高中物理-研究力和运动的关系本章优化总结学案
高中物理第5章力与运动第3节牛顿第三定律教案1鲁科版必修1
牛顿第三定律一、学情分析1、牛顿第三定律在教材中的地位和作用牛顿第一揭示了一个不受力物体运动的规律,牛顿第二定律揭示了一个物体受力与运动的规律,牛顿第三定律揭示了物体之间相互作用的规律,使人们不仅可以研究单个物体的运动,而且可以把存在相互作用的各个物体的运动联系起来进行研究。
牛顿第三定律和牛顿第一、第二定律一起建立了一个完整了理论体系,奠定了整个力学的基础。
2、学生在学习本节课前已经学习了对物体进行受力分析、物体的运动规律、力和运动的关系,但是学生经常混淆物体相互作用力和平衡力的特点。
另外,学生往往有这类相互作用力大小不相等的错误前认知:当一个大人和一个小孩在对拉比力气时,大人之所以会胜,是由于大人施加给小孩的力大于小孩施加给大人的力。
二、教学目标根据上述对学习任务和学生情况的分析,确定本节课教学目标如下:(1)知道力的作用是相互的,理解作用力和反作用力的概念。
(2)理解牛顿第三定律,能用该定律解释生活中的有关问题。
(3)能区分一对平衡力与一对作用力、反作用力。
(1)引导学生以科学的方法分析弹力、摩檫力、场力的实例,寻找作用力和反作用力之间的规律。
(2)从应用牛顿第三定律解释生活现象中,检测学生知识达成度。
(3)交流讨论一对平衡力与一对作用力、反作用力的异同,检测学生知识达成度。
(1)在学生分析作用力和反作用力的生活实例中,培养学生科学推理、质疑等意识。
(2)在用牛顿第三定律解释生活中的有关问题时,帮助学生初步树立科学伦理的意识。
(3)交流讨论一对平衡力与一对相互作用力的异同,培养学生围绕问题,通过交流方式开展寻找证据、解释原因等意识。
(1)理解牛顿第三定律并用它解释实际问题。
(2)作用力和反作用力与二力平衡的异同。
三、教学方法课堂以生活实例等现象创设物理情景,引导学生认真观察、科学推理、科学论证、质疑创新,探究得出两个物体间力的作用是相互的,具有同时性、同性质、反方向、作用于不同物体、效果多样性等特点,帮助学生建立起作用力和反作用力形象直观的定性和定量认识,并逐步区分一对作用力和反作用力与一对平衡力的异同,培养相互作用的物理观念及其应用、科学思维与创新、科学探究与交流的核心素养。
运动和力的关系大单元教学设计-2023-2024学年高一上学期物理人教版(2019)必修第一册
单元名称:《运动和力的关系》教材版本:人教版必修一学段学科:高中物理授课年级:高三《运动和力的关系》单元教学设计单元主题运动和力的关系课时8教材分析本章是在前面三章内容的基础上进一步研究运动和力的关系,这是质点动力学的内容。
牛顿运动定律是动力学的核心内容,根据牛顿运动定律可以确定物体位置、速度的变化,控制物体的牛顿运动定律对直线运动、曲线运动都适用。
为便于学生学习,本章只限于讨论物体做直线运动的问题。
在学生对牛顿运动定律基本理解的基础上,在后续的学习中,要研究牛顿运动定律在曲线运动中的应用。
本章先阐述牛顿第一定律,分析、说明牛顿在前人,特别是在伽利略的研究基础上建立了牛一定律,明确指出牛顿第一定律是牛顿力学的基石。
牛顿第一定律提出了两个重要的、基本里概念:力和惯性。
本章在阐述牛顿第二定律前设置了一个实验:探究加速度与力、质量的让学生初步了解牛顿第二定律有实验基础,在实验的基础上引导学生认识牛顿第二定律。
二定律是定量的规律,教科书在介绍了力学单位制和国际单位制后,通过用牛顿运动定律类基本问题,深化学生对定律的理解。
最后用牛顿第二定律研究了超重、失重问题。
学情分析牛顿运动定律对直线运动、曲线运动都适用。
为便于学生理解,现阶段学习的牛顿运动定律的应用只限于直线运动。
在学生基本理解牛顿运动定律的基础上,在后续的教学中,要研究牛顿运动定律在曲线运动、天体运动中的应用。
《物理课程标准(2017版)》对本单元内容要求1.2.3 通过实验,探究物体运动的加速度与物体受力、物体质量的关系。
理解牛顿运动定律,能用牛顿运动定律解释生产生活中的有关现象、解决有关问题。
通过实验,认识超重和失重现象。
(1.通过各种活动,例如乘坐电梯、到游乐场参与有关游乐活动等,体验失重与超重。
2.设计一种能显示加速度大小的装置。
)1.2.4 知道国际单位制中的力学单位。
了解单位制在物理学中的重要意义。
单元结构图(牛三律、平衡问题除外)单元目标物理观念目标1:了解伽利略关于运动和力关系的认识,树立运动与相互作用观。
2021_2022高中物理第四章牛顿运动定律第6节用牛顿运动定律解决问题一1教案新人教版必修
用牛顿运动定律解决问题(一)教材分析力和物体运动的关系问题,一直是动力学研究的基本问题,人们对它的认识经历了一个漫长的过程,直到牛顿用他的三个定律对这一类问题作出了精确的解决.牛顿由此奠定了经典力学的基础.牛顿三定律成为力学乃至经典物理学中最基本、最重要的定律.牛顿第一定律解决了力和运动的关系问题;牛顿第二定律确定了运动和力的定量关系;牛顿第三定律确定了物体间相互作用力遵循的规律.动力学所要解决的问题由两部分组成:一部分是物体运动情况;另一部分是物体与周围其他物体的相互作用力的情况.牛顿第二定律恰好为这两部分的链接提供了桥梁.应用牛顿运动定律解决动力学问题,高中阶段最为常见的有两类基本问题:一类是已知物体的受力情况,要求确定出物体的运动情况;另一类是已经知道物体的运动情况,要求确定物体的受力情况.要解决这两类问题,对物体进行正确的受力分析是前提,牛顿第二定律则是关键环节,因为它是运动与力联系的桥梁.教学重点应用牛顿运动定律解决动力学的两类基本问题.教学难点动力学两类基本问题的分析解决方法.课时安排1课时三维目标1.知识与技能(1)知道动力学的两类基本问题,掌握求解这两类基本问题的思路和基本方法.(2)进一步认识力的概念,掌握分析受力情况的一般方法,画出研究对象的受力图.2.过程与方法(1)培养学生运用实例总结归纳一般解题规律的能力.(2)会利用正交分解法在相互垂直的两个方向上分别应用牛顿定律求解动力学问题.(3)掌握用数学工具表达、解决物理问题的能力.3.情感、态度与价值观通过牛顿第二定律的应用,提高分析综合能力,灵活运用物理知识解决实际问题.教学过程导入新课情境导入利用多媒体播放“神舟”五号飞船的发射升空、“和谐号”列车高速前进等录像资料.如图甲、乙所示.引导:我国科技工作者能准确地预测火箭的升空、变轨,列车的再一次大提速节约了很多宝贵的时间,“缩短”了城市间的距离.这一切都得益于人们对力和运动的研究.我们现在还不能研究如此复杂的课题,就让我们从类似较为简单的问题入手,看一下这类问题的研究方法.推进新课牛顿第二定律确定了运动和力的关系,使我们能够把物体的运动情况与受力的情况联系起来.因此,它在天体运动的研究、车辆的设计等许多基础学科和工程技术中都有广泛的应用.由于我们知识的局限,这里只通过一些最简单的例子作介绍.一、从受力确定运动情况如果已知物体的受力情况,可由牛顿第二定律求出物体的加速度,再通过运动学的规律就可以确定物体的运动情况.例1一个静止在水平地面上的物体,质量是2 kg,在6.4 N的水平拉力作用下沿水平方向向右运动.物体与地面间的摩擦力是4.2 N,求物体在4 s末的速度和4 s内发生的位移.分析:这个问题是已知物体受的力,求它的速度和位移,即它的运动情况.教师设疑:1.物体受到的合力沿什么方向?大小是多少?2.这个题目要求计算物体的速度和位移,而我们目前只能解决匀变速运动的速度和位移.物体的运动是匀变速运动吗?师生讨论交流:1.对物体进行受力分析,如图.物体受力的图示物体受到四个力的作用:重力G ,方向竖直向下;地面对物体的支持力F N ,竖直向上;拉力F 1,水平向右;摩擦力F 2,水平向左.物体在竖直方向上没有发生位移,没有加速度,所以重力G 和支持力F N 大小相等、方向相反,彼此平衡,物体所受合力等于水平方向的拉力F 1与摩擦力F 2的合力.取水平向右的方向为正方向,则合力:F =F 1-F 2=2.2 N ,方向水平向右.2.物体原来静止,初速度为0,在恒定的合力作用下产生恒定的加速度,所以物体做初速度为0的匀加速直线运动.解析:由牛顿第二定律可知,F 1-F 2=maa =F 1-F 2ma =2.22m/s 2=1.1 m/s 2 求出了加速度,由运动学公式可求出4 s 末的速度和4 s 内发生的位移v =at =1.1×4 m/s=4.4 m/sx =12at 2=12×1.1×16 m=8.8 m.讨论交流:(1)从以上解题过程中,总结一下运用牛顿定律解决由受力情况确定运动情况的一般步骤.(2)受力情况和运动情况的链接点是牛顿第二定律,在运用过程中应注意哪些问题? 参考:运用牛顿定律解决由受力情况确定物体的运动情况大致分为以下步骤:(1)确定研究对象.(2)对确定的研究对象进行受力分析,画出物体的受力示意图.(3)建立直角坐标系,在相互垂直的方向上分别应用牛顿第二定律列式F x =ma x ,F y =ma y .求得物体运动的加速度.(4)应用运动学的公式求解物体的运动学量.3.受力分析的过程中要按照一定的步骤以避免“添力”或“漏力”.一般是先场力,再接触力,最后是其他力.即一重、二弹、三摩擦、四其他.再者每一个力都会独立地产生一个加速度.但是解题过程中往往应用的是合外力所产生的合加速度.再就是牛顿第二定律是一矢量定律,要注意正方向的选择和直角坐标系的应用.课堂训练(课件展示)如图所示自由下落的小球,从它接触竖直放置的弹簧开始到弹簧压缩到最大程度的过程中,小球的速度和加速度的变化情况是().A.加速度变大,速度变小B.加速度变小,速度变大C.加速度先变小后变大,速度先变大后变小D.加速度先变小后变大,速度先变小后变大解析:小球接触弹簧后,受到竖直向下的重力和竖直向上的弹力,其中重力为恒力.在接触开始阶段,弹簧形变较小,重力大于弹力,合力方向向下,故加速度方向也向下,加速度与速度方向相同,因而小球做加速运动.随着弹簧形变量的增加,弹力不断增大,向下的合力逐渐减小,小球加速度也逐渐减小.当弹力增大到与重力相等时,小球加速度等于0.由于小球具有向下的速度,仍向下运动.小球继续向下运动的过程,弹力大于重力,合外力方向变为竖直向上,小球加速度也向上且逐渐增大,与速度方向相反.小球速度减小,一直到将弹簧压缩到最大形变量,速度变为0.答案:C二、从运动情况确定受力与第一种情况过程相反,若已经知道物体的运动情况,根据运动学公式求出物体的加速度,于是就可以由牛顿第二定律确定物体所受的外力,这是力学所要解决的又一方面的问题.例2 一个滑雪的人,质量m=50 kg,以v0=2 m/s的初速度沿山坡匀加速滑下,山坡倾角θ=30°,在t=5 s的时间内滑下的路程x=60 m,求滑雪人受到的阻力(包括摩擦和空气阻力).合作探讨:这个题目是已知人的运动情况,求人所受的力.应该注意三个问题:滑雪人受到的力1.分析人的受力情况,作出受力示意图.然后考虑以下几个问题:滑雪的人共受到几个力的作用?这几个力各沿什么方向?它们之中哪个力是待求的,哪个力实际上是已知的?2.根据运动学的关系得到下滑加速度,求出对应的合力,再由合力求出人受的阻力.3.适当选取坐标系.坐标系的选择,原则上是任意的,但是为了解决问题的方便,选择时一般根据以下要求选取:(1)运动正好沿着坐标轴的方向.(2)尽可能多的力落在坐标轴上.如有可能,待求的未知力尽量落在坐标轴上,不去分解.解析:如图,受力分析建立如图坐标系,把重力G 沿x 轴和y 轴的方向分解,得到求滑雪人受到的阻力G x =mg ·sin θG y =mg ·cos θ与山坡垂直方向,物体没有发生位移,没有加速度,所以G y 与支持力F N 大小相等、方向相反,彼此平衡,物体所受的合力F 等于G x 与阻力F 阻的合力.由于沿山坡向下的方向为正方向,所以合力F =G x -F 阻,合力的方向沿山坡向下,使滑雪的人产生沿山坡向下的加速度.滑雪人的加速度可以根据运动学的规律求得:x =v 0t +12at 2 a =2(x -v 0t )t 2 a =4 m/s 2 根据牛顿第二定律F =maG x -F 阻=maF 阻=G x -maF 阻=mg ·sin θ-ma 代入数值后,得F 阻=67.5 N.答案:67.5 N结合两种类型中两个例题的解题过程,总结出用牛顿定律解题的基本思路和解题步骤:1.选定研究对象,并用隔离法将研究对象隔离出来.2.分别对研究对象进行受力分析和运动情况分析,并作出其受力图.3.建立适当的坐标系,选定正方向,正交分解.4.根据牛顿第二定律分别在两个正交方向上列出方程.5.把已知量代入方程求解,检验结果的正确性.课堂训练(课件展示)1.一个物体的质量m =0.4 kg ,以初速度v 0=30 m/s 竖直向上抛出,经过t =2.5 s 物体上升到最高点.已知物体上升过程中所受到的空气阻力大小恒定,求物体上升过程中所受空气阻力的大小是多少?解析:设物体向上运动过程中做减速运动的加速度大小为a ,以初速度方向为正方向. 因为v t =v 0-a t ,v t =0所以a =0v t=12 m/s 2 对小球受力分析如图,由牛顿第二定律f +mg =maf =m (a -g )=0.4×(12-9.8)N=0.88 N.答案:0.88 N2.如图所示,光滑地面上,水平力F 拉动小车和木块一起做匀加速运动,小车的质量为M ,木块的质量为m .设加速度大小为a ,木块与小车之间的动摩擦因数为μ,则在这个过程中大木块受到的摩擦力大小是( ).A.μmg B.ma C.mM+mF D.F-ma解析:这是一道根据物体运动状态求物体受力情况的典型习题.题中涉及两个物体,题干中的已知量又比较多,对此类题目,要注意选取好研究对象.两者无相对运动,它们之间的摩擦力只能是静摩擦力.因而滑动摩擦力公式f=μmg就不再适用.A选项错误.以木块为研究对象,则静摩擦力产生其运动的加速度F合=f=ma,再由牛顿第三定律可知B选项正确.以小车为研究对象,F-f=Ma,f=F-Ma,D选项也正确.以整体为研究对象,则a=FM+m,再代入f=ma可得f=mFM+m.故C选项也正确.答案:BCD教学建议:1.授课过程中,教师提示分析思路之后.受力分析、过程分析先由学生完成,教师则将解题过程完整写出,以便总结规律、让学生养成规范解题的习惯.2.运算过程中,物理量尽量用相应的字母表示,将所求量以公式形式代出,最后再将已知量代入,求出结果.课堂小结本节课主要讲述了动力学中的两类基本问题:(1)已知受力情况求解运动情况.(2)已知运动情况求物体受力情况.通过对例题的分析解决过程,总结出这两类基本问题的解决方法、思路和一般解题步骤.布置作业教材第87页“问题与练习”1、2、3、4题.板书设计6 用牛顿运动定律解决问题(一)一、从受力情况确定运动情况例1二、从运动情况确定受力情况例2总结:加速度是连接动力学和运动学的桥梁活动与探究课题:牛顿运动定律的适用条件.牛顿运动定律虽然是一个伟大的定律,但它也有自己适用的条件.通过对其适用条件的了解,使学生进一步完整地掌握这个规律,并且为相对论的提出打好基础.习题详解1.解答:如图所示,用作图法求出物体所受的合力F =87 Na =F m =872m/s 2=43.5 m/s 2 v =at =43.5×3 m/s=131 m/sx =12at 2=12×43.5×32 m =196 m. 2.解答:电车的加速度为:a =v -v 0t =0-1510m/s 2=-1.5 m/s 2. 电车所受阻力为:F =ma =-6.0×103 N ,负号表示与初速度方向相反.3.解答:人在气囊上下滑的加速度为:a =mg sin θ-F m =g sin θ-F m =(10×3.24.0-24060) m/s 2=4.0 m/s 2 滑至底端时的速度为:v =2ax =2×4.0×4.0 m/s =5.7 m/s.4.解答:卡车急刹车时的加速度大小为:a =F m =μmg m=μg =7 m/s 2 根据运动学公式:v 0=2ax =2×7×7.6 m/s =10.3 m/s≈37.1 km/h>30 km/h 所以,该车超速.设计点评动力学的两类基本问题在高中阶段的地位相当重要,对于培养学生的分析、判断、综合能力有很大的帮助.对于方法的总结,遵循由特殊到一般、再由一般到特殊的人们认识事物的基本发展思路.过程清晰,层次分明,有助于学生理解和掌握.备课资料一、牛顿运动定律的适用范围17世纪以来,以牛顿运动定律为基础的经典力学不断发展,在科学研究和生产技术上得到了极其广泛的应用,取得了巨大的成就.