悬架系统

合集下载

悬架系统的发展趋势

悬架系统的发展趋势

悬架系统的发展趋势
悬架系统是指安装在车辆底盘上的能够支撑和隔离车身与地面之间的结构。

它对于车辆的乘坐舒适性和行驶稳定性都起着重要作用。

随着科技的发展,悬架系统也在不断创新与进步,有一些明显的发展趋势。

1. 电子化与智能化:随着电子技术的不断进步,许多车辆悬架系统已经开始采用电子控制单元(ECU)进行监测和控制。

这种电子化悬架系统可以根据车辆行驶条件和驾驶方式自动调整悬架硬度和高度,提供更加舒适和稳定的驾驶体验,并根据需要进行主动悬架调整,提高车辆的操控性能。

2. 空气悬架系统的普及:空气悬架系统利用气压来调节悬架的硬度和高度,具有更好的适应性和可调性。

它可以根据载荷、行驶速度和路况等条件实时调整悬架,提高车辆在不同道路情况下的稳定性和操控性能。

随着技术的进步,空气悬架系统的制造成本逐渐降低,其在高端车型中的应用将越来越普及。

3. 主动悬架系统的发展:主动悬架系统通过感应车辆的加速度、车速、转向角等参数,实时调节悬架的硬度和高度,提高车辆的稳定性和操控性能。

随着传感技术和控制算法的进步,主动悬架系统的响应速度和调节能力将进一步提高,为驾驶员提供更加安全和舒适的行驶环境。

4. 轻量化与节能环保:随着对节能环保要求的不断提高,悬架系统也在追求轻量化的发展趋势。

采用高强度材料、新型减震器和减震弹簧等技术,可以减轻悬
架系统的重量,提高车辆的燃油经济性和减排效果。

总的来说,悬架系统的发展趋势是电子化、智能化、空气悬架系统的普及、主动悬架系统的发展和轻量化节能环保。

这些趋势将进一步提高车辆的乘坐舒适性和行驶稳定性,提升整体的驾驶体验。

悬架的名词解释

悬架的名词解释

悬架的名词解释悬架是汽车中一个关键的部件,它承载着整个车身和乘客的重量,并通过灵活的结构来减少震动和振动。

在汽车设计中,悬架的功能和特点至关重要,它直接关系到车辆的操控性、舒适性和安全性。

1. 悬架的作用悬架系统的主要作用是在车辆行驶过程中吸收和减少道路不平度带来的震动和振动。

道路上的凹凸不平、颠簸和坑洞会产生强烈的冲击力,如果没有适当的悬架系统来缓冲这些冲击,车辆和乘客会受到较大的不适。

2. 悬架系统的构成悬架系统通常由几个关键部件组成,包括弹簧、避震器、横臂、扭力杆等。

这些部件通过各自的功能和结构形成一个完整的悬架系统,共同承担起减震、减振和保持车辆平稳的任务。

- 弹簧:弹簧是悬架系统中最基本的部件之一,它负责承载车辆的重量并提供悬挂系统的弹性。

常见的弹簧类型有螺旋弹簧、扭力弹簧和气囊弹簧,不同类型的弹簧适用于不同类型的车辆和行驶环境。

- 避震器:避震器也被称为减振器或阻尼器,它的作用是控制弹簧的振动,使车辆在行驶过程中保持稳定。

避震器通过利用内部的特殊液体或气体来减缓或抵消震动的能量,保证车辆减振效果和稳定性。

- 横臂和扭力杆:横臂和扭力杆是连接车轮和车身的组件,它们的设计和位置可以影响悬架的运动和车辆的操控性能。

横臂通常采用双A臂或多连杆的结构,通过其灵活的旋转和摆动来适应道路条件的变化,从而提供更好的驾驶舒适性。

3. 悬架系统的类型根据设计和用途的不同,悬架系统可以分为多种类型,例如:- 独立悬架:独立悬架是最常见的悬架类型之一,它使车轮能够独立运动,从而提供更好的悬挂能力和操控性能。

独立悬架通常采用前后独立的设计,可以减少车身的侧倾和抖动,提高车辆的驾驶稳定性。

- 螺旋弹簧悬架:螺旋弹簧悬架是一种基于螺旋弹簧的悬架系统,它通过调整弹簧的硬度和预压来调节车辆的悬挂高度和硬度。

螺旋弹簧悬架在常规车辆和一些越野车型中比较常见,它能够提供较好的舒适性和稳定性。

- 气囊悬架:气囊悬架利用气囊来代替传统的弹簧,通过气囊内的空气压力来调整悬挂系统的高度。

悬架系统介绍

悬架系统介绍
麦弗逊(Mcpherson)是美国伊利诺斯州人,1891年生。 大学毕业后他曾在欧洲搞了多年的航空发动机,并于1924 年加入了通用汽车公司的工程中心。30年代,通用的雪佛兰 分部想设计一种真正的小型汽车,总设计师就是麦弗逊。他 对设计小型轿车非常感兴趣,目标是将这种四座轿车的质量 控制在0.9吨以内,轴距控制在2.74米以内,设计的关键是 悬架。麦弗逊一改当时盛行的板簧与扭杆弹簧的前悬架方式, 创造性地将减振器和螺旋弹簧组合在一起,装在前轴上。实 践证明这种悬架形式的构造简单,占用空间小,而且操纵性 很好。后来,麦弗逊跳槽到福特,1950年福特在英国的子 公司生产的两款车,是世界上首次使用麦弗逊悬架的商品车。 麦弗逊悬架由于构造简单,性能优越的缘故,被行家誉为经 典的设计
工作过程:
主动悬架系统的控制中枢是一个微电脑控制模块,在整车行驶过程中,悬架上 的多种传感器分别收集各种行车信息(车速、制动力、踏板速度、车身垂直方向 的振幅及频率、转向盘角度及转向速度等数据 ),电脑不断接收这些数据并与预 先设定的临界值进行比较,选择相应的悬架状态。 同时,微电脑独立控制每一只车轮上的执行元件,通过动力装置产生的作用 力控制执行单元相应的功能特性,从而能在任何时候、任何车轮上产生符合要求 的悬架运动。 另外,主动悬架具有控制车身运动的功能。当汽车制动或拐弯时的惯性引起 弹簧变形时,主动悬架会产生一个与惯性力相对抗的力,减少车身位置的变化。 例如当车辆拐弯时悬架传感器会立即检测出车身的倾斜和横向加速度,电脑根据 传感器的信息,与预先设定的临界值进行比较计算,立即确定在什么位置上将多 大的负载加到悬架上,使车身的倾斜减到最小。
4)多连杆式独立悬架 所谓多连杆悬挂,顾名思义就是通过各种连杆配置把车轮与车身相连的 一套悬挂机构。而连杆数量在3根以上才称为多连杆,目前主流的连杆数量 为5连杆。因此其结构要比双叉和麦弗逊复杂很多。

