ABCAEPFS S∆=四边形,当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),上述结论中始终正确的有________(把你认为正确的结论的序号都填上).【答案】①②④【解析】试题分析:∵∠APE、∠CPF都是∠APF的余角,∴∠APE=∠CPF,∵AB=AC ,∠BAC=90°,P 是BC 中点,∴AP=CP ,∴∠PAE=∠PCF ,在△APE 与△CPF 中,{?PAE PCFAP CPEPA FPC ∠=∠=∠=∠,∴△APE ≌△CPF (ASA ),同理可证△APF ≌△BPE ,∴AE=CF ,△EPF 是等腰直角三角形,S 四边形AEPF =12S △ABC ,①②④正确; 而AP=12BC ,当EF 不是△ABC 的中位线时,则EF 不等于BC 的一半,EF=AP , ∴故③不成立.故始终正确的是①②④.故选D .考点:1.全等三角形的判定与性质;2.等腰直角三角形.5.如图,己知30MON ∠=︒,点1A ,2A ,3A ,…在射线ON 上,点1B ,2B ,3B ,…在射线OM 上,112A B A ∆,223A B A ∆,334A B A ∆,…均为等边三角形,若12OA =,则556A B A ∆的边长为________.【答案】32【解析】【分析】根据底边三角形的性质求出130∠=︒以及平行线的性质得出112233////A B A B A B ,以及22122A B B A =,得出332212244A B A B B A ===,441288A B B A ==,551216A B B A =⋯进而得出答案.【详解】解:△112A B A 是等边三角形,1121A B A B ∴=,341260∠=∠=∠=︒,2120∴∠=︒,30MON ∠=︒,11801203030∴∠=︒-︒-︒=︒,又360∠=︒,5180603090∴∠=︒-︒-︒=︒,130MON ∠=∠=︒,1112OA A B ∴==,212A B ∴= ,△223A B A 、△334A B A 是等边三角形,111060∴∠=∠=︒,1360∠=︒,41260∠=∠=︒,112233////A B A B A B ∴,1223//B A B A , 16730∴∠=∠=∠=︒,5890∠=∠=︒,22122242A B B A =∴==,33232B A B A =,33312428A B B A ∴===,同理可得:444128216A B B A ===,⋯∴△1n n n A B A +的边长为2n ,∴△556A B A 的边长为5232=.故答案为:32.【点睛】本题考查了等边三角形的性质以及30°直角三角形的性质,根据已知得出33124A B B A =,44128A B B A =,551216A B B A =进而发现规律是解题关键.6.如图,在△ABC 中,∠C =90°,∠B =30°,以点A 为圆心,任意长为半径画弧分别交AB ,AC 于点M 和N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,则下列说法:①AD 是∠BAC 的平分线;②∠ADC =60°;③点D 在AB 的垂直平分线上;④S △DAC :S △ABC =1:3.其中正确的是__________________.(填所有正确说法的序号)【答案】4【解析】【分析】①连接NP ,MP ,根据SSS 定理可得△ANP ≌△AMP ,故可得出结论;②先根据三角形内角和定理求出∠CAB 的度数,再由AD 是∠BAC 的平分线得出∠1=∠2=30°,根据直角三角形的性质可知∠ADC =60°;③根据∠1=∠B 可知AD =BD ,故可得出结论;④先根据直角三角形的性质得出∠2=30°,CD =12AD ,再由三角形的面积公式即可得出结论.【详解】①连接NP ,MP .在△ANP 与△AMP 中,∵AN AM NP MP AP AP =⎧⎪=⎨⎪=⎩,∴△ANP ≌△AMP ,则∠CAD =∠BAD ,故AD 是∠BAC 的平分线,故此选项正确;②∵在△ABC 中,∠C =90°,∠B =30°,∴∠CAB =60°.∵AD 是∠BAC 的平分线,∴∠1=∠2=12∠CAB =30°,∴∠3=90°﹣∠2=60°,∴∠ADC =60°,故此选项正确;③∵∠1=∠B =30°,∴AD =BD ,∴点D 在AB 的中垂线上,故此选项正确;④∵在Rt △ACD中,∠2=30°,∴CD =12AD ,∴BC =BD +CD =AD +12AD =32AD ,S △DAC =12AC •CD =14AC •AD ,∴S △ABC=12AC •BC =12AC •32AD =34AC •AD ,∴S △DAC :S △ABC =1:3,故此选项正确. 故答案为①②③④.【点睛】本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.7.如图,在ABC 中, 90,ACB ABD ︒∠=是ABC 的轴对称图形,点E 在AD 上,点F 在AC 的延长线上.若点B 恰好在EF 的垂直平分线上,并且5AE =,13AF =,则DE =______.【答案】4.【解析】【分析】连接BE ,BF ,根据轴对称的性质可得△ABD ≌△ACB ,进而可得DB=CB ,AD=AC ,∠D=∠BCA=90°,再利用线段垂直平分线的性质可得BE=BF ,然后证明Rt △DBE ≌Rt △CBF 可得DE=CF ,然后可得ED 长.【详解】解:连接BE ,BF ,∵△ABD 是△ABC 的轴对称图形,∴△ABD ≌△ACB ,∴DB=CB ,AD=AC ,∠D=∠BCA=90°,∴∠BCF=90°,∵点B 恰好在EF 的垂直平分线上,∴BE=BF ,在Rt △DBE 和Rt △CBF 中BD BC EB FB =⎧⎨=⎩,∴Rt △DBE ≌Rt △CBF (HL ),∴DE=CF ,设DE=x ,则CF=x ,∵AE=5,AF=13,∴AC=AD=5+x ,∴AF=5+2x ,∴5+2x=13,∴x=4,∴DE=4,故答案为:4.【点睛】此题主要考查了轴对称和线段垂直平分线的性质,关键是掌握成轴对称的两个图形全等.8.如图,Rt △ABC 中,AB=AC ,∠BAC=90°,AD 是 BC 边上的高,E 是 AD 上的一点。

八年级数学上册 全等三角形单元培优测试卷

八年级数学上册 全等三角形单元培优测试卷

八年级数学上册全等三角形单元培优测试卷一、八年级数学轴对称三角形填空题(难)1.如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为______.【答案】2.【解析】【分析】【详解】过点D作DF⊥B′E于点F,过点B′作B′G⊥AD于点G,∵∠B=60°,BE=BD=4,∴△BDE是等边三角形,∵△B′DE≌△BDE,∴B′F=1B′E=BE=2,DF=23,2∴GD=B′F=2,∴B′G=DF=23,∵AB=10,∴AG=10﹣6=4,∴AB′=27.考点:1轴对称;2等边三角形.2.如图,在ABC 中,AB AC >,按以下步骤作图:分别以点B 和点C 为圆心,大于BC 一半长为半径作画弧,两弧相交于点M 和点N ,过点M N 、作直线交AB 于点D ,连接CD ,若10AB =,6AC =,则ADC 的周长为_____________________.【答案】16【解析】【分析】利用基本作图可以判定MN 垂直平分BC ,则DC=DB ,然后利用等线段代换得到ACD ∆的周长=AB+AC ,再把10AB =,6AC =代入计算即可.【详解】解:由作法得MN 垂直平分BC ,则DC=DB ,10616ACD C CD AC AD DB AD AC AB AC ∆=++=++=+=+=故答案为:16.【点睛】本题考查了基本作图和线段垂直平分线的性质,熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)是本题的关键.3.如图,在等腰直角三角形ABC 中,90ACB ∠=︒,4AC BC ==,D 为BC 中点,E 为AC 边上一动点,连接DE ,以DE 为边并在DE 的右侧作等边DEF ∆,连接BF ,则BF 的最小值为______.【答案】3【解析】【分析】由60°联想旋转全等,转换动长为定点到定线的长,构建等边三角形BDG ,利用△BDF≌△GDE,转换BF=GE,然后即可求得其最小值.【详解】以BD为边作等边三角形BDG,连接GE,如图所示:∵等边三角形BDG,等边三角形DEF∴∠BDG=∠EDF=60°,BD=GD=BG,DE=DF=EF∴∠BDG+∠GFD=∠EDF+∠GFD,即∠BDF=∠GDE∴△BDF≌△GDE(SAS)∴BF=GE当GE⊥AC时,GE有最小值,如图所示GE′,作DH⊥GE′∴BF=GE=CD+12DG=2+1=3故答案为:3.【点睛】此题主要考查等边三角形的性质以及全等三角形的判定与性质,解题关键是由60°联想旋转全等,转换动长为定点到定线的长.4.如图,在△ABC中,AB=AC,∠BAC=120°,D为BC上一点,DA⊥AC,AD=24 cm,则BC 的长________cm.【答案】72【解析】【分析】按照等腰三角形的性质、角的和差以及含30°直角三角形的性质进行解答即可.【详解】解:∵AB=AC,∠BAC=120°∴∠B=∠C=30°∵DA⊥AC,AD=24 cm∴DC=2AD=48cm,∵∠BAC=120°,DA⊥AC∴∠BAD=∠BAC-90°=30°∴∠B=∠BAD∴BD=AD=24cm∴BC=BD+DC=72cm故答案为72.【点睛】本题考查了腰三角形的性质、角的和差以及含30°直角三角形的性质,其中灵活运用含30°直角三角形的性质是解答本题的关键.5.如图,已知每个小方格的边长为1,A、B两点都在小方格的格点(顶点)上,请在图中找一个格点C,使△ABC是等腰三角形,这样的格点C有________个。

八年级数学全等三角形单元培优测试卷

八年级数学全等三角形单元培优测试卷

八年级数学全等三角形单元培优测试卷一、八年级数学轴对称三角形填空题(难)1.如图,ABC ∆中,90BAC ∠=︒,AD BC ⊥,ABC ∠的平分线BE 交AD 于点F ,AG 平分DAC ∠.给出下列结论:①BAD C ∠=∠;②EBC C ∠=∠;③AE AF =;④//FG AC ;⑤EF FG =.其中正确的结论是______.【答案】①③④【解析】【分析】①根据等角的余角相等即可得到结果,故①正确;②如果∠EBC=∠C ,则∠C=12∠ABC ,由于∠BAC=90°,那么∠C=30°,但∠C 不一定等于30°,故②错误;③由BE 、AG 分别是∠ABC 、∠DAC 的平分线,得到∠ABF=∠EBD .由于∠AFE=∠BAD+∠FBA ,∠AEB=∠C+∠EBD ,得到∠AFE=∠AEB ,可得③正确;④连接EG ,先证明△ABN ≌△GBN ,得到AN=GN ,证出△ANE ≌△GNF ,得∠NAE=∠NGF ,进而得到GF ∥AE ,故④正确;⑤由AE=AF ,AE=FG ,而△AEF 不一定是等边三角形,得到EF 不一定等于AE ,于是EF 不一定等于FG ,故⑤错误.【详解】∵∠BAC=90°,AD ⊥BC ,∴∠C+∠ABC=90°,∠C+∠DAC=90°,∠ABC+∠BAD=90°,∴∠ABC=∠DAC ,∠BAD=∠C ,故①正确;若∠EBC=∠C ,则∠C=12∠ABC , ∵∠BAC=90°,那么∠C=30°,但∠C 不一定等于30°,故②错误;∵BE 、AG 分别是∠ABC 、∠DAC 的平分线,∴∠ABF=∠EBD ,∵∠AFE=∠BAD+∠ABF ,∠AEB=∠C+∠EBD ,又∵∠BAD=∠C ,∴∠AFE=∠AEF ,∴AF=AE ,故③正确;∵AG 是∠DAC 的平分线,AF=AE ,∴AN ⊥BE ,FN=EN ,在△ABN 与△GBN 中,∵90ABN GBN BN BN ANB GNB ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴△ABN ≌△GBN (ASA ),∴AN=GN ,又∵FN=EN ,∠ANE=∠GNF ,∴△ANE ≌△GNF (SAS ),∴∠NAE=∠NGF ,∴GF ∥AE ,即GF ∥AC ,故④正确;∵AE=AF ,AE=FG ,而△AEF 不一定是等边三角形,∴EF 不一定等于AE ,∴EF 不一定等于FG ,故⑤错误.