这一切不仅证明了牛顿运动定律的正确性,甚至使有些科学家认为经典力学已经达到十分完善的地步,一切自然现象都可以由力学来加以说明,过分地夸大了经典力学的作用.但是,实践表明,牛顿运动定律和所有的物理定律一样,只具有相对的真理性.1905年,著名的美籍德国物理学家爱因斯坦(1879—1955)提出了研究匀速相对运动体系的狭义相对论,引起了物理学的一场巨大革命.他指出,经典力学中的绝对时空观并不是直接从观察和实验中得出的.实际上,时间、空间和观察者是相对的.根据相对论原理,物体的质量也不是恒定不变的,而是随着物体运动状态的变化而变化.1916年爱因斯坦又发表了研究加速相对运动的广义相对论.运用这些理论所得出的结论和实验观察基本一致.这表明:对于接近光速的高速运动的问题,经典力学已不再适用,必须由相对论力学来研究.经典力学可以看做是相对论力学在运动速度远小于光速时的特例.从20世纪初以来,原子物理学发展很快,发现许多新的物理现象(如光子、电子、质子等微观粒子的波粒二象性)无法用经典力学来说明.后来,在普朗克(1858—1947)、海森堡(1901—1976)、薛定谔(1887—1961)、狄拉克(1902—1984)等物理学家的努力下创立了量子力学,解决了经典力学无法解决的问题.因此经典力学可以看做是量子力学在宏观现象中的极限情况.总之,“宏观”“低速”是牛顿运动定律的适用范围.二、用整体法与局部法巧解动力学问题在实际问题中,还常常碰到几个物体连在一起,在外力作用下的共同运动,称为连接体的运动.在分析和求解物理连接体问题时,首先遇到的关键之一,就是研究对象的选取问题.其方法有两种:一是隔离法,二是整体法.所谓隔离(体)法就是将所研究的对象——包括物体、状态和某些过程,从系统或全过程中隔离出来进行研究的方法.所谓整体法就是将两个或两个以上物体组成的整个系统或整个过程作为研究对象进行分析研究的方法.以系统为研究对象,运用牛顿第二定律求解动力学问题能回避系统内的相互作用力,使解题过程简单明了.隔离法与整体法,不是相互对立的,一般问题的求解中,随着研究对象的转化,往往两种方法交叉运用,相辅相成.例1 用力F 推M ,使M 和m 两物体一起在光滑水平面上前进时,求两物体间的相互作用力.解析:如图所示,对整体应用牛顿第二定律有F =(M +m )a隔离m ,m 受外力的合力为M 对m 的推力N ,由牛顿第二定律N =ma ,解得:N =m M +m F . 答案:mM +m F 例2 如图所示,质量为M 的木箱放在水平面上,木箱中的立杆上套着一个质量为m 的小球.开始时小球在杆的顶端,由静止释放后,小球沿杆下滑的加速度为重力加速度的12,即a =12g .则小球在下滑的过程中,木箱对地面的压力为多少?解析:解法一:(隔离法)木箱与小球没有共同加速度,用隔离法解决如下.取小球m 为研究对象,受重力mg 、摩擦力F f ,如图,据牛顿第二定律得:mg -F f =ma ①取木箱M 为研究对象,受重力Mg 、地面支持力F N 及小球给予的摩擦力F f ′,如图. 据物体平衡条件得:F N -F f ′-Mg =0②且F f =F f ′③由①②③式得F N =2M +m 2g 由牛顿第三定律知,木箱对地面的压力大小为F N ′=F N =2M +m 2g . 解法二:(整体法)对于“一动一静”连接体,也可选取整体为研究对象,依据牛顿第二定律列式: (mg +Mg )-F N =ma +M ×0故木箱所受支持力:F N =2M +m 2g . 由牛顿第三定律知:木箱对地面压力F N ′=F N =2M +m 2g . 答案:2M +m 2g 例3 一个质量为0.2 kg 的小球用细线吊在倾角θ=53°的斜面顶端,如图,斜面静止时,球紧靠在斜面上,绳与斜面平行,不计摩擦.当斜面以10 m/s 2的加速度向右做加速运动时,求绳的拉力及斜面对小球的弹力.解析:当加速度a 较小时,小球与斜面体一起运动,此时小球受重力、绳的拉力和斜面的支持力作用,绳平行于斜面.当加速度a 足够大时,小球将“飞离”斜面,此时小球受重力和绳的拉力作用,绳与水平方向的夹角未知,题目中要求a =10 m/s 2时绳的拉力及斜面的支持力,必须先求出小球离开斜面的临界加速度a 0.(此时,小球所受斜面支持力恰好为零)由mg cot θ=ma 0,所以a 0=g cot θ=7.5 m/s 2因为a =10 m/s 2>a 0,所以小球离开斜面,N =0,小球受力情况如图,则T cos α=mg ,所以T =(ma )2+(mg )2=2.83 N ,N =0.答案:2.83 N 0例4 如图所示,三个物体的质量分别为m 1、m 2、M ,斜面的倾角为α,绳的质量不计,所有接触面光滑.当m 1沿斜面下滑时,要求斜面体静止,则对斜面体应施加多大的水平力F?解析:对m 1、m 2构成的系统由牛顿第二定律知:m 1g sin α-m 2g =(m 1+m 2)a ①对m 1、m 2和M 构成的整个系统就水平方向而言,若施力使斜面体静止,只有m 1具有水平方向向右的加速度分量a 1,且有a 1=a cos α②所以,对斜面体必须施加水平向右的推力F ,如图,则对整个系统在水平方向上由牛顿第二定律知:F =m 1a 1③解①②③得:F =m 1g (m 1sin α-m 2)cos αm 1+m 2. 答案:m 1g (m 1sin α-m 2)cos αm 1+m 2这种以系统为研究对象的解题方法,只研究了系统在水平方向上的动力学行为即达目的,既回避了物体运动的多维性和相互作用的复杂性,又体现了牛顿第二定律在某一方向上的独立性.。
2016-2017年(沪科版)物理必修一学案 第5章 研究力和运动的关系 学案5
学案5习题课:用牛顿运动定律解决几类典型问题[学习目标定位] 1.学会分析含有弹簧的瞬时问题.2.掌握临界问题的分析方法.3.会分析多过程问题.1.牛顿第二定律的表达式F=ma,其中加速度a与合力F存在着瞬时对应关系,a与F同时产生、同时变化、同时消失;a的方向始终与合力F的方向相同.2.解决动力学问题的关键是做好两个分析:受力情况分析和运动情况分析,同时抓住联系受力情况和运动情况的桥梁:加速度.一、瞬时加速度问题根据牛顿第二定律,加速度a与合力F存在着瞬时对应关系:合力恒定,加速度恒定;合力变化,加速度变化;合力等于零,加速度等于零.所以分析物体在某一时刻的瞬时加速度,关键是分析该时刻物体的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度.应注意两类基本模型的区别:(1)刚性绳(或接触面)模型:这种不发生明显形变就能产生弹力的物体,剪断(或脱离)后,弹力立即改变或消失,形变恢复几乎不需要时间.(2)弹簧(或橡皮绳)模型:此种物体的特点是形变量大,形变恢复需要较长时间,在瞬时问题中,其弹力的大小往往可以看成是不变的.例1如图1中小球质量为m,处于静止状态,弹簧与竖直方向的夹角为θ.则:图1(1)绳OB和弹簧的拉力各是多少?(2)若烧断绳OB瞬间,物体受几个力作用?这些力的大小是多少?(3)烧断绳OB瞬间,求小球m的加速度的大小和方向.解析(1)对小球受力分析如图甲所示其中弹簧弹力与重力的合力F′与绳的拉力F等大反向则知F=mg tan θ;F弹=mgcos θ(2)烧断绳OB的瞬间,绳的拉力消失,而弹簧还是保持原来的长度,弹力与烧断前相同.此时,小球受到的作用力是弹力和重力,大小分别是G=mg,F弹=mgcos θ.(3)烧断绳OB的瞬间,重力和弹簧弹力的合力方向水平向右,与烧断绳OB前OB绳的拉力大小相等,方向相反,(如图乙所示)即F合=mg tan θ,由牛顿第二定律得小球的加速度a =F 合m =g tan θ,方向水平向右. 答案 (1)mg tan θ mg cos θ(2)两个 重力为mg 弹簧的弹力为mg cos θ(3)g tan θ 水平向右针对训练1 如图2所示,轻弹簧上端与一质量为m 的木块1相连,下端与另一质量为M 的木块2相连,整个系统置于水平放置的光滑木板上,并处于静止状态.现将木板沿水平方向突然抽出,设抽出后的瞬间,木块1、2的加速度大小分别为a 1、a 2.重力加速度大小为g .则 有( )图2A .a 1=0,a 2=gB .a 1=g ,a 2=gC .a 1=0,a 2=m +M Mg D .a 1=g ,a 2=m +M Mg 答案 C解析 在抽出木板后的瞬间,弹簧对木块1的支持力和对木块2的压力并未改变.木块1受重力和支持力,mg =N ,a 1=0,木块2受重力和压力,根据牛顿第二定律a 2=N ′+Mg M =m +M Mg ,故选C.二、动力学中的临界问题分析若题目中出现“最大”、“最小”、“刚好”等词语时,一般都有临界状态出现.分析时,可用极限法,即把问题(物理过程)推到极端,分析在极端情况下可能出现的状态和满足的条件.在某些物理情景中,由于条件的变化,会出现两种不同状态的衔接,在这两种状态的分界处,某个(或某些)物理量可以取特定的值,例如具有最大值或最小值.常见类型有:(1)隐含弹力发生突变的临界条件弹力发生在两物体的接触面之间,是一种被动力,其大小由物体所处的状态决定,运动状态达到临界状态时,弹力发生突变.(2)隐含摩擦力发生突变的临界条件摩擦力是被动力,由物体间的相对运动趋势决定,静摩擦力为零是状态方向发生变化的临界状态;静摩擦力最大是物体恰好保持相对静止的临界状态.例2 如图3所示,细线的一端固定在倾角为45°的光滑楔形滑块A 的顶端P 处,细线的另一端拴一质量为m 的小球.图3(1)当滑块至少以多大的加速度a 向左运动时,小球对滑块的压力等于零?(2)当滑块以a ′=2g 的加速度向左运动时,线中拉力为多大?解析 (1)假设滑块具有向左的加速度a 时,小球受重力mg 、线的拉力F 和斜面的支持力N 作用,如图甲所示.由牛顿第二定律得水平方向:F cos 45°-N cos 45°=ma ,竖直方向:F sin 45°+N sin 45°-mg =0.由上述两式解得N =m (g -a )2sin 45°,F =m (g +a )2cos 45°. 由此两式可以看出,当加速度a 增大时,球所受的支持力N 减小,线的拉力F 增大.当a =g 时,N =0,此时小球虽与斜面接触但无压力,处于临界状态,这时绳的拉力为F =mg cos 45°=2mg .所以滑块至少以a =g 的加速度向左运动时小球对滑块的压力等于零.(2)当滑块加速度a >g 时,小球将“飘”离斜面而只受线的拉力和重力的作用,如图乙所示,此时细线与水平方向间的夹角α<45°.由牛顿第二定律得F ′cos α=ma ′,F ′sin α=mg ,解得F ′=m a ′2+g 2=5mg .答案 (1)g (2)5mg针对训练2 在例2中,当滑块加速度多大时,线的拉力为零?此时滑块运动状态可能是怎样的?答案 见解析解析 当线的拉力恰好为零时,小球受力情况如图所示:小球受重力mg 、弹力N ′,两个力的合力方向水平向右.合力大小为mg tan 45°.根据牛顿第二定律:mg tan 45°=ma得:a =g tan 45°=g滑块的加速度方向水平向右,可能的运动状态有:向右做加速度大小为g 的匀加速直线运动;向左做加速度大小为g 的匀减速直线运动.三、多过程问题分析1.当题目给出的物理过程较复杂,由多个过程组成时,要明确整个过程由几个子过程组成,将过程合理分段,找到相邻过程的联系点并逐一分析每个过程.(联系点:前一过程的末速度是后一过程的初速度,另外还有位移关系等.)2.注意:由于不同过程中力发生了变化,所以加速度也会发生变化,所以对每一过程都要分别进行受力分析,分别求加速度.例3 质量为m =2 kg 的物体静止在水平面上,物体与水平面之间的动摩擦因数μ=,现在对物体施加如图4所示的力F ,F =10 N ,θ=37°(sin 37°=),经t 1=10 s 后撤去力F ,再经一段时间,物体又静止,(g 取10 m/s 2)则:图4(1)说明物体在整个运动过程中经历的运动状态.(2)物体运动过程中最大速度是多少?(3)物体运动的总位移是多少?解析 (1)当力F 作用时,物体做匀加速直线运动,撤去F 的瞬间物体的速度达到最大值,撤去F 后物体做匀减速直线运动直至速度为零.(2)撤去F 前对物体受力分析如图,有:F sin θ+N 1=mgF cos θ-f =ma 1f =μN 1s 1=12a 1t 21v t =a 1t 1,联立各式并代入数据解得s 1=25 m ,v t =5 m/s(3)撤去F 后对物体受力分析如图,有:f ′=μN 2=ma 2,N 2=mg2a 2s 2=v 2t ,代入数据得s 2= m物体运动的总位移:s =s 1+s 2得s = m答案 (1)见解析 (2)5 m/s (3) m1.(瞬时加速度问题)如图5所示,质量分别为m 和2m 的A 和B 两球用轻弹簧连接,A 球用细线悬挂起来,两球均处于静止状态,如果将悬挂A 球的细线剪断,此时A 和B 两球的瞬时加速度a A 、a B 的大小分别是( )图5A .a A =0,aB =0B .a A =g ,a B =gC .a A =3g ,a B =gD .a A =3g ,a B =0答案 D解析 分析B 球原来受力如图甲所示F ′=2mg剪断细线后弹簧形变瞬间不会恢复,故B 球受力不变,a B =0.分析A 球原来受力如图乙所示T =F +mg ,F ′=F ,故T =3mg .剪断细线,T 变为0,F 大小不变,物体A 受力如图丙所示由牛顿第二定律得:F +mg =ma A ,解得a A =3g .2.(动力学中的临界问题)如图6所示,质量为4 kg 的小球用细绳拴着吊在行驶的汽车后壁上,绳与竖直方向夹角为θ=37°.已知g =10 m/s 2,sin 37°=,cos 37°=,求:图6(1)当汽车以a =2 m/s 2向右匀减速行驶时,细线对小球的拉力和车后壁对小球的支持力的大小.(2)当汽车以a =10 m/s 2向右匀减速行驶时,细线对小球的拉力和车后壁对小球的支持力的大小.答案(1)50 N22 N(2)40 2 N0解析(1)当汽车以a=2 m/s2向右匀减速行驶时,小球受力分析如图.由牛顿第二定律得:T1cos θ=mg,T1sin θ-N=ma代入数据得:T1=50 N,N=22 N(2)当汽车向右匀减速行驶时,设车后壁弹力为0时(临界条件)的加速度为a0,受力分析如图所示.由牛顿第二定律得:T2sin θ=ma0,T2cos θ=mg代入数据得:a0=g tan θ=10×32=/s24m/s因为a=10 m/s2>a0所以小球飞起来,N′=0设此时绳与竖直方向的夹角为α,由牛顿第二定律得:T2′=(mg)2+(ma)2=40 2 N3.(多过程问题)冬奥会四金得主王濛于2014年1月13日亮相全国短道速滑联赛总决赛.她领衔的中国女队在混合3 000米接力比赛中表现抢眼.如图7所示,ACD是一滑雪场示意图,其中AC是长L=8 m、倾角θ=37°的斜坡,CD段是与斜坡平滑连接的水平面.人从A点由静止下滑,经过C点时速度大小不变,又在水平面上滑行一段距离后停下.人与接触面间的动摩擦因数均为μ=,不计空气阻力,(取g=10 m/s2,sin 37°=,cos 37°=)求:图7(1)人从斜坡顶端A滑至底端C所用的时间;(2)人在离C点多远处停下?答案(1)2 s(2) m解析(1)人在斜坡上下滑时,受力如图所示.设人沿斜坡下滑的加速度为a,沿斜坡方向,由牛顿第二定律得mg sin θ-f=maf=μN垂直于斜坡方向有N-mg cos θ=0由匀变速运动规律得L=122at联立以上各式得a=g sin θ-μg cos θ=4 m/s2t=2 s(2)人在水平面上滑行时,水平方向只受到地面的摩擦力作用.设在水平面上人减速运动的加速度为a′,由牛顿第二定律得μmg=ma′设人到达C处的速度为v,则由匀变速直线运动规律得人在斜面上下滑的过程:v2=2aL人在水平面上滑行时:0-v2=-2a′s联立以上各式解得s=m题组一瞬时加速度问题1.质量均为m的A、B两球之间系着一个质量不计的轻弹簧并放在光滑水平台面上,A球紧靠墙壁,如图1所示,今用水平力F推B球使其向左压弹簧,平衡后,突然将力F撤去的瞬间()图1A.A的加速度大小为F2m B.A的加速度大小为零C.B的加速度大小为F2m D.B的加速度大小为Fm答案BD解析在将力F撤去的瞬间A球受力情况不变,仍静止,A的加速度为零,选项A错,B对;而B球在撤去力F的瞬间,弹簧的弹力还没来得及发生变化,故B的加速度大小为Fm,选项C 错,D对.2.