悬架系统结构原理

悬架系统结构原理

悬架系统结构原理悬架系统是指汽车底盘上的一组部件,用于支撑和连接车身与车轮之间的部分。

它的主要功能是减震和支撑车身,提供乘坐舒适性和操控稳定性。

悬架系统结构的原理是通过减震器、弹簧、悬挂臂等部件的协同作用,来实现对车轮的支撑和减震。

悬架系统的结构主要由以下几个部分组成:减震器、弹簧、悬挂臂、悬挂架和悬挂连接件等。

减震器是悬架系统的核心部件之一,它通过消化车轮运动产生的冲击力和振动,使车身得到稳定支撑。

减震器一般由外筒、活塞、活塞杆和工作介质等组成,通过阻尼力来减缓车身的上下运动。

弹簧是悬架系统的另一个重要组成部分,它主要负责支撑车身的重量和吸收路面不平的冲击力。

常见的弹簧类型有螺旋弹簧、扭杆弹簧和气囊弹簧等。

螺旋弹簧是最常见的一种,它通过转动螺旋弹簧将车身重力转化为垂直方向的弹簧力,从而支撑车身。

而扭杆弹簧则是通过在车轮上方安装一根扭杆来实现支撑作用。

悬挂臂是连接车轮和车身的重要部件,它通过悬挂臂与车轮轴连接,使车轮能够上下运动。

悬挂臂的设计和材料选择都会影响到车辆的操控性能和乘坐舒适性。

一般来说,悬挂臂分为上控制臂和下控制臂,它们通过球头和悬挂架连接,形成一个可调节的连接点,使车轮能够在不同路况下保持与车身的相对位置。

悬挂架是悬架系统的主体部分,它由悬挂臂、减震器和弹簧等组成。

悬挂架起到支撑和固定悬架系统其他部件的作用,同时也承担着车身重量和承受路面冲击力的重要任务。

悬挂连接件则是悬架系统的连接部件,它们通过连接悬挂架和车身,保证悬架系统的稳定性和安全性。

悬架系统的工作原理主要是通过减震器、弹簧和悬挂臂等部件的协同作用来实现的。

当车轮受到路面不平的冲击时,减震器会通过阻尼力减缓车身的上下运动,从而减少车身的晃动和颠簸感。

同时,弹簧和悬挂臂会吸收和分散路面冲击力,保证车轮与车身的相对位置稳定。

这样一来,悬架系统能够提供良好的乘坐舒适性和操控稳定性,使驾驶者能够更好地掌控车辆。

总结起来,悬架系统结构的原理是通过减震器、弹簧、悬挂臂等部件的协同作用,来实现对车轮的支撑和减震。

汽车悬架名词解释

汽车悬架名词解释

汽车悬架名词解释汽车悬架是指汽车的底盘和车轮之间的一系列连接和支撑机构。

它可分为前悬架和后悬架两部分。

悬架系统对于汽车车身的稳定性、操控性以及舒适性都有着至关重要的作用。

1. 悬架系统的组成部分汽车悬架系统包括:弹簧(或空气悬架)、减震器(或阻尼器)、悬挂臂、转向节、支撑轴承、悬架桥、稳定杆、调节杆、上下臂等多个部分。

每个部分都有着不同的作用,它们共同协作,完成悬架系统的功能。

2. 悬架系统的作用(1) 提高车辆的稳定性:悬架系统能使车身保持稳定,避免出现剧烈颠簸、弯曲或其他违规行为,同时还能使汽车经过高低起伏的道路时车身不会晃动过度。

(2) 改善操控性:悬架系统能够防止车辆在高速行驶时出现闪动问题,从而可以更好地进行方向控制,使汽车的操纵更为流畅和舒适。

(3) 提升乘坐舒适性:悬架系统通过缓解路面的颠簸,使乘车过程更为平稳,同时减少了人体在承受路面颠簸时所受的伤害。

3. 悬架系统的种类目前常见的悬架系统有以下几种。

(1) 前置悬挂系统:将车的发动机、变速器等置于车轮前部,主要用在前轮驱动车型上,适用于高速公路行驶。

(2) 后置悬挂系统:将车的发动机、变速器等置于车轮后部,主要用于后轮驱动车型,并较好地完成发动机的降噪和振动消除。

(3) 独立悬挂系统:采用四个独立的悬挂系统,各自负责控制自身轮胎,适用于性能车型。

(4) 拖架悬挂系统:将车轮通过拖架与车架相连,用于一些大型的负载车辆和拖车。

4. 悬架系统的维护每种悬架系统都有建议的保养周期,需要按时进行维护。

保养涉及到一系列内容,如:检查弹簧是否变形、调整减震器(或阻尼器)的硬度、检查安全带是否损坏等等。

这些操作可以检查和维护各个部分的工作状态,延长悬架系的使用寿命。

总之,汽车悬架系统是保证车辆安全、高效行驶的重要部分。

适当的悬架系统不仅可以提高车辆的操作性和乘坐舒适度,还能保护车辆的各个部分免受磨损和损伤。

因此,对悬架系统的选择和正确的维护至关重要。

悬架系统

悬架系统


横臂式独立悬挂

多连杆式悬挂
一.定义 所谓多连杆悬挂,顾名思义就是通过各种连 杆配置把车轮与车身相连的一套悬挂机构。而连 杆数量在3根以上才称为多连杆,目前主流的连杆 数量为5连杆。因此其结构要比双叉和麦弗逊复杂 很多。

多连杆式悬挂
二.应用
主要应用于大中型车
我们常见的中型和大型车上才会使用这种设 计,但通常都只用于后轮。原因是多连杆机 构非常复杂而且占用空间大,使其不便于布 置。因此只能用于拥有较大空间的后桥上。 但这里也有一个例外,那就是奥迪系列车型。
发展过程 空气悬架已经有70多年的发展历史了。目前的应 用范围相当广泛,特别是在商用车领域,100%的中型以上 客车和80%以上的卡车都使用了空气悬架系统。而现在在乘 用车上,高档汽车和SUV车型对其应用很广泛。
空气悬挂
结构:
1、空气悬架系统包括空气弹簧、减振器、导向机构和 车身高度控制系统。 2、空气悬架系统一般采用囊式空气弹簧。 3、减振器主要用来衰减车身的振动。 4、导向机构由纵向推力杆和横向推力杆等组成,用来 传递车身和车桥之间的纵向力、侧向力及驱动、制动时 产生的力矩。 5、车身高度控制系统分为机械式控制系统和电控控制 系统。
优缺点:
与大多数轿车采用的传统的不可变高度的螺旋弹簧悬 挂系统相比,空气悬挂系统可以根据道路的起伏不同调高 或调低底盘高度,使得车辆能够适应多种路况条件下的驾 驶需求。出于这种设计目的,空气悬挂系统多用于经常在 恶劣的路况条件下行驶的越野车上,以保证车辆能够顺利 地通过泥泞、涉水、砂石等路面。空气悬挂系统是一种很 先进实用的配置,但是却很“脆弱”。 由于系统结构较 为复杂,其出现故障的几率和频率要远远高于螺旋弹簧悬 挂系统,而用空气作为调整底盘高度的“推进动力”,减 振器的密封性还需要进一步提高,倘若空气减振器出现漏 气,那么整个系统就将处于“瘫痪”状态。而且如果频繁 地调整底盘高度,还有可能造成气泵系统局部过热,会大