故答案为:①③④.【点睛】本题主要考查等腰三角形的判定和性质定理,全等三角形的判定和性质定理,直角三角形的性质定理,掌握掌握上述定理,是解题的关键.2.如图,已知等边ABC ∆的边长为8,E 是中线AD 上一点,以CE 为一边在CE 下方作等边CEF ∆,连接BF 并延长至点,N M 为BN 上一点,且5CM CN ==,则MN 的长为_________.【答案】6【解析】【分析】作CG ⊥MN 于G ,证△ACE ≌△BCF ,求出∠CBF=∠CAE=30°,则可以得出124CG BC ==,在Rt △CMG 中,由勾股定理求出MG ,即可得到MN 的长.【详解】解:如图示:作CG ⊥MN 于G ,∵△ABC和△CEF是等边三角形,∴AC=BC,CE=CF,∠ACB=∠ECF=60°,∴∠ACB-∠BCE=∠ECF-∠BCE,即∠ACE=∠BCF,在△ACE与△BCF中AC BCACE BCFCE CF=⎧⎪∠=∠⎨⎪=⎩∴△ACE≌△BCF(SAS),又∵AD是三角形△ABC的中线∴∠CBF=∠CAE=30°,∴124CG BC==,在Rt△CMG中,2222543MG CM CG=-=-=,∴MN=2MG=6,故答案为:6.【点睛】本题考查了勾股定理,等边三角形的性质,全等三角形的性质和判定的应用,解此题的关键是推出△ACF≌△BCF.3.如图,线段AB,DE的垂直平分线交于点C,且72ABC EDC∠=∠=︒,92AEB∠=︒,则EBD∠的度数为 ________ .【答案】128︒【解析】【分析】连接CE ,由线段AB ,DE 的垂直平分线交于点C ,得CA=CB ,CE=CD ,ACB=∠ECD=36°,进而得∠ACE=∠BCD ,易证∆ACE ≅∆BCD ,设∠AEC=∠BDC=x ,得则∠BDE=72°-x ,∠CEB=92°-x ,BDE 中,∠EBD=128°,根据三角形内角和定理,即可得到答案.【详解】连接CE ,∵线段AB ,DE 的垂直平分线交于点C ,∴CA=CB ,CE=CD ,∵72ABC EDC ∠=∠=︒=∠DEC ,∴∠ACB=∠ECD=36°,∴∠ACE=∠BCD ,在∆ACE 与∆BCD 中,∵CA CB ACE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩,∴∆ACE ≅∆BCD (SAS ), ∴∠AEC=∠BDC ,设∠AEC=∠BDC=x ,则∠BDE=72°-x ,∠CEB=92°-x ,∴∠BED=∠DEC-∠CEB=72°-(92°-x )=x-20°,∴在∆BDE 中,∠EBD=180°-(72°-x )-(x-20°)=128°.故答案是:128︒.【点睛】本题主要考查中垂线的性质,三角形全等的判定和性质定理以及三角形内角和定理,添加辅助线,构造全等三角形,是解题的关键.4.如图,△ABC 中,AB =AC ,∠A =30°,点D 在边AB 上,∠ACD =15°,则AD BC=____.【答案】22. 【解析】【分析】根据题意作CE ⊥AB 于E ,作DF ⊥AC 于F ,在CF 上截取一点H ,使得CH =DH ,连接DH ,并设AD =2x ,解直角三角形求出BC (用x 表示)即可解决问题.【详解】解:作CE ⊥AB 于E ,作DF ⊥AC 于F ,在CF 上截取一点H ,使得CH=DH ,连接DH .设AD=2x ,∵AB=AC ,∠A=30°,∴∠ABC=∠ACB=75°,DF 12=AD=x ,AF 3=, ∵∠ACD=15°,HD=HC ,∴∠HDC=∠HCD=15°,∴∠FHD=∠HDC+∠HCD=30°,∴DH=HC=2x ,FH 3=,∴3x ,在Rt △ACE 中,EC 12=AC=x 3+,AE 3=3=, ∴BE=AB ﹣AE 3=﹣x ,在Rt △BCE 中,BC 22BE EC =+=22x , ∴2222AD BC x ==. 故答案为:2. 【点睛】本题考查的等腰三角形的性质和解直角三角形以及直角三角形30度角的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.5.如图,△ABC 中,AB =8,AC =6,∠ABC 与∠ACB 的平分线交于点F ,过点F 作DE ∥BC ,分别交AB 、AC 于点D 、E ,则△ADE 的周长为_____.【答案】14.【解析】【分析】先根据角平分线的定义及平行线的性质得BD =DF ,CE =EF ,则△ADE 的周长=AB +AC =14.【详解】∵BF 平分∠ABC ,∴∠DBF =∠CBF ,∵DE ∥BC ,∴∠CBF =∠DFB ,∴∠DBF =∠DFB ,∴BD =DF ,同理FE =EC ,∴△AED 的周长=AD +AE +ED =AB +AC =8+6=14.故答案为:14.【点睛】此题考查角平分线的性质,平行线的性质,等腰三角形的等角对等边的性质.6.如图,在等腰直角三角形ABC 中,90ACB ∠=︒,4AC BC ==,D 为BC 中点,E 为AC 边上一动点,连接DE ,以DE 为边并在DE 的右侧作等边DEF ∆,连接BF ,则BF 的最小值为______.【答案】3【解析】【分析】由60°联想旋转全等,转换动长为定点到定线的长,构建等边三角形BDG,利用△BDF≌△GDE,转换BF=GE,然后即可求得其最小值.【详解】以BD为边作等边三角形BDG,连接GE,如图所示:∵等边三角形BDG,等边三角形DEF∴∠BDG=∠EDF=60°,BD=GD=BG,DE=DF=EF∴∠BDG+∠GFD=∠EDF+∠GFD,即∠BDF=∠GDE∴△BDF≌△GDE(SAS)∴BF=GE当GE⊥AC时,GE有最小值,如图所示GE′,作DH⊥GE′∴BF=GE=CD+12DG=2+1=3故答案为:3.【点睛】此题主要考查等边三角形的性质以及全等三角形的判定与性质,解题关键是由60°联想旋转全等,转换动长为定点到定线的长.7.等腰三角形一边长等于4,一边长等于9,它的周长是__.【答案】22【分析】等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形;【详解】解:因为4+4=8<9,0<4<9+9=18,∴腰的不应为4,而应为9,∴等腰三角形的周长=4+9+9=22.故答案为22.【点睛】本题主要考查了等腰三角形的性质和三角形的三边关系;求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.8.如图,在第一个△A 1BC 中,∠B =30°,A 1B =CB ,在边A 1B 上任取一D ,延长CA 2到A 2,使A 1A 2=A 1D ,得到第2个△A 1A 2D ,在边A 2B 上任取一点E ,延长A 1A 2到A 3,使A 2A 3=A 2E ,得到第三个△A 2A 3E ,…按此做法继续下去,第n 个等腰三角形的底角的度数是_____度.【答案】1752n - 【解析】【分析】 先根据∠B =30°,AB =A 1B 求出∠BA 1C 的度数,在由A 1A 2=A 1D 根据内角和外角的关系求出∠DA 2A 1的度数,同理求出∠EA 3A 2=754,∠FA 4A 3=758,即可得到第n 个等腰三角形的底角的度数=1752n . 【详解】∵在△ABA 1中,∠B =30°,AB =A 1B ,∴∠BA 1C =1802B ︒-∠=75°, ∵A 1A 2=A 1D ,∠BA 1C 是△A 1A 2D 的外角,∴∠DA 2A 1=12∠BA 1C =12×75°=37.5°;∠EA 3A 2=754,∠FA 4A 3=758, ∴第n 个等腰三角形的底角的度数=1752n . 故答案为1752n -. 【点睛】 此题考查等腰三角形的性质,利用等边对等角求出等腰三角形底角的度数.9.如图,D 为ABC ∆内一点,CD 平分ACB ∠,BD CD ⊥,A ABD ∠=∠,若8AC =,5BC =,则BD 的长为_______.【答案】1.5【解析】【分析】延长BD 交AC 边于点E ,根据BD⊥CD,CD 平分∠ACB,得到三角形全等,由此求出AE 的长,再根据A ABD ∠=∠,求出BE 的长即可求得BD.【详解】延长BD 交AC 于点E ,∵BD⊥CD,∴∠BDC=∠EDC=900,∵CD 平分∠ACB,∴∠BCD=∠ECD又∵CD=CD∴△BCD≌△ECD∴BD=ED,CE=BC=5,∴AE=AC -CE=8-5=3,∵A ABD ∠=∠,∴BE=AE=3,∴BD=1.5【点睛】此题考察等腰三角形的性质,延长BD构建全等三角形是证明此题的关键.10.已知,∠MON=30°,点A1、A2、A3在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=a,则△A7B7A8的边长为______.【答案】64a【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,根据30°角所对直角边等于斜边的一半得到A2B2=2B1A2,进而得出A3B3=4B1A2=4a,A4B4=8B1A2=8a,A5B5=16B1A2…从而得到答案.【详解】∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°.∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°.又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°.∵∠MON=∠1=30°,∴OA1=A1B1=a,∴A2B1=a.∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°.∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4a,A4B4=8B1A2=8a,A5B5=16B1A2=16a,以此类推:A7B7=64B1A2=64a.故答案为:64a.【点睛】本题考查了等边三角形的性质、等腰三角形的性质以及含30°角的直角三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题的关键.二、八年级数学轴对称三角形选择题(难)11.如图,平面直角坐标系中存在点A(3,2),点B(1,0),以线段AB为边作等腰三角形ABP,使得点P在坐标轴上.则这样的P点有()A.4个B.5个C.6个D.7个【答案】D【解析】【分析】本题是开放性试题,由题意知A、B是定点,P是动点,所以要分情况讨论:以AP、AB为腰、以AP、BP为腰或以BP、AB为腰.则满足条件的点P可求.【详解】由题意可知:以AP、AB为腰的三角形有3个;以AP、BP为腰的三角形有2个;以BP、AB为腰的三角形有2个.所以,这样的点P共有7个.故选D.【点睛】本题考查了等腰三角形的判定及坐标与图形的性质;分类别寻找是正确解答本题的关键.12.平面直角坐标系中,已知A(2,0),B(0,2)若在坐标轴上取C点,使△ABC为等腰三角形,则满足条件的点C的个数是()A.4 B.6 C.7 D.8【答案】C【解析】【分析】【详解】解:如图,①以A为圆心,AB为半径画圆,交坐标轴于点B,C1,C2,C5,得到以A为顶点的等腰△ABC1,△ABC2,△ABC5;②以B为圆心,AB为半径画圆,交坐标轴于点A,C3,C6,C7,得到以B为顶点的等腰△BAC3,△BAC6,△BAC7;③作AB的垂直平分线,交x轴于点C4,得到以C为顶点的等腰△C4AB∴符合条件的点C共7个故选C13.如图,120AOB ∠=︒,OP 平分AOB ∠,且2OP =,若点M N 、分别在OA OB 、上,且PMN ∆为等边三角形,则满足上述条件的PMN ∆有( )A .1个B .2个C .3个D .无数个【答案】D【解析】【分析】 根据题意在OA 、OB 上截取OE=OF=OP ,作∠MPN=60°,只要证明△PEM ≌△PON 即可反推出△PMN 是等边三角形满足条件,以此进行分析即可得出结论.