如图2所示,A、B两球的质量相等,弹簧的质量不计,倾角为θ的斜面光滑.系统静止时,弹簧与细线均平行于斜面,已知重力加速度为g.在细线被烧断的瞬间,下列说法正确的是()图2A.两个小球的瞬时加速度均沿斜面向下,大小均为g sin θB.B球的受力情况未变,瞬时加速度为零C.A球的瞬时加速度沿斜面向下,大小为g sin θD.弹簧有收缩趋势,B球的瞬时加速度向上,A球的瞬时加速度向下,瞬时加速度都不为零答案 B解析因为细线被烧断的瞬间,弹簧的弹力不能突变,所以B的瞬时加速度为0,A的瞬时加速度为2g sin θ,所以选项B正确,A、C、D错误.3.如图3所示,A、B两木块间连一轻杆,A、B质量相等,一起静止地放在一块光滑木板上,若将此木板突然抽出,在此瞬间,A、B两木块的加速度分别是()图3A.a A=0,a B=2g B.a A=g,a B=gC.a A=0,a B=0 D.a A=g,a B=2g答案 B解析当刚抽去木板时,A、B和杆将作为一个整体一起下落,下落过程中只受重力,根据牛顿第二定律得a A=a B=g,故选项B正确.4.如图4所示,在光滑的水平面上,质量分别为m1和m2的木块A和B之间用轻弹簧相连,在拉力F 作用下,以加速度a 做匀加速直线运动,某时刻突然撤去拉力F ,此瞬间A 和B 的加速度的大小为a 1和a 2,则( )图4A .a 1=a 2=0B .a 1=a ,a 2=0C .a 1=m 1m 1+m 2a ,a 2=m 2m 1+m 2a D .a 1=a ,a 2=-m 1m 2a 答案 D解析 两木块在光滑的水平面上一起以加速度a 向右做匀加速运动时,弹簧的弹力F 弹=m 1a ,在力F 撤去的瞬间,弹簧的弹力来不及改变,大小仍为m 1a ,因此木块A 的加速度此时仍为a ,以木块B 为研究对象,取向右为正方向,-m 1a =m 2a 2,a 2=-m 1m 2a ,所以D 项正确. 题组三 动力学中的临界问题5.如图5所示,质量为M 的木板,上表面水平,放在水平桌面上,木板上面有一质量为m 的物块,物块与木板及木板与桌面间的动摩擦因数均为μ,若要以水平外力F 将木板抽出,则力F 的大小至少为( )图5A .μmgB .μ(M +m )gC .μ(m +2M )gD .2μ(M +m )g 答案 D解析 将木板抽出的过程中,物块与木板间的摩擦力为滑动摩擦力,物块的加速度大小为a m =μg ,要想抽出木板,必须使木板的加速度大于物块的加速度,即a M >a m =μg ,对木板受力分析如图.根据牛顿第二定律,得:F -μ(M +m )g -μmg =Ma M得F =μ(M +m )g +μmg +Ma M >μ(M +m )g +μmg +μMg =2μ(M +m )g ,选项D 正确.6.如图6所示,质量为m 1=2 kg 、m 2=3 kg 的物体用细绳连接放在水平面上,细绳仅能承受1 N 的拉力,水平面光滑,为了使细绳不断而又使它们能一起获得最大加速度,则在向左水平施力和向右水平施力两种情况下,F 的最大值是( )图6A .向右,作用在m 2上,F =53N B .向右,作用在m 2上,F = NC .向左,作用在m 1上,F =53N D .向左,作用在m 1上,F = N答案 BC解析若水平力F 1的方向向左,如图.设最大加速度为a 1,根据牛顿第二定律,对整体有:F 1=(m 1+m 2)a 1对m 2有:T =m 2a 1所以F 1=m 1+m 2m 2T =2+33×1 N =53N ,C 对,D 错. 若水平力F 2的方向向右,如图.设最大加速度为a 2,根据牛顿第二定律,对整体有:F 2=(m 1+m 2)a 2对m 1有:T =m 1a 2所以F 2=m 1+m 2m 1T =2+32×1 N .A 错,B 对. 7.如图7所示,质量为M 的木箱置于水平地面上,在其内部顶壁固定一轻质弹簧,弹簧下端与质量为m 的小球连接.当小球上下振动的某个时刻,木箱恰好不离开地面,求此时小球的加速度.图7答案 a =M +m mg ,方向向下 解析 如图所示,对木箱受力分析有:F =Mg对小球受力分析有:mg +F ′=ma又F =F ′解得:a =M +m mg ,方向向下. 8.如图8所示,一辆卡车后面用轻绳拖着质量为m 的物体A ,绳与水平面之间的夹角α=53°,A 与地面间的摩擦不计,求(sin 53°=):图8(1)当卡车以加速度a 1=g 2加速运动时,绳的拉力为56mg ,则A 对地面的压力为多大? (2)当卡车的加速度a 2=g 时,绳的拉力多大?方向如何?答案 (1)13mg (2) 2mg ,方向与水平面成45°角斜向上 解析 (1)设物体刚离开地面时,具有的加速度为a 0对物体A 进行受力分析,可得:ma 0=mg tan α,则a 0=34g 因为a 1<a 0,所以物体没有离开地面.由牛顿第二定律得F cos α=ma 1F sin α+N =mg 得N =13mg由牛顿第三定律得,A 对地面的压力的大小为13mg . (2)因为a 2>a 0,所以物体已离开地面.设此时绳与地面成θ角F ′=ma 2+g 2=2mg所以tan θ=1,θ=45°,即绳的拉力与水平面成45°角斜向上题组三 多过程问题9.一辆汽车在恒定牵引力作用下由静止开始沿直线运动,4 s 内通过8 m 的距离,此后关闭发动机,汽车又运动了2 s 停止,已知汽车的质量m =2×103 kg ,汽车运动过程中所受阻力大小不变,求:(1)关闭发动机时汽车的速度大小;(2)汽车运动过程中所受到的阻力大小;(3)汽车牵引力的大小.答案 (1)4 m/s (2)4×103 N (3)6×103 N解析 (1)汽车开始做匀加速直线运动s 0=v 0+02t 1解得v 0=2s 0t 1=4 m/s (2)关闭发动机后汽车减速过程的加速度a 2=0-v 0t 2=-2 m/s 2 由牛顿第二定律有-f =ma 2解得f =4×103 N(3)设开始加速过程中汽车的加速度为a 1s 0=12a 1t 21 由牛顿第二定律有:F -f =ma 1解得F =f +ma 1=6×103 N10.物体以 m/s 的初速度从斜面底端冲上倾角为θ=37°的斜坡,到最高点后再滑下,如图9所示.,求:图9(1)物体沿斜面上滑的最大位移;(2)物体沿斜面下滑的时间.(已知sin 37°=,cos 37°=)答案 (1) m (2) s解析 (1)上升时加速度大小设为a 1,由牛顿第二定律得:mg sin 37°+μmg cos 37°=ma 1解得a 1= m/s 2上滑最大位移为s =v 202a 1 代入数据得s = m(2)下滑时加速度大小设为a2,由牛顿第二定律得:mg sin 37°-μmg cos 37°=ma2解得a2=m/s2由s=12a2t2得下滑时间t=2sa2= 6 s≈ s11.如图10所示,在海滨游乐场里有一场滑沙运动.某人坐在滑板上从斜坡的高处A点由静止开始滑下,滑到斜坡底端B点后,沿水平的滑道再滑行一段距离到C点停下来.如果人和滑板的总质量m=60 kg,滑板与斜坡滑道和水平滑道间的动摩擦因数均为μ=,斜坡的倾角θ=37°(已知sin 37°=,cos 37°=),斜坡与水平滑道间是平滑连接的,整个运动过程中空气阻力忽略不计,人从斜坡滑上水平滑道时没有速度损失,重力加速度g取10 m/s2.图10(1)人从斜坡上滑下的加速度为多大?(2)若由于场地的限制,水平滑道的最大距离BC为L=20 m,则人从斜坡上滑下的距离AB应不超过多少?答案(1)2 m/s2(2)50 m解析(1)人在斜坡上受力如图所示,建立直角坐标系,设人在斜坡上滑下的加速度为a1,由牛顿第二定律得:mg sin θ-f1=ma1N1-mg cos θ=0又f1=μN1联立解得a1=g(sin θ-μcos θ)=10×(×) m/s2=2 m/s2.(2)人在水平滑道上受力如图所示,由牛顿第二定律得:f2=ma2,N2-mg=0又f2=μN2联立解得a2=μg=5 m/s2设人从斜坡上滑下的距离为L AB,对AB段和BC段分别由匀变速直线运动公式得:v2-0=2a1L AB,0-v2=-2a2L联立解得L AB=50 m.12.如图11所示,质量m=2 kg的物体静止于水平地面的A处,A、B间距L=20 m.物体与地面间的动摩擦因数μ=,现用大小为20 N,与水平方向成53°的力斜向上拉此物体,使物体从A处由静止开始运动并能到达B处,求该力作用的最短时间t(已知sin 53°=,cos 53°=,g取10 m/s2).图11答案 2 s解析 物体先以大小为a 1的加速度匀加速运动,撤去外力后,再以大小为a 2的加速度减速到B ,且到B 时速度恰好为零.力F 作用时:F cos 53°-μ(mg -F sin 53°)=ma 1t 时刻:s 1=12a 1t 2 v t =a 1t撤去力F 后:μmg =ma 2v 2t =2a 2s 2由于s 1+s 2=L解得t =2 s。
高中物理必修一第四章运动和力的关系笔记重点大全(带答案)
高中物理必修一第四章运动和力的关系笔记重点大全单选题1、加速度a B与F的关系图像如图乙所示,则A的加速度a A与F的关系图像可能正确的是()A.B.C.D.答案:C设A的质量为m,B的质量为M,AB间的动摩擦因数为μ,B与地面间的动摩擦因数为μ0,则当0≤F≤μ0(M+m)g,AB处于静止状态,加速度都为0;当F>μ0(M+m)g,AB开始一起加速运动,设当F=F0,AB刚好要发生相对运动,以AB为整体,由牛顿第二定律F0−μ0(M+m)g=(M+m)a以B为对象,由牛顿第二定律μmg−μ0(M+m)g=Ma联立解得F0=m(M+m)g(μ−μ0)M则当μ0(M +m)g <F ≤m(M+m)g(μ−μ0)M ,AB 一起做匀加速直线运动,加速度为a 1=F −μ0(M +m)g M +m =1M +m F −μ0g 当F >m(M+m)g(μ−μ0)M ,AB 发生相对滑动,对A 由牛顿第二定律F −μmg =ma 2解得a 2=F −μmg m =1m F −μg 由上分析可知a 1的斜率1M+m 小于a 2的斜率1m ,故A 的加速度a A 与F 的关系图像可能为C 。
故选C 。
2、小明站在装有力传感器的台秤上,完成下蹲、起立动作。
计算机采集到的力传感器示数随时间变化情况如图所示。
下列判断正确的是( )A .a 点对应时刻,小明向下的速度最大B .a 点对应时刻,小明向下的加速度最大C .b 点对应时刻,小明处于超重状态D .图示时间内,小明完成了两次下蹲和两次起立答案:AABD .小明在下蹲过程经历先向下加速再向下减速,即先失重后超重;起立过程经历先向上加速再向上减速,即先失重后超重,所以由图示可知,小明先下蹲后起立,小明完成了1次下蹲和1次起立,且a 点对应时刻F =mg小明的加速度为0,向下的速度达到最大,故A 正确,BD 错误;C .b 点对应时刻,小明正在起立减速上升的过程,所以小明处于失重状态,故C 错误。
高中物理必修一第三章+教案+教科版
授课人:授课年级高一课题课时3.1牛顿第一定律课程类型新授课课程导学目标目标解读1.了解亚里士多德对力和运动关系的论述。
2.认识伽利略研究运动和力的关系的思想方法,了解理想实验及其主要过程和推理。
3.理解牛顿第一定律的内容,能运用牛顿第一定律解释有关现象。
4.知道惯性是物体的固有属性,知道质量是物体惯性大小的量度,并能运用惯性概念,解释有关实际问题。
学法指导惯性是物质固有的一种性质,所以与外界环境无关,要多体味其中的意义。
课程导学建议重点难点认识牛顿第一定律和惯性的概念,了解伽利略理想实验。
教学建议本节内容需要安排1个课时教学,若自主学习安排在课外,建议用15~20分钟,安排在课内则只需15分钟左右。
从了解亚里士多德的错误观点到认识伽利略的科学实验方法,让学生了解物理知识的发展过程及方法,着重理解力和运动的关系,多联系实际生活中的现象并解释其中的物理规律,领悟牛顿第一定律及惯性的概念和特点。
课前准备研读教材,估计学生自主学习过程中可能出现的问题和疑难点,在导学案的基础上根据本班学生学习情况进行二次备课,准备课堂演示的实验器材或视频资料。
导学过程设计程序设计学习内容教师行为学生行为媒体运用新课导入创设情境同学们,我们乘公交车回家时,汽车突然启动或者前进中突然刹车会出现什么情况呢?启动时我们会往后仰,刹车时会向前倾,甚至与车厢“亲密”接触,这是为什么呢?因为惯性。
那什么是惯性,怎么样的物体才有惯性,惯性与哪些因素有关呢?这节课我们就来讨论这些问题。
图片展示第一层级研读教材指导学生学会使用双色笔,确保每一位学生处于预习状态。
通读教材,作必要的标注,梳理出本节内容的大致知识体系。
PPT课件呈现学习目标完成学案巡视学生自主学习的进展和学生填写学案的情况。
尽可能多得独立完成学案内容,至少完成第一层级的内容。
结对交流指导、倾听部分学生的交流,初步得出学生预习的效果就学案中基础学习交流的内容与结对学习的同学交流。
2020-2021高中物理鲁科版第一册学案:第5章 第3节牛顿第二运动定律含解析
2020-2021学年高中物理新教材鲁科版必修第一册学案:第5章第3节牛顿第二运动定律含解析第3节牛顿第二运动定律学习目标:1。
[物理观念](1)掌握牛顿第二定律的文字内容和数学表达式.(2)知道单位制、基本单位和导出单位的概念. 2.[科学思维]学会利用牛顿第二定律解决实际问题,并且能够从不同角度解决动力学问题,具有质疑和创新意识. 3.[科学探究]学会通过加速度与力、质量关系的数据探究,归纳各物理量之间可能存在的关系,并能解释相关自然现象.4。
[科学态度与责任]尊重客观规律,坚持实事求是,将牛顿运动定律应用于日常生活实际,能认识牛顿运动定律的应用对人类文明进步的推动作用.阅读本节教材,回答第118页和第120页“物理聊吧”的问题,并梳理必要知识点.教材P118页“物理聊吧”问题提示:不矛盾.无论用多小的力还是很大的力推柜子时,皆因柜子受到平衡力的作用,合力为零,因而加速度为零,柜子始终静止不动.教材P120页“物理聊吧”问题提示:垫高木板一端,使小车不挂重物时能匀速运动,说明小车处于平衡状态,所受合力为零.挂上重物时,当重物质量远小于小车质量,才可以近似认为小车受到的合力约等于重物的重力.一、牛顿第二定律1.内容:物体加速度的大小与所受合外力的大小成正比,与物体的质量成反比,加速度方向与合外力方向相同.2.表达式:F=kma。
合质量的单位用kg,加速度的单位用m/s2,且规定质量为1 kg的物体产生1 m/s2的加速度所用的力为1 N,这样表达式中的k就等于1,牛顿第二定律表达式可简化为F=ma。