悬架系统开发流程

悬架系统开发流程

悬架系统开发流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!悬架系统开发流程详解悬架系统是汽车的重要组成部分,它直接影响着车辆的行驶稳定性和乘坐舒适性。

汽车悬置系统设计标准有哪些

汽车悬置系统设计标准有哪些

汽车悬置系统设计标准有哪些
汽车悬架系统设计标准包括以下几个方面:
1. 载重能力:设计标准要求悬架系统能够承受车辆整备质量及额定载荷,并确保悬架系统在运行过程中不会失效或损坏。

2. 舒适性:悬架系统应具备良好的减震能力,能够有效地减少车辆在行驶过程中的颠簸感,提供乘坐舒适性。

3. 稳定性:悬架系统设计要求在车辆急转弯、行驶过程中具有良好的稳定性,能够保持车辆的姿态,并避免侧倾或失控。

4. 控制性:悬架系统设计要求能够使车辆具备良好的操控性能,能够快速、准确地响应驾驶员的操作,提供良好的操控感。

5. 可靠性:悬架系统设计要求能够在各种复杂的路况下正常工作,并保持长时间的稳定性和可靠性。

6. 安全性:悬架系统设计要求能够确保车辆在紧急制动或避让情况下稳定,避免侧滑、打滑或翻车等危险情况。

7. 经济性:悬架系统设计要求要考虑成本和效益,尽可能减少材料和零部件的使用,提高整体系统的寿命,降低维护和保养成本。

8. 环保性:悬架系统设计要求考虑所使用的材料和技术对环境的影响,尽可能减少对自然资源的消耗和环境污染。

总之,汽车悬架系统设计标准旨在提高汽车悬架系统的性能、可靠性、安全性和经济性,为车辆提供良好的行驶稳定性和乘坐舒适性。

同时,还要考虑环境因素,减少对自然资源的消耗和环境的污染。

这些标准是汽车制造行业必须遵守的基本规范,确保汽车悬架系统的质量和性能达到国际标准。

主动悬架系统的工作原理

主动悬架系统的工作原理

主动悬架系统的工作原理主动悬架系统是一种高级的汽车悬架系统,它可以根据路面情况和驾驶员的需求自动调整车辆的悬架硬度和高度,从而提高车辆的稳定性、舒适性和操控性。

主动悬架系统的工作原理是通过传感器和控制器来监测车辆的运动状态和路面情况,然后根据这些信息来调整悬架的工作方式。

主动悬架系统的传感器通常包括加速度计、陀螺仪、压力传感器、高度传感器等。

这些传感器可以测量车辆的加速度、角速度、车身姿态、路面高度等参数,从而提供给控制器一个全面的车辆运动状态的信息。

控制器是主动悬架系统的核心部件,它根据传感器提供的信息来计算出车辆的运动状态和路面情况,并根据预设的悬架工作模式来控制悬架的工作方式。

主动悬架系统的工作模式通常包括舒适模式、运动模式、高度调节模式等。

在舒适模式下,主动悬架系统会自动调整悬架的硬度和高度,使车辆在行驶过程中尽可能地平稳舒适。

在运动模式下,主动悬架系统会自动调整悬架的硬度和高度,使车辆在高速行驶和急转弯时更加稳定和灵活。

在高度调节模式下,主动悬架系统可以根据驾驶员的需求来调整车辆的高度,以适应不同的路面情况和驾驶场景。

主动悬架系统的工作原理可以通过以下步骤来简单描述:1. 传感器测量车辆的运动状态和路面情况,将数据传输给控制器。

2. 控制器根据传感器提供的数据计算出车辆的运动状态和路面情况,并根据预设的悬架工作模式来控制悬架的工作方式。

3. 控制器向悬架执行器发送指令,调整悬架的硬度和高度,以适应当前的路面情况和驾驶场景。

4. 悬架执行器根据控制器的指令调整悬架的工作方式,使车辆在行驶过程中保持平稳、舒适和稳定。

总之,主动悬架系统是一种高级的汽车悬架系统,它可以根据路面情况和驾驶员的需求自动调整车辆的悬架硬度和高度,从而提高车辆的稳定性、舒适性和操控性。

主动悬架系统的工作原理是通过传感器和控制器来监测车辆的运动状态和路面情况,然后根据这些信息来调整悬架的工作方式。

悬架系统设计汽车悬架系统设计

悬架系统设计汽车悬架系统设计
表面质量。
装配与涂装
按照工艺流程进行装配,采用 自动化涂装设备,确保产品外
观质量。
检测与试验
对成品进行全面的检测和试验 ,确保产品性能符合设计要求

关键工艺参数控制
热处理工艺参数
控制加热温度、保温时间和冷却速度等参数,确 保材料的力学性能和金相组织符合要求。
焊接工艺参数
选择合适的焊接方法和焊接参数,确保焊缝质量 和强度。
解决关键技术难题
在悬架系统设计过程中,攻克了多项关键技术难题,如非线性阻尼特性控制、多自由度振 动解耦等,为悬架系统的研发和应用提供了有力支持。
行业发展趋势预测
智能化悬架系统成为发展热点
随着智能驾驶技术的不断发展,智能化悬架系统将成为未来汽车悬架 系统的重要发展方向,实现与车辆控制系统的高度集成和协同工作。
验证与测试
通过实车试验或台架试验等方式,验证优化后的悬架系统的性能和可 靠性,确保满足设计要求。
05 悬架系统制造工艺与质量 控制
制造工艺流程规划
01
02
03
04
原材料选择与检验
选用高强度、轻量化的材料, 并进行严格的入厂检验,确保
原材料质量。
零部件加工
采用先进的数控机床和加工工 艺,确保零部件的尺寸精度和
稳定性分析
研究车辆和悬架系统在受到外部扰动时的稳定性,包括侧倾稳定 性、俯仰稳定性和横摆稳定性等。
仿真模拟与优化设计
仿真模拟
利用计算机仿真软件,对悬架系统进行动力学仿真模拟,分析系统 的运动学和力学特性,以及车辆的行驶平顺性和操纵稳定性。
优化设计
根据仿真结果和实际需求,对悬架系统的结构参数、刚度和阻尼等 进行优化设计,提高车辆的行驶性能和舒适性。