【详解】解:如图在OA 、OB 上截取OE=OF=OP ,作∠MPN=60°.∵OP 平分∠AOB ,120AOB ∠=︒,∴∠EOP=∠POF=60°,∵OE=OF=OP,∴△OPE,△OPF是等边三角形,∴EP=OP,∠EPO=∠OEP=∠PON=∠MPN=60°,∴∠EPM=∠OPN,在△PEM和△PON中,PEM PONPE POEPM OPN∠⎪∠⎧⎩∠⎪∠⎨===∴△PEM≌△PON(ASA).∴PM=PN,∵∠MPN=60°,∴△PNM是等边三角形,∴只要∠MPN=60°,△PMN就是等边三角形,故这样的三角形有无数个.故选:D.【点睛】本题考查等边三角形的判定和性质、全等三角形的判定和性质、角平分线的定义等知识,解题的关键是正确添加辅助线并构造全等三角形.14.如图,在等边三角形ABC中,在AC边上取两点M、N,使∠MBN=30°.若AM=m,MN=x,CN=n,则以x,m,n为边长的三角形的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.随x,m,n的值而定【答案】C【解析】【分析】将△ABM绕点B顺时针旋转60°得到△CBH.连接HN.想办法证明∠HCN=120°HN=MN=x即可解决问题.【详解】将△ABM绕点B顺时针旋转60°得到△CBH.连接HN.∵△ABC是等边三角形,∴∠ABC=∠ACB=∠A=60°.∵∠MON=30°,∴∠CBH+∠CBN=∠ABM+∠CBN=30°,∴∠NBM=∠NBH.∵BM=BH,BN=BN,∴△NBM≌△NBH,∴MN=NH=x.∵∠BCH=∠A=60°,CH=AM=n,∴∠NCH=120°,∴x,m,n为边长的三角形△NCH是钝角三角形.故选C.【点睛】本题考查了等边三角形的性质、全等三角形的判定和性质、旋转的性质等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,属于中考常考题型.15.如图,∠AOB=60°,点P是∠AOB内的定点且OP=3,若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是()A.362B33C.6 D.3【答案】D【解析】分析:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,利用轴对称的性质得MP=MC,NP=ND,3∠BOP=∠BOD,∠AOP=∠AOC,所以∠COD=2∠AOB=120°,利用两点之间线段最短判断此时△PMN周长最小,作OH⊥CD于H,则CH=DH,然后利用含30度的直角三角形三边的关系计算出CD即可.详解:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,则MP=MC,NP=ND,3∠BOP=∠BOD,∠AOP=∠AOC,∴PN+PM+MN=ND+MN+MC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴此时△PMN周长最小,作OH⊥CD于H,则CH=DH,∵∠OCH=30°,∴OH=12OC=3,CH=3OH=3 2 ,∴CD=2CH=3.故选D.点睛:本题考查了轴对称﹣最短路线问题:熟练掌握轴对称的性质,会利用两点之间线段最短解决路径最短问题.16.如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC 于F,AD交CE于G.则下列结论中错误的是( )A.AD=BE B.BE⊥ACC.△CFG为等边三角形D.FG∥BC【答案】B【解析】试题解析:A.ABC和CDE△均为等边三角形,60AC BC EC DC ACB ECD∴==∠=∠=︒,,,在ACD与BCE中,{AC BCACD BCECD CF=∠=∠=,ACD BCE∴≌,AD BE∴=,正确.B.据已知不能推出F是AC中点,即AC和BF不垂直,所以AC BE⊥错误,故本选项符合题意.C.CFG是等边三角形,理由如下:180606060ACG BCA∠=︒-︒-︒=︒=∠,ACD BCE≌,CBE CAD∴∠=∠,在ACG和BCF中,{CAG CBFAC BCBCF ACG∠=∠=∠=∠,ACG BCF∴≌,CG CH∴=,又∵∠ACG=60°CFG∴是等边三角形,正确.D.CFG是等边三角形,60CFG ACB∴∠︒=∠﹦,.FG BC∴正确.故选B.17.如图,△ABC是等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS,则下列结论:①AP⊥BC;②AS=AR;③QP∥AR;④△BRP≌△QSP.正确的有( )A.1个B.2个C.3个D.4个【答案】D【解析】【分析】根据到角的两边的距离相等的点在角的平分线上可得AP平分∠BAC,根据等腰三角形“三线合一”的性质判断出①正确;根据HL证明Rt△APR≌Rt△APS,即可判断②正确;根据等边对等角的性质可得∠APQ=∠PAQ,根据三角形外角的性质得到然后得到∠PQC=2∠PAC=60°=∠BAC,然后根据同位角相等两直线平行可得QP∥AB,从而判断出③正确,④由③易证△QPC是等边三角形,得到PQ=PC,等量代换得到BP=PQ,用HL证明Rt△BRP≌Rt△QSP,即可得到④正确.【详解】∵△ABC是等边三角形,PR⊥AB,PS⊥AC,且PR=PS,∴P在∠A的平分线上.∵AB=AC,∴AP⊥BC,故①正确;∵PA=PA,PR=PS,∴Rt△APR≌Rt△APS,∴AS=AR,故②正确;∵AQ=PQ,∴∠APQ=∠PAQ,∴∠PQC=2∠PAC=60°=∠BAC,∴PQ∥AR,故③正确;由③得:△PQC是等边三角形,∴△PQS≌△PCS,∴PQ=PC.又∵AB=AC,AP⊥BC,∴BP=PC,∴BP=PQ.∵PR=PS,∴Rt△BRP≌Rt△QSP,故④也正确.∵①②③④都正确.故选D.【点睛】本题考查了等腰三角形的性质、全等三角形的判定与性质以及等边三角形的判定与性质,准确识图并熟练掌握全等三角形的判定方法与性质是解题的关键.18.如图,在Rt△ABC中,AC=BC,∠ACB=90°,D为AB的中点,E为线段AD上一点,过E点的线段FG交CD的延长线于G点,交AC于F点,且EG=AE,分别延长CE,BG交于点H,若EH平分∠AEG,HD平分∠CHG则下列说法:①∠GDH=45°;②GD=ED;③EF=2DM;④CG=2DE+AE,正确的是()A.①②③B.①②④C.②③④D.①②③④【答案】B【解析】【分析】首先证明△AEC≌△GEC(SAS),推出CA=CG,∠A=∠CGE=45°,推出DE=DG,故②正确;再证明△EDC≌△GDB,推出∠CED=∠BGD,ED=GD,由三角形外角的性质得出∠HDG=∠HDE,进而得出∠GDH=∠EDH=45°,即可判断①正确;通过证明△EDC和△EMD是等腰直角三角形,得到ED2MD,再通过证明△EFC≌△EDC,得到EF=ED,从而可判断③错误;由CG=CD+DG,CD=AD,ED=GD,变形即可判断④正确.【详解】∵AC=BC,∠ACB=90°,AD=DB,∴CD⊥AB,CD=AD=DB,∠A=∠CBD=45°.∵EH平分∠AEG,∴∠AEH=∠GEH.∵∠AEH+∠AEC=180°,∠GEH+∠CEG=180°,∴∠AEC=∠CEG.∵AE=GE,EC=EC,∴△AEC≌△GEC(SAS),∴CA=CG,∠A=∠CGE=45°.∵∠EDG=90°,∴∠DEG=∠DGE=45°,∴DE=DG,∠AEF=∠DEG=∠A=45°,故②正确;∵DE=DG,∠CDE=∠BDG=90°,DC=DB,∴△EDC≌△GDB(SAS),∴∠CED=∠BGD,ED=GD.∵HD平分∠CHG,∴∠GHD=∠EHD.∵∠CED=∠EHD+∠HDE,∠BGD=∠GHD+∠HDG,∴∠HDG=∠HDE.∵∠EDG=∠ADC=90°,∴∠GDH=∠EDH=45°,故①正确;∵∠EDC=90°,ED=GD,∴△EDC是等腰直角三角形,∴∠DEG=45°.∵∠GDH=45°,∴∠EDH=45°,∴△EMD是等腰直角三角形,∴ED MD.∵∠AEF=∠DEG=∠A=45°,∴∠AFE=∠CFG=90°.∵∠EDC=90°,∴∠EFC=∠EDC=90°.∵EH平分∠AEG,∴∠AEH=∠GEH.∵∠FEC=∠GEH,∠DEC=∠AEH,∴∠FEC=∠DEC.∵EC=EC,∴△EFC≌△EDC,∴EF=ED,∴EF=2MD.故③错误;∵CG=CD+DG=AD+ED=AE+ED+ED,∴CG=2DE+AE,故④正确.故选B.【点睛】本题考查了等腰直角三角形的性质和判定,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.19.如图,P为∠AOB内一定点,M、N分别是射线OA、OB上一点,当△PMN周长最小时,∠MPN=110°,则∠AOB=()A.35°B.40°C.45°D.50°【答案】A【解析】【分析】作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,根据对称的性质可以证得:∠OP1M=∠OPM=50°,OP1=OP2=OP,根据等腰三角形的性质求解.【详解】作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,连接P1O、P2O,∵PP1关于OA对称,∠MPN=110°∴∠P1OP=2∠MOP,OP1=OP,P1M=PM,∠OP1M=∠OPM,同理可得:∠P2OP=2∠NOP,OP=OP2,∴∠P1OP2=∠P1OP+∠P2OP=2(∠MOP+∠NOP)=2∠AOB,OP1=OP2=OP,∴△P1OP2是等腰三角形.∴∠OP2N=∠OP1M,∴∠P1OP2=180°-110°=70°,∴∠AOB=35°,故选A.【点睛】考查了对称的性质,解题关键是正确作出图形和证明△P1OP2是等腰三角形是.20.如图,在△ABC中,BI,CI分别平分∠ABC,∠ACB,过I点作DE∥BC,交AB于D,交AC于E,给出下列结论:①△DBI是等腰三角形;②△ACI是等腰三角形;③AI平分∠BAC;④△ADE周长等于AB+AC.其中正确的是( )A.①②③B.②③④C.①③④D.①②④【答案】C【解析】【分析】根据角平分线的性质、平行线的性质、等腰三角形的判定与性质分别对各选项分析判断后利用排除法求解.【详解】①∵IB平分∠ABC,∴∠DBI=∠CBI.∵DE∥BC,∴∠DIB=∠CBI,∴∠DBI=∠DIB,∴BD=DI,∴△DBI是等腰三角形.故本选项正确;②∵∠BAC不一定等于∠ACB,∴∠IAC不一定等于∠ICA,∴△ACI不一定是等腰三角形.故本选项错误;③∵三角形角平分线相交于一点,BI,CI分别是∠ABC和∠ACB的平分线,∴AI平分∠BAC.故本选项正确;④∵BD=DI,同理可得EI=EC,∴△ADE的周长=AD+DI+EI+AE=AD+BD+EC+AE=AB+AC.故本选项正确;其中正确的是①③④.故选C.【点睛】本题考查了等腰三角形的判定与性质,熟记三角形的角平分线相交于一点是解题的关键.。

数学八年级上册 全等三角形单元培优测试卷

数学八年级上册 全等三角形单元培优测试卷