说明:公式F=ma中,F一般指合力,a对应的指合加速度.二、力学单位制1.国际单位(1)基本单位:在力学中有米(m)(长度单位)、千克(kg)(质量单位)、秒(s)(时间单位).(2)导出单位:在力学中利用物理公式从三个基本单位导出的其他单位.2.意义与作用:用公式计算时,所列的等式中不必一一写出每个物理量的单位,只要在计算结果的数据后面写出待求量的单位即可.注意:可以利用单位,反推出公式正确性和计算结果的正确性.1.思考判断(正确的打“√”,错误的打“×”)(1)由牛顿第二定律可知,物体的质量与物体所受合外力成正比,与物体的加速度成反比.(×)(2)物体加速度的大小由物体的质量和物体所受合外力大小决定,与物体的速度大小无关.(√)(3)物体加速度的方向只由它所受合力的方向决定,与速度方向无关.(√)(4)在力学问题的分析计算中,只能采用国际单位,不能采用其他单位.(×)(5)力学单位制中,国际单位制的基本单位有千克、米、秒.(√)(6)只有在国际单位制中,牛顿第二定律的表达式才是F=ma. (√) 2.关于牛顿第二定律,下列说法中正确的是()A.牛顿第二定律的表达式F=ma在任何情况下都适用B.某一瞬时的加速度,不但与这一瞬时的外力有关,而且与这一瞬时之前或之后的外力有关C.在公式F=ma中,若F为合外力,则a等于作用在该物体上的每一个力产生的加速度的矢量和D.物体的运动方向一定与物体所受合外力的方向一致C[牛顿第二定律只适用于宏观物体在低速时的运动,A错误;F=ma具有同时性,B错误;如果F=ma中F是合外力,则a 为合外力产生的加速度,即各分力产生加速度的矢量和,C正确;如果物体做减速运动,则v与F反向,D错误.]3.(多选)下列说法中正确的是()A.质量是物理学中的基本物理量B.长度是国际单位制中的基本单位C.kg·m/s是国际单位制中的导出单位D.时间的单位——小时,是国际单位制中的导出单位AC[质量是力学中的基本物理量,A正确;长度是物理量,不是单位,B错误;kg·m/s是国际单位制中的导出单位,C正确;小时是时间的基本单位,不是导出单位,D错误.]对牛顿第二定律的理解在日常生活中,小巧美观的冰箱贴使用广泛,增加了室内的美感.一磁性冰箱贴贴在冰箱的表面上静止.探究:(1)分析冰箱贴受哪些力?是否有加速度?(2)若把冰箱贴拿在手里,猛一松手,它是否立即有加速度?若有加速度,请指明其方向?提示:(1)冰箱贴受重力和竖直向上的摩擦力,磁力和弹力,它们分别是两对平衡力,合力为零,加速度为零.(2)猛一松手,冰箱贴受重力和空气阻力,合力竖直向下,立即有了竖直向下的加速度.1.牛顿第二定律揭示了加速度与力和质量的定量关系,指明了加速度大小和方向的决定因素.2.牛顿第二定律的五点说明A.由F=ma可知,F与a成正比,m与a成反比B.牛顿第二定律说明当物体有加速度时,物体才受到外力的作用C.加速度的方向总跟合外力的方向一致D.当外力停止作用时,加速度随之消失思路点拨:理解上述表格中加速度的“五性”是解决该类问题的关键.CD[虽然F=ma表示牛顿第二定律,但F与a无关,因a 是由m和F共同决定的,即a∝错误!且a与F同时产生、同时消失、同时存在、同时改变;a与F的方向永远相同.综上所述,可知选项A、B错误,C、D正确.]正确理解牛顿第二定律(1)物体的加速度和合力是同时产生的,不分先后,但有因果性,力是产生加速度的原因,没有力就没有加速度.(2)不能根据m=错误!得出m∝F、m∝错误!的结论,物体的质量m是由自身决定的,与物体所受的合力和运动的加速度无关,但物体的质量可以通过测量它的加速度和它所受到的合力而求得.(3)不能由F=ma得出F∝m、F∝a的结论,物体所受合力的大小是由物体的受力情况决定的,与物体的质量和加速度无关.[跟进训练]1.根据牛顿第二定律,下列叙述正确的是()A.物体加速度的大小跟它的质量、受到的合力无关B.物体所受合外力必须达到一定值时,才能使物体产生加速度C.物体加速度的大小跟它所受的作用力中的任一个的大小成正比D.当物体质量改变但其所受合外力的水平分力不变时,物体水平加速度大小与其质量成反比[答案]D牛顿第二定律的应用“歼10”战机装备我军后,在各项军事演习中表现优异,引起了世界的广泛关注.如图所示,一架质量m=5.0×103kg的“歼10”战机,从静止开始在机场的跑道上滑行,经过距离s=5。
2023人教版带答案高中物理必修一第四章运动和力的关系微公式版知识点总结(超全)
2023人教版带答案高中物理必修一第四章运动和力的关系微公式版知识点总结(超全)单选题1、如图所示,质量分别为m、M的两物体P、Q保持相对静止,一起沿倾角为θ的固定光滑斜面下滑,Q的上表面水平,P、Q之间的动摩擦因数为μ,则下列说法正确的是()A.P处于超重状态B.P受到的摩擦力大小为μmg,方向水平向右C.P受到的摩擦力大小为mg sinθcosθ,方向水平向左D.P受到的支持力大小为mg sin2θ答案:CA.由题意可知,P有向下的加速度,处于失重状态,故A错误;BCD.对P、Q整体,根据牛顿第二定律有(M+m)g sinθ=(M+m)a解得加速度a=g sinθ将沿斜面向下的加速度a=g sinθ沿水平方向和竖直方向分解,如图所示则a1=a cosθ=g sinθcosθa2=a sinθ=g sin2θ对P分析,根据牛顿第二定律,水平方向上有F f=ma1,方向水平向左竖直方向上有mg-F N=ma2解得F f=mg sinθcosθF N=mg cos2θ故C正确,BD错误。
故选C。
2、平伸手掌,托起物体,由静止开始竖直向上运动,直至将物体抛出。
对此现象分析正确的是()A.手托物体向上运动的过程中,物体始终处于超重状态B.手托物体向上运动的过程中,物体始终处于失重状态C.在物体离开手的瞬间,物体的加速度大于重力加速度D.在物体离开手的瞬间,手的加速度大于重力加速度答案:DA.手托物体抛出的过程,必有一段加速过程,其后可以减速,可以匀速,当手和物体匀速运动时,物体既不超重也不失重,当手和物体减速运动时,物体处于失重状态,A错误;B.物体从静止到运动,必有一段加速过程,此过程物体处于超重状态,B错误;C.当物体离开手的瞬间,物体只受重力,此时物体的加速度等于重力加速度,C错误;D.物体和手有共同的速度和加速度时,二者不会分离,故物体离开手的瞬间,物体向上运动,物体的加速度等于重力加速度,但手的加速度大于重力加速度,并且方向竖直向下,D正确。
高中物理必修一第四章本章优化总结
【答案】
AD
栏目 导引
第四章
牛顿运动定律
章末过关检测
栏目 导引
第四章
牛顿运动定律
本部分内容讲解结束
按ESC键退出全屏播放
栏目 导引
栏目 导引
第四章
牛顿运动定律
2.力的处理方法 (1)平行四边形定则 由牛顿第二定律F合=ma可知,F合是研究对象m受到的外 力的合力;加速度a的方向与F合的方向相同.解题时,若
已知加速度的方向就可推知合力的方向;反之,若已知合
力的方向,亦可推知加速度的方向. 若物体在两个共点力的作用下产生加速度,可用平行四边 形定则求F合,然后求加速度.
专题二
物理图象在动力学问题中的应用
物理图象信息量大,包含知识内容全面,好多习题已知条
件是通过物理图象给出的,动力学问题中常见的有Ft及a F等图象. (1)a t图象,要注意加速度的正负,分析每一段的运动情 况,然后结合物体的受力情况根据牛顿第二定律列方程.
(2)Ft图象要结合物体受到的力,根据牛顿第二定律求出加
速度,分析每一时间段的运动性质.
栏目 导引
第四章
牛顿运动定律
(3)a F图象,首先要根据具体的物理情景,对物体进行受 力分析,然后根据牛顿第二定律推导出两个量间的函数关
系式,由函数关系式结合图象明确图象的斜率、截距或面
积的意义,从而由图象给出的信息求出未知量.
栏目 导引
第四章
牛顿运动定律
物体 A、B 都静止在同一水平面上,它们的质量分别 为 MA、MB,与水平面间的动摩擦因数分别为 μA、μB,平行 于水平面的拉力 F 分别拉物体 A、B,测得加速度 a 与拉力 F 的关系图象如图中 A、B 所示,则( ) A.μA>μB C.MA>MB B.μA<μB D.MA<MB
高中物理第四章运动和力的关系2实验探究加速度与力质量的关系学案新人教版
实验:探究加速度与力、质量的关系目标体系构建 明确目标·梳理脉络【学习目标】1.经历探究加速度与力、质量的关系的设计过程,学会选择合理的实验方案进行探究实验。
2.经历用图像处理数据的过程,从图像中发现物理规律。
3.经历实验操作和测量的过程,知道如何平衡摩擦力、减小系统误差等操作方法。
,【思维脉络】课前预习反馈教材梳理·落实新知一、实验思路 1.实验装置将小车置于__水平木板__上,通过滑轮与__槽码__相连。
小车可以在槽码的牵引下运动。
2.实验思路 (1)加速度与力的关系保持小车__质量不变__――→改变槽码的个数测得不同__拉力__下小车运动的加速度――→分析加速度与__拉力__的变化情况――→找出二者之间的定量关系。
(2)加速度与质量的关系 保持小车所受的__拉力不变__――→改变小车的质量测得不同__质量__的小车在这个拉力下运动的加速度――→分析加速度与__质量__的变化情况――→找出二者之间的定量关系。
二、物理量的测量1.质量的测量:可以用__天平__测量。
2.加速度的测量方法1:由x =12at 2计算出加速度a =__2xt2__。
方法2:将打点计时器的纸带连在小车上,根据__纸带上__打出的点来测量加速度。
方法3:两个初速度为零的匀加速直线运动的物体,在相等时间内的位移之比就等于加速度之比,即__x 1x 2=a 1a 2__。
3.力的测量:小车所受的拉力__替代__合力,用悬挂物重力替代小车所受的拉力。
(条件是槽码的质量要比小车的质量小很多)课内互动探究细研深究·破疑解难一、实验步骤1.安装实验器材:将小车置于带有定滑轮的木板上,将纸带穿过打点计时器后挂在小车尾部。
2.平衡摩擦力:用薄垫块将一端垫高,调整其倾斜程度,直到小车运动时打点计时器在纸带上打出的点分布均匀为止。
3.悬挂重物:在细线一端挂上重物,另一端通过定滑轮系在小车前端。
4.收集纸带数据:将小车靠近打点计时器后开启打点计时器,并让小车由静止释放,打点计时器在纸带上打出一系列点,据此计算出小车的加速度。
沪科版高中物理高一物理必修一《研究力和运动的关系》评课稿
沪科版高中物理高一物理必修一《研究力和运动的关系》评课稿一、课程概述本课程是沪科版高中物理高一物理必修一教材的一部分,《研究力和运动的关系》是本章节的主题。
在本课程中,我们将介绍研究力和运动之间的关系,探索物体在各种力作用下的运动情况,并引导学生通过实验、观察和推理等手段,深入了解物体的运动规律。
二、教学目标1.了解运动和力的基本概念,理解研究力和运动之间的关系;2.掌握常见力的特点和分类,并能运用所学知识解决力的问题;3.掌握重力、弹力和摩擦力等常见力的作用规律和计算方法;4.培养学生观察、实验、推理和解决问题的能力。
三、教学内容1. 运动和力的基本概念在开始学习本章内容之前,我们首先介绍运动和力的基本概念。
运动是物体在空间中位置随时间发生变化的过程,而力是改变物体运动状态、形状或者使物体发生形变的原因。
通过了解运动和力的基本概念,学生能够更好地理解后续内容。
2. 常见力的特点和分类这部分内容主要介绍常见力的特点和分类。
学生将学习到力的大小、方向和作用点等特点,以及重力、弹力和摩擦力等常见力的分类和特点。
3. 重力的作用规律和计算方法重力是一种普遍存在的力,它是指地球或其他天体对物体产生的相互作用。
在这一部分中,学生将学习到重力的作用规律,即重力的大小与物体的质量和距离有关,同时也会学习到如何计算重力的大小。
4. 弹力的作用规律和计算方法弹力是一种与物体形变有关的力,在物体发生形变时产生。
在这一部分中,学生将学习到弹性力的作用规律,包括胡克定律和弹力的大小与形变量的关系,并通过实例演示了如何计算弹力的大小。
5. 摩擦力的作用规律和计算方法摩擦力是物体之间由于接触而产生的阻力,它对物体的运动具有重要影响。
在这一部分中,学生将学习到摩擦力的作用规律,包括静摩擦力和动摩擦力,并通过实例演示了如何计算摩擦力的大小。
四、教学方法本课程将采用多种教学方法,包括讲授、实例演示和实验观察等。
通过讲解物理原理、解析实例问题和开展实验等活动,旨在激发学生的学习兴趣,培养学生的观察、实验、推理和解决问题的能力。
_新教材高中物理第4章牛顿运动定律6牛顿运动定律的应用学案教科版必修第一册
牛顿运动定律的应用学习目标:1.[物理观念]进一步掌握受力分析的方法,并能结合物体的运动情况进行受力分析. 2.[科学思维]知道动力学的两类问题,理解加速度是解决两类动力学问题的桥梁. 3.[科学思维]掌握解决动力学问题的基本思路和方法,会用牛顿运动定律和运动学公式解决有关问题.一、动力学方法测质量如果已知物体的受力情况和运动情况,可以求出它的加速度,进一步利用牛顿第二定律求出它的质量.二、从受力确定运动情况1.牛顿第二定律确定了运动和力的关系,使我们能够把物体的运动情况和受力情况联系起来.2.如果已知物体的受力情况,可以由牛顿第二定律求出物体的加速度,再通过运动学规律确定物体的运动情况.三、从运动情况确定受力1.如果已知物体的运动情况,根据运动学公式求出加速度,再根据牛顿第二定律就可以确定物体所受的力.2.解决动力学问题的关键:对物体进行正确的受力分析和运动情况分析,并抓住受力情况和运动情况之间联系的桥梁——加速度.1.思考判断(正确的打“√”,错误的打“×”)(1)根据物体加速度的方向可以判断物体所受合外力的方向.(√)(2)根据物体加速度的方向可以判断物体受到的每个力的方向.(×)(3)物体运动状态的变化情况是由它的受力决定的.(√)(4)物体运动状态的变化情况是由它对其他物体的施力情况决定的. (×)2.A、B两物体以相同的初速度滑上同一粗糙水平面,若两物体的质量为m A>m B,两物体与粗糙水平面间的动摩擦因数相同,则两物体能滑行的最大距离x A与x B相比为 ( ) A.x A=x B B.x A>x BC.x A<x B D.不能确定A[A、B两物体在滑行过程中所受合外力等于它们所受的滑动摩擦力,由牛顿第二定律知,-μmg =ma ,得a =-μg ,由运动学公式v 2t -v 20=2ax 得,x =v 202μg,故x A =x B ,选项A 正确,选项B 、C 、D 错误.]3.质量为0.2 kg 的物体从36 m 高处由静止下落,落地时速度为24 m/s ,则物体在下落过程中所受的平均阻力是多少?(g 取10 m/s 2)[解析] 由运动学公式v 2t -v 2=2ax 得加速度a =v 2t -v 202x =242-02×36m/s 2=8 m/s 2.物体受力分析如图所示,由牛顿第二定律得F 合=ma =0.2×8 N=1.6 N ,而F 合=mg -F 阻,则物体在下落过程中所受的平均阻力F 阻=mg -F 合=0.2×10 N-1.6 N =0.4 N.[答案] 0.4 N已知受力确定运动情况玩滑梯是小孩非常喜欢的活动,如果滑梯的倾角为θ,一个小孩从静止开始下滑,小孩与滑梯间的动摩擦因数为μ,滑梯长度为L ,怎样求小孩滑到底端的速度和需要的时间?提示:首先分析小孩的受力,利用牛顿第二定律求出其下滑的加速度,然后根据公式v 2=2ax 和x =12at 2即可求得小孩滑到底端的速度和需要的时间.2.解题的一般步骤【例1】如图所示,质量为2 kg的物体静止放在水平地面上,已知物体与水平地面间的动摩擦因数为0.2,最大静摩擦力等于滑动摩擦力,现给物体施加一个与水平面成37°角的斜向上的拉力F=5 N的作用(取g=10 m/s2,sin 37°=0.6,cos 37°=0.8).求:(1)物体与地面间的摩擦力大小;(2)5 s内的位移大小.思路点拨:分析物体受力情况―――――――――――→建坐标系、正交分解由牛顿第二定律求出摩擦力和加速度a―――――――→由运动学公式求5 s内位移[解析] 对物体受力分析如图所示,建立直角坐标系并分解F.(1)在y轴方向有:N+F sin 37°=mg,代入数据解得N=17 N,物体与地面间的摩擦力大小为f=μN=0.2×17 N=3.4 N.(2)水平方向,由牛顿第二定律F cos 37°-f=ma得a =0.3 m/s 25 s 内的位移为:x =12at 2=12×0.3×52m =3.75 m.[答案] (1)3.4 N (2)3.75 m应用牛顿第二定律解题时求合力的方法(1)合成法物体只受两个力的作用产生加速度时,合力的方向就是加速度的方向,解题时要求准确作出力的平行四边形,然后运用几何知识求合力F 合.反之,若知道加速度方向就知道合力方向.(2)正交分解法当物体受到两个以上的力作用而产生加速度时,通常用正交分解法解答,一般把力正交分解为加速度方向和垂直于加速度方向的两个分量.即沿加速度方向:F x =ma ,垂直于加速度方向:F y =0.[跟进训练]1.如图所示,ad 、bd 、cd 是竖直面内三根固定的光滑细杆,每根杆上套着一个小滑环(图中未画出),三个滑环分别从a 、b 、c 处释放(初速度为0),用t 1、t 2、t 3依次表示各滑环到达d 处所用的时间,则 ( )A .t 1<t 2<t 3B .t 1>t 2>t 3C .t 3>t 1>t 2D .t 1=t 2=t 3D [小滑环下滑过程中受重力和杆的弹力作用,下滑的加速度可认为是由重力沿细杆方向的分力产生的,设细杆与竖直方向夹角为θ,由牛顿第二定律知mg cos θ=ma ①设圆心为O ,半径为R ,由几何关系得,滑环由开始运动至d 点的位移为x =2R cos θ② 由运动学公式得x =12at2③由①②③联立解得t =2R g. 小滑环下滑的时间与细杆的倾斜情况无关,故t 1=t 2=t 3,D 正确.]已知运动情况确定受力情况1.解题思路已知物体运动情况―――――――――――→由匀变速直线运动公式运动分析求得a ―――――→由F =ma 受力分析确定物体受力情况2.解题的一般步骤(1)确定研究对象,对研究对象进行受力分析和运动过程分析,并画出受力图和运动草图.(2)选择合适的运动学公式,求出物体的加速度. (3)根据牛顿第二定律列方程,求物体所受的合外力. (4)根据力的合成与分解的方法,由合力求出所需求的力.