电动汽车的车辆悬架系统

电动汽车的车辆悬架系统

电动汽车的车辆悬架系统随着环保意识的增强和对汽车运行效能要求的提高,电动汽车作为一种低碳、高效的交通方式,正逐渐走进人们的生活。

而在电动汽车的设计中,车辆悬架系统起到了至关重要的作用。

本文将探讨电动汽车的悬架系统设计和其在提升行驶舒适性、安全性以及能源利用效率方面的重要性。

1. 悬架系统的定义和功能车辆悬架系统是指连接车身和车轮的组成部分,主要包括弹簧、减振器、悬架臂等。

它的主要功能是支撑车身、吸收道路震动、保持轮胎与地面的接触。

悬架系统的设计对于电动汽车的整体性能至关重要,它直接影响到车辆的操控性、行驶稳定性以及能源利用效率。

2. 电动汽车悬架系统的特点与传统燃油车相比,电动汽车的悬架系统存在一些独特的特点。

首先,由于电动汽车的电池组件较重,悬架系统需要具备较强的承重能力。

其次,为了提高电动汽车的行驶里程,悬架系统还要求具备较低的能量损耗,以减少能量的浪费。

此外,电动汽车的悬架系统还需要兼顾对噪音和振动的消除,以提供更好的行驶舒适性。

3. 悬架系统设计的关键要素为了满足电动汽车对悬架系统的需求,设计师需要考虑多个关键要素。

首先是悬架系统的弹簧和减振器的选择。

由于电动汽车的重量分布较传统燃油车更为集中,弹簧和减振器的选用需要更加精准,以达到最佳的支撑和缓冲效果。

其次是悬架系统的调校和控制。

电动汽车的悬架系统可以采用主动悬架或半主动悬架,通过调整悬架刚度和阻尼,以及控制车轮的垂直运动,来提高行驶舒适性和操控性。

最后是悬架系统材料的选择。

电动汽车悬架系统需要具备较高的强度和刚度,以应对电动汽车更高的负载和动力需求。

4. 悬架系统在电动汽车中的重要作用电动汽车的悬架系统在整车的性能方面起到了至关重要的作用。

首先是行驶舒适性的提升。

优秀的悬架系统可以有效吸收道路震动,并降低车身的颠簸感,提供更加平稳的行驶体验。

其次是悬架系统对车辆的操控性和稳定性的影响。

恰当的悬架系统设计可以提高车辆的操控性能,使得驾驶更加精确和安全。

简述汽车悬架的作用

简述汽车悬架的作用

简述汽车悬架的作用
汽车的悬架是汽车底座与车轮之间的一个重要系统,主要通过悬
挂系统来连接车身和车轮,确保车辆行驶的平稳性、舒适性和安全性。

汽车在行驶过程中,由于地面不平或者路面的碎石,都会对车辆的悬
架带来不同程度的挑战,因此可以说汽车悬架才是汽车中最重要的部
分之一。

悬架系统主要是由弹性元件、缓冲器、悬架卡箍和支架构成。


弹性元件常见的有弹簧和减振器,其中弹簧负责承载车身重量,并能
够调整车身高度和协调车轮的长度;减振器则能够降低波动和消除冲击,确保车辆行驶的平稳性和舒适度。

除了以上作用,汽车悬架还能够影响车辆的安全性、牵引力和操
控性。

对于大多数车辆而言,若是悬架过于软弱或者过于硬朗,都会
对行驶带来不利影响。

所以建议了解车辆悬架后,车主需要对汽车的
悬架进行常规检查和维护,维持其正常运作。

维护悬架要注意以下四点:首先是轮胎,一定要注意轮胎气压的
充足,避免轮胎的失衡。

其次是转向拉线,需要保持过硬和不锈,确
保悬架系统能够有效地控制方向。

第三是悬架缓冲器,它主要对车辆
减震的作用,所以需要保持缓冲器的弹性良好,提高车辆的乘坐舒适度。

最后,就是车身的配重,不同的车型需要采取不同的配重方式,
必须根据车型而定,不然会影响到车辆的行驶和安全稳定。

总之,汽车的悬架是汽车行驶过程中最重要的部分之一。

悬架系统的好坏将会影响到行驶的安全性、平稳性和舒适度。

所以需要车主定期进行检查和维护,以确保悬架系统的正常运行。

悬架的工作原理

悬架的工作原理

悬架的工作原理
悬架系统是指安装在车辆底盘和车轮之间的一系列零部件,用于缓冲和减少车辆行驶过程中的震动和颠簸,提供舒适的驾乘体验。

悬架系统的工作原理可以概括为以下几个方面:
1. 弹簧:悬架系统中的弹簧是用来支撑整个车体重量的主要组件。

弹簧可以分为螺旋弹簧和气囊弹簧两种类型。

它通过承受车体重量,提供对路面不平坑洼的缓冲和减震效果。

2. 减震器:减震器是悬架系统中的核心部件,用于控制车轮的上下运动。

它通过减轻车轮与车身之间的摩擦力和冲击力,提供稳定的悬架系统运动。

减震器通常采用液压或气压原理,通过活塞和阻尼油进行运动控制。

3. 悬挂杆:悬挂杆位于车轮和车身之间,起到连接和支撑的作用。

它通过弹性连接件,如橡胶或金属支架,将车轮的垂直运动传递给悬挂系统的其他部件,同时确保车轮与车身之间的稳定性和平衡。

4. 控制系统:现代车辆中,悬架系统通常配备了电子控制单元(ECU),用于监测和调整悬架系统的工作状态。

ECU可以根据路况和驾驶需求自动调节减震器的阻尼力,以提供更好的悬架系统性能和驾驶体验。

总之,悬架系统通过弹簧、减震器、悬挂杆和控制系统等组件
的协同作用,实现了车轮对路面不平的缓冲和减震效果,提供了更舒适的行驶体验。

汽车悬挂系统分类

汽车悬挂系统分类

汽车悬挂系统分类汽车悬挂系统是指连接车身和车轮的重要部件,它承载着车身的重量并提供支撑和缓冲作用,保证车辆在行驶过程中的稳定性和舒适性。

根据悬挂系统的结构和工作原理的不同,可以将汽车悬挂系统分为以下几类:独立悬挂系统、非独立悬挂系统、主动悬挂系统和被动悬挂系统。

一、独立悬挂系统独立悬挂系统又称为独立悬架系统,是指每个车轮都有独立的悬挂装置,彼此之间没有直接的连接。