数学八年级上册 全等三角形单元培优测试卷 一、八年级数学轴对称三角形填空题(难) 1.在直角坐标系中,O 为坐标原点,已知点 A (1,2),点 P 是 y 轴正半轴上的一点,且△AOP 为等腰三角形,则点 P 的坐标为_____________.【答案】5(0,5),(0,4),0,4⎛⎫ ⎪⎝⎭【解析】【分析】有三种情况:①以O 为圆心,以OA 为半径画弧交y 轴于D ,求出OA 即可;②以A 为圆心,以OA 为半径画弧交y 轴于P ,求出OP 即可;③作OA 的垂直平分线交y 轴于C ,则AC =OC ,根据勾股定理求出OC 即可.【详解】有三种情况:①以O 为圆心,以OA 为半径画弧交y 轴于D ,则OA =OD =22125+=;∴D (0,5);②以A 为圆心,以OA 为半径画弧交y 轴于P ,OP =2×y A =4,∴P (0,4);③作OA 的垂直平分线交y 轴于C ,则AC =OC ,由勾股定理得:OC =AC =()2212OC +-,∴OC =54, ∴C (0,54); 故答案为:5(0,5),(0,4),0,4⎛⎫ ⎪⎝⎭.【点睛】本题主要考查对线段的垂直平分线,等腰三角形的性质和判定,勾股定理,坐标与图形性质等知识点的理解和掌握,能求出符合条件的所有情况是解此题的关键.2.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.【答案】(-4,2)或(-4,3)【解析】【分析】【详解】把点C 向下平移1个单位得到点D (4,2),这时△ABD 与△ABC 全等,分别作点C ,D 关于y 轴的对称点(-4,3)和(-4,2),所得到的△ABD 与△ABC 全等.故答案为(-4,2)或(-4,3).3.如图,在01A BA △中,20B ∠=︒,01A B A B =,在1A B 上取点C ,延长01A A 到2A ,使得121A A AC =;在2A C 上取一点D ,延长12A A 到3A ,使得232A A A D =;…,按此做法进行下去,第n 个等腰三角形的底角n A ∠的度数为__________.【答案】11()802n -︒⋅.【解析】【分析】先根据等腰三角形的性质求出∠BA 1 A 0的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠CA 2A 1,∠DA 3A 2及∠EA 4A 3的度数,找出规律即可得出第n 个等腰三角形的底角∠A n 的度数.【详解】解:∵在△A 0BA 1中,∠B=20°,A 0B=A 1B ,∴∠BA 1 A 0= 1801802022B ︒︒︒-∠-= =80°, ∵A 1A 2=A 1C ,∠BA 1 A 0是△A 1A 2C 的外角,∴∠CA 2A 1= 108022BA A ︒∠= =40°; 同理可得,∠DA 3A 2=20°,∠EA 4A 3=10°,∴第n 个等腰三角形的底角∠A n = 11()802n -︒⋅.【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠CA 2A 1,∠DA 3A 2及∠EA 4A 3的度数,找出规律是解答此题的关键.4.如图,点P 是AOB ∠内任意一点,OP =5 cm ,点M 和点N 分别是射线OA 和射线OB 上的动点,PN PM MN ++的最小值是5 cm ,则AOB ∠的度数是__________.【答案】30°【解析】试题解析:分别作点P 关于OA 、OB 的对称点C 、D ,连接CD ,分别交OA 、OB 于点M 、N ,连接OC 、OD 、PM 、PN 、MN ,如图所示:∵点P 关于OA 的对称点为D ,关于OB 的对称点为C ,∴PM=DM ,OP=OD ,∠DOA=∠POA ;∵点P 关于OB 的对称点为C ,∴PN=CN ,OP=OC ,∠COB=∠POB ,∴OC=OP=OD ,∠AOB=12∠COD ,∵PN+PM+MN的最小值是5cm,∴PM+PN+MN=5,∴DM+CN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°.5.如图,点P是∠AOB内任意一点,OP=5,M,N分别是射线OA和OB上的动点,若△PMN周长的最小值为5,则∠AOB的度数为_____.【答案】30°.【解析】【分析】如图:分别作点P关于OB、AO的对称点P'、P'',分别连OP'、O P''、P' P''交OB、OA于M、N,则可证明此时△PMN周长的最小,由轴对称性,可证明△P'O P''为等边三角形,∠AOB=12∠P'O P''=30°.【详解】解:如图:分别作点P关于OB、AO的对称点P'、P'',分别连OP'、O 、P' 交OB、OA于M、N,由轴对称△PMN周长等于PN+NM+MP=P'N+NM+MP"=P'P"∴由两点之间线段最短可知,此时△PMN周长的最小∴P'P"=5由对称OP=OP'=OP"=5∴△P'OP"为等边三角形∴∠P'OP"=60∵∠P'OB=∠POB ,∠P"OA=∠POA∴∠AOB=12∠P'O P''=30°. 故答案为30°.【点睛】 本题是动点问题的几何探究题,考查最短路径问题,应用了轴对称图形性质和等边三角形性质.6.如图,在四边形ABCD 中,AB AD =,BC DC =,60A ∠=︒,点E 为AD 边上一点,连接BD .CE ,CE 与BD 交于点F ,且CE AB ∥,若8AB =,6CE =,则BC 的长为_______________.【答案】27【解析】【分析】由AB AD =,BC DC =知点A,C 都在BD 的垂直平分线上,因此,可连接AC 交BD 于点O ,易证ABD △是等边三角形,EDF 是等边三角形,根据等边三角形的性质对三角形中的线段进行等量转换即可求出OB,OC 的长度,应用勾股定理可求解.【详解】解:如图,连接AC 交BD 于点O∵AB AD =,BC DC =,60A ∠=︒,∴AC 垂直平分BD ,ABD △是等边三角形∴30BAO DAO ∠=∠=︒,8AB AD BD ===,4BO OD ==∵CE AB ∥∴30BAO ACE ∠=∠=︒,60CED BAD ∠=∠=︒∴30DAO ACE ∠=∠=︒∴6AE CE ==∴2DE AD AE =-=∵60CED ADB ∠=∠=︒∴EDF 是等边三角形∴2DE EF DF ===∴4CF CE EF =-=,2OF OD DF =-=∴2223OC CF OF =-=∴2227BC BO OC =+=【点睛】本题主要考查了等边三角形的判定与性质、勾股定理,综合运用等边三角形的判定与性质进行线段间等量关系的转换是解题的关键.7.如图,在等腰直角三角形ABC 中,90ACB ∠=︒,4AC BC ==,D 为BC 中点,E 为AC 边上一动点,连接DE ,以DE 为边并在DE 的右侧作等边DEF ∆,连接BF ,则BF 的最小值为______.【答案】3【解析】【分析】由60°联想旋转全等,转换动长为定点到定线的长,构建等边三角形BDG ,利用△BDF ≌△GDE ,转换BF=GE ,然后即可求得其最小值.【详解】以BD 为边作等边三角形BDG ,连接GE ,如图所示:∵等边三角形BDG ,等边三角形DEF∴∠BDG=∠EDF=60°,BD=GD=BG ,DE=DF=EF∴∠BDG+∠GFD=∠EDF+∠GFD ,即∠BDF=∠GDE∴△BDF ≌△GDE (SAS )∴BF=GE当GE ⊥AC 时,GE 有最小值,如图所示GE′,作DH ⊥GE′∴BF=GE= CD+12DG=2+1=3 故答案为:3.【点睛】此题主要考查等边三角形的性质以及全等三角形的判定与性质,解题关键是由60°联想旋转全等,转换动长为定点到定线的长.8.如图,30AOB ∠=︒,P 是AOB ∠内一点,10PO =.若Q 、R 分别是边OA 、OB 上的动点,则PQR ∆周长的最小值为_______.【答案】10【解析】【分析】作点P 关于OB 的对称点P′,点P 关于OA 的对称点P″,连接P′P″交OB 于R ,交OA 于Q ,连接PR 、PQ ,如图3,利用对称的性质得到△PQR 周长=P′P″,根据两点之间线段最短可判断此时△PQR 周长最小,最小值为P′P″的长,再证明△P′OP″为等边三角形得到P′P″=OP′=OP=10,从而得到△PQR 周长的最小值【详解】解:作点P关于OB的对称点P′,点P关于OA的对称点P″,连接P′P″交OB于R,交OA于Q,连接PR、PQ,如图3,则OP=O P′,OP=OP″,RP=RP′,QP=QP″,∴△PQR周长=PR+RQ+PQ=RP′+RQ+QP″=P′P″,∴此时△PQR周长最小,最小值为P′P″的长,∵由对称性可知OP=OP′,OP=OP″,PP′⊥OB,PP″⊥OA,∴∠1=∠2,∠3=∠4,∴∠P′OP″=∠1+∠2+∠3+∠4=2∠2+2∠3=2∠BOA=60°,∴△P′OP″为等边三角形,∴P′P″=OP′=OP=10,故答案是:10.【点睛】本题考查了几何变换综合题:熟练掌握轴对称的性质和等边三角形的性质;会利用两点之间线段最短解决最短路径问题.9.在下列结论中:①有三个角是60︒的三角形是等边三角形;②有一个外角是120︒的等腰三角形是等边三角形;③有一个角是60︒,且是轴对称的三角形是等边三角形;④有一腰上的高也是这腰上的中线的等腰三角形是等边三角形.其中正确的是__________.【答案】①②③④【解析】【分析】依据等边三角形的定义,含有一个600角的等腰三角形是等边三角形判断即可.【详解】有三个角是600的三角形是等边三角形,故①正确;外角是1200时,邻补角为600,即有一个内角是600的等腰三角形是等边三角形,故②正确;轴对称的三角形是等腰三角形,且含有一个600角,因此是等边三角形,故③正确;一腰上的高也是中线,故底边等于腰长,所以此三角形是等边三角形,故④正确.故此题正确的是①②③④.【点睛】此题考查等边三角形的判定方法,熟记方法才能熟练运用.10.如图,在△ABC 中,AB=AC ,AB 边的垂直平分线DE 交AC 于点D .已知△BDC 的周长为14,BC=6,则AB=___.【答案】8【解析】试题分析:根据线段垂直平分线的性质,可知AD=BD ,然后根据△BDC 的周长为BC+CD+BD=14,可得AC+BC=14,再由BC=6可得AC=8,即AB=8.故答案为8.点睛:此题主要考查了线段的垂直平分线的性质,解题时,先利用线段的垂直平分线求出BD=AD ,然后根据三角形的周长互相代换,即可其解.二、八年级数学轴对称三角形选择题(难)11.已知点M(2,2),且2,在坐标轴上求作一点P ,使△OMP 为等腰三角形,则点P 的坐标不可能是( )A .2B .(0,4)C .(4,0)D .2) 【答案】D【解析】【分析】分类讨论:OM=OP ;MO=MP ;PM=PO ,分别计算出相应的P 点,从而得出答案.【详解】∵M(2,2),且2,且点P 在坐标轴上当22OM OP ==时P 点坐标为:()(22,0,0,22±± ,A 满足;当22MO MP ==P 点坐标为:()()4,0,0,4,B 满足;当PM PO =时:P 点坐标为:()()2,0,0,2,C 满足故答案选:D【点睛】本题考查动点问题构成等腰三角形,利用等腰三角形的性质分类讨论是解题关键.12.已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( ) A .32 B .332 C .32 D .不能确定【答案】B【解析】已知,如图,P 为等边三角形内任意一点,PD 、PE 、PF 分别是点P 到边AB 、BC 、AC 的距离,连接AP 、BP 、CP ,过点A 作AH ⊥BC 于点H ,已知等边三角形的边长为3,可求得高线AH =332,因S △ABC =12BC •AH =12AB •PD+12BC•PE +12AC •PF ,所以12×3×AH =12×3×PD +12×3×PE +12×3×PF ,即可得PD +PE +PF =AH =332,即点P 到三角形三边距离之和为332.故选B.点睛:本题考查了等边三角形的性质,根据三角形的面积求点P 到三边的距离之和等于等边三角形的高是解题的关键,作出图形更形象直观.13.如图,在射线OA ,OB 上分别截取11OA OB =,连接11A B ,在11B A ,1B B 上分别截取1212B A B B =,连接22A B ,按此规律作下去,若11A B O α∠=,则1010A B O ∠=( )A .102aB .92aC .20aD .18a 【答案】B【解析】【分析】根据等腰三角形两底角相等用α表示出22A B O ∠,依此类推即可得到结论.【详解】解:1212B A B B =,11A B O α∠=,2212A B O α∴∠=, 同理332111222A B O αα∠=⨯=, 44312A B O α∠=, 112n n n A B O α-∴∠=, 101092A B O α∴∠=,故选:B .【点睛】本题考查了等腰三角形两底角相等的性质,图形的变化规律,依次求出相邻的两个角的差,得到分母成2的指数次幂变化,分子不变的规律是解题的关键.14.