【例2】 民用航空客机的机舱除通常的舱门外还设有紧急出口,发生意外情况的飞机着陆后,打开紧急出口的舱门,会自动生成一个由气囊组成的斜面,机舱中的乘客就可以沿斜面迅速滑行到地面上来.若某型号的客机紧急出口离地面高度为4.0 m ,构成斜面的气囊长度为5.0 m .要求紧急疏散时,乘客从气囊上由静止下滑到达地面的时间不超过2.0 s(g 取10 m/s 2),则:(1)乘客在气囊上下滑的加速度至少为多大? (2)气囊和下滑乘客间的动摩擦因数不得超过多少? 思路点拨:确定研究对象→运动分析→运动学方程→求a →受力分析→牛顿第二定律→求受力情况[解析] (1)由题意可知,h =4.0 m ,L =5.0 m ,t =2.0 s. 设斜面倾角为θ,则sin θ=h L乘客沿气囊下滑过程中,由L =12at 2得a =2Lt2,代入数据得a =2.5 m/s 2.(2)在乘客下滑过程中,对乘客受力分析如图所示,沿x 轴方向有mg sin θ-f =ma沿y 轴方向有N -mg cos θ=0, 又f =μN联立方程解得μ=g sin θ-a g cos θ≈0.92.[答案] (1)2.5 m/s 2(2)0.92从运动情况确定受力的注意事项(1)由运动学规律求加速度,要特别注意加速度的方向,从而确定合外力的方向,不能将速度的方向和加速度的方向混淆.(2)题目中所求的力可能是合力,也可能是某一特定的力,均要先求出合力的大小、方向,再根据力的合成与分解求分力.[跟进训练]训练角度1 单过程问题2.如图所示,截面为直角三角形的木块置于粗糙的水平地面上,其倾角θ=30°.现木块上有一质量m =1.0 kg 的滑块从斜面下滑,测得滑块在0.40 s 内速度增加了1.4 m/s ,且知滑块滑行过程中木块处于静止状态,重力加速度g 取10 m/s 2,求:(1)滑块滑行过程中受到的摩擦力大小;(2)滑块滑行过程中木块受到地面的摩擦力大小及方向.[解析] (1)由题意可知,木块滑行的加速度a =Δv Δt =1.40.40 m/s 2=3.5 m/s 2.对木块受力分析,如图甲所示,根据牛顿第二定律得mg sin θ-f =ma ,解得f =1.5 N.甲 乙(2)根据(1)问中的木块受力示意图可得N =mg cos θ.对木块受力分析,如图乙所示,根据牛顿第三定律有N ′=N ,根据水平方向上的平衡条件可得f 地+f cos θ=N ′sin θ,解得f 地≈3.03 N,f 地为正值,说明图中标出的方向符合实际,故摩擦力方向水平向左.[答案] (1)1.5 N (2)3.03 N 方向水平向左 训练角度2 多过程问题3.如图所示,在倾角θ=37°的足够长的固定的斜面底端有一质量m =1.0 kg 的物体.物体与斜面间动摩擦因数μ=0.25,现用轻细绳将物体由静止沿斜面向上拉动.拉力F =10 N ,方向平行斜面向上.经时间t =4.0 s 绳子突然断了,求:(1)绳断时物体的速度大小;(2)从绳子断了开始到物体再返回到斜面底端的运动时间.(已知sin 37°=0.60,cos 37°=0.80,g 取10 m/s 2)[解析] (1)物体受拉力向上运动过程中,受拉力F 、斜面支持力N 、重力mg 和摩擦力f ,设物体向上运动的加速度为a 1,根据牛顿第二定律有:F -mg sin θ-f =ma 1又f =μN ,N =mg cos θ 解得a 1=2.0 m/s 2t 1=4.0 s 时物体的速度大小v 1=a 1t 1=8.0 m/s.(2)绳断时物体距斜面底端的位移为x 1=12a 1t 21=16 m绳断后物体沿斜面向上做匀减速直线运动,设运动的加速度大小为a 2,则根据牛顿第二定律,对物体沿斜面向上运动的过程有mg sin θ+f =ma 2解得a 2=8.0 m/s 2物体匀减速运动的时间t 2=v 1a 2=1.0 s减速运动的位移为x 2=12v 1t 2=4.0 m此后物体沿斜面匀加速下滑,设物体下滑的加速度为a 3,根据牛顿第二定律可得:mg sin θ-f =ma 3,解得a 3=4.0 m/s 2设物体由最高点下滑的时间为t 3,根据运动学公式可得x 1+x 2=12a 3t 23,t 3=10 s≈3.2s ,所以物体返回斜面底端的时间为t =t 2+t 3=4.2 s. [答案] (1)8.0 m/s (2)4.2 s1.物理观念:能结合运动情况确定受力情况,能结合受力情况确定运动情况. 2.科学思维:掌握牛顿运动定律和运动学公式解决问题的基本思路和方法.1.假设汽车突然紧急制动后所受到的阻力的大小与汽车所受的重力的大小差不多,当汽车以20 m/s 的速度行驶时突然制动,它还能继续滑动的距离约为 ( )A .40 mB .20 mC .10 mD .5 mB [a =f m =mg m =g =10 m/s 2,由v 2=2ax 得x =v 22a =2022×10m =20 m ,B 正确.]2.水平面上一质量为m 的物体,在水平恒力F 作用下,从静止开始做匀加速直线运动,经时间t 后撤去外力,又经时间3t 物体停下,则物体受到的阻力为 ( )A .F 3B .F 4 C.F 2 D .2F3B [在前t 时间内,由牛顿第二定律知F -f =ma 1,t 时间末v =a 1t ,得v =F -fm·t ;后3 t 内,由牛顿第二定律知f =ma 2,另由运动学规律得0=v -a 2·3t ,即v =fm·3t ,联立得f =F4,故选项B 正确.]3.(多选)如图所示,质量为m =1 kg 的物体与水平地面之间的动摩擦因数为0.3,当物体运动的速度为10 m/s 时,给物体施加一个与速度方向相反的大小为F =2 N 的恒力,在此恒力作用下(取g =10 m/s 2) ( )A .物体经10 s 速度减为零B .物体经2 s 速度减为零C .物体速度减为零后将保持静止D .物体速度减为零后将向右运动BC [物体受到向右的恒力和滑动摩擦力的作用,做匀减速直线运动.滑动摩擦力大小为f =μN =μmg =3 N ,故a =F +f m =5 m/s 2,方向向右,物体减速到0所需时间为t =v 0a=2 s ,故B 正确,A 错误;减速到零后F <f ,物体处于静止状态,故C 正确,D 错误.]4.竖直上抛物体受到的空气阻力f 大小恒定,物体上升到最高点时间为t 1,从最高点再落回抛出点所需时间为t 2,上升时加速度大小为a 1,下降时加速度大小为a 2,则 ( )A .a 1>a 2,t 1<t 2B .a 1>a 2,t 1>t 2C .a 1<a 2,t 1<t 2D .a 1<a 2,t 1>t 2A [上升过程中,由牛顿第二定律,得mg +f =ma 1① 设上升高度为h ,则h =12a 1t 21②下降过程,由牛顿第二定律,得mg -f =ma 2 ③ h =12a 2t 22④由①②③④得,a 1>a 2,t 1<t 2,A 正确.] 5.(新情景题)情境:科技馆的主要教育形式为展览教育,通过科学性、知识性、趣味性相结合的展览内容和参与互动的形式,反映科学原理及技术应用,鼓励公众动手探索实践,不仅普及科学知识,而且注重培养观众的科学思想、科学方法和科学精神.晓敏同学在科技馆做“水对不同形状运动物体的阻力大小的比较”实验,图甲中两个完全相同的浮块,头尾相反放置在同一起始线上,它们通过细线与终点的电动机连接.两浮块分别在大小为F 的两个相同牵引力作用下同时开始向终点做直线运动,运动过程中该同学拍摄的照片如图乙.已知拍下乙图时,左侧浮块运动的距离恰好为右侧浮块运动距离的2倍,假设从浮块开始运动到拍下照片的过程中,浮块受到的阻力不变.问题:试求该过程中: (1)两浮块平均速度之比v 左v 右; (2)两浮块所受合力之比F 左F 右; (3)两浮块所受阻力f 左与f 右之间的关系.[解析] (1)由v -=xt得,左侧浮块的平均速度:v 左=x 左t右侧浮块的平均速度:v 右=x 右t, 两浮块平均速度之比:v 左v 右=x 左t x 右t=x 左x 右=2.(2)根据牛顿第二定律可知:F 合=ma浮块运动的位移:x =12at 2则:F 左F 右=a 左a 右=x 左x 右=2. (3)根据牛顿第二定律可知:F -f 左=ma 左F -f 右=ma 右又因为a 左a 右=x 左x 右=2 则有F -f 左F -f 右=a 左a 右=2 则两浮块所受阻力f 左与f 右之间的关系 2f 右-f 左=F .[答案] (1)2 (2)2 (3)2f 右-f 左=F。
2019-2020学年高中物理 第四章 力与运动 第五节 牛顿第二定律的应用学案 粤教版必修1
第五节牛顿第二定律的应用[学习目标]1.明确动力学的两类基本问题.2.掌握应用牛顿运动定律解题的基本思路和方法.一、牛顿第二定律的作用牛顿第二定律揭示了运动和力的关系:加速度的大小与物体所受合外力的大小成正比,与物体的质量成反比;加速度的方向与物体受到的合外力的方向相同.二、两类基本问题1.根据受力情况确定运动情况如果已知物体的受力情况,则可由牛顿第二定律求出物体的加速度,再根据运动学规律就可以确定物体的运动情况.2.根据运动情况确定受力情况如果已知物体的运动情况,则可根据运动学公式求出物体的加速度,再根据牛顿第二定律就可以确定物体所受的力.判断下列说法的正误.(1)根据物体加速度的方向可以判断物体所受合外力的方向.( √)(2)根据物体加速度的方向可以判断物体受到的每个力的方向.( ×)(3)物体运动状态的变化情况是由它的受力决定的.( √)(4)物体运动状态的变化情况是由它对其他物体的施力情况决定的.( ×)一、从受力确定运动情况一辆汽车在高速公路上正以108km/h的速度向前行驶,司机看到前方有紧急情况而刹车,已知刹车时汽车所受制动力为车重的0.5 倍.则汽车刹车时的加速度是多大?汽车刹车后行驶多远距离才能停下?汽车的刹车时间是多少?(取g=10 m/s2)答案由kmg=ma可得a=kmgm=5m/s2则汽车刹车距离为s=v22a=90m.刹车时间为t =v a=6s.1.由受力情况确定运动情况的基本思路分析物体的受力情况,求出物体所受的合外力,由牛顿第二定律求出物体的加速度;再由运动学公式及物体运动的初始条件确定物体的运动情况.流程图如下:2.由受力情况确定运动情况的解题步骤:(1)确定研究对象,对研究对象进行受力分析,并画出物体的受力分析图. (2)根据力的合成与分解,求合外力(包括大小和方向). (3)根据牛顿第二定律列方程,求加速度.(4)结合物体运动的初始条件,选择运动学公式,求运动学量——任意时刻的位移和速度,以及运动时间等.3.注意问题:(1)若物体受互成角度的两个力作用,可用平行四边形定则求合力;若物体受三个或三个以上力的作用,常用正交分解法求合力;(2)用正交分解法求合力时,通常以加速度a 的方向为x 轴正方向,建立直角坐标系,将物体所受的各力分解在x 轴和y 轴上,根据力的独立作用原理,两个方向上的合力分别产生各自的加速度,解方程组⎩⎪⎨⎪⎧F x =maF y =0例1 如图1所示,质量m =2kg 的物体静止在水平地面上,物体与水平面间的滑动摩擦力大小等于它们间弹力的0.25倍,现对物体施加一个大小F =8N 、与水平方向成θ=37°角斜向上的拉力,已知sin37°=0.6,cos37°=0.8,g 取10m/s 2.求:图1(1)画出物体的受力图,并求出物体的加速度; (2)物体在拉力作用下5s 末的速度大小; (3)物体在拉力作用下5s 内通过的位移大小. 答案 (1)见解析图 1.3m/s 2,方向水平向右 (2)6.5m/s (3)16.25m解析 (1)对物体受力分析如图.由牛顿第二定律可得:F cos θ-f =ma F sin θ+F N =mg f =μF N解得:a =1.3m/s 2,方向水平向右 (2)v =at =1.3×5m/s=6.5 m/s (3)s =12at 2=12×1.3×52m =16.25m从受力情况确定运动情况应注意的两个方面1.方程的形式:牛顿第二定律F =ma ,体现了力是产生加速度的原因.应用时方程式的等号左右应该体现出前因后果的形式.2.正方向的选取:通常选取加速度方向为正方向,与正方向同向的力取正值,与正方向反向的力取负值,同样速度和位移的正负也表示其方向与规定的正方向相同或相反.针对训练1 如图2所示,楼梯口一倾斜的天花板与水平地面成θ=37°角,一工人手持木杆绑着刷子粉刷天花板,工人所持木杆对刷子的作用力始终保持竖直向上,大小为F =10N ,刷子的质量为m =0.5kg ,刷子可视为质点,刷子与天花板间的动摩擦因数μ=0.5,天花板长为L =4m ,sin37°=0.6,cos37°=0.8,g =10m/s 2.试求:图2(1)刷子沿天花板向上的加速度大小;(2)工人把刷子从天花板底端推到顶端所用的时间. 答案 (1)2m/s 2(2)2s解析 (1)以刷子为研究对象,受力分析如图所示设杆对刷子的作用力为F ,滑动摩擦力为f ,天花板对刷子的弹力为F N ,刷子所受重力为mg ,由牛顿第二定律得(F -mg )sin37°-μ(F -mg )cos37°=ma 代入数据解得a =2m/s 2. (2)由运动学公式得L =12at 2代入数据解得t =2s. 二、由运动情况确定受力情况1.由运动情况确定受力情况的基本思路分析物体的运动情况,由运动学公式求出物体的加速度,再由牛顿第二定律求出物体所受的合外力;再分析物体的受力情况,求出物体受到的作用力.流程图如下: 已知物体运动情况―――――→由运动学公式求得a ―――→由F =ma确定物体受力情况 2.由运动情况确定受力情况的解题步骤(1)确定研究对象,对物体进行受力分析和运动分析,并画出物体的受力示意图. (2)选择合适的运动学公式,求出物体的加速度. (3)根据牛顿第二定律列方程,求出物体所受的合力.(4)选择合适的力的合成与分解的方法,由合力和已知力求出待求的力.例2 一辆汽车在恒定牵引力作用下由静止开始沿直线运动,4s 内通过8m 的距离,此后关闭发动机,汽车又运动了2s 停止,已知汽车的质量m =2×103kg ,汽车运动过程中所受阻力大小不变,求:(1)关闭发动机时汽车的速度大小; (2)汽车运动过程中所受到的阻力大小; (3)汽车牵引力的大小.答案 (1)4m/s (2)4×103N (3)6×103N 解析 (1)汽车开始做匀加速直线运动,s 0=v 0+02t 1解得v 0=2s 0t 1=4m/s(2)关闭发动机后汽车减速过程的加速度a 2=0-v 0t 2=-2m/s 2由牛顿第二定律有f =ma 2解得f =-4×103N ,即汽车所受阻力大小为4×103N. (3)设开始加速过程中汽车的加速度为a 1s 0=12a 1t 12由牛顿第二定律有:F -f =ma 1解得F =f +ma 1=6×103N由运动情况确定受力应注意的两点问题:1.由运动学规律求加速度,要特别注意加速度的方向,从而确定合力的方向,不能将速度的方向和加速度的方向混淆.2.题目中所求的力可能是合力,也可能是某一特定的力,均要先求出合力的大小、方向,再根据力的合成与分解求分力.针对训练2 民用航空客机的机舱除通常的舱门外还设有紧急出口,发生意外情况的飞机着陆后,打开紧急出口的舱门,会自动生成一个由气囊组成的斜面,机舱中的乘客就可以沿斜面迅速滑行到地面上来.若某型号的客机紧急出口离地面高度为4.0m ,构成斜面的气囊长度为5.0 m .要求紧急疏散时,乘客从气囊上由静止下滑到达地面的时间不超过2.0 s(g 取10m/s 2),则:(1)乘客在气囊上下滑的加速度至少为多大? (2)气囊和下滑乘客间的动摩擦因数不得超过多少? 答案 (1)2.5m/s 2(2)1112解析 (1)由题意可知,h =4.0m ,L =5.0m. 设斜面倾角为θ,则sin θ=h L=0.8,cos θ=0.6.乘客沿气囊下滑过程中,由L =12at 2得a =2L t 2,代入数据得a =2.5m/s 2.(2)在乘客下滑过程中,对乘客受力分析如图所示,沿x 轴方向有mg sin θ-f =ma , 沿y 轴方向有F N -mg cos θ=0, 又f =μF N ,联立方程解得μ=g sin θ-a g cos θ=1112.三、多过程问题分析1.当题目给出的物理过程较复杂,由多个过程组成时,要明确整个过程由几个子过程组成,将过程合理分段,找到相邻过程的联系点并逐一分析每个过程.联系点:前一过程的末速度是后一过程的初速度,另外还有位移关系、时间关系等. 