这种悬挂系统能够使每个车轮独立地对路面的不平进行反应,提高了车辆的通过性和操控性能。

常见的独立悬挂系统包括麦弗逊悬挂系统、双叉臂悬挂系统、多连杆悬挂系统等。

1. 麦弗逊悬挂系统麦弗逊悬挂系统是最常用的独立悬挂系统之一,它由减震器、弹簧、悬挂臂等组成。

它的特点是结构简单、重量轻、成本低,同时具有较好的悬挂性能和操控稳定性。

2. 双叉臂悬挂系统双叉臂悬挂系统是一种常见的独立悬挂系统,它由两根上下交叉的悬挂臂和减震器组成。

这种悬挂系统能够有效地减少车身的滚动和俯仰,提高车辆的稳定性和操控性能。

3. 多连杆悬挂系统多连杆悬挂系统是一种高级的独立悬挂系统,它由多个悬挂臂和减震器组成。

这种悬挂系统能够提供更加精确的悬挂控制,提高车辆的操控性和舒适性。

二、非独立悬挂系统非独立悬挂系统是指车轮之间存在直接的连接,它们共享一套悬挂装置。

这种悬挂系统相对于独立悬挂系统来说结构简单、成本低,但对路面的适应性较差。

常见的非独立悬挂系统包括扭力梁悬挂系统、拖曳臂悬挂系统等。

1. 扭力梁悬挂系统扭力梁悬挂系统是一种常见的非独立悬挂系统,它由一根横置的扭力梁连接车轮。

这种悬挂系统结构简单、重量轻,但对路面的适应性较差,容易产生颠簸和摇晃。

2. 拖曳臂悬挂系统拖曳臂悬挂系统是一种常见的非独立悬挂系统,它由一根横置的拖曳臂连接车轮。

这种悬挂系统在结构上比扭力梁悬挂系统更为复杂,但对路面的适应性和悬挂控制性能较好。

三、主动悬挂系统主动悬挂系统是指能够主动调节悬挂刚度和减震力的悬挂系统。

悬架系统的名词解释

悬架系统的名词解释

悬架系统的名词解释一、引言汽车是现代社会人们生活中不可或缺的交通工具,而悬架系统作为汽车的重要组成部分,对于车辆的乘坐舒适性、操控性以及行车稳定性起着至关重要的作用。

然而,对于非专业人士来说,悬架系统中涉及的一些专业名词可能会令人感到困惑。

因此,本文将对悬架系统中常见的一些名词进行解释,以帮助读者更好地了解悬架系统的工作原理和相关术语。

二、悬架系统的基本概念悬架系统是指承载汽车车身重量并保证车轮与路面接触的一系列零部件的总称。

它的主要功能包括减震、支撑、导向和保持车身稳定。

三、弹簧弹簧是悬架系统中的重要组成部分,它通过储存和释放能量来缓冲和吸收路面不平衡引起的震动。

常见的弹簧类型有螺旋弹簧、空气悬架和液压悬架等。

螺旋弹簧是最常见的一种类型,它通过将金属线圈绕成螺旋状来提供弹性支持。

四、减震器减震器是悬架系统中的另一个重要组成部分,它主要用于阻尼车身和车轮之间的震动。

减震器通过减轻车身的弹性回弹和控制车轮与路面间的接触力,提高车辆的稳定性和舒适性。

目前市面上常见的减震器类型包括液压减震器、气压减震器和电子控制减震器。

五、悬架结构悬架系统的结构可以分为独立悬挂和非独立悬挂两种形式。

独立悬挂是指每个车轮都有独立的悬挂装置,它可以独立地对路面不平进行反应,从而提高车辆的操控性和通过性。

而非独立悬挂是指每个车轮之间不存在独立的悬挂装置,车轮之间的震动会相互影响,降低了车辆的行驶稳定性。

六、悬架系统调校悬架系统调校是指根据车辆用途、行驶条件和乘员需求,对悬架系统的弹簧和减震器进行调整以达到理想的性能。

调校可以使车辆在不同的路况下保持稳定特性、提供舒适的乘坐体验以及改善车辆的操控性。

七、悬架系统的创新与发展随着科技的发展以及人们对车辆性能的不断要求提高,悬架系统也在不断创新与发展。

例如,主动悬挂系统利用电子控制技术,通过感应路况来调整减震器的刚度,以提供更好的行车稳定性。

此外,空气悬挂系统可以根据需求调整车身高度,提高通过性和减少燃料消耗。

悬架系统设计 知识点

悬架系统设计 知识点

悬架系统设计知识点悬架系统是汽车重要的组成部分之一,它对车辆的操控性、舒适性和安全性都有着重要的影响。

一个好的悬架系统设计能够保证车辆在行驶中的稳定性,减少震动和颠簸,提供良好的驾驶感受。

下面将介绍一些悬架系统设计的关键知识点。

一、悬架系统的基本原理悬架系统的基本原理是通过减少车辆和路面之间的相互作用力,提供稳定且平滑的行驶环境。

常见的悬架系统类型包括独立悬架、非独立悬架和半独立悬架。

其中,独立悬架系统能够减少左右轮之间的相互干扰,提高悬架系统的独立性和稳定性。

二、悬架系统的材料选择悬架系统的材料选择对于系统的性能和寿命有着重要的影响。

常见的材料包括钢、铝合金和复合材料等。

钢材具有高强度和刚性,适用于繁重载荷的情况;铝合金材料具有较轻的重量和较高的强度,适用于追求悬挂系统轻量化的情况;复合材料则具有较高的强度和刚性,并且可以实现自由调节的特点,适用于高性能悬架系统的设计。

三、悬架系统的减震器设计减震器作为悬架系统中的重要组成部分,能够通过减少车辆的振动和抑制车身的滚动、俯仰和横摆等动作,提高行驶的平稳性和舒适性。

减震器的设计要考虑到弹簧的刚度、减震阻尼的设置以及减震器的控制适应性等因素。

常见的减震器类型包括气压减震器、液压减震器和电子控制减震器等,它们各有优缺点,需要根据实际应用情况进行选择和设计。

四、悬架系统的悬挂方式悬架系统的悬挂方式有前置式悬挂和后置式悬挂两种常见形式。

前置式悬挂将悬架组件安装在车辆前部,主要用于前驱车型,能够提供较好的操控性能和路面反馈;后置式悬挂则将悬架组件安装在车辆后部,主要用于后驱车型,能够提供较好的加速能力和牵引力。