在坐标平面上有一个轴对称图形,其中A (3,﹣52)和B (3,﹣112)是图形上的一对对称点,若此图形上另有一点C (﹣2,﹣9),则C 点对称点的坐标是( )A .(﹣2,1)B .(﹣2,﹣32)C .(﹣32,﹣9) D .(﹣2,﹣1) 【答案】A【解析】【分析】 先利用点A 和点B 的坐标特征可判断图形的对称轴为直线y=-4,然后写出点C 关于直线y=-4的对称点即可.【详解】解:∵A (3,﹣52)和B (3,﹣112)是图形上的一对对称点, ∴点A 与点B 关于直线y =﹣4对称, ∴点C (﹣2,﹣9)关于直线y =﹣4的对称点的坐标为(﹣2,1).故选:A .【点睛】本题考查了坐标与图形的变化,需要注意关于直线对称:关于直线x=m 对称,则两点的纵坐标相同,横坐标和为2m ;关于直线y=n 对称,则两点的横坐标相同,纵坐标和为2n .15.如图,在四边形ABCD 中,AB AC =,60ABD ∠=,75ADB ∠=,30BDC ∠=,则DBC ∠=( )°A.15 B.18 C.20 D.25【答案】A【解析】【分析】延长BD到M使得DM=DC,由△ADM≌△ADC,得AM=AC=AB,得△AMB是等边三角形,得∠ACD=∠M=60°,再求出∠BAO即可解决问题.【详解】如图,延长BD到M使得DM=DC.∵∠ADB=75°,∴∠ADM=180°﹣∠ADB=105°.∵∠ADB=75°,∠BDC=30°,∴∠ADC=∠ADB+∠BDC=105°,∴∠ADM=∠ADC.在△ADM和△ADC中,∵AD ADADM ADC DM DC=⎧⎪∠=∠⎨⎪=⎩,∴△ADM≌△ADC,∴AM=AC.∵AC=AB,∴AM=AC=AB,∠ABC=∠ACB.∵∠ABD=60°,∴△AMB是等边三角形,∴∠M=∠DCA=60°.∵∠DOC=∠AOB,∠DCO=∠ABO=60°,∴∠BAO=∠ODC=30°.∵∠CAB+∠ABC+∠ACB=180°,∴30°+2(60°+∠CBD)=180°,∴∠CBD=15°.故选:A.【点睛】本题考查了等边三角形的判定和性质、全等三角形的判定和性质等知识,解决问题的关键是添加辅助线构造全等三角形,题目有一定难度.16.如图,∠AOB=30º,∠AOB 内有一定点P,且OP=12,在OA 上有一动点Q,OB 上有一动点R。

八年级数学上册全等三角形单元培优测试卷

八年级数学上册全等三角形单元培优测试卷

八年级数学上册全等三角形单元培优测试卷一、八年级数学轴对称三角形填空题(难)1.如图,在锐角△ABC中,AB=5,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD,AB上的动点,则BM+MN的最小值是______.【答案】5【解析】【分析】作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN为所求的最小值,再根据AD是∠BAC的平分线可知MH=MN,再由等腰直角三角形的性质即可得出结论.【详解】如图,作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN 为所求的最小值.∵AD是∠BAC的平分线,∴MH=MN,∴BH是点B到直线AC的最短距离(垂线段最短).∵AB=5,∠BAC=45°,∴BH==5.∵BM+MN的最小值是BM+MN=BM+MH=BH=5.故答案为5.【点睛】本题考查了轴对称﹣最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.2.在平面直角坐标系xOy中,已知点A(2,3),在x轴上找一点P,使得△AOP是等腰三角形,则这样的点P共有_____个.【答案】4【解析】【分析】以O为圆心,OA为半径画弧交x轴于点P1、P3,以A为圆心,AO为半径画弧交x轴于点P4,作OA的垂直平分线交x轴于P2.【详解】解:如图,使△AOP是等腰三角形的点P有4个.故答案为4.【点睛】本题考查了在平面直角坐标系中寻找等腰三角形,掌握两圆一线找等腰三角形是解题的关键.3.如图,△ABC中,AB=AC,∠A=30°,点D在边AB上,∠ACD=15°,则ADBC____.【答案】22. 【解析】【分析】 根据题意作CE ⊥AB 于E ,作DF ⊥AC 于F ,在CF 上截取一点H ,使得CH =DH ,连接DH ,并设AD =2x ,解直角三角形求出BC (用x 表示)即可解决问题.【详解】解:作CE ⊥AB 于E ,作DF ⊥AC 于F ,在CF 上截取一点H ,使得CH=DH ,连接DH .设AD=2x , ∵AB=AC ,∠A=30°,∴∠ABC=∠ACB=75°,DF 12=AD=x ,AF 3=, ∵∠ACD=15°,HD=HC , ∴∠HDC=∠HCD=15°,∴∠FHD=∠HDC+∠HCD=30°,∴DH=HC=2x ,FH 3=,∴3x ,在Rt △ACE 中,EC 12=AC=x 3+,AE 3=3=, ∴BE=AB ﹣AE 3=﹣x ,在Rt △BCE 中,BC 22BE EC =+=2x , ∴2222AD BC x ==. 故答案为:22. 【点睛】本题考查的等腰三角形的性质和解直角三角形以及直角三角形30度角的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.4.如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,过点O 作//EF BC 交AB 于E ,交AC 于F ,过点O 作OD AC ⊥于D 下列结论:①EF BE CF =+;②点O 到ABC ∆各边的距离相等;③1902BOC A ∠=+∠;④设OD m =,AE AF n +=,则AEF S mn ∆=;⑤1()2AD AB AC BC =+-.其中正确的结论是.__________.【答案】①②③⑤【解析】【分析】由在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,根据角平分线的定义与三角形内角和定理,即可求得③∠BOC =90°+12∠A 正确;由平行线的性质和角平分线的定义得出△BEO 和△CFO 是等腰三角形得出EF =BE +CF 故①正确;由角平分线的性质得出点O 到△ABC 各边的距离相等,故②正确;由角平分线定理与三角形面积的求解方法,即可求得④设OD =m ,AE +AF =n ,则S △AEF =12mn ,故④错误,根据HL 证明△AMO ≌△ADO 得到AM =AD ,同理可证BM =BN ,CD =CN ,变形即可得到⑤正确.【详解】 ∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴∠OBC =12∠ABC ,∠OCB =12∠ACB ,∠A +∠ABC +∠ACB =180°,∴∠OBC +∠OCB =90°﹣12∠A ,∴∠BOC =180°﹣(∠OBC +∠OCB )=90°+12∠A ;故③正确; ∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴∠OBC =∠OBE ,∠OCB =∠OCF . ∵EF ∥BC ,∴∠OBC =∠EOB ,∠OCB =∠FOC ,∴∠EOB =∠OBE ,∠FOC =∠OCF ,∴BE =OE ,CF =OF ,∴EF =OE +OF =BE +CF ,故①正确;过点O 作OM ⊥AB 于M ,作ON ⊥BC 于N ,连接OA .∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴ON =OD =OM =m ,∴S △AEF =S △AOE +S △AOF =12AE •OM +12AF •OD =12OD •(AE +AF )=12mn ;故④错误; ∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴点O 到△ABC 各边的距离相等,故②正确;∵AO =AO ,MO =DO ,∴△AMO ≌△ADO (HL ),∴AM =AD ;同理可证:BM =BN ,CD =CN .∵AM +BM =AB ,AD +CD =AC ,BN +CN =BC ,∴AD =12(AB +AC ﹣BC )故⑤正确. 故答案为:①②③⑤.【点睛】本题考查了角平分线的定义与性质,等腰三角形的判定与性质.此题难度适中,解题的关键是注意数形结合思想的应用.5.如图,已知,点E 是线段AB 的中点,点C 在线段BD 上,8BD =,2DC =,线段AC 交线段DE 于点F ,若AF BD =,则AC =__________.【答案】10.【解析】【分析】延长DE 至G ,使EG=DE ,连接AG ,证明BDE AGE ∆≅∆,而后证明AFG ∆、CDF ∆是等腰三角形,即可求出CF 的长,于是可求AC 的长.【详解】解:如图,延长DE 至G ,使EG=DE ,连接AG ,∵点E 是线段AB 的中点,∴AE=BE,∴在BDE ∆和AGE ∆中,BE AE BED AEGDE EG =⎧⎪∠=∠⎨⎪=⎩, ∴BDE AGE ∆≅∆,∴AG=BD, BDE AGE ∠=∠,∵AF=BD=8,∴AG=AF,∴AFG AGE ∠=∠∵AFG DFC ∠=∠,∴BDE DFC ∠=∠,∴FC=DC,∴FC=2,∴AC=AF+FC=8+2=10.【点睛】本题考查了等腰三角形的性质与判定以及全等三角形的判定与性质,能利用中点条件作辅助线构造全等三角形是解题的关键.6.如图,已知∠MON =30°,点A 1,A 2,A 3,…在射线ON 上,点B 1,B 2,B 3,…在射线OM 上,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4,…均为等边三角形,若OA 2=4,则△A n B n A n +1的边长为_____.【答案】2n.【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=8,A4B4=8B1A2=16,A5B5=16B1A2…进而得出答案.【详解】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∵∠MON=30°,∵OA2=4,∴OA1=A1B1=2,∴A2B1=2,∵△A2B2A3、△A3B3A4是等边三角形,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=8,A4B4=8B1A2=16,A5B5=16B1A2=32,以此类推△A n B n A n+1的边长为 2n.故答案为:2n.【点睛】本题主要考查等边三角形的性质及含30°角的直角三角形的性质,由条件得到OA5=2OA4=4OA3=8OA2=16OA1是解题的关键.7.已知等边△ABC中,点D为射线BA上一点,作DE=DC,交直线BC于点E,∠ABC的平分线BF交CD于点F,过点A作AH⊥CD于H,当EDC=30 ,CF=43,则DH=______.【答案】2 3【解析】连接AF.∵△ABC是等边三角形,∴AB=BC,∠ABC=∠ACB=∠BAC=60°.∵DE=DC,∠EDC=30°,∴∠DEC=∠DCE=75°,∴∠ACF=75°-60°=15°.∵BF平分∠ABC,∴∠ABF=∠CBF.在△ABF和△CBF中,AB BCABF CBF BF BF⎧⎪∠∠⎨⎪⎩===,∴△ABF≌△CBF,∴AF=CF,∴∠FAC=∠ACF=15°,∴∠AFH=15°+15°=30°.∵AH⊥CD,∴AH=12AF=12CF=23.∵∠DEC=∠ABC+∠BDE,∴∠BDE=75°-60°=15°,∴∠ADH=15°+30°=45°,∴∠DAH=∠ADH=45°,∴DH=AH=2 3 .故答案为2 3 .点睛:本题考查了全等三角形的判定与性质;证明三角形全等是解决问题的关键,注意辅助线的作法.8.如图,在3×3的正方形网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形.图中的△ABC为格点三角形,在图中最多能画出_____个格点三角形与△ABC成轴对称.【答案】6【解析】【分析】根据网格结构分别确定出不同的对称轴,然后作出轴对称三角形即可得解.