2.注意:由于不同过程中力发生了变化,所以加速度也会发生变化,所以对每一过程都要分别进行受力分析,分别求加速度.例3 如图3所示,ACD 是一滑雪场示意图,其中AC 是长L =8m 、倾角θ=37°的斜坡,CD 段是与斜坡平滑连接的水平面.人从A 点由静止下滑,经过C 点时速度大小不变,又在水平面上滑行一段距离后停下.人与接触面间的动摩擦因数均为μ=0.25,不计空气阻力.(取g =10m/s 2,sin37°=0.6,cos37°=0.8)求:图3(1)人从斜坡顶端A 滑至底端C 所用的时间; (2)人在离C 点多远处停下. 答案 (1)2s (2)12.8m解析 (1)人在斜坡上下滑时,对人受力分析如图所示.设人沿斜坡下滑的加速度为a ,沿斜坡方向,由牛顿第二定律得mg sin θ-f =ma f =μF N垂直于斜坡方向有F N -mg cos θ=0联立以上各式得a =g sin θ-μg cos θ=4m/s 2由匀变速直线运动规律得L =12at 2解得:t =2s(2)人在水平面上滑行时,水平方向只受到地面的摩擦力作用.设在水平面上人减速运动的加速度大小为a ′,由牛顿第二定律得μmg =ma ′ 设人到达C 处的速度为v ,则由匀变速直线运动规律得 人在斜坡上下滑的过程:v 2=2aL 人在水平面上滑行时:0-v 2=-2a ′s 联立以上各式解得s =12.8m.多过程问题的分析方法1.分析每个过程的受力情况和运动情况,根据每个过程的受力特点和运动特点确定解题方法(正交分解法或合成法)并选取合适的运动学公式.2.注意前后过程物理量之间的关系:时间关系、位移关系及速度关系.1.(从运动情况确定受力)如图4所示,质量为m =3kg 的木块放在倾角θ=30°的足够长的固定斜面上,木块可以沿斜面匀速下滑.若用沿斜面向上的力F 作用于木块上,使其由静止开始沿斜面向上加速运动,经过t =2s 时间木块沿斜面上升4m 的距离,则推力F 的大小为(g 取10m/s 2)( )图4A .42NB .6NC .21ND .36N 答案 D解析 因木块可以沿斜面匀速下滑,由平衡条件知:mg sin θ=μmg cos θ,所以μ=tan θ;当在推力作用下加速上滑时,由运动学公式s =12at 2得a =2 m/s 2,由牛顿第二定律得:F -mg sin θ-μmg cos θ=ma ,得F =36N ,D 正确.2.(从受力确定运动情况)(2019·浙南名校联盟高一上学期期末联考)如图5所示,哈利法塔是目前世界最高的建筑.游客乘坐世界最快观光电梯,从地面开始经历加速、匀速、减速的过程恰好到达观景台只需45s ,运行的最大速度为18m/s.观景台上可以鸟瞰整个迪拜全景,可将棕榈岛、帆船酒店等尽收眼底,颇为壮观.一位游客用便携式拉力传感器测得:在加速阶段质量为0.5 kg 的物体受到的竖直向上的拉力为5.45 N .电梯加速、减速过程视为匀变速直线运动(g 取10 m/s 2).图5(1)求电梯加速阶段的加速度大小及加速运动的时间;(2)若减速阶段与加速阶段的加速度大小相等,求观景台的高度.答案 (1)0.9m/s 220s (2)450m解析 (1)设加速阶段加速度为a ,由牛顿第二定律得:F T -mg =ma代入数据解得a =0.9m/s 2由v =at 解得t =20s(2)匀加速阶段位移s 1=12at 2匀速阶段位移s 2=v (t 总-2t )匀减速阶段位移s 3=v 22a高度s =s 1+s 2+s 3=450m.3.(多过程问题分析)一个质量为4kg 的物体静止在足够大的水平地面上,物体与地面间的动摩擦因数μ=0.2.从t =0开始,物体受到一个大小和方向呈周期性变化的水平力F 的作用,力F 随时间t 变化的规律如图6所示.g 取10m/s 2.求:(结果可用分式表示)图6(1)在2~4s 时间内,物体从开始做减速运动到停止所经历的时间; (2)0~6s 内物体的位移大小. 答案 (1)23s (2)143m解析 (1)在0~2 s 内,由牛顿第二定律知F 1-μmg =ma 1,a 1=1 m/s 2,v 1=a 1t 1,解得v 1=2 m/s. 2~4s 内,物体的加速度a 2=F 2-μmg m=-3m/s 2, 由0-v 1=a 2t 2知,物体从开始做减速运动到停止所用时间t 2=-v 1a 2=23s.(2)0~2s 内物体的位移s 1=v 1t 12=2m ,2~4s 内物体的位移s 2=v 1t 22=23m , 由周期性可知4~6 s 内和0~2 s 内物体的位移相等,所以0~6 s 内物体的位移s =2s 1+s 2=143m.一、选择题考点一 从受力确定运动情况1.用30N 的水平外力F ,拉一个静止在光滑水平面上的质量为20kg 的物体,力F 作用3s 后消失.则第5s 末物体的速度和加速度大小分别是( ) A .v =4.5 m/s ,a =1.5 m/s 2B .v =7.5 m/s ,a =1.5 m/s 2C .v =4.5m/s ,a =0D .v =7.5m/s ,a =0 答案 C解析 力F 作用下a =F 合m =F m =3020m/s 2=1.5 m/s 2,3s 末的速度v =at =4.5m/s,3s 后撤去外力F 后F 合=0,a =0,物体做匀速运动,故C 正确.2.一个物体在水平恒力F 的作用下,由静止开始在一个粗糙的水平面上运动,经过时间t ,速度变为v ,如果要使物体的速度变为2v ,下列方法正确的是( ) A .将水平恒力增加到2F ,其他条件不变 B .将物体质量减小一半,其他条件不变C .物体质量不变,水平恒力和作用时间都增加为原来的两倍D .将时间增加到原来的2倍,其他条件不变 答案 D解析 由牛顿第二定律得F -μmg =ma ,所以a =Fm-μg ,由v =at ,对比A 、B 、C 三项,均不能满足要求,故选项A 、B 、C 均错,选项D 对.3.(多选)如图1所示,质量为m =1kg 的物体与水平地面之间的动摩擦因数为0.3,当物体运动的速度为v 0=10m/s 时,给物体施加一个与速度方向相反的大小为F =2 N 的恒力,在此恒力作用下(g 取10 m/s 2)( )图1A .物体经10s 速度减为零B .物体经2s 速度减为零C .物体的速度减为零后将保持静止D .物体的速度减为零后将向右运动 答案 BC解析 物体向左运动时受到向右的滑动摩擦力,f =μF N =μmg =3N ,根据牛顿第二定律得a =F +f m =2+31m/s 2=5 m/s 2,方向向右,物体的速度减为零所需的时间t =v 0a =105s =2s ,B 正确,A 错误.物体的速度减为零后,由于F <f ,物体处于静止状态,C 正确,D 错误. 4.在交通事故的分析中,刹车线的长度是很重要的依据,刹车线是汽车刹车后,停止转动的轮胎在地面上发生滑动时留下的滑动痕迹.在某次交通事故中,汽车的刹车线长度是14m ,假设汽车轮胎与地面间的动摩擦因数恒为0.7,g 取10m/s 2,则汽车刹车前的速度大小为( )A .7m/sB .14 m/sC .10m/sD .20 m/s 答案 B解析 设汽车刹车后滑动过程中的加速度大小为a ,由牛顿第二定律得:μmg =ma ,解得:a =μg .由匀变速直线运动的速度位移关系式得v 20=2as ,可得汽车刹车前的速度大小为:v 0=2as =2μgs =2×0.7×10×14m/s =14 m/s ,因此B 正确.5.(2019·本溪一中高一上学期期末)如图2所示,一个物体由A 点出发分别沿三条光滑固定轨道到达C 1、C 2、C 3,则( )图2A .物体到达C 1点时的速度最大B .物体分别在三条轨道上的运动时间相同C .物体在与C 3连接的轨道上运动的加速度最小D .物体到达C 3的时间最短 答案 D解析 由物体在斜面上的加速度a =g sin θ,则在与C 3连接的轨道上运动的加速度最大,C 错误.斜面长L =hsin θ,由v 2=2aL 得:v =2gh ,则由A 到C 1、C 2、C 3时物体速度大小相等,故A 错误.由L =12at 2即h sin θ=12g sin θ·t 2知,沿AC 3运动的时间最短,B 错误,D 正确.考点二 从运动情况确定受力6.行车过程中,如果车距不够,刹车不及时,汽车将发生碰撞,车里的人可能受到伤害,为了尽可能地减轻碰撞所引起的伤害,人们设计了安全带.假定乘客质量为70kg ,汽车车速为90km/h ,从踩下刹车到车完全停止需要的时间为5s ,安全带对乘客的平均作用力大小约为(不计人与座椅间的摩擦,刹车过程可看做匀减速直线运动)( ) A .450NB .400NC .350ND .300N答案 C解析 汽车刹车前的速度v 0=90km/h =25 m/s 设汽车匀减速的加速度大小为a ,则a =v 0t=5m/s 2对乘客应用牛顿第二定律可得:F =ma =70×5N=350N ,所以C 正确.7.(多选)如图3所示,质量为m 的小球置于倾角为θ的斜面上,被一个竖直挡板挡住.现用一个水平力F 拉斜面,使斜面在水平面上做加速度为a 的匀加速直线运动,重力加速度为g ,忽略一切摩擦,以下说法正确的是( )图3A .斜面对小球的弹力为mgcos θB .斜面和竖直挡板对小球弹力的合力为maC .若增大加速度a ,斜面对小球的弹力一定增大D .若增大加速度a ,竖直挡板对小球的弹力一定增大 答案 AD解析 对小球受力分析如图所示,把斜面对小球的弹力F N2分解,竖直方向有F N2cos θ=mg ,水平方向有F N1-F N2sin θ=ma ,所以斜面对小球的弹力为F N2=mg cos θ,A 正确.F N1=ma +mg tan θ.由于F N2=mgcos θ与a 无关,故当增大加速度a 时,斜面对小球的弹力不变,挡板对小球的弹力F N1随a 增大而增大,故C 错误,D 正确.小球受到的合力为ma ,故B 错误.8.(多选)如图4所示,质量为m 2的物体2放在正沿平直轨道向右行驶的车厢底板上,并用竖直细绳通过光滑定滑轮连接质量为m 1的物体1,与物体1相连接的绳与竖直方向成θ角,则(物体1和物体2相对车厢静止,重力加速度为g )( )图4 A.车厢的加速度为g tanθB.绳对物体1的拉力为m1gcosθC.底板对物体2的支持力为(m2-m1)g D.物体2所受底板的摩擦力为m2g sinθ答案AB解析对物体1进行受力分析,把拉力F T沿水平方向、竖直方向分解,有F T cosθ=m1g,F T sinθ=m1a得F T=m1gcosθ,a=g tanθ,所以A、B正确.对物体2进行受力分析有F N+F T′=m2gf静=m2a根据牛顿第三定律,F T′=F T解得F N=m2g-m1gcosθf静=m2g tanθ,故C、D错误.考点三多过程问题分析9.竖直上抛物体受到的空气阻力f大小恒定,物体上升到最高点时间为t1,从最高点再落回抛出点所需时间为t2,上升时加速度大小为a1,下降时加速度大小为a2,则( ) A.a1>a2,t1<t2B.a1>a2,t1>t2C.a1<a2,t1<t2D.a1<a2,t1>t2答案 A解析上升过程中,由牛顿第二定律,得mg+f=ma1①设上升高度为h ,则h =12a 1t 12②下降过程,由牛顿第二定律,得mg -f =ma 2③ h =12a 2t 22④由①②③④得,a 1>a 2,t 1<t 2,A 正确.10.(多选)质量m =2kg 、初速度v 0=8m/s 的物体沿着粗糙水平面向右运动,物体与地面之间的动摩擦因数μ=0.1,同时物体还受到一个如图5所示的随时间变化的水平拉力F 的作用,设水平向右为拉力的正方向,且物体在t =0时刻开始运动,g 取10 m/s 2,则以下结论正确的是( )图5A .0~1s 内,物体的加速度大小为2m/s 2B .1~2s 内,物体的加速度大小为2m/s 2C .0~1s 内,物体的位移为7mD .0~2s 内,物体的总位移为11m 答案 BD解析 0~1s 内,物体的加速度大小为a 1=F +μmg m =6+0.1×2×102m/s 2=4 m/s 2,A 项错误; 1~2s 内物体的加速度大小为a 2=F ′-μmg m =6-0.1×2×102m/s 2=2 m/s 2,B 项正确; 物体运动的v -t 图象如图所示,故0~1s 内物体的位移为s 1=(4+8)×12m =6m ,C 项错误;由v -t 图象可知,1~2s 内物体的位移为s 2=(4+6)×12m =5m0~2s 内物体的总位移s =s 1+s 2=(6+5) m =11m ,D 项正确. 二、非选择题11.如图6所示,质量为2kg 的物体在40N 水平推力作用下,从静止开始1s 内沿足够长的竖直墙壁下滑3m .求:(取g =10m/s 2)图6(1)物体运动的加速度大小; (2)物体受到的摩擦力大小; (3)物体与墙壁间的动摩擦因数. 答案 (1)6m/s 2(2)8N (3)0.2解析 (1)由s =12at 2,可得:a =2s t 2=6m/s 2(2)分析物体受力情况如图所示:水平方向:物体所受合外力为零,F N =F =40N 竖直方向:由牛顿第二定律得:mg -f =ma 可得:f =mg -ma =8N(3)物体与墙壁间的滑动摩擦力f =μF N所以μ=f F N =840=0.2.12.如图7为游乐场中深受大家喜爱的“激流勇进”的娱乐项目,人坐在船中,随着提升机到达高处,再沿着倾斜水槽飞滑而下,劈波斩浪的刹那给人惊险刺激的感受.设乘客与船的总质量为100kg ,在倾斜水槽和水平水槽中滑行时所受的阻力均为重力的0.1倍,水槽的坡度为30°,若乘客与船从槽顶部由静止开始滑行18m 经过斜槽的底部O 点进入水平水槽(设经过O 点前后速度大小不变,取g =10m/s 2).求:图7(1)船沿倾斜水槽下滑的加速度的大小; (2)船滑到倾斜水槽底部O 点时的速度大小; (3)船进入水平水槽后15s 内滑行的距离. 答案 (1)4m/s 2(2)12 m/s (3)72m解析 (1)对乘客与船进行受力分析,根据牛顿第二定律,有mg sin30°-f =ma ,f =0.1mg ,联立解得a =4m/s 2. (2)由匀变速直线运动规律有v 2=2as ,代入数据得v =12m/s.(3)船进入水平水槽后,据牛顿第二定律有 -f ′=ma ′,f ′=0.1mg故a ′=-0.1g =-1m/s 2, 由于t 止=-va ′=12s<15s ,即船进入水平水槽后12s 末时速度为0, 船在15s 内滑行的距离s ′=v +02t 止=12+02×12m=72m.13.如图8所示,一足够长的固定粗糙斜面与水平面夹角θ=30°.一个质量m =1kg 的小物体(可视为质点),在F =10N 的沿斜面向上的拉力作用下,由静止开始沿斜面向上运动.已知斜面与物体间的动摩擦因数μ=36.g 取10m/s 2.则:图8(1)求物体在拉力F 作用下运动的加速度大小a 1;(2)若力F 作用1.2s 后撤去,求物体在上滑过程中距出发点的最大距离. 答案 (1)2.5m/s 2(2)2.4m解析 (1)对物体受力分析,根据牛顿第二定律: 物体受到斜面对它的支持力F N =mg cos θ=53N ,f =μF N =2.5N物体的加速度a 1=F -mg sin θ-f m=2.5m/s 2.(2)力F 作用t 0=1.2s 后,速度大小为v =a 1t 0=3m/s ,物体向上滑动的距离s 1=12a 1t 02=1.8m.此后它将向上匀减速运动,其加速度大小a 2=mg sin θ+f m=7.5m/s 2.这一过程物体向上滑动的距离s2=v22a2=0.6m.整个上滑过程运动的最大距离s=s1+s2=2.4m.。
2023人教版带答案高中物理必修一第四章运动和力的关系微公式版高频考点知识梳理
2023人教版带答案高中物理必修一第四章运动和力的关系微公式版高频考点知识梳理单选题1、由于生活水平的不断提升,越来越多的家庭拥有了私家轿车,造成车位难求的现象,因此很多停车场采用了多层停车的结构。
若车子被“移送”停在上层,车主想使用汽车时就需要车库管理员把车子“移送”到下层。
管理员正在“移送”车辆的过程如图所示。