不同的悬挂方式适用于不同的车型和使用环境,设计时需要根据实际需求进行选择。

五、悬架系统的调校和调节悬架系统的调校和调节是悬架系统设计中的重要环节,它能够根据车辆的使用需求和驾驶者的个人喜好对悬架系统进行性能优化。

悬架系统的调校包括刚度、行程、减震阻尼等参数的调整,而调节则包括冲孔式调节、电子控制调节和空气悬挂调节等方式。

汽车悬挂系统

汽车悬挂系统

什么是悬挂系统舒适性是轿车最重要的使用性能之一。

舒适性与车身的固有振动特性有关,而车身的固有振动特性又与悬架的特性相关。

所以,汽车悬架是保证乘坐舒适性的重要部件。

同时,汽车悬架做为车架(或车身)与车轴(或车轮)之间作连接的传力机件,又是保证汽车行驶安全的重要部件。

因此,汽车悬架往往列为重要部件编入轿车的技术规格表,作为衡量轿车质量的指标之一。

汽车车架(或车身)若直接安装于车桥(或车轮)上,由于道路不平,由于地面冲击使货物和人会感到十分不舒服,这是因为没有悬架装置的原因。

汽车悬架是车架(或车身)与车轴(或车轮)之间的弹性联结装置的统称。

它的作用是弹性地连接车桥和车架(或车身),缓和行驶中车辆受到的冲击力。

保证货物完好和人员舒适;衰减由于弹性系统引进的振动,使汽车行驶中保持稳定的姿势,改善操纵稳定性;同时悬架系统承担着传递垂直反力,纵向反力(牵引力和制动力)和侧向反力以及这些力所造成的力矩作用到车架(或车身)上,以保证汽车行驶平顺;并且当车轮相对车架跳动时,特别在转向时,车轮运动轨迹要符合一定的要求,因此悬架还起使车轮按一定轨迹相对车身跳动的导向作用。

悬架结构形式和性能参数的选择合理与否,直接对汽车行驶平顺性、操纵稳定性和舒适性有很大的影响。

由此可见悬架系统在现代汽车上是重要的总成之一。

一般悬架由弹性元件、导向机构、减振器和横向稳定杆组成。

弹性元件用来承受并传递垂直载荷,缓和由于路面不平引起的对车身的冲击。

弹性元件种类包括钢板弹簧、螺旋弹簧、扭杆弹簧、油气弹簧、空气弹簧和橡胶弹簧。

减振器用来衰减由于弹性系统引起的振,减振器的类型有筒式减振器,阻力可调式新式减振器,充气式减振器。

导向机构用来传递车轮与车身间的力和力矩,同时保持车轮按一定运动轨迹相对车身跳动,通常导向机构由控制摆臂式杆件组成。

种类有单杆式或多连杆式的。

钢板弹簧作为弹性元件时,可不另设导向机构,它本身兼起导向作用。

有些轿车和客车上,为防止车身在转向等情况下发生过大的横向倾斜,在悬架系统中加设横向稳定杆,目的是提高横向刚度,使汽车具有不足转向特性,改善汽车的操纵稳定性和行驶平顺性。

主动悬架系统的工作原理

主动悬架系统的工作原理

主动悬架系统的工作原理主动悬架系统是一种现代汽车技术,它可以根据路面状况和驾驶需求主动调整车辆的悬架高度和刚度,以提供更好的悬挂舒适性和稳定性。

这种系统通过传感器和控制单元实现,它可以实时监测车辆的姿态和路面情况,并根据这些信息调整悬架系统的工作状态。

主动悬架系统的工作原理可以分为三个主要步骤:感知、判断和控制。

首先,系统中的传感器会感知车辆的运动状态和路面状况。

这些传感器通常包括悬架行程传感器、悬架角度传感器、车速传感器等。

它们会实时地将采集到的数据传输给控制单元。

控制单元是主动悬架系统的核心部件,它负责对传感器采集到的数据进行处理和分析。

控制单元会根据这些数据判断车辆的姿态和路面情况,并决定如何调整悬架系统的工作状态以应对不同的驾驶需求和路面状况。

基于传感器数据的分析结果,控制单元会向悬架系统的执行部件发送指令,以调整悬架的工作状态。

悬架系统的执行部件通常包括悬架气囊、阻尼器和电动马达等。

通过控制这些执行部件的工作状态,主动悬架系统可以实现对悬架高度和刚度的调节,以适应不同的驾驶情况。

在实际的驾驶过程中,主动悬架系统可以提供多种工作模式,如舒适模式、运动模式和高度调节模式等。

在舒适模式下,系统会尽量减小悬架的刚度,以提供更好的乘坐舒适性。

在运动模式下,系统会增加悬架的刚度,以提高车辆的操控稳定性和悬挂支撑能力。

在高度调节模式下,系统可以根据驾驶者的需求,调整车身的高度,以适应不同的路况。

主动悬架系统的优点在于它可以根据实际的驾驶情况和路况实时调整悬架的工作状态,以提供更好的悬挂舒适性和稳定性。

它可以有效地减小车辆在行驶过程中的颠簸感,提高乘坐舒适性。

同时,它也可以提高车辆的操控稳定性,减小车身倾斜,提高转弯性能。

然而,主动悬架系统也存在一些挑战和限制。

首先,它需要大量的传感器和控制单元来实现实时的数据采集和处理,这增加了系统的成本和复杂性。

其次,悬架系统的调节范围受到一定的限制,无法完全适应所有的驾驶情况和路况。

浅析汽车悬架的研究现状和发展

浅析汽车悬架的研究现状和发展

浅析汽车悬架的研究现状和发展汽车悬架是指汽车底盘上支撑车身的部件,它直接影响到汽车的操控性、舒适性和安全性。

随着汽车工业的发展和技术的进步,汽车悬架的研究也在不断深入,并且取得了一系列重要的成果。

本文将对汽车悬架的研究现状和发展进行浅析,探讨其对汽车性能的影响和未来的发展方向。

一、汽车悬架的研究现状1. 传统悬架系统传统汽车悬架系统主要包括独立悬架、非独立悬架和半独立悬架。

独立悬架系统由弹簧和减震器组成,可以单独支撑每个车轮,具有良好的操控性能和舒适性。

非独立悬架系统则是通过横臂、纵臂和扭力横梁等连接两个车轮,其操控性和舒适性较差。

而半独立悬架系统则介于两者之间,兼具一定的操控性和舒适性。

2. 高级悬架技术随着汽车工业的不断发展,高级悬架技术也得到了广泛应用。

电子调节悬架系统、主动悬架系统和自适应悬架系统等技术,通过传感器、控制模块和执行机构实现对悬架硬度、行程和高度等参数的实时调节,大大提高了汽车的操控性、舒适性和安全性。