【详解】如图,最多能画出6个格点三角形与△ABC成轴对称.故答案为:6.【点睛】本题考查了利用轴对称变换作图,熟练掌握网格结构并准确找出对应点的位置是解题的关键,本题难点在于确定出不同的对称轴.9.如图,∠AOB=45°,点M、点C在射线OA上,点P、点D在射线OB上,且OD=32,则CP+PM+DM的最小值是_____.34【解析】【分析】如图,作点C关于OB的对称点C′,作点D关于OA的对称点D′,连接OC′,PC′,D′M,OD′,C′D′,根据轴对称的性质得到OC′=OC=2,OD′=OD=32,CP=C′P,DM=D′M,∠C′OD=′COD=∠COD′=45°,于是得到CP+PM+MD=C′+PM+D′M≥C′D′,当仅当C′,P,M,D′三点共线时,CP+PM+MD最小为C′D′,作C′T⊥D′O于点T,于是得到结论.【详解】解:如图,作点C关于OB的对称点C′,作点D关于OA的对称点D′,连接OC′,PC′,D′M,OD′,C′D′,则OC′=OC=2,OD′=OD=32,CP=C′P,DM=D′M,∠C′OD=′COD=∠COD′=45°,∴CP+PM+MD=C′+PM+D′M≥C′D′,当仅当C′,P,M,D′三点共线时,CP+PM+MD最小为C′D′,作C′T⊥D′O于点T,则C′T=OT=2,∴D′T=42,∴C′D′=34,∴CP+PM+DM的最小值是34.故答案为:34.【点睛】本题考查了最短路径问题,掌握作轴对称点是解题的关键.10.如图,△ABC中,AC=DC=3,BD垂直∠BAC的角平分线于D,E为AC的中点,则图中两个阴影部分面积之差的最大值为________.【答案】9 2【解析】【分析】首先证明两个阴影部分面积之差=S△ADC,当CD⊥AC时,△ACD的面积最大.【详解】延长BD交AC于点H.设AD交BE于点O.∵AD⊥BH,∴∠ADB=∠ADH=90°,∴∠ABD+∠BAD=90°,∠H+∠HAD=90°,∵∠BAD=∠HAD,∴∠ABD=∠H,∴AB=AH,∵AD⊥BH,∴BD=DH,∵DC=CA,∴∠CDA=∠CAD,∵∠CAD+∠H=90°,∠CDA+∠CDH=90°,∴∠CDH=∠H,∴CD=CH=AC,∵AE=EC,∴S△ABE=14S△ABH,S△CDH=14S△ABH,∵S△OBD−S△AOE=S△ADB−S△ABE=S△ADH−S△CDH=S△ACD,∵AC=CD=3,∴当DC ⊥AC 时,△ACD 的面积最大,最大面积为12×3×3=92. 故填:92. 【点睛】 本题考查等腰三角形的判定和性质,三角形中线的性质等知识,解题的关键是学会用转化的思想思考问题.二、八年级数学轴对称三角形选择题(难)11.已知点M(2,2),且,在坐标轴上求作一点P ,使△OMP 为等腰三角形,则点P 的坐标不可能是( )A .B .(0,4)C .(4,0)D .) 【答案】D【解析】【分析】分类讨论:OM=OP ;MO=MP ;PM=PO ,分别计算出相应的P 点,从而得出答案.【详解】∵M(2,2),且,且点P 在坐标轴上当OM OP ==时P 点坐标为:()(,0,±± ,A 满足;当MO MP ==P 点坐标为:()()4,0,0,4,B 满足;当PM PO =时:P 点坐标为:()()2,0,0,2,C 满足故答案选:D【点睛】本题考查动点问题构成等腰三角形,利用等腰三角形的性质分类讨论是解题关键.12.平面直角坐标系中,已知A (2,0),B (0,2)若在坐标轴上取C 点,使△ABC 为等腰三角形,则满足条件的点C 的个数是( )A .4B .6C .7D .8【答案】C【解析】【分析】【详解】解:如图,①以A 为圆心,AB 为半径画圆,交坐标轴于点B ,C 1,C 2,C 5,得到以A 为顶点的等腰△ABC 1,△ABC 2,△ABC 5;②以B为圆心,AB为半径画圆,交坐标轴于点A,C3,C6,C7,得到以B为顶点的等腰△BAC3,△BAC6,△BAC7;③作AB的垂直平分线,交x轴于点C4,得到以C为顶点的等腰△C4AB∴符合条件的点C共7个故选C13.如图,已知△ABC中,AB=AC,AD=AE,∠BAE=30°,则∠DEC等于()A.7.5°B.10°C.15°D.18°【答案】C【解析】根据等腰三角形性质求出∠C=∠B,根据三角形的外角性质求出∠B=∠C=∠AED+α﹣30°,根据AE=AD,可得∠AED=∠ADE=∠C+α,得出等式∠AED=∠AED+α﹣30°+α,求出α=15°,即得到∠DEC=α=15°,故选C.点睛:本题考查了等腰三角形的性质,三角形的内角和定理,三角形的外角性质等知识点的应用,主要考查学生运用定理进行推理的能力,本题有一点难度,但题型不错.14.如图,在△ABC 中,分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M 、N ,作直线MN ,交BC 于点D ,连接AD ,若△ADC 的周长为14,BC=8,则AC 的长为A .5B .6C .7D .8【答案】A【解析】 【分析】 根据题意可得MN 是直线AB 的中点,所以可得AD=BD ,BC=BD+CD ,而△ADC 为AC+CD+AD=14,即AC+CD+BD=14,因此可得AC+BC=14,已知BC 即可求出AC .【详解】 根据题意可得MN 是直线AB 的中点AD BD ∴=ADC 的周长为14AC CD AD ++=14AC CD BD ++=∴BC BD CD =+14AC BC =∴+已知8BD =6AC ∴= ,故选B【点睛】本题主要考查几何中的等量替换,关键在于MN 是直线AB 的中点,这样所有的问题就解决了.15.在Rt ABC ∆中,90ACB ∠=︒,以ABC ∆的一边为边画等腰三角形,使得它的第三个顶点在ABC ∆的其他边上,则可以画出的不同的等腰三角形的个数最多可画几个?( )A .9个B .7个C .6个D .5个【答案】B【解析】【分析】先以Rt ABC ∆三个顶点分别为圆心,再以每个顶点所在的较短边为半径画弧,即可确定等腰三角形的第三个顶点;也可以作三边的垂直平分线确定等腰三角形的第三个顶点即得.【详解】解:①如图1,以B 为圆心,BC 长为半径画弧,交AB 于点D ,则∆BCD 就是等腰三角形;②如图2,以A 为圆心,AC 长为半径画弧,交AB 于点E ,则∆ACE 就是等腰三角形; ③如图3,以C 为圆心,BC 长为半径画弧,交AB 于M ,交AC 于点F ,则∆BCM 、∆BCF 是等腰三角形;④如图4,作AC 的垂直平分线交AB 于点H ,则∆ACH 就是等腰三角形;⑤如图5,作AB 的垂直平分线交AC 于点G ,则∆AGB 就是等腰三角形;⑥如图6,作BC 的垂直平分线交AB 于I ,则∆BCI 就是等腰三角形.故选:B .【点睛】本题考查等腰三角形的判定的应用,通过作垂直平分线或者画弧的方法确定相等的边是解题关键.16.如图,60AOB ∠=,OC 平分AOB ∠,如果射线OA 上的点E 满足OCE ∆是等腰三角形,那么OEC ∠的度数不可能为( )A .120°B .75°C .60°D .30°【答案】C【解析】【分析】 分别以每个点为顶角的顶点,根据等腰三角形的定义确定∠OEC 是度数即可得到答案.【详解】∵60AOB ∠=,OC 平分AOB ∠,∠AOC=30︒,当OC=CE 时,∠OEC=∠AOC=30︒,当OE=CE 时,∠OEC=180OCE COE ∠∠︒--=120︒,当OC=OE 时,∠OEC=12(180COE ∠︒- )=75︒, ∴∠OEC 的度数不能是60°,故选:C.【点睛】此题考查等腰三角形的定义,角平分线的定义,根据题意正确画出符合题意的图形是解题的关键.17.如图,点P 、Q 分别是边长为4cm 的等边△ABC 边AB 、BC 上的动点,点P 从顶点A ,点Q 从顶点B 同时出发,且速度都为1cm/s ,连接AQ 、CP 交于点M ,下面四个结论:①BP =CM ;②△ABQ ≌△CAP ;③∠CMQ 的度数不变,始终等于60°;④当第43秒或第83秒时,△PBQ 为直角三角形,正确的有几个 ( )A .1B .2C .3D .4【答案】C【解析】【分析】 ①等边三角形ABC 中,AB=BC ,而AP=BQ ,所以BP=CQ .②根据等边三角形的性质,利用SAS 证明△ABQ ≌△CAP ;③由△ABQ ≌△CAP 根据全等三角形的性质可得∠BAQ=∠ACP ,从而得到∠CMQ=60°; ④设时间为t 秒,则AP=BQ=tcm ,PB=(4-t )cm ,当∠PQB=90°时,因为∠B=60°,所以PB=2BQ ,即4-t=2t 故可得出t 的值,当∠BPQ=90°时,同理可得BQ=2BP ,即t=2(4-t ),由此两种情况即可得出结论.【详解】①在等边△ABC 中,AB=BC .∵点P、Q的速度都为1cm/s,∴AP=BQ,∴BP=CQ.只有当CM=CQ时,BP=CM.故①错误;②∵△ABC是等边三角形∴∠ABQ=∠CAP,AB=CA,又∵点P、Q运动速度相同,∴AP=BQ,在△ABQ与△CAP中,∵AB CAABQ CAP AP BQ⎧⎪∠∠⎨⎪⎩===,∴△ABQ≌△CAP(SAS).故②正确;③点P、Q在运动的过程中,∠QMC不变.理由:∵△ABQ≌△CAP,∴∠BAQ=∠ACP,∵∠QMC=∠ACP+∠MAC,∴∠CMQ=∠BAQ+∠MAC=∠BAC=60°.故③正确;④设时间为t秒,则AP=BQ=tcm,PB=(4-t)cm,当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,即4-t=2t,t=43,当∠BPQ=90°时,∵∠B=60°,∴BQ=2BP,得t=2(4-t),t=83,∴当第43秒或第83秒时,△PBQ为直角三角形.故④正确.正确的是②③④,故选C.【点睛】此题是一个综合性题目,主要考查等边三角形的性质、全等三角形的判定与性质等知识.熟知等边三角形的三个内角都是60°是解答此题的关键.18.如果三角形有一个内角为120°,且过某一顶点的直线能将该三角形分成两个等腰三角形,那么这个三角形最小的内角度数是( )A.15°B.40 C.15°或20°D.15°或40°【答案】C【解析】【分析】依据三角形的一个内角的度数为120°,且过某一顶点能将该三角形分成两个等腰三角形,运用分类思想和三角形内角和定理,即可得到该三角形其余两个内角的度数.【详解】如图1,当∠A=120°,AD=AC,DB=DC时,∠ADC=∠ACD=30°,∠DBC=∠DCB=15°,所以,∠DBC=15°,∠ACB=30°+15°=45°;故∠ABC=60°,∠C=80°;如图2,当∠BAC=120°,可以以A为顶点作∠BAD=20°,则∠DAC=100°,∵△APB,△APC都是等腰三角形;∴∠ABD=20°,∠ADC=∠ACD=40°,如图3,当∠BAC=120°,以A为顶点作∠BAD=80°,则∠DAC=40°,∵△APB,△APC都是等腰三角形,∴∠ABD=20°,∠ADC=100°,∠ACD=40°.故选C.【点睛】本题主要考查了三角形内角和定理以及等腰三角形的性质的运用,解决问题的关键是掌握等腰三角形的性质以及三角形内角和定理.19.如图,已知,点A (0,0)、B (43,0)、C (0,4),在△ABC 内依次作等边三角形,使一边在x 轴上,另一个顶点在BC 边上,作出的等边三角形分别是第1个△AA 1B 1,第2个△B 1A 2B 2,第3个△B 2A 3B 3,…则第2017个等边三角形的边长等于( )A .201532 B .201632 C .2017327 D .201932【答案】A【解析】【分析】【详解】根据锐角三函数的性质,由OB=43,OC=1,可得∠OCB=90°,然后根据等边三角形的性质,可知∠A 1AB=60°,进而可得∠CAA 1=30°,∠CA 1O=90°,因此可推导出∠A 2A 1B=30°,同理得到∠CA 2B 1=∠CA 3B 2=∠CA 4B 3=90°,∠A 2A 1B=∠A 3A 2B 2=∠A 4A 3B 3=30°,故可得后一个等边三角形的边长等于前一个等边三角形的边长的一半,即OA 1=OCcos ∠CAA 1=23,B 1A 2=1232⨯,以此类推,可知第2017个等边三角形的边长为:201713()432⨯=. 