假设“移送”过程中车辆相对于底板始终静止,底板始终保持水平,则下列说法正确的是()A.车子在被水平向右“移送”的过程中,底板对车子的摩擦力一直水平向左B.车子在被水平向右“移送”的过程中,底板对车子的摩擦力不可能水平向左C.车子在被竖直向下“移送”的过程中,车子对底板的力可能小于底板对车子的力D.车子在被竖直向下“移送”的过程中,底板对车子的力可能大于车子自身的重力答案:DAB.车子在被水平向右“移送”的过程中,先加速后减速,中间可能还有匀速过程,若加速向右移送,则底板对车子的摩擦力水平向右,若减速向右移送,则底板对车子的摩擦力水平向左,若匀速向右移送,底板对车子的摩擦力为零,所以底板对车子的摩擦力不会一直水平向左,故A、B错误;C.车子对底板的力和底板对车子的力是一对作用力和反作用力,任何时刻都大小相等,方向相反,故C错误;D.车子在被竖直向下“移送”的过程中,若减速向下移动,则加速度竖直向上,即F N-mg=ma解得F N=mg+ma则底板对车子的力可能大于车子自身的重力,故D正确。
故选D。
2、一个倾角为θ=37°的斜面固定在水平面上,一个质量为m=1.0kg的小物块(可视为质点)以v0=4.0m/s的初速度由底端沿斜面上滑,小物块与斜面的动摩擦因数μ=0.25。
若斜面足够长,已知sin37°=0.6,cos37°=0.8,g取10m/s2。
小物块返回斜面底端时的速度大小为()A.2 m/sB.2√2 m/sC.1 m/sD.3 m/s答案:B物块上滑时,根据牛顿第二定律有mgsin37°+μmgcos37°=ma1设上滑的最大位移为x,根据速度与位移的关系式有v02=2a1x物块下滑时,根据牛顿第二定律有mgsin37°−μmgcos37°=ma2设物块滑到底端时的速度为v,根据速度与位移的关系式有v2=2a2x联立代入数据解得v=2√2m s⁄故ACD错误B正确。
高中物理第四章力与运动第一节伽利略的理想实验与牛顿第一定律学案2粤教版必修1
高中物理第四章力与运动第一节伽利略的理想实验与牛顿第一定律学案2粤教版必修1[目标定位] 1.知道伽利略的理想实验及其推理过程,知道理想实验是科学研究的重要方法.2.理解牛顿第一定律的内容及意义.3.明确惯性的概念,会解释有关的惯性现象.一、伽利略的理想实验1.亚里士多德认为:力是维持物体运动的原因.2.伽利略的理想实验:(1)斜面实验:将轨道弯曲成曲线,在轨道的一边释放一颗钢珠,如果不存在摩擦力,钢珠将上升到轨道另一边与原来的释放高度相同的点.减小另一边斜面的倾角,钢珠也应上升到相同高度处,但通过的距离增大,当另一边斜面放平,钢珠将永远运动下去.(2)推理结论:力不是(选填“是”或“不是”)维持物体运动的原因.想一想伽利略的理想实验揭示了什么道理?答案伽利略的实验揭示了物体的运动不需要力来维持.二、牛顿第一定律1.牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止,这就是牛顿第一定律.2.惯性:物体保持原来的匀速直线运动状态或静止状态的性质叫惯性.牛顿第一定律又叫做惯性定律.3.任何物体无论处于什么状态,都具有惯性,惯性是物体的固有属性.想一想(1)是不是只有匀速直线运动或静止的物体才具有惯性?(2)有人说“速度越大惯性越大”“受力越小惯性越大”对吗?答案(1)不是;一切物体都具有惯性.物体的惯性与运动状态无关.(2)不对.惯性只与质量大小有关,而与速度大小、受力大小无关.一、对伽利略的理想实验的理解1.关于运动和力的两种对立的观点(1)亚里士多德的观点:力是维持物体运动的原因.这种错误的观点统治了人们的思维近二千年.(2)伽利略的观点(伽利略第一次提出):物体的运动不需要力来维持,力是改变物体速度的原因.2.伽利略的理想实验的意义(1)伽利略的理想实验将可靠的事实和理论思维结合起来,即采用“可靠事实+抽象思维+科学推论”的方法推翻了亚里士多德的观点,初步揭示了运动和力的正确关系.(2)第一次确立了物理实验在物理学中的地位.例1理想实验有时更能深刻地反映自然规律.伽利略设计了一个如图1所示的理想实验,他的设想步骤如下:图1①减小第二个斜面的倾角,小球在这个斜面上仍然要达到原来的高度;②两个对接的斜面,让静止的小球沿一个斜面滚下,小球将滚上另一个斜面;③如果没有摩擦,小球将上升到原来释放的高度;④继续减小第二个斜面的倾角,最后使它成为水平面,小球将沿水平面做持续的匀速运动.请将上述理想实验的设想步骤按照正确的顺序排列________(只要填写序号即可).在上述的设想步骤中,有的属于可靠的事实,有的则是理想化的推论.下列有关事实和推论的分类正确的是( )A.①是事实,②③④是推论B.②是事实,①③④是推论C.③是事实,①②④是推论D.④是事实,①②③是推论答案②③①④ B解析本题是在可靠事实的基础上进行合理的推理,将实验理想化,并符合物理规律,得到正确的结论.而②是可靠事实,因此放在第一步,③、①是在斜面上无摩擦的设想,最后推导出水平面上的理想实验④.因此正确顺序是②③①④.二、对牛顿第一定律的理解1.对牛顿第一定律的理解(1)定性说明了力和运动的关系:①力是改变物体运动状态的原因,或者说力是产生加速度的原因,而不是维持物体运动状态的原因.②物体不受外力时的运动状态:匀速直线运动状态或静止状态.(2)揭示了一切物体都具有的一种固有属性——惯性.因此牛顿第一定律也叫惯性定律.2.物体运动状态的变化即物体运动速度的变化,有以下三种情况:(1)速度的方向不变,只有大小改变.(物体做直线运动)(2)速度的大小不变,只有方向改变.(物体做曲线运动)(3)速度的大小和方向同时发生改变.(物体做曲线运动)3.注意:(1)牛顿第一定律所描述的是物体不受外力作用时的状态,与物体所受合外力为零是等效的.(2)牛顿第一定律不是实验定律,它是在理想实验的基础上总结得出的.例2关于牛顿第一定律的理解正确的是( )A.不受外力作用时,物体一定处于静止状态B.物体做变速运动时一定受外力作用C.在水平地面上滑动的木块最终停下来,是由于没有外力维持木块运动的结果D.飞跑的运动员,由于遇到障碍而被绊倒,这是因为他受到外力作用迫使他改变原来的运动状态答案BD解析牛顿第一定律描述的是物体不受外力作用时的状态,总保持匀速直线运动状态或静止状态,A错误;牛顿第一定律揭示了力和运动的关系,力是改变物体运动状态的原因,而不是维持物体运动状态的原因,做变速运动,运动状态改变了,一定受到外力作用;在水平地面上滑动的木块最终停下来,是由于摩擦阻力的作用而改变了运动状态,飞跑的运动员,遇到障碍而被绊倒,是因为他受到外力作用而改变了运动状态,C错误,B、D正确.三、对惯性的理解1.惯性是物体的固有属性.一切物体都具有惯性.2.质量是惯性大小的唯一量度.质量越大,惯性越大.3.惯性大小与物体运动状态无关,与物体受力情况以及地理位置无关.4.惯性的表现(1)不受力时,惯性表现为保持原来的匀速直线运动状态或静止状态,有“惰性”的意思.(2)受力时,惯性表现为运动状态改变的难易程度.质量越大,惯性越大,运动状态越难以改变.例3关于惯性,下列说法正确的是( )A.惯性是物体固有的属性,惯性越大的物体,它的运动状态越难改变B.同一物体运动时的惯性大于静止时的惯性C.速度快的汽车很难停下来,是因为速度越大,惯性越大D.各种机床和发电机的底座做得很笨重,并用螺丝固定在地面上,目的是增大惯性答案AD解析惯性是物体固有的属性,惯性越大的物体,保持原来运动状态的性质越强,即它的运动状态越难改变,A正确;质量是惯性大小的唯一量度,惯性大小与运动状态无关,B、C 错误;质量大的物体惯性大,各种机床和发电机的底座做得很笨重,目的是增大惯性,D正确.故选A、D.借题发挥分析有关惯性的问题时,应注意惯性的三个性质:(1)普遍性:一切物体在任何情况下都具有惯性;(2)无关性:惯性与物体的运动状态和受力情况均无关;(3)唯一性:惯性由物体的质量唯一决定.例4如图2所示,在匀速行驶的火车车厢内,有一人从B点正上方相对车厢静止释放一个小球,不计空气阻力,则小球( )图2A.可能落在A处B.一定落在B处C.可能落在C处D.以上都有可能答案 B解析匀速行驶的火车车厢内,相对车厢静止释放一个小球,由于惯性,小球在水平方向保持与车速相同的速度,因此在下落这段时间内,水平位移相等,即落回到B点,故选B.对伽利略的理想实验的理解1.伽利略的理想斜面实验说明( )A.亚里士多德关于运动和力的关系是正确的B.亚里士多德关于运动和力的关系是错误的C.力是维持物体运动的原因D.物体的运动不需要力来维持答案BD解析伽利略的理想实验中斜面放平后,小球将永远运动下去,说明物体的运动不是由力来维持的,故而推翻了亚里士多德的观点,B、D正确.对牛顿第一定律的理解2.关于牛顿第一定律,下列说法中正确的是( )A.牛顿第一定律是在伽利略“理想实验”的基础上总结出来的B.不受力作用的物体是不存在的,故牛顿第一定律的建立毫无意义C.牛顿第一定律表明,物体只有在不受外力作用时才具有惯性D.牛顿第一定律表明,物体只有在静止或做匀速直线运动时才具有惯性答案 A解析牛顿第一定律是在伽利略“理想实验”的基础上经过抽象、加工、推理后总结出来的,A正确;虽然不受力作用的物体是不存在的,但是它与物体所受合外力为零是等效的,故牛顿第一定律仍有实际意义,B错误;物体的惯性是物体本身的属性,与物体是否受外力无关,与物体静止还是匀速直线运动无关.C、D错误;故选A.对惯性的理解3.关于惯性的大小,下列说法正确的是( )A.物体的速度越大,其惯性就越大B.物体的质量越大,其惯性就越大C.物体的加速度越大,其惯性就越大D.物体所受的合力越大,其惯性就越大答案 B4.如图3所示,冰壶在冰面运动时受到的阻力很小,可以在较长时间内保持运动速度的大小和方向不变,我们可以说冰壶有较强的抵抗运动状态变化的“本领”.这里所指的“本领”是冰壶的惯性,则惯性的大小取决于( )图3A.冰壶的速度B.冰壶的质量C.冰壶受到的推力D.冰壶受到的阻力答案 B解析一个物体惯性的大小,与其运动状态、受力情况是没有任何关系的,衡量物体惯性大小的唯一量度是质量,故B正确.5.根据牛顿运动定律,以下选项中正确的是( )A.人只有在静止的车厢内,竖直向上高高跳起后,才会落在车厢的原来位置B.人在沿直线匀速前进的车厢内,竖直向上高高跳起后,将落在起跳点的后方C.人在沿直线加速前进的车厢内,竖直向上高高跳起后,将落在起跳点的后方D.人在沿直线减速前进的车厢内,竖直向上高高跳起后,将落在起跳点的后方答案 C解析人起跳后,水平方向保持起跳前的速度做匀速直线运动;车速如果不变(静止或匀速),则人和车水平方向相对静止;车如果加速,人相对滞后,掉入后面;车如果减速,人相对超前,掉在前面.故选C.(时间:60分钟)题组一对伽利略的理想实验的理解1.下列关于对运动的认识不符合...物理学史实的是( )A.亚里士多德认为物体的自然状态是静止的,只有当它受到力的作用时才会运动B.伽利略认为力不是维持物体运动的原因C.牛顿认为力的真正效果是改变物体的速度,而不仅仅是使之运动D.伽利略根据理想实验推论出,如果没有摩擦,在水平面上的物体,一旦具有某个速度,将保持这个速度继续运动下去答案 C解析亚里士多德认为力是维持物体运动的原因,有力作用在物体上它就运动,没有力作用时它就静止,A对.伽利略认为力不是维持物体运动的原因,而是改变物体运动状态的原因,他认为水平面上的物体若不受阻力,物体会保持原速度做匀速直线运动,B、D对.牛顿第一定律揭示了力与物体运动的关系,即物体的运动不需要力来维持,力的作用是改变物体的运动状态(速度),C错.2.16世纪末,伽利略用实验和推理,推翻了已在欧洲流行了近两千年的亚里士多德关于力和运动的理论,开始了物理学发展的新纪元.在以下说法中,与亚里士多德观点相反的是( )A.四匹马拉的车比两匹马拉的车跑得快,这说明,物体受的力越大,速度就越大B.一个运动的物体,如果不再受力了,它总会逐渐停下;这说明,静止状态才是物体长时间不受力时的“自然状态”C.两物体从同一高度自由下落,较重的物体下落较快D.一个物体维持匀速直线运动,不需要受力答案 D解析亚里士多德的观点:力是使物体运动的原因,有力物体就运动,没有力物体就停止运动,与此观点相反的选项是D.3.关于伽利略的理想实验,下列说法正确的是( )A.只要接触面摩擦相当小,物体在水平面上就能匀速运动下去B.这个实验实际上是永远无法做到的C.利用气垫导轨,就能使实验成功D.虽然是想象中的实验,但是它建立在可靠的实验基础上答案BD解析伽利略的理想斜面实验反映了一种物理思想.它是建立在可靠的事实基础上的,它把实验和逻辑推理结合在一起,抓住主要因素,忽略次要因素,从而深刻地揭示了自然规律.故选B、D.题组二对牛顿第一定律的理解4.由牛顿第一定律可知( )A.物体的运动是依靠惯性来维持的B.力停止作用后,物体的运动就不能维持C.物体做变速运动时,可以没有外力作用D.力是改变物体惯性的原因答案 A解析根据牛顿第一定律可得力不是维持物体运动的原因,而是改变物体运动的原因,A正确;惯性是物体固有的属性,跟外界因素无关,即力的存在和消失对惯性没有影响,D错误;力停止作用后,物体将保持静止或者匀速直线运动状态,B错误;物体做变速运动,速度发生变化,则一定存在外力改变物体的运动,C错误.故选A.5.关于力和运动的关系,下列说法中正确的是( )A.物体的速度不断增大,表示物体必受外力的作用B.物体向着某个方向运动,则在这个方向上必受力的作用C.物体的速度大小不变,则其所受的合外力必为零D.物体处于平衡状态,则该物体必不受外力作用答案 A解析当物体速度增大时,运动状态发生了变化,而力是改变运动状态的原因,故物体必受外力作用,A正确;力不是维持物体运动的原因,所以物体向某个方向运动,可以不在此方向上受力的作用,B错误;当物体的速度大小不变时,其速度方向可能发生变化,即运动状态可能变化,合外力不一定为零,C错误;物体处于平衡状态时,所受合外力为零,并不是物体不受外力作用,故D错误.6.做自由落体运动的物体,如果下落过程中某时刻重力突然消失,物体的运动情况将是( )A.悬浮在空中不动B.速度逐渐减小C.保持一定速度向下做匀速直线运动D.无法判断答案 C解析物体自由下落时,仅受重力作用,重力消失以后,物体将不受力,根据牛顿第一定律的描述,物体将以重力消失瞬间的速度做匀速直线运动,故选项C正确.7.如图1所示,在一辆表面光滑且足够长的小车上,有质量为m1和m2的两个小球(m1>m2),两个小球随车一起运动,当车突然停止运动时,若不考虑其他阻力,则两个小球( )图1A.一定相碰B.一定不相碰C.不一定相碰D.无法确定答案 B解析小车表面光滑,因此小球在水平方向上没有受到外力的作用.原来两个小球与小车具有相同的速度,当车突然停止运动时,由于惯性,两个小球的速度不变,所以不会相碰.8.如图2所示,一个劈形物体A,各面均光滑,放在固定的斜面上,上表面水平,在上表面上放一光滑的小球B,劈形物体A从静止开始释放,则小球在碰到斜面前的运动轨迹是( )图2A.沿斜面向下的直线B.竖直向下的直线C.无规则曲线D.抛物线答案 B解析小球原来静止时受重力和支持力作用,其合力为零.当劈形物体A由静止释放,A应沿斜面下滑,故B也将运动,运动状态就要发生改变,但由于惯性,小球原来速度为零,没有水平或其他方向上的速度,而小球又光滑,除竖直方向可以有合力外,其他方向上没有合力,因为力是使物体运动状态改变的原因,故小球只能在竖直方向上运动,在碰到斜面之前,运动轨迹应为一条直线,即竖直向下的直线.题组三对惯性的理解和应用9.关于惯性的理解,下列说法正确的是( )A.物体含的物质越多,惯性越大B.静止的火车启动时,速度变化慢,是因为静止的物体惯性大C.在月球上举重比在地球上容易,所以同一物体在地球上惯性比在月球上大D.乒乓球可以快速抽杀(球接触球板后速度很大),是因为乒乓球惯性小的缘故答案AD解析质量是指物体所含物质的多少,而质量是物体惯性的唯一量度,质量越大,物体的惯性越大,惯性与物体的速度、所在地理位置无关,A 正确,B 、C 错误;乒乓球可以快速抽杀(球接触球板后速度很大),运动状态很容易改变,因为它的质量很小,即乒乓球惯性小的缘故,D 正确.10.下列说法中正确的是 ( )A .运动越快的汽车越不容易停下来,是因为汽车运动得越快,惯性越大B .小球由于受重力的作用而自由下落时,它的惯性就不存在了C .一个小球被竖直上抛,当抛出后能继续上升,是因为小球受到向上的推力D .物体的惯性是物体保持匀速直线运动状态或静止状态的一种属性,与物体的速度大小无关答案 D解析 做变速运动的物体速度之所以改变是因为受到了外力,外力迫使它改变运动状态,不是物体失去了惯性.11.月球表面的重力加速度为地球表面的重力加速度的16,同一个飞行器在月球表面上时与在地球表面上时相比较( )A .惯性减小为16,重力不变 B .惯性和重力都减小为16C .惯性不变,重力减小为16D .惯性和重力都不变答案 C解析 物体的惯性大小仅与物体的质量有关,因质量是恒量,同一物体的质量与它所在的位置及运动状态无关,所以这个飞行器从地球到月球,其惯性大小不变;物体的重力是个变量,这个飞行器在月球表面上的重力为G 月=mg 月=m ·16g 地=16G 地.故正确选项为C. 12.如图3所示,在沿东西方向直线运动的小车上,放一竖直木块,突然发现木块向西倒,则小车可能的运动情况( )图3A .向东做匀速运动B .向东做减速运动C .向东做加速运动D .向西做减速运动答案CD解析由牛顿第一定律可知,木块突然向西倒,说明小车具有向东的加速度,由力和运动关系可知,小车可能向东加速或向西减速.所以A、B错误,C、D正确.13.下面摘自上个世纪美国报纸上的一篇小文章:阿波罗登月火箭在脱离地球飞向月球的过程中,飞船内宇航员通过无线电与在家中上小学的儿子汤姆通话.宇航员:“汤姆,我们现在已经关闭了火箭上所有推动机,正向月球飞去.”汤姆:“你们关闭了所有推动机,那么靠什么力量推动火箭向前运动?”宇航员犹豫了半天,说:“我想大概是伽利略在推动飞船向前运动吧.”若不计星球对火箭的作用力,由上述材料可知下列说法正确的是( )①汤姆问话体现的物理思想是“火箭的运动需要力来维持”②宇航员答话想表达的真实意思是“伽俐略用力推动着火箭向前运动”③宇航员答话想表达的真实意思是“火箭的运动不需要力来维持” ④宇航员的答话想表达的真实意思是“火箭正在依靠惯性飞行”A.①② B.②③④ C.①②④ D.①③④答案 D解析①汤姆说:“你们关闭了所有推动机,那么靠什么力量推动火箭向前运动?”,想表达的真实意思是“火箭的运动需要力来维持”,故①正确;②③④由题意知,宇航员说“大概是伽利略在推动飞船向前运动”,真实意思是根据伽利略的理论,“火箭的运动不需要力来维持”,“火箭正在依靠惯性飞行”,而不是伽俐略用力推动着火箭向前运动,故②错误,③④正确.。