3. 轻量化设计轻量化设计是当下汽车悬架研究的热点之一。

通过采用先进的材料和结构设计,减轻悬架系统的重量,不仅可以提高汽车的燃油经济性,还可以改善悬架的响应速度和稳定性。

1. 智能化技术应用未来,智能化技术将会成为汽车悬架研究的重要方向。

通过人工智能、大数据和云计算等技术,实现对汽车悬架系统的智能控制和预测性维护,以提高汽车的驾驶性能和持久性。

2. 混合悬架系统混合悬架系统融合了传统悬架系统和先进悬架技术,结合了机械和电气的优势,为汽车的悬架性能提供了更广阔的发展空间。

在传统悬架系统上加入电子调节装置,或者将主动悬架系统与自适应悬架系统相结合,可以实现更为精准的悬架调节和响应。

3. 可变刚度悬架系统可变刚度悬架系统是一种新型的悬架技术,通过调节悬架硬度,可以实现在不同行驶状态下的最佳悬架性能。

这种系统可以根据路况、车速和操控需求等因素,实时调节悬架的刚度,为汽车提供更为个性化的悬架调校。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

非独立悬架
(2)四连杆式 是用四根(也有三根或五根的)推力杆控制车桥位置的非独立悬架. 多用于轿车后悬架和客车,载货车的空气弹簧悬架.为了克服钢板弹簧悬 架缺点,用螺旋弹簧或空气弹簧代替钢板弹簧.但是由于这些弹簧元件只能承 受垂直力,为了传递除垂直力之外的力和力矩,采用了推力杆结构. 推力杆布置形式:
麦弗逊式独立悬挂简化结构示意图
双叉臂独立悬挂
双叉臂式悬挂又称双A臂式独立悬挂,双叉臂悬挂拥有上下两个叉臂, 横向力由两个叉臂同时吸收,支柱只承载车身重量,因此横向刚度大. 双叉臂式悬挂的上下两个A字形叉臂可以精确的定位前轮的各种参数, 前轮转弯时,上下两个叉臂能同时吸收轮胎所受的横向力,加上两叉 臂的横向刚度较大,所以转弯的侧倾较小. 双叉臂式悬挂通常采用上下不等长叉臂(上短下长),让车轮在上下 运动时能自动改变外倾角并且减小轮距变化减小轮胎磨损,并且能自 适应路面,轮胎接地面积大,贴地性好. 相比麦弗逊式悬挂双叉臂多了一个上摇臂,不仅需要占用较大的空间, 而且其定位参数较难确定,因此小型轿车的前桥出于空间和成本考虑 一般不会采用此种悬挂.但其具有侧倾小,可调参数多,轮胎接地面 积大,抓地性能优异,因此绝大部分纯正血统的跑车的前悬挂均选用 双叉臂式悬挂,可以说双叉臂式悬挂是为运动而生的悬挂,法拉利, 玛莎拉蒂等超级跑车以及F1方程式赛车均采用了双叉臂式前悬挂.一 汽丰田皇冠和锐志也都采用了双叉臂式前悬挂
悬架的分类
汽车悬架按导向机构型式可分为独立悬架和非独立悬架两 大类.独立悬架的车轮通过各自的悬架和车架(或车身) 相连,非独立悬架的左,右车轮装在一根整体轴上,再通 过其悬架与车架(或车身)相连.

非独立悬挂和独立悬挂
最初的汽车都采用两个车轮安装在一根整体式车桥上的非 独立悬挂,因为它简单,坚固.不过问题很快就出现了, 采用非独立悬挂的汽车当一边车轮上升时,必然导致另一 边车轮下降,所以车身不能造的很低,必须给这种悬挂以 左摇右摆的空间.底盘高,汽车转向时侧倾必然就比较严 重,尤其当转向轮也采用非独立悬挂时,很容易发生侧翻 的意外. 非独立悬挂的车轮装在一根整体车轴的两端,当一边车轮 跳动时,另一侧车轮也相应跳动,使整个车身振动或倾斜. 独立悬挂的车轴分成两段,每只车轮由螺旋弹簧独立安装 在车架下面,当一边车轮发生跳动时,另一边车轮不受影 响,两边的车轮可以独立运动,提高了汽车的平稳性和舒 适性.
独立悬架特点及分类
独立悬架主要用于轿车上,在部分轻型客,货车和越野车,以及一些 高档大客车上也有采用.独立悬架与非独立悬架相比有以下优点: 由于采用的断开式车轴,可以降低发动机及整车底板高度; 允许车轮有较大跳动空间,而且弹簧可以设计得比较软,平顺性好; 独立悬架能提供保证汽车行驶性能的多种设计方案; 簧载质量小,轮胎接地性好. 缺点:结构复杂,成本高. 独立悬架有以下几种型式: 麦弗逊式独立悬挂 双叉臂独立悬挂 多连杆独立悬挂 连杆支柱悬挂
连杆支柱悬挂
连杆支柱悬挂严格意义上来说没有这种称谓,但是随着国内广州丰田凯 美瑞的热销(凯美瑞采用了这种悬挂),连杆支柱这个名字被越来越多 的人熟悉,我们也就姑且把这种悬挂称为连杆支柱悬挂. 连杆支柱与麦弗逊悬挂一样,用来支撑车体也是减振器支柱,他把减振 器,减振弹簧组装在一个总成中.连杆支柱悬挂也有一跟粗大的减振器 支柱,与麦弗逊悬挂的主要区别在于,悬挂下部与车身连接的A字型控制 臂改成了三根连杆定位.转弯时产生的横向力来,主要由减振器支柱和 横拉杆来承担.它具有与麦弗逊悬挂相近的操控性能,又有比麦弗逊悬 挂更高的连接刚度和相对较好的抗侧倾性能.但是同样也存在麦弗逊悬 挂的缺点,就是稳定性不好,转向侧倾还是较大,需要加装平衡杆来减 小转向侧倾. 相对纵臂扭转梁来说,它达到了全独立悬挂的结构要求,并且运动部件 质量轻,悬挂响应性好,舒适性和操控性要优于纵臂扭转梁的,但比真 正的多连杆悬架要差一些.不过其占有空间小于真正的多连杆式悬挂, 成本也低于多连杆悬挂故被不少厂家采用.国内采用这种后悬挂的主要 有昌河铃木利亚纳,东风悦达起亚赛拉图,北京现代伊兰特,广州丰田 凯美瑞等.
组成悬架的基本元件
汽车悬架包括弹性元件,减震器和传力装置 弹性元件,减震器 传力装置 传力装置等三部分,这三部分分别起缓冲, 弹性元件 减振和力的传递作用. 弹性元件用力传递垂向力,并缓和由路面不平度引起的冲击和振动.从轿车上 弹性元件 来讲,弹性元件多指螺旋弹簧,它只承受垂直载荷,缓和及抑制不平路面对车 体的冲击,具有占用空间小,质量小,无需润滑的优点,但由于本身没有摩擦 而没有减振作用. 减震器指液力减振器,是为了加速衰减车身的振动,它是悬架机构中最精密 减震器 和复杂的机械件. 传力装置是指车架的上下摆臂等叉形刚架,转向节等元件,用来传递纵向力, 传力装置 侧向力及力矩,并保证车轮相对于车架(或车身)有确定的相对运动规律. 现代轿车的悬架一般采用质量小,性能稳定可靠的筒式减震器 筒式减震器.当轿车在不 筒式减震器 平坦的道路上行驶,车身会发生振动,减振器能迅速衰减车身的振动,利用本 身的油液流动的阻力来消耗振动的能量.当车架与车轴相对运动时,减振器内 的油液会通过一些窄小的孔,缝等通道反复地从一个腔室流向另一个腔室,这 时孔壁与油液间的摩擦和油液内的分子间的摩擦形成了对车身振动的阻力,这 种阻力工程上称为阻尼力.阻尼力会将车身的振动能转化为热能,并被油液和 壳体所吸收.人们为了更好地实现轿车的行驶平稳性和安全性,将阻尼系数不 固定在某一数值上,而是能随轿车运行的状态而变化,使悬架性能总是处在最 优的状态附近.因此,有些轿车的减振器是可调式的,将阻尼分成两级或三级, 根据传感器信号自动选择所需要的阻尼级.
多连杆独立悬挂
多连杆悬挂能实现主销后倾角的最佳位置,大幅度减少来自路面的前后方向力, 从而改善加速和制动时的平顺性和舒适性,同时也保证了直线行驶的稳定性, 因为由螺旋弹簧拉伸或压缩导致的车轮横向偏移量很小,不易造成非直线行驶. 在车辆转弯或制动时,多连杆悬挂结构可使后轮形成正前束,提高了车辆的控 制性能,减少转向不足的情况. 悬挂在收缩时能自动调整外倾角,前束角以及使后轮获得一定的转向角度.通 过对连接运动点的约束角度设计使得悬挂在压缩时能主动调整车轮定位(这个 设计自由度非常大),能完全针对车型做匹配和调校以最大限度的发挥轮胎抓 地力从而提高整车的操控极限. 多连杆悬挂结构想对复杂,材料成本,研发实验成本以及制造成本远高于其它 类型的的悬挂,而且其占用空间大,中小型车出于成本和空间考虑极少使用这 种悬挂.但多连杆式悬挂舒适性能是所有悬挂中最好的,操控性能也和双叉臂 式悬挂难分伯仲,高档轿车由于空间充裕,且注重舒适性能何操控稳定性,所 以大多使用多连杆悬,可以说多连杆悬挂是高档轿车的绝佳搭档.
连杆支柱悬挂示意图