故选A.【点睛】此题主要考查了等边三角形的性质,属于规律型题目,解题关键是仔细审图,得出:后一个等边三角形的边长等于前一个等边三角形的边长的一半.20.如图,等边△ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上的一点,当PA =CQ 时,连接PQ 交AC 于点D ,下列结论中不一定正确的是( )A .PD =DQB .DE =12AC C .AE =12CQD .PQ ⊥AB【答案】D【解析】 过P 作PF ∥CQ 交AC 于F ,∴∠FPD =∠Q ,∵△ABC 是等边三角形,∴∠A=∠ACB=60°,∴∠A=∠AFP=60°,∴AP=PF,∵PA=CQ,∴PF=CQ,在△PFD与△DCQ中,FPD QPDE CDQPF CQ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△PFD≌△QCD,∴PD=DQ,DF=CD,∴A选项正确,∵AE=EF,∴DE=12AC,∴B选项正确,∵PE⊥AC,∠A=60°,∴AE=12AP=12CQ,∴C选项正确,故选D.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学全等三角形单元培优测试卷 一、八年级数学轴对称三角形填空题(难) 1.在直角坐标系中,O 为坐标原点,已知点 A (1,2),点 P 是 y 轴正半轴上的一点,且△AOP 为等腰三角形,则点 P 的坐标为_____________.【答案】5(0,5),(0,4),0,4⎛⎫ ⎪⎝⎭【解析】【分析】有三种情况:①以O 为圆心,以OA 为半径画弧交y 轴于D ,求出OA 即可;②以A 为圆心,以OA 为半径画弧交y 轴于P ,求出OP 即可;③作OA 的垂直平分线交y 轴于C ,则AC =OC ,根据勾股定理求出OC 即可.【详解】有三种情况:①以O 为圆心,以OA 为半径画弧交y 轴于D ,则OA =OD =22125+=;∴D (0,5);②以A 为圆心,以OA 为半径画弧交y 轴于P ,OP =2×y A =4,∴P (0,4);③作OA 的垂直平分线交y 轴于C ,则AC =OC ,由勾股定理得:OC =AC =()2212OC +-,∴OC =54, ∴C (0,54); 故答案为:5(0,5),(0,4),0,4⎛⎫ ⎪⎝⎭.【点睛】本题主要考查对线段的垂直平分线,等腰三角形的性质和判定,勾股定理,坐标与图形性质等知识点的理解和掌握,能求出符合条件的所有情况是解此题的关键.2.如图,已知△ABC和△ADE都是正三角形,连接CE、BD、AF,BF=4,CF=7,求AF的长_________ .【答案】3【解析】【分析】过点A作AF⊥CE交于I,AG⊥BD交于J,证明CAE≅BAD,再证明CAI≅BAJ,求出°7830∠=∠=,然后求出12IF FJ AF==,,通过设FJ x=求出x,即可求出AF的长.【详解】解:过点A作AF⊥CE交于I,AG⊥BD交于J在CAE和BAD中AC ABCAE BADAE AD=⎧⎪∠=∠⎨⎪=⎩∴CAE≅BAD∴ICA ABJ∠=∠∴BFE CAB∠=∠(8字形)∴°120CFD∠=在CAI和BAJ中°90ICA ABJ CAI BJA CA BA ∠=∠⎧⎪∠=∠=⎨⎪=⎩∴CAI ≅BAJ,AI AJ CI BJ ==∴°60CFA AFJ ∠=∠=∴°30FAI FAE ∠=∠=在RtAIF 和RtAJF 中°30FAI FAE ∠=∠=∴12IF FJ AF ==设FJ x = 7,4CF BF ==则47x x +=-32x ∴=2AF FJ =AF ∴=3【点睛】此题主要考查了通过做辅助线证明三角形全等,得出相关的边相等,学会合理添加辅助线求解是解决本题的重点.3.如图,在ABC ∆中,AB AC =,点D 和点A 在直线BC 的同侧,,82,38BD BC BAC DBC =∠=︒∠=︒,连接,AD CD ,则ADB ∠的度数为__________.【答案】30°【解析】【分析】先根据等腰三角形的性质和三角形的内角和定理以及角的和差求出ABD ∠的度数,然后作点D 关于直线AB 的对称点E ,连接BE 、CE 、AE ,如图,则BE=BD ,∠EBA=∠DB ,∠BEA =∠BDA ,进而可得∠EBC=60°,由于BD=BC ,从而可证△EBC 是等边三角形,可得∠BEC =60°,EB=EC ,进一步即可根据SSS 证明△AEB ≌△AEC ,可得∠BEA 的度数,问题即得解决.【详解】解:∵AB AC =,82BAC ∠=︒,∴180492BAC ABC ︒-∠∠==︒, ∵38DBC ∠=︒,∴493811ABD ∠=︒-︒=︒,作点D 关于直线AB 的对称点E ,连接BE 、CE 、AE ,如图,则BE=BD ,∠EBA=∠DBA =11°,∠BEA =∠BDA ,∴∠EBC=11°+11°+38°=60°,∵BD=BC ,∴BE=BC ,∴△EBC 是等边三角形,∴∠BEC =60°,EB=EC ,又∵AB=AC ,EA=EA ,∴△AEB ≌△AEC (SSS ),∴∠BEA =∠CEA =1302BEC ∠=︒, ∴∠ADB =30°.【点睛】本题考查了等腰三角形的性质、三角形的内角和定理、等边三角形的判定和性质、全等三角形的判定和性质以及轴对称的性质等知识,涉及的知识点多、综合性强,难度较大,作点D 关于直线AB 的对称点E ,构造等边三角形和全等三角形的模型是解题的关键.4.如图,在△ABC 中,P ,Q 分别是BC ,AC 上的点,PR ⊥AB ,PS ⊥AC ,垂足分别是R ,S ,若AQ PQ =,PR PS =,那么下面四个结论:①AS AR =;②QP //AR ;③△BRP ≌△QSP ;④BRQS ,其中一定正确的是(填写编号)_____________.【答案】①,②【解析】【分析】连接AP ,根据角平分线性质即可推出①,根据勾股定理即可推出AR=AS ,根据等腰三角形性质推出∠QAP=∠QPA ,推出∠QPA=∠BAP ,根据平行线判定推出QP ∥AB 即可;在Rt △BRP 和Rt △QSP 中,只有PR=PS .无法判断△BRP ≌△QSP 也无法证明BRQS .【详解】解:连接AP①∵PR ⊥AB ,PS ⊥AC ,PR=PS ,∴点P 在∠BAC 的平分线上,∠ARP=∠ASP=90°,∴∠SAP=∠RAP ,在Rt △ARP 和Rt △ASP 中,由勾股定理得:AR 2=AP 2-PR 2,AS 2=AP 2-PS 2,∵AP=AP ,PR=PS ,∴AR=AS ,∴①正确;②∵AQ=QP ,∴∠QAP=∠QPA ,∵∠QAP=∠BAP,∴∠QPA=∠BAP,∴QP∥AR,∴②正确;③在Rt△BRP和Rt△QSP中,只有PR=PS,不满足三角形全等的条件,故③④错误;故答案为:①②.【点睛】本题主要考查了角平分线的性质与勾股定理的应用,熟练掌握根据垂直与相等得出点在角平分线上是解题的关键.5.如图,在△ABC中,AB=AC,D、E是△ABC内的两点,AE平分∠BAC,∠D=∠DBC=60°,若BD=5cm,DE=3cm,则BC的长是 ______cm.【答案】8.【解析】【分析】作出辅助线后根据等边三角形的判定得出△BDM为等边三角形,△EFD为等边三角形,从而得出BN的长,进而求出答案.【详解】解:延长DE交BC于M,延长AE交BC于N,作EF∥BC于F,∵AB=AC,AE平分∠BAC,∴AN⊥BC,BN=CN,∵∠DBC=∠D=60°,∴△BDM为等边三角形,∴△EFD为等边三角形,∵BD=5,DE=3,∴EM=2,∵△BDM为等边三角形,∴∠DMB=60°,∵AN⊥BC,∴∠ENM=90°,∴∠NEM=30°,∴NM=1,∴BN=4,∴BC=2BN=8(cm),故答案为8.【点睛】本题考查等边三角形的判定与性质;等腰三角形的性质.6.等腰三角形一边长等于4,一边长等于9,它的周长是__.【答案】22【解析】【分析】等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形;【详解】解:因为4+4=8<9,0<4<9+9=18,∴腰的不应为4,而应为9,∴等腰三角形的周长=4+9+9=22.故答案为22.【点睛】本题主要考查了等腰三角形的性质和三角形的三边关系;求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.7.已知等边△ABC中,点D为射线BA上一点,作DE=DC,交直线BC于点E,∠ABC的平分线BF交CD于点F,过点A作AH⊥CD于H,当EDC=30 ,CF=43,则DH=______.【答案】2 3【解析】连接AF.∵△ABC 是等边三角形,∴AB=BC ,∠ABC=∠ACB=∠BAC=60°.∵DE=DC ,∠EDC=30°,∴∠DEC=∠DCE=75°,∴∠ACF=75°-60°=15°.∵BF 平分∠ABC ,∴∠ABF=∠CBF.在△ABF 和△CBF 中,AB BC ABF CBF BF BF ⎧⎪∠∠⎨⎪⎩===, ∴△ABF ≌△CBF ,∴AF=CF ,∴∠FAC=∠ACF=15°,∴∠AFH=15°+15°=30°.∵AH ⊥CD ,∴AH=12AF=12CF=23. ∵∠DEC=∠ABC+∠BDE ,∴∠BDE=75°-60°=15°,∴∠ADH=15°+30°=45°,∴∠DAH=∠ADH=45°,∴DH=AH=23. 故答案为23. 点睛:本题考查了全等三角形的判定与性质;证明三角形全等是解决问题的关键,注意辅助线的作法.8.如图,已知30AOB ∠=︒,点P 在边OA 上,14OD DP ==,点E ,F 在边OB 上,PE PF =.若6EF =,则OF 的长为____.【答案】18【解析】【分析】由30°角我们经常想到作垂线,那么我们可以作DM垂直于OA于M,作PN垂直于OB 于点N,证明△PMD≌△PND,进而求出DF长度,从而求出OF的长度.【详解】如图所示,作DM垂直于OA于M,作PN垂直于OB于点N.∵∠AOB=30°,∠DMO=90°,PD=DO=14,∴DM=7,∠NPO=60°,∠DPO=30°,∴∠NPD=∠DPO=30°,∵DP=DP,∠PND=∠PMD=90°,∴△PND≌△PMD,∴ND=7,∵EF=6,∴DF=ND-NF=7-3=4,∴OF=DF+OD=14+4=18.【点睛】本题考查了全等三角形的判定及性质定理,作辅助线构造全等三角形是解题的关键.9.在下列结论中:①有三个角是60︒的三角形是等边三角形;②有一个外角是120︒的等腰三角形是等边三角形;③有一个角是60︒,且是轴对称的三角形是等边三角形;④有一腰上的高也是这腰上的中线的等腰三角形是等边三角形.其中正确的是__________.【答案】①②③④【解析】【分析】依据等边三角形的定义,含有一个600角的等腰三角形是等边三角形判断即可.【详解】有三个角是600的三角形是等边三角形,故①正确;外角是1200时,邻补角为600,即有一个内角是600的等腰三角形是等边三角形,故②正确;轴对称的三角形是等腰三角形,且含有一个600角,因此是等边三角形,故③正确;一腰上的高也是中线,故底边等于腰长,所以此三角形是等边三角形,故④正确.故此题正确的是①②③④.【点睛】此题考查等边三角形的判定方法,熟记方法才能熟练运用.10.如图,在边长为6的菱形ABCD中,∠DAB=60°,E是AB的中点,F是AC上一个动点,则EF+BF的最小值是________ .【答案】33【解析】试题解析:∵在菱形ABCD中,AC与BD互相垂直平分,∴点B、D关于AC对称,连接ED,则ED就是所求的EF+BF的最小值的线段,∵E为AB的中点,∠DAB=60°,∴DE⊥AB,∴22-22AD AE-363∴EF+BF的最小值为3.二、八年级数学轴对称三角形选择题(难)11.已知点M(2,2),且2,在坐标轴上求作一点P,使△OMP为等腰三角形,则点P的坐标不可能是()A.2B.(0,4) C.(4,0) D.2)【答案】D【解析】 【分析】 分类讨论:OM=OP ;MO=MP ;PM=PO ,分别计算出相应的P 点,从而得出答案.