第一讲--力与运动---培优学案.doc
第七章力和运动巩固培优学案【知识点1】牛顿第一定律1、内容:一切物体在没有受到力的作用时,总保持静止状态或匀速直线运动状态。
牛顿第一定律也叫惯性定律。
2、理解:在不受力前是静止的,则当物体不受力时,将依然保持静止;在不受力前是运动的,则当物体不受力时,将保持不受力之前那一刻的速度大小和速度方向做匀速直线运动。
3、如果受外力但受平衡力,则有:一切物体在受平衡力的作用时,总保持静止状态或匀速直线运动状态。
例1:小明在体育课上练习垫排球,当排球竖直上升到最高处时,若所有外力都消失,则排球将()A.一直上升:B.掉落下来C.先上升后下降D.保持静止例2:• 2017年4月,我国成功发射天舟一号飞船。
如图,天舟一号关闭发动机后,从椭圆轨道上离地球较近的P点向离地球较远的Q点运动。
如果天舟一号飞船到达Q点时所受外力全部消失,那么它将()A.落回地面B.飞向太阳C.绕地球运行D.做匀速直线运动例3:物体在一对平衡力的作用下,处于匀速直线运动状态,当所有外力突然消失,则()A.物体将立即停止运动B.物体仍做匀速直线运动C.物体一定改变运动状态D.以上说法均不对【巩固提升】1、忽略空气阻力,抛出后的小球在空中运动轨迹如图所示,若某次抛出时,小球达到最高点时,突然所有的外力都消失,则()A.小球保持静止状态B.小球竖直下落C.小球水平向左做匀速直线运动D.小球斜向左上方做匀速直线运动2、物体在一对平衡力的作用下,当所有外力突然消失,则()A.物体将立即停止运动B.物体仍做匀速直线运动C.物体运动状态不发生变化D.以上说法均不对3、给小球一定的初速度让小球在粗糙的水平面上运动,当重力突然消失时,小球将做一【知识点2】惯性1、定义:保持静止和匀速直线运动状态的性质。
2、惯性大小只与质量有关,质量越大,惯性越大,与其他一切因素无关。
3、理解:反映的是运动状态改变的难易程度,质量越大,惯性越大,保持某种运动状态的能力越强,运动状态改变起来就越困难。
粤教版高中物理必修一第四章力与运动学案
第四章第四节牛顿第二定律学习目标1、掌握牛顿第二定律的文字内容和数学公式。
2、理解公式中各物理量的意义及相互关系。
3、知道在国际单位制中的力的单位“牛顿”是怎样定义的。
4、会用牛顿第二定律的公式进行有关的计算。
5、通过对上节课实验结论的总结,归纳得到物体的加速度跟它的质量及所受外力的关系,进而总结出牛顿第二定律,体会大师的做法与勇气。
6、培养学生的概括能力和分析推理能力。
7、渗透物理学研究方法的教育。
学习过程一、预习指导:1、牛顿第一定律告诉我们,物体受合外力为零时,物体将,当物体受到合外力不为零时,物体的将发生变化,速度变化的快慢用来描述,那么加速度与的大小与什么因素有关?2、思考:生活中汽车的启动快慢与什么因素有关?3、加速度大小如果与质量和所受外力有关,想要探究它们的关系,你会用怎样的物理研究方法?4、如图,光滑水平地面上的木块,当我们用一个水平拉力拉木块时,木块将做运动。
①当物体质量不变,拉力越大,速度变化(填越快或越慢)则加速度。
②当拉力一定,质量越大,速度变化(填越快或越慢),则加速度。
5、加速度是矢量,力也是矢量,加速度的方向与合外力的方向。
二、课堂探究:(一)牛顿第二定律1、内容:物体的加速度跟所物体所受到的成正比,跟物体的成反比,加速度的方向与的方向相同2、公式:,国际单位制中表达式为3、牛顿第二定律的特点和理解:牛顿第二定律的表达式F=ma,等式左边是物体受到的合外力,右边反映了质量是m的物体在这个力作用下的效果是产生加速度a,它突出了力是物体运动状态改变的原因,不是维持物体运动的原因,物体的加速度跟合外力成正地,跟物体的质量成反比,这就是牛顿第二定律的物理意义。
(1)瞬时性:加速度与合外力在每个瞬时都有大小、方向上的对应关系(2)矢量性:牛顿第二定律公式是矢量式。
含义在于加速度的方向与合外力的方向始终一致.(3)同一性:加速度与合外力及质量的关系,是对同一个物体(或物体系)而言,即 F 与a 均是对同一个研究对象而言. 二、典例训练:例1:质量为8×103kg 的汽车以1.5m /s 2的加速度加速前进,阻力为2.5×103N ,那么,汽车的牵引力是多少?学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1、下列关于力和运动关系的几种说法中,正确的是( ) A .物体所受合外力的方向,就是物体运动的方向 B .物体所受合外力不为零时,其速度不可能为零 C .物体所受合外力不为零,其加速度一定不为零 D .合外力变小的,物体一定做减速运动2、下列对牛顿第二定律的表达式F =ma 及其变形公式的理解,正确的是A .由F =ma 可知,物体所受的合外力与其质量成正比,与物体的加速度成反比B .由a Fm =可知,物体的质量与其所受合外力成正比,与其加速度成反比C .由m Fa =可知,物体的加速度与其所受合外力成正比,与其质量成反比D .由aFm =可知,物体的质量可通过测量它的加速度和所受到的合外力而求得3、在牛顿第二定律的数学表达式F =kma 中,有关比例系数k 的说法正确的是 A .在任何情况下k 都等于1B .因为k =1,所以k 可有可无C .k 的数值由质量、加速度和力的大小决定D .k 的数值由质量、加速度和力的单位决定4、对静止在光滑水平面上的物体施加一水平拉力,当力刚开始作用的瞬间 A .物体立即获得速度 B.物体立即获得加速度C .物体同时获得速度和加速度D .由于物体未来得及运动,所以速度和加速度都为零5、放在光滑水平面上的物体,在水平方向的两个平衡力作用下处于静止状态,若其中一个力逐渐减小到零后,又恢复到原值,则该物体的A.速度先增大后减小 B.速度一直增大,直到某个定值C.加速度先增大,后减小到零 D.加速度一直增大到某个定值6、一位工人沿水平方向推一质量为45kg的运料车,所用的水平推力为90N,此时运料车的加速度为1.8m/s2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理-研究力和运动的关系本章优化总结学案
牛顿运动定律的两类基本问题[学生用书P82]
1.两类问题
(1)已知物体受力情况,求解物体的运动情况,如s、v、t等.
(2)已知物体的运动情况,求解物体的受力情况.
2.解题思路
两类基本问题中,受力分析和运动分析是关键,求解加速度是桥梁和枢纽,思维过程如下
受力情况
受力分析
牛顿第二定律
加速
度a
运动分析
运动学公式
运动
情况
频闪照相是研究物理过程的重要手段,如图所示是某同学研究小滑块从光滑水平面
滑上粗糙斜面并向上滑动时的频闪照片,已知斜面足够长,倾角为α=37°,闪光频率为10 Hz.经测量换算获得实景数据:x1=x2=40 cm,x3=35 cm,x4=25 cm,x5=15 cm.取g=10 m/s2,sin 37°=0.6,cos 37°=0.8,5=2.24,设滑块通过平面与斜面连接处时速度大小不变.求:
(1)滑块沿斜面上滑时的初速度v0;
(2)滑块与斜面间的动摩擦因数μ;
(3)滑块从滑上斜面到返回斜面底端所用的时间.
[解析] (1)由题意可知,滑块在水平面上做匀速直线运动,则v0=x
1
T
=4 m/s.
(2)滑块在斜面上滑过程做匀减速直线运动,设加速度为a1.根据公式:x4-x3=a1T2由牛顿第二定律:-(mg sin α+μmg cos α)=ma1
解得μ=0.5.
(3)设滑块向上滑行所用的时间为t 1,上滑的最大距离为x ,返回斜面底端的时间为t 2,加速度为a 2.
0-v 0=a 1t 1
x =12
v 0t 1
解得t 1=0.4 s,x =0.8 m
滑块沿斜面下滑时,根据牛顿第二定律:
mg sin α-μmg cos α=ma 2 x =12
a 2t 22
解得t 2=
25
5 s 所以滑块从滑上斜面到返回斜面底端所用的时间:
t =t 1+t 2=0.4 s +
25
5
s =1.296 s. [答案] (1)4 m/s (2)0.5 (3)1.296 s
牛顿运动定律与图像问题[学生用书P83]
1.求解该类问题的思路是根据题目中给出的物理过程,结合图像,并利用牛顿运动定律求解.
2.动力学中常见的图像有v -t 图像、a -t 图像、F -t 图像、F -a 图像等.
3.利用图像分析问题时,关键是看清图像的纵、横坐标轴表示的物理量,弄清图像中斜率、截距、交点、转折点、面积等的物理意义.
如图,质量为M 的长木板,静止放在粗糙的水平地面上,有一个质量为m 、可视为质点
的物块,以某一水平初速度从左端冲上木板.从物块冲上木板到物块和木板都静止的过程中,物块和木板的v -t 图像分别如图中的折线所示,根据v -t 图像(g 取10 m/s 2),求:
(1)m 与M 间动摩擦因数μ1及M 与地面间动摩擦因数μ2. (2)m 与M 的质量之比.
(3)从物块冲上木板到物块和木板都静止的过程中,物块m 、长木板M 各自对地的位移. [解析] (1)由图可知,线段ac 为m 减速时的速度—时间图像,m 的加速度为
a 1=
Δv 1Δt 1=4-10
4
m/s 2=-1.5 m/s 2 对m :由牛顿第二定律可得:-μ1mg =ma 1, 所以μ1=
a 1
-g
=0.15 由图可知,线段cd 为二者一起减速运动时的速度—时间图像,其加速度为a 3=Δv 3Δt 3=0-4
8
m/s 2=-0.5 m/s 2
对m 和M 组成的整体,由牛顿第二定律可得: -μ2(m +M )g =(m +M )a 3 所以μ2=
a 3
-g
=0.05. (2)由图像可得,线段bc 为M 加速运动时的速度—时间图像,M 的加速度为a 2=Δv 2Δt 2=4-0
4
m/s 2=1 m/s 2
对M ,由牛顿第二定律可得:μ1mg -μ2(mg +Mg )=Ma 2 把μ1、μ2代入上式,可得m ∶M =3∶2.
(3)由图线acd 与横轴所围面积可求得m 对地位移:
x m =1
2×4×6 m +
(4+12)×4
2
m =44 m
由图线bcd 与横轴所围面积可求得M 对地位移:
x M =12
×12×4 m =24 m.
[答案] (1)0.15 0.05 (2)3∶2 (3)44 m 24 m
动力学中的临界和极值问题[学生用书P83] 1.动力学中的典型临界问题
(1)接触与脱离的临界条件:两物体相接触或脱离的临界条件是弹力F N=0.
(2)相对静止或相对滑动的临界条件:两物体相接触且处于相对静止时,常存在着静摩擦力,则相对静止或相对滑动的临界条件:静摩擦力达到最大值或为零.
(3)绳子断裂与松弛的临界条件:绳子所能承受的张力是有限的,绳子断与不断的临界条件是绝对张力等于它所能承受的最大张力.绳子松弛的临界条件是F T=0.
(4)加速度最大与速度最大的临界条件:当物体在受到变化的外力作用下运动时,其加速度和速度都会不断变化,当所受合外力最大时,具有最大加速度;合外力最小时,具有最小加速度.当出现加速度为零时,所对应的速度便会出现最大值或最小值.
2.求解临界极值问题的三种常用方法
(1)极限法:把物理问题(或过程)推向极端,从而使临界现象(或状态)暴露出来,以达到正确解决问题的目的.
(2)假设法:临界问题存在多种可能,特别是非此即彼两种可能时,或变化过程中可能出现临界条件,也可能不出现临界条件时,往往用假设法解决问题.
(3)数学方法:将物理过程转化为数学公式,根据数学表达式解出临界条件.
如图所示,质量m=1 kg的光滑小球用细线系在质量为M=8 kg、倾角为α=37°的斜面体上,细线与斜面平行,斜面体与水平面间的摩擦不计,g取10 m/s2.试求:
(1)若用水平向右的力F拉斜面体,要使小球不离开斜面,拉力F不能超过多少?
(2)若用水平向左的力F′推斜面体,要使小球不沿斜面滑动,推力F′不能超过多少?
[解题探究] (1)向右拉斜面体时,小球不离开斜面体的临界条件是什么?
(2)向左推斜面体时,小球不沿斜面滑动的临界条件是什么?
[解析] (1)小球不离开斜面体,两者加速度相同、临界条件为斜面体对小球的支持力恰好为0
对小球受力分析如图:
由牛顿第二定律得:mg·cot 37°=ma
a=g cot 37°=40
3
m/s2
对整体由牛顿第二定律得:
F=(M+m)a=120 N.
(2)小球不沿斜面滑动,两者加速度相同,临界条件是细线对小球的拉力恰好为0,
对小球受力分析如图:
由牛顿第二定律得:mg tan 37°=ma′
a′=g tan 37°=7.5 m/s2
对整体由牛顿第二定律得:
F′=(M+m)a′=67.5 N.
[答案] (1)120 N (2)67.5 N
求解此类问题时,一定要找准临界点,从临界点入手分析物体的受力情况和运动情况,看哪些量达到了极值,然后对临界状态应用牛顿第二定律结合整体法、隔离法求解即可.
多过程问题分析[学生用书P84]
1.当题目给出的物理过程较复杂,由多个过程组成时,要明确整个过程由几个子过程组成,将过程合理分段,找到相邻过程的联系点并逐一分析每个过程.联系点:前一过程的末速度是后一过程的初速度,另外还有位移关系等.
2.注意:由于不同过程中力发生了变化,所以加速度也会发生变化,所以对每一过程都要分别进行受力分析,分别求加速度.
如图所示,水平平台的右端安装有滑轮,质量为M=2 kg的物块放在与滑轮相距l=1.2 m的平台上,物块与平台间的动摩擦因数为μ=0.2,现有一轻绳跨过定滑轮,左端与物块连
接,右端挂质量为m=1 kg的小球,绳拉直时用手托住小球使其在距地面h=0.5 m高处静止.设最大静摩擦力等于滑动摩擦力(g取10 m/s2).
(1)放开小球,系统运动,求小球做匀加速运动时的加速度及此时绳子的拉力大小;
(2)通过计算回答物块能否撞到定滑轮.
[解析] (1)由牛顿第二定律得:
对小球:mg-F T=ma1
对物块:F T-μMg=Ma1
解得:a1=2 m/s2,F T=8 N.
(2)小球落地时的速度:
由v2=2a1h得:v=2a1h= 2 m/s
即物块此时的速度为 2 m/s
物块此后做匀减速运动的加速度:
a
2
=μMg/M=μg=2 m/s2
到停下来可滑行的距离由v2=2a2x得:
x=v2
2a2
=0.5 m
物块在平台上共滑行距离:x总=h+x=1 m<l 故物块不会撞到定滑轮.
[答案] (1)2 m/s28 N (2)见解析。