悬架系统
概要
悬架的作用和负面影响 组成悬架的基本元件 悬架的分类 - 非独立悬挂和独立悬挂 非独立悬架 独立悬架特点及分类 麦弗逊式独立悬挂 双叉臂独立悬挂 多连杆独立悬挂 连杆支柱悬挂
悬架的作用和负面影响
汽车悬架是车架(或承载式车身)与车桥(或车轮)之间弹性连接的部件. 主要由弹性元件,减震器和导向装置三个基本部分组成.此外,还可 以包括一些特殊功能的部件,如缓冲块和稳定杆等. 汽车悬架作用: (1) 缓和,抑制由不平路面引起的振动和冲击,保证乘员乘坐舒适和 所运货物完好; (2) 除传递汽车垂直力以外,还传递其他各方面的力和力矩,并保证 车轮和车身(或车架)之间有确定的运动关系,使汽车具有良好的驾 驶性能. 汽车悬架负面影响: (1) 转向效应 a,侧倾时的干涉转向,即车身倾斜时,使转向轮产生额外的转角; b,车轮外倾角变化引起的转向效应,即独立悬架汽车在转弯时,因 侧向力作用会使车身倾斜,车轮倾角将产生变化; c,轮距变化引起的转向效应,即多数独立悬架一侧车轮上下运动 时,轮胎接地点产生侧向位移. (2) 前俯及后仰 汽车制动或加速时,由于前,后轴荷转移使前,后悬架变形不等, 引起车身前俯(点头)或后仰(后沉).
麦弗逊式独立悬挂示意图
麦弗逊式独立悬挂
要说麦弗逊式独立悬架在结构上有多简单,从构成部件来看,它仅仅 由两大部分构成:支柱式减震器(简称:滑柱)和A字型下托臂.与复 杂的多连杆式以及占用空间的横臂式相比,麦弗逊式独立悬架在结构 上已经作了最大化精简,并且经过半个多世纪的检验,其结构充分可 靠.麦弗逊式独立悬架的物理结构为支柱式减震器兼作主销,承受来 自于车身抖动和地面冲击的上下预应力,转向节(也可说车轮,因为 转向节作用于车轮)则沿着主销转动;此外,其主销可摆动,特点是 主销位置和前轮定位角随车轮的上下跳动而变化,且前轮定位变化小, 拥有良好的行驶稳定性.在麦弗逊式独立悬架中,支柱式减震器除具 备减震效果外,还要担负起支撑车身的作用,所以它的结构必须紧凑 且刚度足够,并且套上螺旋弹簧后还要能减震,而弹簧与减震器一起, 构成了一个可以上下运动的滑柱. 在麦弗逊悬架结构中,还有一个关键部件---A字型下托臂,它的 作用是为车轮提供横向支撑力,并能承受来自前后方向的预应力.车 辆在运动过程中,车轮所承受的所有方向的冲击力量就要靠支柱减震 器和A字型下托臂这两个部件承担,而这两个部件的高强度和轻质量也 就成为当下最前卫的设计思路,于是就有厂商用空气减震取代传统的 液压减震,不过由于成本高昂而难以形成气候.推广不了成本与舒适 性成正比的空气减震,还是继续使用液压的吧,不过由减震器和A字型 下托臂构成的L型麦弗逊悬架还是能为时下流行的小车装大排量发动机 预留充足的空间.
双叉臂独立悬挂示意图
多连杆独立悬挂
多连杆悬挂,通过各种连杆配置(通常有三连杆,四连杆,五连杆),可分为前 悬挂和后悬挂系统.其中前悬挂一般为3连杆或4连杆式独立悬挂;后悬挂则一般 为4连杆或5连杆式后悬挂系统,其中5连杆式后悬挂应用较为广泛. 首先能实现双叉臂悬挂的所有性能,然后在双叉臂的基础上通过连杆连接轴的约 束作用使得轮胎在上下运动时前束角也能相应改变,这就意味着弯道适应性更好, 如果用在前驱车的前悬挂,可以在一定程度上缓解转向不足,给人带来精确转向 的感觉;如果用在后悬挂上,能在转向侧倾的作用下改变后轮的前束角,这就意 味着后轮可以一定程度的随前轮一同转向,达到舒适操控两不误的目的.跟双叉 臂一样,多连杆悬挂同样需要占用较多的空间,而且多连杆悬挂无论是制造成本 还是研发成本都是最高的.
相关文档
最新文档