【详解】∵M(2,2),且OM=22,且点P 在坐标轴上当22OM OP == 时P 点坐标为:()()22,0,0,22±± ,A 满足;当22MO MP ==时:P 点坐标为:()()4,0,0,4,B 满足;当PM PO =时:P 点坐标为:()()2,0,0,2,C 满足故答案选:D【点睛】本题考查动点问题构成等腰三角形,利用等腰三角形的性质分类讨论是解题关键.12.如图,坐标平面内一点A(2,-1),O 为原点,P 是x 轴上的一个动点,如果以点P 、O 、A 为顶点的三角形是等腰三角形,那么符合条件的动点P 的个数为( )A .2B .3C .4D .5【答案】C【解析】 以O 点为圆心,OA 为半径作圆与x 轴有两交点,这两点显然符合题意.以A 点为圆心,OA 为半径作圆与x 轴交与两点(O 点除外).以OA 中点为圆心OA 长一半为半径作圆与x 轴有一交点.共4个点符合,13.如图,已知△ABC 中,AB=AC ,AD=AE ,∠BAE=30°,则∠DEC 等于( )A .7.5°B .10°C .15°D .18°【答案】C【解析】根据等腰三角形性质求出∠C=∠B,根据三角形的外角性质求出∠B=∠C=∠AED+α﹣30°,根据AE=AD,可得∠AED=∠ADE=∠C+α,得出等式∠AED=∠AED+α﹣30°+α,求出α=15°,即得到∠DEC=α=15°,故选C.点睛:本题考查了等腰三角形的性质,三角形的内角和定理,三角形的外角性质等知识点的应用,主要考查学生运用定理进行推理的能力,本题有一点难度,但题型不错.14.如图,在等边三角形ABC中,在AC边上取两点M、N,使∠MBN=30°.若AM=m,MN=x,CN=n,则以x,m,n为边长的三角形的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.随x,m,n的值而定【答案】C【解析】【分析】将△ABM绕点B顺时针旋转60°得到△CBH.连接HN.想办法证明∠HCN=120°HN=MN=x即可解决问题.【详解】将△ABM绕点B顺时针旋转60°得到△CBH.连接HN.∵△ABC是等边三角形,∴∠ABC=∠ACB=∠A=60°.∵∠MON=30°,∴∠CBH+∠CBN=∠ABM+∠CBN=30°,∴∠NBM=∠NBH.∵BM=BH,BN=BN,∴△NBM≌△NBH,∴MN=NH=x.∵∠BCH=∠A=60°,CH=AM=n,∴∠NCH=120°,∴x,m,n为边长的三角形△NCH是钝角三角形.故选C.【点睛】本题考查了等边三角形的性质、全等三角形的判定和性质、旋转的性质等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,属于中考常考题型.15.在一个33的正方形网格中,A,B是如图所示的两个格点,如果C也是格点,且ABC是等腰三角形,则符合条件的C点的个数是()A.6B.7C.8D.9【答案】C【解析】【分析】根据题意、结合图形,画出图形即可确定答案.【详解】解:根据题意,画出图形如图:共8个.故答案为C.【点睛】本题主要考查了等腰三角形的判定,根据题意、画出符合实际条件的图形是解答本题的关键.16.如图,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且速度都为1cm/s,连接AQ、CP交于点M,下面四个结论:①BP=CM;②△ABQ≌△CAP;③∠CMQ的度数不变,始终等于60°;④当第43秒或第83秒时,△PBQ为直角三角形,正确的有几个 ( )A.1 B.2 C.3 D.4【答案】C【解析】【分析】①等边三角形ABC中,AB=BC,而AP=BQ,所以BP=CQ.②根据等边三角形的性质,利用SAS证明△ABQ≌△CAP;③由△ABQ≌△CAP根据全等三角形的性质可得∠BAQ=∠ACP,从而得到∠CMQ=60°;④设时间为t秒,则AP=BQ=tcm,PB=(4-t)cm,当∠PQB=90°时,因为∠B=60°,所以PB=2BQ,即4-t=2t故可得出t的值,当∠BPQ=90°时,同理可得BQ=2BP,即t=2(4-t),由此两种情况即可得出结论.【详解】①在等边△ABC中,AB=BC.∵点P、Q的速度都为1cm/s,∴AP=BQ,∴BP=CQ.只有当CM=CQ时,BP=CM.故①错误;②∵△ABC是等边三角形∴∠ABQ=∠CAP,AB=CA,又∵点P、Q运动速度相同,∴AP=BQ,在△ABQ与△CAP中,∵AB CAABQ CAP AP BQ⎧⎪∠∠⎨⎪⎩===,∴△ABQ≌△CAP(SAS).故②正确;③点P、Q在运动的过程中,∠QMC不变.理由:∵△ABQ≌△CAP,∴∠BAQ=∠ACP,∵∠QMC=∠ACP+∠MAC,∴∠CMQ=∠BAQ+∠MAC=∠BAC=60°.故③正确;④设时间为t秒,则AP=BQ=tcm,PB=(4-t)cm,当∠PQB=90°时,∵∠B=60°,∴PB=2BQ ,即4-t=2t ,t=43, 当∠BPQ=90°时,∵∠B=60°,∴BQ=2BP ,得t=2(4-t ),t=83, ∴当第43秒或第83秒时,△PBQ 为直角三角形. 故④正确.正确的是②③④,故选C . 【点睛】 此题是一个综合性题目,主要考查等边三角形的性质、全等三角形的判定与性质等知识.熟知等边三角形的三个内角都是60°是解答此题的关键.17.已知:如图,ABC ∆、CDE ∆都是等腰三角形,且CA CB =,CD CE =,ACB DCE α∠=∠=,AD 、BE 相交于点O ,点M 、N 分别是线段AD 、BE 的中点.以下4个结论:①AD BE =;②180DOB α∠=-;③CMN ∆是等边三角形;④连OC ,则OC 平分AOE ∠.正确的是( )A .①②③B .①②④C .①③④D .①②③④【答案】B【解析】【分析】 ①根据∠ACB=∠DCE 求出∠ACD=∠BCE,证出ACD BCE ≅△△即可得出结论,故可判断; ②根据全等求出∠CAD=∠CBE,根据三角形外角定理得∠DOB=∠OBA+∠BAO,通过等角代换能够得到∠DOB=∠CBA+∠BAC,根据三角形内角和定理即可求出∠CBA+∠BAC,即可求出∠DOB ,故可判断;③根据已知条件可求出AM=BN,根据SAS 可求出CAM CBN ≅,推出CM=CN ,∠ACM=∠BCN,然后可求出∠MCN=∠ACB=α,故可判断CMN ∆的形状;④在AD 上取一点P 使得DP=EO,连接CP ,根据ACD BCE ≅△△,可求出∠CEO=∠CDP ,根据SAS 可求出 CEO CDP ≅,可得∠COE=∠CPD,CP=CO,进而得到 ∠COP=∠COE ,故可判断.【详解】①正确,理由如下:∵ACB DCE α∠=∠=,∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,又∵CA=CB,CD=CE,∴ACD BCE ≅△△(SAS),∴AD=BE,故①正确;②正确,理由如下:由①知,ACD BCE ≅△△,∴∠CAD=∠CBE,∵∠DOB 为ABO 的外角,∴∠DOB=∠OBA+∠BAO=∠EBC+∠CBA+∠BAO=∠DAC+∠BAO+∠CBA=∠CBA+∠BAC, ∵∠CBA+∠BAC+∠ACB=180°,∠ACB=α,∴∠CBA+∠BAC=180°-α,即∠DOB=180°-α,故②正确;③错误,理由如下:∵点M 、N 分别是线段AD 、BE 的中点,∴AM=12AD,BN= 12BE, 又∵由①知,AD=BE,∴AM=BN,又∵∠CAD=∠CBE,CA=CB,∴CAM CBN ≅(SAS), ∴CM=CN ,∠ACM=∠BCN,∴∠MCN=∠MCB+∠CBN=∠MCB+∠ACM=∠ACB=α,∴MCN △为等腰三角形且∠MCN=α,∴MCN △不是等边三角形,故③错误;④正确,理由如下:如图所示,在AD 上取一点P 使得DP=EO,连接CP ,由①知,ACD BCE ≅△△,∴∠CEO=∠CDP ,又∵CE=CD,EO=DP ,∴CEO CDP ≅(SAS),∴∠COE=∠CPD,CP=CO,∴∠CPO=∠COP ,∴∠COP=∠COE,即OC 平分∠AOE,故④正确;故答案为:B.【点睛】本题考查了三角形全等的判定和性质,三角形内角和定理和外角定理,等边三角形的判定,根据已知条件作出正确的辅助线,找出全等三角形是解题的关键.18.如图,ABC △,AB AC =,56BAC ︒∠=,BAC ∠的平分线与AB 的垂直平分线交于O ,将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与O 点恰好重合,则∠OEC 的度数为( )A .132︒B .130︒C .112︒D .110︒【答案】C【解析】【分析】 连接OB 、OC ,根据角平分线的定义求出∠BAO ,根据等腰三角形两底角相等求出∠ABC ,再根据线段垂直平分线上的点到线段两端点的距离相等可得OA=OB ,根据等边对等角可得∠ABO=∠BAO ,再求出∠OBC ,然后判断出点O 是△ABC 的外心,根据三角形外心的性质可得OB=OC ,再根据等边对等角求出∠OCB=∠OBC ,根据翻折的性质可得OE=CE ,然后根据等边对等角求出∠COE ,再利用三角形内角和定理列式计算即可得出答案.【详解】如图,连接OB 、OC ,∵56BAC ︒∠=,AO 为BAC ∠的平分线∴11562822BAO BAC ︒︒∠=∠=⨯= 又∵AB AC =,∴()()11180180566222ABC BAC ︒︒︒︒∠=-∠=-= ∵DO 是AB 的垂直平分线, ∴OA OB =.∴28ABO BAO ︒∠=∠=,∴622834OBC ABC ABO ︒︒︒∠=∠-∠=-=∵DO 是AB 的垂直平分线,AO 为BAC ∠的平分线∴点О是ABC △的外心,∴OB OC =,∴34OCB OBC ︒∠=∠=,∵将C ∠沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合∴OE CE =,∴34COE OCB ︒∠=∠=,在OCE △中,1801803434112OEC COE OCB ︒︒︒︒︒∠=-∠-∠=--=【点睛】本题主要考查了线段垂直平分线上的点到线段两端点距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,综合性较强,难度较大,做辅助线构造出等腰三角形是解决本题的关键.19.如图,在△ABC 中,BI ,CI 分别平分∠ABC,∠ACB,过I 点作DE∥BC,交AB 于D ,交AC 于E ,给出下列结论:①△DBI 是等腰三角形;②△ACI 是等腰三角形;③AI 平分∠BAC;④△ADE 周长等于AB +AC .其中正确的是( )A.①②③B.②③④C.①③④D.①②④【答案】C【解析】【分析】根据角平分线的性质、平行线的性质、等腰三角形的判定与性质分别对各选项分析判断后利用排除法求解.【详解】①∵IB平分∠ABC,∴∠DBI=∠CBI.∵DE∥BC,∴∠DIB=∠CBI,∴∠DBI=∠DIB,∴BD=DI,∴△DBI是等腰三角形.故本选项正确;②∵∠BAC不一定等于∠ACB,∴∠IAC不一定等于∠ICA,∴△ACI不一定是等腰三角形.故本选项错误;③∵三角形角平分线相交于一点,BI,CI分别是∠ABC和∠ACB的平分线,∴AI平分∠BAC.故本选项正确;④∵BD=DI,同理可得EI=EC,∴△ADE的周长=AD+DI+EI+AE=AD+BD+EC+AE=AB+AC.故本选项正确;其中正确的是①③④.故选C.【点睛】本题考查了等腰三角形的判定与性质,熟记三角形的角平分线相交于一点是解题的关键.20.如图,已知等边△ABC的面积为43, P、Q、R分别为边AB、BC、AC上的动点,则PR+QR的最小值是()A.3B.3C15D.4【答案】B【解析】如图,作△ABC关于AC对称的△ACD,点E与点Q关于AC对称,连接ER,则QR=ER,当点E,R,P在同一直线上,且PE⊥AB时,PE的长就是PR+QR的最小值,设等边△ABC的边长为x,则高为32x,∵等边△ABC的面积为3,∴12x×323解得x=4,∴等边△ABC 33即3PR+QR的最小值是3,故选B.【点睛】本题考查了轴对称的性质,最短路径问题等,解题的关键是正确添加辅助线构造出最短路径.。

相关文档
最新文档